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Abstract. On a smooth, compact, Riemannian manifold without boundary pM, gq, let ∆g

be the Laplace–Beltrami operator. We define the orthogonal projection operator

ΠIλ : L2pMq Ñ
à

λjPIλ

kerp∆g ` λ2
j q

for an interval Iλ centered around λ P R of a small, fixed length. The Schwartz kernel,
ΠIλpx, yq, of this operator plays a key role in the analysis of monochromatic random waves,
a model for high energy eigenfunctions. It is expected that ΠIλpx, yq has universal asymp-
totics as λ Ñ 8 in a shrinking neighborhood of the diagonal inMˆM (provided Iλ is chosen
appropriately) and hence that certain statistics for monochromatic random waves have uni-
versal behavior. These asymptotics are well known for the torus and the round sphere, and
were recently proved to hold near points in M with few geodesic loops by Canzani–Hanin.
In this article, we prove that the same universal asymptotics hold in the opposite case of
Zoll manifolds; that is, manifolds all of whose geodesics are closed with a common period.

1. Introduction

Let pM, gq be a compact, Riemannian manifold without boundary and write ∆g for the
associated (negative definite) Laplace-Beltrami operator. Denote the eigenvalues of ´∆g

by 0 “ λ20 ă λ21 ď λ22 ď ¨ ¨ ¨ repeated according to multiplicity. For I Ă R consider the
orthogonal projection operator

ΠI : L
2
pMq Ñ

à

λjPI

kerp∆g ` λ2jq.

Letting tφju
8
j“0 be an orthonormal basis of L2pMq such that

´ ∆gφj “ λ2jφj, j “ 0, 1, 2, . . . , (1.1)

the Schwarz kernel of ΠI takes the form

ΠIpx, yq “
ÿ

λjPI

φjpxqφjpyq, x, y P M. (1.2)

Notably, on a general compact smooth manifold with no boundary, the Weyl Law states that

#tj : λj ď λu “

ż

M

Πr0,λspx, xqdvolgpxq “ CnvolgpMqλn ` Rpλq, (1.3)

where Rpλq “ Opλn´1q as λ Ñ 8 [Wey12, Lev53, Ava56, H6̈8]. This remainder term is
sharp. It is saturated, for example, on the round sphere, Sn. Indeed, it is saturated on
any Zoll manifold pM, gq; i.e. a smooth compact Riemannian manifold without boundary
all of whose geodesics are periodic with common minimal period. However, when the set
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of closed geodesics has measure zero in S˚M , the remainder, Rpλq, can be improved to
opλn´1q [DG75].

In this article, we study the asymptotics as λ Ñ 8 of spectral projectors of the form
ΠIλpx, yq, where Iλ is an interval, centered at λ, with length uniformly bounded from above
and below (or, possibly, length shrinking slowly with λ). These spectral projectors appear
in the field of random waves as the covariance kernels of so-called monochromatic random
waves. As with the properties of Πr0,λspx, yq, the asymptotics of ΠIλ are intimately connected
to the dynamics of the geodesic flow on pM, gq.

The most classical random wave studies occur on the round sphere, Sn, and flat torus, Tn
(see, for instance, the survey [Wig22]). In the case of the sphere,

λ2ℓ “ ℓpℓ ` n ´ 1q ℓ “ 0, 1, . . . ,

and it is known that, with νℓ :“ ℓ ` n´1
2
, for x, y P Sn with dgpx, yq ď rℓ and limℓÑ8 rℓ “ 0,

Πtλℓupx, yq “ Πrνℓ´ 1
4
,νℓ` 1

4
spx, yq “

νn´1
ℓ

p2πqn{2

Jn´2
2

p|νℓdgpx, yq|q

pνℓdgpx, yqq
n´2
2

`opνn´1
ℓ q, ℓ Ñ 8.

Here, we write dgpx, yq for the Riemannian distance between x and y and Jα is the Bessel
function of the first kind with index α. We note that for v P Rn

1

p2πqn{2

Jn´2
2

p|v|q

|v|
n´2
2

“
1

p2πqn

ż

Sn´1

eixv,ωy dσ
Sn´1pωq. (1.4)

It will be useful below to interpret the Bessel term in (1.7) as an integral over S˚
yM , and we

refer the reader to Remark 2.2 for this.
Despite the fact that the dynamics of the geodesic flow on the n-dimensional flat torus,

are dramatically different than those on the sphere, there we also have for x, y P Tn with
dgpx, yq ď rν and limνÑ8 rν “ 0,

Πrν´ 1
2
,ν` 1

2
spx, yq “

νn´1

p2πqn{2

Jn´2
2

p|νdgpx, yq|q

pνdgpx, yqq
n´2
2

` opνn´1
q, ν Ñ 8.

