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ABSTRACT. On a smooth, compact, Riemannian manifold without boundary (M, g), let A,
be the Laplace—Beltrami operator. We define the orthogonal projection operator
I, : L*(M) — @ ker(Agy+A?)
Ajely

for an interval Iy centered around A € R of a small, fixed length. The Schwartz kernel,
I1;, (x,y), of this operator plays a key role in the analysis of monochromatic random waves,
a model for high energy eigenfunctions. It is expected that IIj, (x,y) has universal asymp-
totics as A — o0 in a shrinking neighborhood of the diagonal in M x M (provided I is chosen
appropriately) and hence that certain statistics for monochromatic random waves have uni-
versal behavior. These asymptotics are well known for the torus and the round sphere, and
were recently proved to hold near points in M with few geodesic loops by Canzani-Hanin.
In this article, we prove that the same universal asymptotics hold in the opposite case of
Zoll manifolds; that is, manifolds all of whose geodesics are closed with a common period.

1. INTRODUCTION

Let (M, g) be a compact, Riemannian manifold without boundary and write A, for the
associated (negative definite) Laplace-Beltrami operator. Denote the eigenvalues of —A,
by 0 = A2 < M < A2 < -+ repeated according to multiplicity. For I < R consider the
orthogonal projection operator

I : L*(M) — @ ker(Ag + X3).

/\jEI
Letting {¢;}7, be an orthonormal basis of L*(M) such that
—Agpj = Npj, j=0,1,2,.., (1.1)
the Schwarz kernel of II; takes the form
Mi(x,y) = ), @i(2)e;(y),  zye M. (1.2)
)\jEI

Notably, on a general compact smooth manifold with no boundary, the Weyl Law states that

#{j: N\ <A} = f o (2, x)dvoly(x) = Cpvoly(M)AN" + R(A), (1.3)
M

where R(\) = O(A" 1) as A — oo [Weyl2, Lev53, Ava56, H68]. This remainder term is
sharp. It is saturated, for example, on the round sphere, S"”. Indeed, it is saturated on
any Zoll manifold (M, g); i.e. a smooth compact Riemannian manifold without boundary
all of whose geodesics are periodic with common minimal period. However, when the set
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of closed geodesics has measure zero in S*M, the remainder, R(\), can be improved to
o(A"1) [DG75).

In this article, we study the asymptotics as A — oo of spectral projectors of the form
II;, (x,y), where I, is an interval, centered at A, with length uniformly bounded from above
and below (or, possibly, length shrinking slowly with ). These spectral projectors appear
in the field of random waves as the covariance kernels of so-called monochromatic random
waves. As with the properties of IIjg xj(z, y), the asymptotics of II;, are intimately connected
to the dynamics of the geodesic flow on (M, g).

The most classical random wave studies occur on the round sphere, S", and flat torus, T"
(see, for instance, the survey [Wig22]). In the case of the sphere,

N=((l+n-1) (=0,1,...,
and it is known that, with v, := ¢ + ”T’l, for z,y € S" with dy(x,y) < r; and limy_,,, 7 = 0,
1/?_1 J"T—Q(|V€dg($ay)‘)
202 (vedy(w,y)) T

Here, we write d,(z,y) for the Riemannian distance between x and y and J, is the Bessel
function of the first kind with index a. We note that for v e R"

1 Jazz(fv]) 1 ow
)2 ‘U‘%Q = @y Lnl e do,, (). (1.4)
It will be useful below to interpret the Bessel term in (1.7) as an integral over Sy M, and we
refer the reader to Remark 2.2 for this.

Despite the fact that the dynamics of the geodesic flow on the n-dimensional flat torus,
are dramatically different than those on the sphere, there we also have for x,y € T" with
dy(z,y) <r, and lim,_,, 7, = 0,

+o(v) ™), € — 0.

H{Ae}<xvy) = H[V(—i,Vg-‘y—i](‘/L‘?y) = (

Vnil JnT_QOVdg(x’y)D n—1
. i 0<V )’ vV — 00.

2m)"2 (vdy(z,y)) "

Indeed, perhaps surprisingly, in contrast to the fact that II;, encodes a great deal of
dynamical information, one expects that the local behavior of I, is, in some sense, universal.

29

]'_[[1/—l 1/+%](x7 y) = (

Conjecture 1.1. Let (M, g) be a smooth, compact, Riemannian manifold of dimension n
without boundary and x € M. Then, there exist ¢ > 0, a sequence v, — o0, and a sequence
0 < & < ¢ such that for y e M with dy(z,y) = ¢ and limy_,, 70 = 0,

(2m)/2 Tz (|vedy(z,y)])
VOl(Snfl) (yédg(gj’y))nTiz

H[V@*E[,VngEg] (x7 y) = H[ngsg,l/ngEg] (.T, x +0(y?_1)7 g — 0.

(1.5)

In [CH15,CH18], Canzani-Hanin showed that the asymptotics (1.5) hold whenever z is a
non-self focal point. That is, the set of directions £ € S M that generate a geodesic loop that
returns to x has Liouville measure zero. As for the flat torus, in the case of non-self focal
points, one can take any sequence v, — o and ¢, = 1. In this article, we study the case of
Zoll manifolds which have, in some sense, the opposite dynamical behavior from manifolds
without conjugate points. This is a rich class of manifolds that includes compact rank one
symmetric spaces. Indeed, while the most well known example of a Zoll manifold is the
round sphere, S?, the moduli space of Zoll metrics on S? is infinite dimensional [Gui76].
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It is well known that, like it happens for the sphere of radius %, the eigenvalues of —A,
on a Zoll manifold of period T are strongly clustered near the sequence

2 a
= —> 0=0,1,2,... 1.
Vy T( +47 07 ) 4y ’ (6)

where a is the common Maslov index of the closed geodesics [Wei75, Wei77, DG75, CdVT79,
Chag0].