Indeed, perhaps surprisingly, in contrast to the fact that ΠIλ encodes a great deal of
dynamical information, one expects that the local behavior of ΠIλ is, in some sense, universal.

Conjecture 1.1. Let pM, gq be a smooth, compact, Riemannian manifold of dimension n
without boundary and x P M . Then, there exist c ą 0, a sequence νℓ Ñ 8, and a sequence
0 ă εℓ ă c such that for y P M with dgpx, yq “ rℓ and limℓÑ8 rℓ “ 0,

Πrνℓ´εℓ,νℓ`εℓspx, yq “ Πrνℓ´εℓ,νℓ`εℓspx, xq
p2πqn{2

volpSn´1q

Jn´2
2

p|νℓdgpx, yq|q

pνℓdgpx, yqq
n´2
2

`opνn´1
ℓ q, ℓ Ñ 8.

(1.5)

In [CH15,CH18], Canzani–Hanin showed that the asymptotics (1.5) hold whenever x is a
non-self focal point. That is, the set of directions ξ P S˚

xM that generate a geodesic loop that
returns to x has Liouville measure zero. As for the flat torus, in the case of non-self focal
points, one can take any sequence νℓ Ñ 8 and εℓ “ 1. In this article, we study the case of
Zoll manifolds which have, in some sense, the opposite dynamical behavior from manifolds
without conjugate points. This is a rich class of manifolds that includes compact rank one
symmetric spaces. Indeed, while the most well known example of a Zoll manifold is the
round sphere, S2, the moduli space of Zoll metrics on S2 is infinite dimensional [Gui76].
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It is well known that, like it happens for the sphere of radius T
2π
, the eigenvalues of ´∆g

on a Zoll manifold of period T are strongly clustered near the sequence

νℓ :“
2π

T

´

ℓ `
a

4

¯

, ℓ “ 0, 1, 2, . . . , (1.6)

where a is the common Maslov index of the closed geodesics [Wei75,Wei77,DG75,CdV79,
Cha80].

Because of this sphere-like clustering, it is too much to hope that (1.5) holds for any choice
of νℓ Ñ 8 and we should instead work with spectral projectors for a well chosen sequence
νℓ as in the case of the round sphere. In particular, we take νℓ as in (1.6).

Our main theorem shows that Conjecture 1.1 is true on a Zoll manifold.

Theorem 1. Let pM, gq be a smooth Zoll manifold of dimension n ě 2 with uniform period
T ą 0, and let the sequence tνℓu be as in (1.6). Let Rεpℓ;x, yq be defined by

Πrνℓ´ε,νℓ`εspx, yq “
2π

T

νn´1
ℓ

p2πqn{2

Jn´2
2

p|νℓdgpx, yq|q

pνℓdgpx, yqq
n´2
2

` Rεpℓ;x, yq, (1.7)

Then, for any 0 ă ε ă 2π
T

and every pair of multi-indices α, β P Nn,

lim
δÑ0`

lim sup
ℓÑ8

sup
dgpx,yqďδ

ˇ

ˇ

ˇ
ν
1´n´|α|´|β|

ℓ B
α
xB

β
yRεpℓ;x, yq

ˇ

ˇ

ˇ
“ 0 (1.8)

The on-diagonal version of this result, without derivatives, is proved in [Zel97, Theorem
2] for Zoll manifolds that are simply connected (SCT manifolds in their language). We also
refer the reader to [DG75,Zel92,UZ93,Zel97,Zel09] for related studies on the spectra of Zoll
manifolds.

As discussed briefly before, the main motivation for proving Theorem 1 is its application
to the theory of random waves on manifolds. A monochromatic random wave on pM, gq is a
Gaussian random field of the form

ψλ,εpxq :“
1

dimpHλ,εq
1{2

ÿ

λjPrλ´ε,λ`εs

ajφjpxq, (1.9)

where the aj are i.i.d. standard Gaussian random variables, the φj are the eigenfunctions in
(1.1), ε ą 0, and

Hλ,ε :“
à

λjPrλ´ε,λ`εs

ker
`

∆g ` λ2j
˘

.

Monochromatic random waves were created to model eigenfunction behavior. Indeed,
although ψλ,ε is not an actual eigenfunction, it is expected to behave like one. (For a careful
account of the history, see [Can20,Wig22] and references there.) In particular, much research
has been dedicated to understanding the behavior of the zero sets and critical points of
random waves. The corresponding features of deterministic eigenfunctions are very difficult
to study, and their analysis becomes much more tractable for the monochromatic random
counterparts.

The statistics of ψλ,ε are completely determined by the associated two-point correlation
function

Kλ,εpx, yq :“ Cov pψλ,εpxq, ψλ,εpyqq “
1

dimpHλ,εq
Πrλ´ε,λ`εspx, yq, x, y P M.
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Most research is typically done on the round sphere or the flat torus since Kλ,ε is well un-
derstood for these spaces [BMW20,CW17,KKW13,BCW19,Cam19,CMW16,NS09,RW08].
Furthermore, studying features like the zero sets and critical points of ψλ,ε relies on having
asymptotics for Kλ,εpx, yq when x, y P Bpx0,

1
λ

q with x0 fixed. Although treating Kλ,ε on
general manifolds is quite challenging, Conjecture 1.1 implies that, when the windows of
eigenvalues defining the sum in (1.9) are appropriately chosen,

Kλ,ε

´

expx0
`

u
λ

˘

, expx0
`

v
λ

˘

¯

should converge for all u, v P T ˚
x0
M to a universal limit that is independent of the topology or

geometry of pM, gq. Here, expx0 : T ˚
x0
M Ñ M denotes the exponential map with footpoint

at x0. The following corollary proves this conjecture in the setting of Zoll manifolds.

Corollary 1.2. Let pM, gq be as in Theorem 1. Let x0 P M and 0 ă ε ă 2π
T
. Then, for any

function ℓ ÞÑ rℓ with rℓ “ opνℓq and every pair of multi-indices α, β P Nn,

lim
ℓÑ8

sup
|u|,|v|ďrℓ

ˇ

ˇ

ˇ

ˇ

ˇ

B
α
uB

β
v

˜

Kνℓ,ε

´

expx0
`

u
νℓ

˘

, expx0
`

v
νℓ

˘

¯

´
p2πqn{2

volpS˚Mq

Jn´2
2

p|u ´ v|q

p|u ´ v|q
n´2
2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (1.10)

Results about Conjecture 1.1 yield corresponding asymptotics for the covariance function
of monochromatic random wave. Indeed, for a general manifold pM, gq, when the interval in
(1.9) is rλ ´ 1

2
, λ ` 1

2
s, the asymptotics from [CH15,CH18] show that (1.10) holds when the

point x0 is non self-focal. In the case where pM, gq has no conjugate points, the asymptotics in
(1.10) hold at every point with a logarithmic improvement on the rate of decay to 0 [Kee21].

In the language of Nazarov-Sodin [NS16], if the asymptotics in (1.10) hold at every x0 P M ,
then the random waves ψλ,ε have translation invariant local limits. For ensembles with such
translation invariant local limits, Zelditch [Zel09], Nazarov-Sodin [NS16], Sarnak-Wigman
[SW19], Gayet-Welschinger [GW16], Canzani-Sarnak [CS19], Canzani-Hanin [CH20] as well
as others, prove detailed results on non-integral statistics of the nodal sets of random waves.
Such nodal set statistics include the number of connected components, Betti numbers, and
topological types. In particular, Corollary 1.2 shows that Zoll manifolds have translation
invariant local limits and hence that the corresponding results about statistics of nodal sets
and critical points extend to the case of Zoll manifolds.

1.1. Organization of the paper. In Section 2 we find asymptotics for the smoothed spec-
tral projector ρ˚Πrλ´ε,λ`εs, where ρ is an appropriately chosen Schwartz function. In Section
3 we prove some on-diagonal cluster estimates that allow us to concentrate the study of the
asymptotics in an ℓ´1{2 neighborhood of νℓ. Finally, in Section 4 we prove Theorem 1 and
Corollary 1.2 by using the on-diagonal estimates obtained in Section 3 to undo the convolu-
tion with ρ and hence obtain the desired asymptotics for Πrνℓ´ε,νℓ`εs.

Acknowledgements. Y.C. was supported by the Alfred P. Sloan Foundation, NSF CA-
REER Grant DMS-2045494, and NSF Grant DMS-1900519. J.G. is grateful to the EP-
SRC for partial funding under Early Career Fellowship EP/V001760/1 and Standard Grant
EP/V051636/1. B.K. was supported by postdoctoral fellowships through CRM-ISM and
AARMS.
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2. Analysis of the Smoothed Projector

We begin by analyzing a smoothed version of the spectral function. We observe that
Πrλ´ε,λ`εspx, yq can be rewritten as

Πrλ´ε,λ`εspx, yq “

8
ÿ

j“0

1r´ε,εspλ ´ λjqφjpxqφjpyq,

where 1ra,bs denotes the characteristic function of the interval ra, bs. Next, we introduce
ρ P S pRq with the property that pρ is supported in r´2, 2s and equal to one on r´1, 1s. Let
ρσ denote rescaling by σ ą 0 as before, so that

pρσptq “ pρpσtq (2.1)

is supported in r´2{σ, 2{σs and equal to one on r´1{σ, 1{σs. The goal of this section is to
study the asymptotic behavior of ρσ ˚ Πrλ´ε,λ`εs. This is done in Proposition 2.4 below.
In preparation for this result, in Section 2.1 we first rewrite ρσ ˚ Πrλ´ε,λ`εs in terms of the
kernel of the half wave operator and its singularities. Later, in Section 2.2, we find the
asymptotic behavior of the kernel when localized to each singularity. We finally state and
prove Proposition 2.4 which combines these estimates to obtain asymptotics for the full
projector.