Because of this sphere-like clustering, it is too much to hope that (1.5) holds for any choice
of v, — o and we should instead work with spectral projectors for a well chosen sequence
v as in the case of the round sphere. In particular, we take v, as in (1.6).

Our main theorem shows that Conjecture 1.1 is true on a Zoll manifold.

Theorem 1. Let (M, g) be a smooth Zoll manifold of dimension n = 2 with uniform period
T > 0, and let the sequence {v;} be as in (1.6). Let R.(¢;x,y) be defined by

o vt Ina(vedy (7, y)])
Hy—al/ € ) =t 2 ) €‘€7 yY)y L.
e A0 = e gy ) o

Then, for any 0 < e < ZT and every pair of multi-indices o, 3 € N",

lim limsup sup V;_n_m'_m'ﬁgagf%g(é;x,y) =0 (1.8)

-0t g dg(z,y)<d

The on-diagonal version of this result, without derivatives, is proved in [Zel97, Theorem
2] for Zoll manifolds that are simply connected (SC7 manifolds in their language). We also
refer the reader to [DG75,Zel92,UZ93,Zel97, Zel09] for related studies on the spectra of Zoll
manifolds.

As discussed briefly before, the main motivation for proving Theorem 1 is its application
to the theory of random waves on manifolds. A monochromatic random wave on (M, g) is a
Gaussian random field of the form

1
Uae(®) = ———5 . api(a), (1.9)
dim(H.¢)" AjeA—eA+e]

where the a; are i.i.d. standard Gaussian random variables, the ¢; are the eigenfunctions in
(1.1), e > 0, and

Hy.:= @  ker(Ag+X).
AjE[A—e, A +€]

Monochromatic random waves were created to model eigenfunction behavior. Indeed,
although v, . is not an actual eigenfunction, it is expected to behave like one. (For a careful
account of the history, see [Can20, Wig22| and references there.) In particular, much research
has been dedicated to understanding the behavior of the zero sets and critical points of
random waves. The corresponding features of deterministic eigenfunctions are very difficult
to study, and their analysis becomes much more tractable for the monochromatic random
counterparts.

The statistics of ¥, . are completely determined by the associated two-point correlation
function

1
K)\,s (Iu y) := Cov (1/})\,6(3:)7 1/&,5(1/)) )H[A—a,)\-i-a] (I, y)7 T,y e M.

- dim(H,\@
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Most research is typically done on the round sphere or the flat torus since K. is well un-
derstood for these spaces [BMW20,CW17, KKW13,BCW19,Cam19, CMW16,NS09, RW08].
Furthermore, studying features like the zero sets and critical points of 1 . relies on having
asymptotics for K, (z,y) when z,y € B(x, %) with z fixed. Although treating K. on
general manifolds is quite challenging, Conjecture 1.1 implies that, when the windows of
eigenvalues defining the sum in (1.9) are appropriately chosen,

K)\,a < epro (%) ) eprO (%))

should converge for all u,v € T); M to a universal limit that is independent of the topology or
geometry of (M, g). Here, exp,, : Tj M — M denotes the exponential map with footpoint
at xg. The following corollary proves this conjecture in the setting of Zoll manifolds.

Corollary 1.2. Let (M, g) be as in Theorem 1. Let zg€ M and 0 < e < 2. Then, for any
function € — r, with vy = o(vy) and every pair of multi-indices «, 5 € N",

/2 Jn2 -
a8 (Kw,s(expxo ()., () - o P U|)>‘=0- (1.10)

lim sup
(=% Ju v <

vol(S*M) (ju — v|) "5

Results about Conjecture 1.1 yield corresponding asymptotics for the covariance function
of monochromatic random wave. Indeed, for a general manifold (M, g), when the interval in
(1.9) is [A — 2, A + 3], the asymptotics from [CH15, CH18] show that (1.10) holds when the
point xq is non self-focal. In the case where (M, ¢g) has no conjugate points, the asymptotics in
(1.10) hold at every point with a logarithmic improvement on the rate of decay to 0 [Kee21].

In the language of Nazarov-Sodin [NS16], if the asymptotics in (1.10) hold at every zo € M,
then the random waves 15 . have translation invariant local limits. For ensembles with such
translation invariant local limits, Zelditch [Zel09], Nazarov-Sodin [NS16], Sarnak-Wigman
[SW19], Gayet-Welschinger [GW16], Canzani-Sarnak [CS19], Canzani-Hanin [CH20] as well
as others, prove detailed results on non-integral statistics of the nodal sets of random waves.
Such nodal set statistics include the number of connected components, Betti numbers, and
topological types. In particular, Corollary 1.2 shows that Zoll manifolds have translation
invariant local limits and hence that the corresponding results about statistics of nodal sets
and critical points extend to the case of Zoll manifolds.

1.1. Organization of the paper. In Section 2 we find asymptotics for the smoothed spec-
tral projector p+Ilj\_. x1c], Where p is an appropriately chosen Schwartz function. In Section
3 we prove some on-diagonal cluster estimates that allow us to concentrate the study of the
asymptotics in an ¢~%2 neighborhood of v,. Finally, in Section 4 we prove Theorem 1 and
Corollary 1.2 by using the on-diagonal estimates obtained in Section 3 to undo the convolu-
tion with p and hence obtain the desired asymptotics for Ilj,,—c ., 4]
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2. ANALYSIS OF THE SMOOTHED PROJECTOR

We begin by analyzing a smoothed version of the spectral function. We observe that
Oy —c a+e1(2, ) can be rewritten as

o0
Hpa—epse)(z,9) = Z LA = X)j()e;i(y),
=0

where 1,5 denotes the characteristic function of the interval [a,b]. Next, we introduce
p € Z(R) with the property that p is supported in [—2,2] and equal to one on [—1,1]. Let
po denote rescaling by o > 0 as before, so that

po(t) = plot) (2.1)

is supported in [—2/0,2/0] and equal to one on [—1/0,1/c]. The goal of this section is to
study the asymptotic behavior of p, * II[\_¢x4¢. This is done in Proposition 2.4 below.
In preparation for this result, in Section 2.1 we first rewrite p, * II[\_c x1¢] in terms of the
kernel of the half wave operator and its singularities. Later, in Section 2.2, we find the
asymptotic behavior of the kernel when localized to each singularity. We finally state and
prove Proposition 2.4 which combines these estimates to obtain asymptotics for the full
projector.