2.1. Singularities of the half-wave operator. To study the smoothed projector, for any
ε, σ ą 0 let

ψε,σpµq :“ ρσ ˚ 1r´ε,εspµq,

which is Schwartz-class and has Fourier transform

pψε,σptq “ pρσptq
2 sinptεq

t
. (2.2)

Then, if Utpx, yq denotes the kernel of the half-wave operator Ut “ e´it
?

´∆g , we have

ρσ ˚ Πrλ´ε,λ`εspx, yq “
1

2π

8
ż

´8

eitλ pψε,σptqUtpx, yq dt (2.3)

by Fourier inversion. Note that on the left-hand side of (2.3), the convolution is taken with
respect to the λ variable. From [DG75], we have that Ut is a Fourier integral operator of

class I´ 1
4 pR ˆ M,M ; Cq, where the canonical relation C is given by

C “
␣`

pt, τq, px, ξq, py, ηq
˘

: pt, τq P T ˚Rzt0u,

px, ξq, py, ηq P T ˚Mzt0u, τ ` |ξg| “ 0, px, ξq “ Φt
py, ηq

(

,
(2.4)

where Φt : T ˚M Ñ T ˚M denotes the geodesic flow.
Since pM, gq is a Zoll manifold with period T , the singularities of Utpx, yq occur exactly

when t “ ˘dgpx, yq ` kT for some k P Z. Thus, for any 0 ă δ ă 1
2
injpM, gq, if dgpx, yq ď δ,

we have that Utpx, yq is smooth on the support of 1 ´
ř

kPZ
pρδpt ´ kT q, and hence

ρσ ˚ Πrλ´ε,λ`εspx, yq “
1

2π

ÿ

kPZ

8
ż

´8

eitλ pψε,σptqpρδpt ´ kT qUtpx, yq dt ` Opλ´8
q, (2.5)
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where theOpλ´8q error is uniform for x, y P M with dgpx, yq ď δ.We note that the remainder
may depend on σ, but this is of no consequence, since we take λ Ñ 8 before sending σ Ñ 0.
Next, we make the change of variables t ÞÑ t ` kT to obtain

ρσ ˚ Πrλ´ε,λ`εspx, yq “
ÿ

kPZ

eikTλ

2π

8
ż

´8

eitλ pψε,σpt ` kT qpρδptqUt`kT px, yq dt ` Opλ´8
q

“
ÿ

kPZ

eikTλF´1
tÞÑλ

´

pfkptqUt`kT px, yq

¯

` Opλ´8
q,

where
pfkptq :“ pψε,σpt ` kT qpρδptq (2.6)

and F´1
tÞÑλ is the inverse Fourier transform mapping t to λ. Then, we can use that Usφj “

e´isλjφj to obtain

F´1
tÞÑλ

´

pfkptqUt`kT px, yq

¯

“ F´1
tÞÑλ

˜

pfkptq
8
ÿ

j“0

e´iλjpt`kT qφjpxqφjpyq

¸

“ fk ˚

˜

8
ÿ

j“0

δpλ ´ λjqe
´ikTλjφjpxqφjpyq

¸

“ fk ˚ Bλ

¨

˝

ÿ

λjďλ

φjpxqU´kTφjpyq

˛

‚

“ Bλ
`

fk ˚ Πr0,λsUkT px, yq
˘

.

Therefore, if dpx, yq ď δ,

ρσ ˚ Πrλ´ε,λ`εspx, yq “
ÿ

kPZ

eikTλBλ
`

fk ˚ Πr0,λsUkT px, yq
˘

` Opλ´8
q. (2.7)

By [DG75, page 53], with a as in (1.6) and

b :“
πa

2T
, (2.8)

we have that Ut ´ eibTUt`T is a Fourier integral operator of one order lower than Ut, namely
´1

4
´ 1. In particular, we have that U0 ´ eibTUT is a pseudodifferential operator of order ´1,

and
U0 ´ eikbTUkT P Ψ´1

pMq,

for any k P Z. Since U0 is the identity map, we can write

UkT “ e´ikbT
pI ` Qkq (2.9)

for Qk P Ψ´1pMq with polyhomogeneous symbol. Thus, we obtain

ρσ ˚ Πrλ´ε,λ`εspx, yq “
ÿ

kPZ

eikT pλ´bq
Bλpfk ˚ Πr0,λspI ` Qkqqpx, yq ` Opλ´8

q. (2.10)

Therefore, we must determine the asymptotic behavior of the quantity Bλpfk ˚Πr0,λspI`Qkqq,
which is handled by the following proposition.

Remark 2.1. Note that for each fixed σ, δ ą 0, the pfk are identically 0 for sufficiently large
k. Therefore, the sum in (2.10) is finite for each σ, δ ą 0.



SPECTRAL FUNCTION ASYMPTOTICS ON ZOLL MANIFOLDS 7

2.2. Pseudodifferential perturbations of the Spectral Projector. The goal of this
section is to find the asymptotic behavior of

Bλpfk ˚ Πr0,λspI ` Qkqqpx, yq

for each k. We are interested in working with points x, y P M for which dgpx, yq is small.
Therefore, we will assume that we work with coordinates y “ py1, . . . , ynq on M and dual
coordinates pξ1, . . . , ξnq on T ˚

yM . The Riemannian volume form in this coordinates takes the

form
a

|gy|dy, where |gy| denotes the determinant of the matrix representation of gpyq. We
also define the function

Θpx, yq :“ |detgDexp´1
x pyq expx |,

where the subscript g means that we use the metric to choose an orthonormal basis on
Texp´1

x pyqpTxMq and T ˚
yM (c.f. [BGM71, Chapter 2, Proposition C.III.2]). The determinant

is then independent of the choice of such a basis. We note that Θpx, yq “
a

|gx| in normal
coordinates centered at y.

If ξ P T ˚
yM is represented as ξ “ rω with pr, ωq P p0,`8q ˆ S˚

yM , then we endow S˚
yM

with the measure dω such that dξ “ rn´1dωdr.

Remark 2.2. We note that dω is not a coordinate invariant measure, but it behaves like a
density in y under changes of coordinates. Thus, dω should be regarded as a measure taking
values in the space of densities on M . Despite this, we note that (1.4) yields

1

p2πqn

ż

S˚
yM

eiλxexp´1
y pxq,ωyg

dω
a

|gy|
“

1

p2πqn{2

Jn´2
2

p|λdgpx, yq|q

pλdgpx, yqq
n´2
2

,

and the right hand side is clearly coordinate invariant. Here, we used that dω “ |gy|
1{2dσ

Sn´1

and that in local coordinates xexp´1
y pxq, ωyg “ xg

´1{2
y exp´1

y pxq, g
´1{2
y ωyRn with g

´1{2
y ω P Sn´1

and |g
´1{2
y exp´1

y pxq|Rn “ dgpx, yq.

Proposition 2.3. Let pM, gq be a compact, smooth Riemannian manifold of dimension
n ě 2 without boundary. Let Q P Ψ´1pMq with polyhomogeneous symbol q „

ř

jě0 q´j´1,

and 0 ă δ ď 1
2
injpM, gq. Then, for each pair of multi-indices α, β P Nn, there exist constants

C1, C2, µ0 ą 0, such that for any function f P C8pRq with pf smooth and compactly supported,
and any x, y P M with dgpx, yq ď δ we have

Θ
1
2 px, yqBµ

`

f ˚ Πr0,µspI ` Qq
˘

px, yq

“
µn´1

pfp0q

p2πqn

ż

S˚
yM

eiµxexp´1
y pxq,ωygy

ˆ

1 `
1

µ
q´1py, ωq

˙

dω
a

|gy|
` Rpµ, x, yq,

with

sup
dgpx,yqďδ

|B
α
xB

β
yRpµ, x, yq| ď C1δ}Bt

pf}L8pr´δ,δsqµ
n´1`|α|`|β|

` C2µ
n´2`|α|`|β|

(2.11)

for all µ ě µ0. Here, C1 is independent of δ, Q and f .
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Proof. We prove the statement first in the case where α “ β “ 0. Observe that

Bµ
`

f ˚ Πr0,µspI ` Qq
˘

px, yq “
1

2π

8
ż

´8

eitµ pfptqUtpI ` Qqpx, yq dt. (2.12)

Using the parametrix for Ut constructed in [CH15, Proposition 8], we have that if dgpx, yq ď
1
2
injpM, gq, then

Utpx, yq “
Θ´ 1

2 px, yq

p2πqn

ż

T˚
y M

eixexp
´1
y pxq,ξygy´it|ξ|gyApt, y, ξq

dξ
a

|gy|
(2.13)

modulo smoothing kernels, for some symbol A P S0 with a polyhomogeneous expansion

A „
8
ř

j“0

A´j. In particular, A0pt, y, ξq ” 1 for all t, and when t “ 0, A´jp0, y, ξq “ 0 for all

j ě 1. Since Q is pseudodifferential, we can use the same parametrix construction to write