2.1. Singularities of the half-wave operator. To study the smoothed projector, for any

g, 0> 0 let

ws,a(ﬂ) = Po ¥ ]1[—5,5] (M)?
which is Schwartz-class and has Fourier transform

~ . 2sin(te
Deolt) = ()220 2.2)
Then, if U;(x,y) denotes the kernel of the half-wave operator U; = e " =% we have
0
1 . ~
o Tpenra(@) = o [ €P0ea(®Ui(a ) de (2.3
—o0

by Fourier inversion. Note that on the left-hand side of (2.3), the convolution is taken with
respect to the \ variable. From [DGT75], we have that U, is a Fourier integral operator of

class I *i(R x M, M;C), where the canonical relation C is given by

C={((t,7), (2,6, (y,m) : (t,7) e T"R{0},
(,8), (y,m) € T*M\{O}, 7 + |&| = 0, (2,€) = ' (y,n)},

where @' : T*M — T*M denotes the geodesic flow.
Since (M, g) is a Zoll manifold with period 7', the singularities of U;(x,y) occur exactly
when ¢ = +dy(z,y) + kT for some k € Z. Thus, for any 0 < § < 3inj(M, g), if dy(z,y) < 6,

we have that U;(z,y) is smooth on the support of 1 — >} ps(t — kT"), and hence
keZ

(2.4)

L e [ o on .
po Tieaea(w9) = 52 30 [ @Ma@pilt ~ KD y) de + OO, (25)

keZ =,
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where the O(A~%) error is uniform for =, y € M with d,(x, y) < 6. We note that the remainder
may depend on o, but this is of no consequence, since we take A — oo before sending ¢ — 0.
Next, we make the change of variables ¢t — t + kT to obtain

0
kT

e RPN - _
Po * H[)\—s,)\-‘rs] (1}, y) = 9T J 6“5)\1/}570(25 + kT)pé(t)Ut+kT<x7 y) dt + O()‘ OO)
keZ o
= 2 PEL (FeUsir(e,y)) + OA),
keZ
where R R
Ji(t) = e (t + KT)ps(t) (2.6)

and th/\ is the inverse Fourier transform mapping ¢ to A. Then, we can use that Usp; =
e "X p; to obtain

F <fk( VUi (z, y)) F (fk( )Z e~ EHRT) (. )@(y))

7=0
|

= fk * 0)\ 2 ¢J<I>m
AjSA

1M8

S(A = Xj)e Mg (x >m)

= 0\ (fi * U Ukr(z,y)) -
Therefore, if d(x,y) < 4,

Po * Hp—epte(z,y) = Z ™20\ (fi * Mo Urr(z,y)) + O(A™). (2.7)
keZ

By [DGT75, page 53], with a as in (1.6) and

ma

b:=— 2.8

. 2
we have that U, — e®TU,, r is a Fourier integral operator of one order lower than U;, namely
—+ — 1. In particular, we have that Uy — """ Uy is a pseudodifferential operator of order —1,
and ’

Uy — e Upr e UH (M),

for any k € Z. Since Uy is the identity map, we can write

Upr = €_ika<] + Qk) (29)
for Qp € U=1(M) with polyhomogeneous symbol. Thus, we obtain
po * Mprepre) (2, y) = D00\ (fo o (T + Qi) (2,) + O(A™). (2.10)

keZ

Therefore, we must determine the asymptotic behavior of the quantity o\ (fx *Ijo (L +Qk)),
which is handled by the following proposition.

Remark 2.1. Note that for each fixed o, > 0, the fk are identically 0 for sufficiently large
k. Therefore, the sum in (2.10) is finite for each o, > 0.
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2.2. Pseudodifferential perturbations of the Spectral Projector. The goal of this
section is to find the asymptotic behavior of

Ox(fr * Hpo (I + Qr))(z,y)

for each k. We are interested in working with points =,y € M for which d,(z,y) is small.
Therefore, we will assume that we work with coordinates y = (y1,...,y,) on M and dual
coordinates (1, ..., &,) on T,y M. The Riemannian volume form in this coordinates takes the

form /|gy|dy, where |g,| denotes the determinant of the matrix representation of g(y). We
also define the function

@(ZL‘, y) = ’dethexpgl(y) eXPy |7

where the subscript ¢ means that we use the metric to choose an orthonormal basis on
T (y)(TxM) and Ty M (c.f. [BGMT1, Chapter 2, Proposition C.IIL.2]). The determinant

expy '
is then independent of the choice of such a basis. We note that O(z,y) = 4/|g.| in normal
coordinates centered at y.

If £ € T,y M is represented as { = rw with (r,w) € (0, +00) x S¥M, then we endow Sy M
with the measure dw such that dé = r"'dwdr.

Remark 2.2. We note that dw is not a coordinate invariant measure, but it behaves like a
density in y under changes of coordinates. Thus, dw should be regarded as a measure taking
values in the space of densities on M. Despite this, we note that (1.4) yields

(2m)"
SEM

1 f ei)\<exp;1(z),w>g dw 1 JnTJ(‘)\dg(l',y)D
Vigl o2 (Ady(a,y)) "%

and the right hand side is clearly coordinate invariant. Here, we used that dw = |g,|"/ 2d05n_1
and that in local coordinates {exp, (), w), = {gy " exp, (1), gy 2w, with g, ?w e Sn1

and g, % exp,(2)],n = dy(2, ).