UtQpx, yq “
Θ´ 1

2 px, yq

p2πqn

ż

T˚
y M

eixexp
´1
y pxq,ξygy´it|ξ|gyBpt, y, ξq

dξ
a

|gy|
(2.14)

for some B P S´1 with B „
ř

jě0

B´j´1. Note that since Q is pseudodifferential and the

principal symbol of Ut is identically 1, the principal symbol of UtQ is independent of t. At
t “ 0, we have U0Q “ Q, and hence the principal symbol of UtQ is B´1pt, y, ξq “ q´1py, ξq

for all t. Writing

Dpt, y, ξq :“ Apt, y, ξq ` Bpt, y, ξq,

from (2.12), (2.13), and (2.14), we obtain

Bµpf˚ΠµpI`Qqqpx, yq “
Θ´ 1

2 px, yq

p2πqn`1

8
ż

´8

ż

T˚
y M

eitµeixexp
´1
y pxq,ξygy´it|ξ|gy pfptqDpt, y, ξq

dξdt
a

|gy|
`Opµ´8

q.

(2.15)
To control the first term on the right-hand side above, we change variables via ξ ÞÑ µrω for
pr, ωq P R` ˆ S˚

yM , which yields that the LHS of (2.15) is

µn

p2πqn`1

8
ż

´8

8
ż

0

pfptqeiµtp1´rqrn´1

¨

˚

˝

ż

S˚
yM

eiµrxexp´1
y pxq,ωygyDpt, y, µrωq

dω
a

|gy|

˛

‹

‚

dr dt. (2.16)

Noting that since the phase is nonstationary for r ‰ 1 we may introduce a cutoff function
ζ P C8

c pRq which is equal to one on a neighborhood of r “ 1, and supported in r1
2
, 3
2
s. This

results in an error which is Opµ´8q as µ Ñ 8.
Denote by Spt, y, ξq the first two terms in the polyhomogeneous expansion of D. Since

A0pt, y, ξq ” 1 for all t and B0pt, y, ξq ” 0 for all t,

Spt, y, ξq “ 1 ` D´1pt, y, ξq

“ 1 ` A´1pt, y, ξq ` q´1py, ξq.
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Since D´S is a symbol of order ´2, we have |Dpt, y, µrωq ´Spt, y, µrωq| ď Cµ´2 uniformly
for all t, y. Combining this fact with an application of stationary phase in pt, rq, we see that
the LHS of (2.15) is equal to

µn

p2πqn`1

8
ż

´8

8
ż

´8

pfptqeiµtp1´rqrn´1ζprq

¨

˚

˝

ż

S˚
yM

eiµrxexp´1
y pxq,ωygySpt, y, µrωq

dω
a

|gy|

˛

‹

‚

dr dt`Opµn´3
q,

(2.17)
where ζ P C8

c pRq is a cut-off function that is equal to 1 near r “ 1 and vanishes for r R r1
2
, 3
2
s.

Notice that by homogeneity in the fiber variable, we have that for any py, ηq P T ˚M ,
ż

S˚
yM

eixη,ωygySpt, y, µrωq
dω

a

|gy|
“

ż

S˚
yM

eixη,ωygy

ˆ

1 `
1

µr
D´1pt, y, ωq

˙

dω
a

|gy|
. (2.18)

Then, following the proof of [Sog14, Theorem 1.2.1], there exist smooth functions a˘ P

C8pT ˚Mq and b˘ P C8pR ˆ T ˚Mq such that
ż

S˚
yM

eixη,ωygy
dω

a

|gy|
“
ÿ

˘

e˘i|η|gya˘py, ηq, (2.19)

and
ż

S˚
yM

eixη,ωygyD´1pt, y, ωq
dω

a

|gy|
“
ÿ

˘

e˘i|η|gy b˘pt, y, ωq, (2.20)

satisfying the estimates

|B
γ
ηa˘py, ηq| ď Cγp1 ` |η|gyq

´n´1
2

´|γ|, |B
k
t B

γ
η b˘pt, y, ηq| ď Cγ,kp1 ` |η|gyq

´n´1
2

´|γ| (2.21)

for any multi-index γ, any integer k ě 0, and some constants Cγ, Cγ,k which are independent
of t, y, and η. Therefore, by (2.12), (2.13), (2.14), (2.19) and (2.20)

Bµpf ˚ Πr0,λspI ` Qqqpx, yq “
µn

p2πqn`1

ÿ

˘

ż

R

8
ż

0

eiµψ˘pt,r,x,yqg˘pt, r, x, y, µq dr dt, (2.22)

where ψ˘pt, r, x, yq “ tp1 ´ rq ˘ rdgpx, yq and

g˘pt, r, x, y, µq “ rn´1ζprq pfptq

ˆ

a˘py, µr exp´1
y pxqq `

1

µr
b˘pt, y, µr exp´1

y pxqq

˙

. (2.23)

Observe that for any fixed x, y P M , the critical points of ψ˘ occur at pt˘c , r
˘
c q “ p˘dgpx, yq, 1q,

and that

det
`

Hessψ˘pt˘c , r
˘
c , x, yq

˘

“ 1.

Therefore, by the method of stationary phase, we see that

Bµpf ˚ Πr0,λspI ` Qqqpx, yq

“
µn´1

p2πqn

ÿ

˘

e˘iµdgpx,yq

ˆ

g˘pt˘c , r
˘
c , x, y, µq ´

i

µ
BrBtg˘pt˘c , r

˘
c , x, y, µq

˙

` Opµn´3
q.



10 Y. CANZANI, J. GALKOWSKI, AND B. KEELER

From (2.23) and (2.21) we have that

ˇ

ˇBrBtg˘pt˘c , r
˘
c , x, y, µq

ˇ

ˇ ď C1|Bt
pfp˘dgpx, yqq| `

C2

µ

´

| pfp˘dgpx, yqq| ` |Bt
pfp˘dgpx, yqq|

¯

ď C1}Bt
pf}L8pr´δ,δsq `

C2

µ
} pf}C1pr´δ,δsq,

and we remark that C1 is independent of Q due to the definition of a˘. Therefore,

Θ
1
2 px, yqBµ

`

f ˚ Πr0,µspI ` Qq
˘

px, yq

“
µn´1

p2πqn

ÿ

˘

e˘iµdgpx,yq
pfp˘dgpx, yqq

ˆ

a˘py, µ exp´1
y pxqq `

1

µ
b˘pt˘c , y, µ exp

´1
y pxqq

˙

` R1pµ, x, yq, (2.24)

where

sup
dgpx,yqďδ

|R1pµ, x, yq| ď C1}
pf} 9C1pr´δ,δsq

µn´2
` C2} pf}C1pr´δ,δsqµ

n´3
` Opµn´3

q,

with C1 independent of Q. Next, let us Taylor expand pf near 0, which yields

pfp˘dgpx, yqq “ pfp0q ˘ dgpx, yqBt
pfps˘q

for some s˘ between 0 and ˘dgpx, yq. Combining this with the fact that

ÿ

˘

e˘iµdgpx,yqa˘py, µ exp´1
y pxqq “

ż

S˚
yM

eiµxexp´1
y pxq,ωy dω

a

|gy|
, (2.25)

we obtain

Θ
1
2 px, yqBµ

´

pf ˚ Πr0,µspI ` Qq

¯

px, yq

“
µn´1

pfp0q

p2πqn

¨

˚

˝

ż

S˚
yM

eiµxexp´1
y pxq,ωygy

dω
a

|gy|
`
ÿ

˘

e˘iµdgpx,yqb˘pt˘c , y, µ exp
´1
y pxqq

˛

‹

‚

` R1pµ, x, yq ` R2pµ, x, yq, (2.26)

where R1 is as above, and R2 satisfies

sup
dgpx,yqďδ

|R2pµ, x, yq| ď δ}Bt
pf}L8pr´δ,δsqpC0µ

n´1
` C1µ

n´2
q

for some C0 ą 0 which is independent of Q and C1 ą 0. Next, we Taylor expand

b˘pt˘c , y, µ exp
´1
y pxqq “ b˘p0, y, µ exp´1

y pxqq ˘ dgpx, yqBtb˘ps1
˘, y, µ exp

´1
y pxqq

for some s1
˘ between 0 and t˘c “ ˘dgpx, yq. Recalling (2.21), we have that

|Btb˘ps˘, y, µ exp
´1
y pxqq| ď Cp1 ` µdgpx, yqq

´n´1
2 ,
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since |s˘| ď dgpx, yq. Therefore, we obtain

µn´2
pfp0q

p2πqm

ÿ

˘

e˘iµdgpx,yqb˘pt˘c , y, µ exp
´1
y pxqq

“
µn´2

pfp0q

p2πqn

ż

S˚
yM

eiµxexp´1
y pxq,ωyD´1p0, y, ωq

dω
a

|gy|
` R3pµ, x, yq, (2.27)

where

sup
dgpx,yqďδ

|R3pµ, x, yq| ď Cδ pfp0qµn´2.

Recalling that D´1p0, y, ξq “ A´1p0, y, ξq ` q´1py, ξq “ q´1py, ξq since all subprincipal terms
of A vanish at t “ 0, we have that (2.26) and (2.27) yield

Θ
1
2 px, yqBµ

´

pf ˚ Πr0,µspI ` Qq

¯

px, yq

“
µn´1

pfp0q

p2πqn

ż

S˚
yM

eiµxexp´1
y pxq,ωygy

ˆ

1 `
1

µ
q´1py, ωq

˙

dω
a

|gy|
` rRpµ, x, yq,

where rR “ R1 ` R2 ` R3 satisfies

sup
dgpx,yqďδ

| rRpµ, x, yq| ď C1δ} pf} 9C1pr´δ,δsq
µn´1

` C2} pf} 9C1pr´δ,δsq
µn´2

` C3δ pfp0qµn´2
` C4} pf}C1pr´δ,δsqµ

n´3
` Opµn´3

q,

for some C1, C2, C3, C4 ą 0, with C1 independent of δ, f, and Q. This completes the proof
in the case where α “ β “ 0.