Proposition 2.3. Let (M,qg) be a compact, smooth Riemannian manifold of dimension
n = 2 without boundary. Let Q € W—Y(M) with polyhomogeneous symbol q ~ 2i50d-j-1;
and 0 < < %inj(]\/[, g). Then, for each pair of multi-indices o, 5 € N", there exist constants
C1, Cy, o > 0, such that for any function f € C*(R) with f smooth and compactly supported,
and any x,y € M with d,(z,y) < 6 we have

02 (2,9)0, (f * Moy (I + Q) (z,y)

~

"=1F(0 » - 1 d
_ :u—ffl) f ez#<expy1(z),w>gy (1 + _Q—l(y,W)) w n R(/L,Z)S, y>’
(27) Il 19y
Sy M
with
sup |6§85R(,u,x,y)| < CléHatfHLOO([_é,(S])/’Ln_IJ’_‘OAJ’_‘ﬂ‘ + C2Iun—2+\oc|+|5‘ (211)

dg (I,y)<6

for all p = pg. Here, C} is independent of 6, QQ and f.
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Proof. We prove the statement first in the case where @ = § = 0. Observe that
1 a0
(oI +@) () = o [ WFOUT+ Qa2
—Q0

Using the parametrix for U; constructed in [CH15, Proposition 8], we have that if d,(z, y) <

inj(M, g), then

O~2(x,y)
(2m)"

_ | d
Uy, y) f 0wy () O, =itkloy A (1 )00 (2.13)

Vgl

modulo smoothing kernels, for some symbol A € S° with a polyhomogeneous expansion

e}
A~ > A ;. In particular, Ay(t,y,&) = 1 for all ¢, and when ¢t = 0, A_;(0,y,&) = 0 for all
7=0

TFM

J = 1. Since @ is pseudodifferential, we can use the same parametrix construction to write
Sl o . d
U,Q(x,y) = i;y) J €z<expyl(w),£>gyﬂtl£lgy3(t,y7§) § (2.14)
ey ) N
)

for some B € S7! with B ~ >, B_;_;. Note that since @ is pseudodifferential and the
7=0

principal symbol of U, is identically 1, the principal symbol of U, is independent of ¢. At

t = 0, we have Up@) = @, and hence the principal symbol of U;Q is B_1(t,y,£) = q_1(y,§)

for all t. Writing
D(t,y,€) :== A(t, y, &) + B(t,,¢),
from (2.12), (2.13), and (2.14), we obtain

O3 y) [ [ s e ttorer el 2 dedt )
Ou(f* I (I+Q)(7,y) = — 577 et e! Py (D &a el f($) D(t,y, ) —=+O (™).
2 n+1 /
( 7T) —£Tj[w ’gy‘

(2.15)
To control the first term on the right-hand side above, we change variables via & — urw for
(r,w) € R x S*M, which yields that the LHS of (2.15) is

o 0
n o A _ d
o fff(t)e“‘t(l_r)rn_l f e’“r<eXpy1(x)"“>gyD(t,y,,urw)—w drdt. (2.16)

(2m)ntt V19l

-0 0 SEM
Noting that since the phase is nonstationary for r # 1 we may introduce a cutoff function
¢ € CP(R) which is equal to one on a neighborhood of 7 = 1, and supported in [, 3]. This
results in an error which is O(u=%) as u — 0.
Denote by S(t,y,£) the first two terms in the polyhomogeneous expansion of D. Since

Ap(t,y,&) =1 for all t and By(t,y,&) =0 for all ¢,

S(t,y,&) =1+ D_i(t,y,€)
=14+ A 1(t,y,€) + q1(y,&).
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Since D — S is a symbol of order —2, we have |D(t, y, urw) — S(t,y, urw)| < Cp~? uniformly
for all ¢, y. Combining this fact with an application of stationary phase in (¢,7), we see that
the LHS of (2.15) is equal to

dr dt+0O(u"?),

n+1

dw
A\ ’9y|

8ﬁ8

oe}
f wt (1-r) v IC(T) f e'l:/J,T<eXp:’;1(1,’),w>gyS<t’ y,w"w)
—o0 SEM

(2.17)
where ¢ € C(R) is a cut-off function that is equal to 1 near r = 1 and vanishes for r ¢ [1, 3].
Notice that by homogeneity in the fiber variable, we have that for any (y,n) € T*M,

. dw . 1 dw
z(n,w>gys(t ) _ f in,w)gy <1 + —D (t )) (2 18)
e LYy W e _1(t,y,w ) )
f |9y : Hr |9y]

SEM SEM

Then, following the proof of [Sogl4, Theorem 1.2.1], there exist smooth functions a4 €
C®(T*M) and by € C*(R x T*M) such that

f ei<”hw>gy = 2 Z‘n‘qya+ y 77) (219)
V |gy +

SEM
and
LS el (1, y,w), (2.20)

v |gy| +

f KMo D (8, y,w)
SEM

satisfying the estimates

sy, ml < Co(1+ [nly,) "2 1 |akogba(ty,m)| < Con(1+ Inly,) "2 11 (221)
for any multi-index v, any integer £ > 0, and some constants C, C., ; which are independent
of t, y, and n. Therefore, by (2.12), (2. 13) (2.14), (2.19) and (2.20)

0

au(f * H[O,/\](I + Q))(l’ ““J”r t,r,3,y) (t77ﬂ7x7ya:u) dr dt7 (222)

+

=]

where 4 (t,r, z,y) = t(1 —r) £ rdy(x,y) and

~

gelt,r @y, 1) = () Ft) <ai(y,,u7” exp, (v Yx)) + u_b+<t Y, ,urexpy ) (2.23)

Observe that for any fixed x,y € M, the critical points of )4 occur at (tF,rF) = (+d,(z,y), 1),
and that

det (Hess vy (t5, 75, z,y)) = 1.
Therefore, by the method of stationary phase, we see that

Ou(f =TI + Q))(z,y)

n—1

- D eEmdste) (9+(tcarc,w Y, 1) — —5 O+ (1, r5, 2.y, u)) +O0(u"?).
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From (2.23) and (2.21) we have that
Cy /1~ A
0:019 (5,7, 2,,9)] < Ol (g, ))| + = (1F(Edy(,9)] + 10 (dy 2, 0))])
~ Cy ~
< Cif0f |l -sn) + fllfﬂcﬂ([—aa

and we remark that (' is independent of () due to the definition of a4. Therefore,

@%(:c,y)(?u (f * (I + Q) (z,y)

n—1 ) ~ 1
- S e, o) e nespy o) + Lo e )
(2m)" 4 0
+ R1(/L,{L‘, y)a (224)

where

) (Sulﬂ; ) Ry (i, 2,9)] < Ol fllensapi™™> + Coll flerqaapn™ ™ + O ™),
g\ T,y <

with ' independent of (). Next, let us Taylor expand j? near 0, which yields

F(dg () = F(0) £ dyler,9)0 (5:)
for some sy between 0 and +d,(x,y). Combining this with the fact that

dw

eii“dg(x’y)m(y,uexp_l(x)) — f oirexpy t (z).w) : (2.25)
Z_r: N Y aY; |gy|
SEM
we obtain
O (2, )0y (F+ Mo + Q) (2,9)
n—17
p" " f(0) f exp= (z),w) iy -1
ATV et @n, LS ey, (12, y, pexpy (2))
(2m)n |gy 2 Y
S M -
+ Ri(p, z,y) + Ro(p, 2, y), (2.26)

where R; is as above, and R, satisfies

sup |Ro(p, ,y)| < 0)00f| e (g-s81) (Cop™ ™" + Cru™™?)
dg(l‘7y)<6

for some Cy > 0 which is independent of () and C; > 0. Next, we Taylor expand
b (7, y, pexp, ' (x)) = b+ (0,y, pexp, ' (2)) + dy(x,y)0eb+ (s, y, pexp, ' ()

for some s/, between 0 and ¢ = +d,(z,y). Recalling (2.21), we have that

n—1

[0ebs (51, y, pexpy, ™ (2))] < C(1+ pdy(,))” 7,
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since |s+| < dy(z,y). Therefore, we obtain

A~

n—2
w f(O) +ipdy (z,y) + -1
any ;e b (te,y, pexp, ()

n—2 7 0 . _ dw
_ K 5 fgb ) J €W<6Xpyl(z)’w>D,1<0,y, ) + Rg(/L,l' y) (2.27)
(2m) Vgl

SEM

where

~

sup  |Rs(p, 2, y)| < CSf(0)u" >

dg (iﬂ,y)<6

Recalling that D_1(0,y,&) = A_1(0,4,&) + ¢_1(y,&) = q_1(y, &) since all subprincipal terms
of A vanish at ¢t = 0, we have that (2.26) and (2.27) yield

02 (, )0, (f* Iy, (1 + Q)) (2, y)

~

n—1 ) B 1 d ~
_ o 5 ffl ) J em(expyl(x),w>gy (1 + —q_1(y,w)) w N R(p,x,y),
(2r) ft |9y

SEM
where R = R + Ry + Rj satisfies

sup  |R(p, 2, y)| < 015”ch1([_5,5])#“_1 + C2||f”c'1([_5,5])ﬂn_2
dg(l,[L/)S(g

+ Cd f(0)u™ 2 + C4HJ?H01([76,6])NH73 +O(u"?),

for some C1, Cy, C3,Cy > 0, with C] independent of ¢, f, and ). This completes the proof
in the case where o = 5 = 0.
To include derivatives in z,y, we observe that

ggzayﬁei@xp;l(w)@ - @(|§|Ia|+lﬁl)

as [{|] — oo. Therefore, we can repeat the preceding argument where the orders of the
symbols involved are increased by at most || + || to obtain the desired result.
OJ

2.3. Asymptotics for the smoothed spectral projector. With Proposition 2.3 in hand,
we are equipped to prove the main result of this section, namely the asymptotic behavior of
the smoothed spectral projector pg * Il[,,—z 4]

27T anl ivelexpy(x),w dw
Ra,a(&xay) = Po *H[w El/g+5](x y) _—_— (;ﬂ-)n J e e(expy” (2).w)g . (228)

T aY; |9y|

Proposition 2.4. Let (M, g) be a smooth Zoll manifold with uniform period T > 0. Fix
0 <& < 2%, Then, for any multi-indices o, 3 € N* and R., as in (2.28),

SEM

= 0.

lim lim limsup sup
=07 0=0% oo dy(zy)<s

1 (63
=Ll +]B] 030y Reo(C;,y)
i
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Proof. Fix two multi-indices o, f € N™. First, note that for b as in (2.8) we have that for all

keZ
kT (b=ve) _ kT (=2m¢/T) _ —2mikl _ |

Therefore, combining (2.10) with Proposition 2.3 yields
P+ Mycwpia (@,y) = v L2, y) Y Ju(0) + 0572 ) fO)Wall, 2, y) + ) Rill, 2, y),

keZ keZ keZ
(2.29)
where
1 ; -1 dw
Lllay) - — f iveCexy (@) g (2.30)
(27) 0% (2,y) V191
SEM
1 ivedexpy H(z),w) dw
Wk(€7$7y) = T 1, . e Py ’ gU(Qk)(y,UJ) ) (231)
Cryeiay) ) ]

and R, satisfies

o N n—1+|a n—2+|a
U Ne2o) Rl 2, 9)] < Cub1a il s HAlHAL gyl IA
g m7y <

with C; independent of 4 and k. Recalling that the summation in £ is actually finite and
that sup,~0s<1kezy |0 fil Lo —6.57) < 0 (see Remark 2.1) we have that if we define

1
F(S,U(xay?g) = m ( ka aaaﬁWk V@al. y +ZaaaBRk V@a'I.?y)) )
J4

keZ

then we have
lim lim limsup sup |Fs5,(z,y,¢)| =0. (2.32)

0—0t o—-0t  y 0 dg(z,y)<6

To deal with the first term in (2.29), we first claim that

lim v~ 0%7L(¢, 2,y ka vt ae b L, @, y), (2.33)

+
o0 keZ

uniformly for all £ € N and z,y € M with d(z,y) < %inj(M, g). To see this, first note that
by (2.6) and (2.1) we have

Z ﬁf(o) = Z ":Z)\a,a(kT)ﬁé(O) = Z @/Z)\a,a(kT)'

keZ keZ keZ

Using the Poisson summation formula and (2.2),

S0k = 5 T p0T) = Sty poeConbTE) = T S ().
(2.34)

keZ keZ keZ keZ
Motivated by the form of the above expression, we replace o by o, which is permitted since
¢ is fixed throughout this argument. Thus,

Z ws EU kT 27T 2 ¢1 o <¥) . (235>

keZ keZ
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Since Y1, = Lj_1,11* po and 0 < & < 2%, we have that for k # 0,

1 k Cy kY
= — < — |14+ = fi N.
'Twl"7 <T€)’ T ( * Teo or any
Thus, if we choose N > 2, we obtain
1 k NA—1 —-N Nrm—1 -N
ZTwI’U (T_€> < Oy Z(éTO') T (80’+‘]{3|/T) SCN(&T) T Z(|k|/T> ,
keZ keZ keZ

k#0 k#0 k#0

which converges to 0 as ¢ — 0. Also, when k& = 0, we have

1 r 2 si
ro(0) = o J S;nt,aw) dt — (0) = 1

as 0 — 0, and this finishes the proof of the claim in (2.33).
Combining (2.28), (2.29), (2.32), and (2.33) yields that the final step in the proof is to

climinate the factor of ©~2(x,y) implicit in the definition of L. For this, we observe that
©~2(z,z) = 1 and its differential vanishes on the diagonal in M x M. Hence, for small
dy(z,y), we have

072 (x,y) = 1 + dy(z,9)*G(z, y)

for some smooth, bounded function G. Thus, it suffices to show that

1 - —1 d
lim limsup sup me&j&f dy(z,y)? J evelexpy (:’3)7@\/’—37 =0. (2.36)
Yy

L UL NG dg(z,y)<0 | V)
In the case where at most one derivative falls on the factor of d,(x,y)?, the above statement
holds trivially. If two or more derivatives fall on this factor, then at most |a|+ |3]| —2 factors
of v, can appear from differentiating the integral over S7M, and so (2.36) also holds in this
case.

SEM

O

3. ON-DIAGONAL ANALYSIS OF THE SPECTRAL PROJECTOR

The goal of this section is to establish a lower bound for the spectral function restricted
to the diagonal, which is critical for the purposes of comparing the smoothed projector to
the original. In particular, we show that most of the “mass” of the spectral function is
concentrated near

U [Vg - M_%, Vp + M_%],

LeN
with vy as defined in (1.6). This is similar to the original eigenvalue clustering result of [DG75,
Theorem 3.1]. We expect that a stronger cluster estimate with rl=2 replaced with r/~! should
hold, but we do not prove this here as the refined statement is not needed.



14 Y. CANZANI, J. GALKOWSKI, AND B. KEELER

Proposition 3.1. Let (M, g) be a Zoll manifold with uniform geodesic period T > 0 and
let {¢;}; be the corresponding Laplace eigenfunctions defined in (1.1). Let r > 0 and fiz a
multi-index o € N™.  Then, there exist K,C, g > 0 so that for all x € M and X = )\

Yoo = (1=Cr?) D e

AEA(K,rN) I\ —A|<K

where
A = (s =N < K et )
LeN
Proof. We begin by considering the case where o« = 0 separately. For this, we pr()ceed in

close analogy to the proof of [DG75, Theorem 3.1]. Let y € #(R) with x = 0 and ¥ € C*(R)
with X(0) > 0. Repeating previous calculations, we have that for = € M

;) XA = X))|;(x)|* = %Je’” (U (w, ) dt. (3.1)

Similarly,

0
X 1 N
IO N = 5 [ RO s ) 3.2
j=0 —0
Recalling that U; — U,z is an FIO defined by C of order —3 — 1 (see (2.4)), we know
that we can write
1

(2m)"

Uiz, 2) — €T Upsr(a, z) = f T OBt v, x, €) dE,

TFM

where B is a symbol of order —1 and ¢ is any admissible phase function which parametrizes
C (c.f. [DGT75, p. 45]). As in the proof of Proposition 2.3, we can use the phase function

¢(t7 z,Y, 5) = <engjl("L‘)7 £>gy - t|§|gy Hencea

o0

a0
1 N ; 1 AO—I€]) ~
Py e R(t) <Ut(x,3:) —e"™Up 1 (x, 96)) dt = W J J MORDR)B(t, 2, 2, €) dE dt

— —00 TEM

0¢]
J )M L B(t 1, 1, Asw) ds dw dt
0

= O(\"?). (3.3)

Here, to obtain the bound in the last line we used the fact that B is a symbol of order —1
and repeated the calculations from the proof of Proposition 2.3 that follow (2.16). From
(3.1)and (3.2) it follows that

2 XA =A) (1= T i) P = O ), (3.4)

J=0
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Thus, we can take real parts to obtain that

0

2, (1= cos (T(b = A7) x(A = X))y ()P = O(A"?) (3.5)

=0
as A — oo0. For any r, ¢ > 0 define the set
E(l, 1) = {\; € Spec(n/—Ay) : T2 < T|\; — vy| <}
Recall that v, = 2 + b by (2.8). Thus, if A; € £((,7), we have that

1 —cos(T'(b—A;)) =1—cos (T(W Aj) — 27T£> > ir2t = Lt

since 1 — cos(f — 2ml) = 36% — ,0* for § € [—m,w| and all £ € N. Therefore, using that
vy = ol for £ large enough, together with (3.5), we obtain that for every r > 0 there exist
C, ¢y > 0 such that for all £ > ¢,, we have

Y s min (x(u) ¢ [l < F)les (@) <O YT (1—cos((b— X)) x(ve — Ay)le; ()]
\jeE(lr) AjeE(0r)
< Ce .
If we adjust x so that x(u) > 0 for all || < %, we obtain that
> lei@)P < cre! (3.6)
\jeE(lr)

for all » > 0 and all ¢ large enough.
Next, observe that for any K,r > 0,

A(K7T7>‘> = {>\g : |/\] _)\| < K} M ﬂg(g,’f’)c.
/=1

Therefore,

0

Y lw@P= ) le@P =) > [s()*. (3.7)

NEA(K,r,N) I\ —AI<K (=1 \je{|N—A<K}nE(L,r)
Note that
NN =A<SKynEWr)=g if =X >K+m.
Thus, if we define
VLK) ={0: |vy— N < K + 7},

by (3.7)
Y le@P= Y le@P - ) > i@ (3.8)
AjeA(K,r,N) M<K (eV(AK) Aje{|\—A<K}nE(Lr)
In addition, for each ¢ € V(\, K), we have that v, ~ A\, and so by (3.6) that

> lp;(2)]? < Cr2ant (3.9)

NE{|Aj—AISK}INE(L,r)

since ¢ ~ vy & A. Next, we need the following lemma whose proof we postpone until the end
of this section.
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Lemma 3.2. Let (M, g) be any compact smooth manifold of dimension n with Laplace eigen-
functions {¢;}; as in (1.1). Then, for every multi-index o € N there exist K,C,\g > 0 so
that
Z |05?90](x)|2 > C«)\n71+2\a|
A=A <K

for all A = \.

Returning to the proof of Proposition 3.1, we can combine Lemma 3.2 with (3.9) to obtain
that for K sufficiently large,

> lps@P<Cr? Y lpi(@)” (3.10)
)\jE{l/\j—M<K}ﬁg(f,7‘) |/\.7'—>\‘<K

Furthermore, since the cardinality of V(\, K) is proportional to K, we can combine (3.10)
with (3.8) to obtain

C
S @k (1-5) % @k
N EA(K,r,N) INj—A<K

which completes the proof in case where |a| = 0.
In order to prove the statement for higher order derivatives 0¢,
appropriate analogue of (3.4). In particular, this will follow from

one need only show the

1 r [12.% e feate’ 7 n— e
> j R4 0y (Ut<o:,y>—e"TUt+T<x,y>) [, dt = O(\"72F210), (3.11)
—a0

This follows directly from the off-diagonal analogue of (3.3), which is given by

1 [ e ;
o | €0 (Gl — (o) de
-0

ee}
G A>— J J M@0 W OHOD) 2(1) B(t, x, y, AE) dE dt.
T
00 TFM

Thus, each derivative in z or y yields at most one additional power of A\, and so by previous
arguments we obtain (3.11). The rest of the argument proceeds identically to the |a| = 0
case.

0

Proof of Lemma 3.2. The proof of this lower bound relies on the generalized local Weyl law,
which states that if A is a classical polyhomogeneous pseudodifferential operator of order
zero, then

Alljo A% (2, ) = Y |Agj(@)]* = Lala, VA" + Ra(\, 2), (3.12)

A=A
where
La(x) =C j lo0(A) (., €)[? dé

S¥M
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for some C' > 0, and sup,,; |[Ra(\, )| < C4 A" ! for some Cy > 0 and all A > 1 (c.f. [Sogl4,
Theorem 5.2.3]). We note that since A is of order zero, |La(z)| < C’; for some C’} > 0.
Given these facts, we define for each multi-index « the operator

A= a1+ A% e W, (M)

whose principal symbol is a homogeneous function in C*(7*M\0) which can be written in

local coordinates as
,l‘oc|£oz

oo(A)(x,
(D8 =

By the local Weyl law, we have
AH[)\_K,)\_,_K]A*(ZL‘,J/’) = (AH)\+KA*(JZ, ZL‘) - LA(.I')()\ + K)n>

- (AHA_KA*(Q:, ) — La(z)(\ — K)")
+ La(z) (A+ K)" = (A= K)")
= Ra(A+ K, z) — Ra(A — K,z) + La(z) (KA 4+ O a(A"7?)) .
Since |[Ra(\, z)| < CaA" ' and La(z) = § > 0 for all z € M and all A > 1, we have that
Allp_gar ) A*(2,2) = (0K — Ca) N1+ O a(A"72).
Thus, if we choose K large enough so that 0 K — C'4 > 0, there exists a A\g > 0 so that
Allp g rr A (z,2) = O (3.13)

for some C' > 0 and all A > \g. On the other hand, we can use the functional calculus for
Ay to write

Allp -k armA* (2, ) = (1+ A3) oz ().
IA—Aj <K
Observe that
1+ A2 A2 =N K2\ +K)
T T2 ST -
Since 1+ (A — K)? > 1 1K, we obtain

_.I_
A2f N >

1+ )2
eie 1) <SCKXN '+ 0g(\7?)
as A — o0. Using binomial expansion, we also obtain
(1 + X%l -1 —2
(1+—/\?)W|_1 <CQK/\ +OK,Q(A )

for any «. Therefore,

(1 4+ N AT gy A (2, ) — Z |05 5(x)|?

IAj—Al<K

< (CaEAT+0kaXD) Y 1aes(0)

A —AI<K

2. (3.14)
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Hence, by (3.13),

CNIH0 < (1A ATT oA (2,2) < (14 CaEA +0a(V2) Y [a0s(o)f?
I\j—A|<K

Since Co KA~ 4+ Ok (A 72) tends to zero as A — oo for any fixed K > 0, this proves the
claim.

O

4. PROOF OF THE MAIN RESULTS

In this section we prove Theorem 1 and Corollary 1.2.

4.1. Proof of Theorem 1. With Proposition 2.4 in place, the proof of Theorem 1 reduces
to the claim that for any € < 2%, and each pair of multi-indices «, 3, we have

27
eI agag (H[w—e,w+€] (LC, y) — Po * H[Vl—€7V£+5] (.CC, y))‘ =0. (41>

lim limsup v, sup
o0t oo z,yeM

We proceed to prove (4.1). Noting that

£

- 2sin(?
fTHt (1[_&6](7—)) = JeZtT dr = SH;( 8)7
we can rewrite
e 0]
e e} (. 4) = Po * e pee) (7, 9) = D he (A = Xj)e(2)0; (1), (4.2)
j=0
where
0 ¢]
1 S in(?
heo(7) = Ljeay(7) — = J eltTpo(t)Smi 29 (4.3)
s
—00
We claim that h., satisfies a bound of the form
7] = e[\
|he o (T)] < Cn(1+ for any N e N. (4.4)
o

To see this, recall that p is a Schwartz-class function with {; pdt = p(0) = 1 and p,(7) =
Lp(7/0). Thus,

r T—e\ N
Jp(u) dp| < f Ip(u)ldu<CN<1+ )
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for any N since p is Schwartz. The analogous estimate clearly holds in the case where
T < —e. If instead || < ¢, then since p integrates to 1 and is rapidly decaying, along with
the fact that 1. is identically one on [—¢,¢&], we have that

f!p !du+J|p dp < C(1+ ||TU_6|)_N

T— T+6

‘hs,U(TN = ]1[—5,5](7') -

for any N. Finally, in the case where |7| = ¢, (4.4) only claims that h.,(7) is uniformly
bounded in ¢, o, which follows immediately from the fact that

2e

1—f p(p) dp| < 1
0

along with the analogous statement for 7 = —e. Therefore, we have proved (4.4).
Observe that by (4.2) and (4.3) we have

’ha,a(g)’ =

}agag (H[)\*EJ\JrE] (l’, y) — Po ¥ H[)\*E,)\J,»g](x’ y))‘

(Z!th A0z p;(x) )

Thus, the claim in (4.1) would follow once we prove that given o € N,

=

<Zlhwx M)N0%e;(y )I) -

7=0

lim lim 1+2\a|21hw — \)|[0%;(x)]* = 0. (4.5)

oc—0t f{—0 7’L
For each ¢, decompose N = J; (E) U Jo(€) U J3(¢) with
Ji(l) == {j : |Aj —vel > F}, Jo(€) := {5 |\; — ve| < r07V2,
J3(0) :={j: re~? < |Aj — v < 5}
First, note that

0
D healve=2)1030;(2)]° = ) > [heo (ve = Al 0Z (@)% (4.6)
]EJl(K) m=1 IAj_Véle[%7(m;l>ﬁ]
Whenever |\; — vy € [, (m;l) ] with m > 1 and € < 75, we have that

|h5,g(w — )\j)] <Oy <1 " l % B &?D_N § ij (%>—N

o
for some C}y > 0 by (4.4). For the same range of \;, we also have that
2 1020, (x)]> < C(1 + vy + mar)T)" 12l
I\ —vele[mm/T,(m+1)m/T]

for some C,C" > 0 by the local Weyl law (3.12). Therefore, by (4.6)

o0
3 heo(ve = AN es()P < Cyo™ DT (1 + vg + mar/T)r= 2l =N

jeJi(£) m=1
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for some Cy > 0. Taking any N > n + 1 + 2a, we thus obtain
2 Nheolve = 2)l2ge; ()] < Cro™uy =12 (4.7)
jEJl(f)

for some C; > 0 and any o > 0 small.
Next, to estimate the sum over J5(¢) we note that for each fixed r,e > 0, one can take ¢
sufficiently large so that [r(~/2 — | > £, in which case by (4.4) that

heo(ve — A))] < Cy (1 N S)_N e (%)N

for |, — \j| < 7072, By the local Weyl law, we have

S fheolve= M0, @) < € (T) vz (48)

9
jEJQ (é)

for some C5 > 0 and all ¢ sufficiently large.
Finally, to estimate the sum over J3(¢) we apply Proposition 3.1, which implies that there
exist K > 0 and ¢y > 0 such that for all £ > ¢,

« — Vol _ n—14+2|a
Slaspi@P<Cr? Y jate(@)P < O
jeJs () [Xj—ve|<K

where the final inequality follows from the local Weyl law (3.12). Therefore, since h., is
bounded by a uniform constant for all £, > 0, we have

N e (e = M0 (2)]? < Cyr~ 21420 (4.9)

j€J3(£)
for some C3 > 0, all » > 0, and all ¢ sufficiently large. Combining (4.7), (4.8), and (4.9),

i —— 2 hea (e = M]0S5 @) < Cro™ + Calo/e)Y + Car™

£—00

for all € < % and all 0,7 > 0. Recalling that ¢ > 0 was fixed in the statement of the

proposition, we may send o — 0 and r — o to obtain (4.5), which completes the proof.
L]

4.2. Proof of Corollary 1.2. The proof of Corollary 1.2 follows from Theorem 1 quite
directly. First, we observe that (1.4) yields

1 f ei)\<exp;1(x),w>g dw . 1 Janzﬂ/\dg(ny)D
(2m)" SEM \/@ (2m)"2 (Ady(z, ?J))%2 '

Next, choose rescaled normal coordinates so that x = exp,, (u/N), y = €XPy, (v/N). If we set
F(r)= T) for v = =2

2 , we then have

[F(Mdy(2,y)) = Fju = v])| < [Ady(2,y) = [u— 0]

since F” is uniformly bounded on R. Furthermore, by the properties of geodesic normal
coordinates, we know that

lu—ol|  Clu—ov]?
< .

dg(x,y) - A == )\2
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ne — 2
1 J ei)\<exp;1(a:),w>g dw . 1 JT2(|U/ U|) i O <|u 'U’ )

(2m)n _(27T)n/2 _n=2 A2
i Vo] o=

It only remains to note that by [DG75, Theorem 3.] we have that
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