To include derivatives in x, y, we observe that

B
α
xB

β
y e

ixexp´1
y pxq,ξy

“ Op|ξ|
|α|`|β|

q

as |ξ| Ñ 8. Therefore, we can repeat the preceding argument where the orders of the
symbols involved are increased by at most |α| ` |β| to obtain the desired result.

□

2.3. Asymptotics for the smoothed spectral projector. With Proposition 2.3 in hand,
we are equipped to prove the main result of this section, namely the asymptotic behavior of
the smoothed spectral projector ρσ ˚ Πrνℓ´ε,νℓ`εs.

Rε,σpℓ;x, yq :“ ρσ ˚ Πrνℓ´ε,νℓ`εspx, yq ´
2π

T
¨
νn´1
ℓ

p2πqn

ż

S˚
yM

eiνℓxexp´1
y pxq,ωyg

dω
a

|gy|
. (2.28)

Proposition 2.4. Let pM, gq be a smooth Zoll manifold with uniform period T ą 0. Fix
0 ă ε ă 2π

T
. Then, for any multi-indices α, β P Nn and Rε,σ as in (2.28),

lim
δÑ0`

lim
σÑ0`

lim sup
ℓÑ8

sup
dgpx,yqďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ν
n´1`|α|`|β|

ℓ

B
α
xB

β
yRε,σpℓ;x, yq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.
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Proof. Fix two multi-indices α, β P Nn. First, note that for b as in (2.8) we have that for all
k P Z

eikT pb´νℓq
“ eikT p´2πℓ{T q

“ e´2πikℓ
“ 1.

Therefore, combining (2.10) with Proposition 2.3 yields

ρσ ˚ Πrνℓ´ε,νℓ`εspx, yq “ νn´1
ℓ Lpℓ, x, yq

ÿ

kPZ

pfkp0q ` νn´2
ℓ

ÿ

kPZ

pfkp0qWkpℓ, x, yq `
ÿ

kPZ

Rkpℓ, x, yq,

(2.29)

where

Lpℓ, x, yq “
1

p2πqnΘ
1
2 px, yq

ż

S˚
yM

eiνℓxexp´1
y pxq,ωyg

dω
a

|gy|
, (2.30)

Wkpℓ, x, yq “
1

p2πqnΘ
1
2 px, yq

ż

S˚
yM

eiνℓxexp´1
y pxq,ωygσpQkqpy, ωq

dω
a

|gy|
, (2.31)

and Rk satisfies

sup
dgpx,yqďδ

|B
α
xB

β
yRkpℓ, x, yq| ď C1δ}Bt

pfk}L8pr´δ,δsq
ν
n´1`|α|`|β|

ℓ ` C2ν
n´2`|α|`|β|

ℓ

with C1 independent of δ and k. Recalling that the summation in k is actually finite and

that suptσą0,δă1,kPZu }Bt
pfk}L8pr´δ,δsq ă 8 (see Remark 2.1) we have that if we define

Fδ,σpx, y, ℓq :“
1

ν
n´1`|α|`|β|

ℓ

˜

νn´2
ℓ

ÿ

kPZ

pfkp0qB
α
xB

β
yWkpνℓ, x, yq `

ÿ

kPZ

B
α
xB

β
yRkpνℓ, x, yq

¸

,

then we have

lim
δÑ0`

lim
σÑ0`

lim sup
ℓÑ8

sup
dgpx,yqďδ

|Fδ,σpx, y, ℓq| “ 0. (2.32)

To deal with the first term in (2.29), we first claim that

lim
σÑ0`

νn´1
ℓ B

α
xB

β
yLpℓ, x, yq

ÿ

kPZ

pfkp0q “
2π

T
νn´1
ℓ B

α
xB

β
yLpℓ, x, yq, (2.33)

uniformly for all ℓ P N and x, y P M with dpx, yq ď 1
2
injpM, gq. To see this, first note that

by (2.6) and (2.1) we have
ÿ

kPZ

pfkp0q “
ÿ

kPZ

pψε,σpkT qpρδp0q “
ÿ

kPZ

pψε,σpkT q.

Using the Poisson summation formula and (2.2),

ÿ

kPZ

pψε,σpkT q “
ÿ

kPZ

sinpεkT q

kT
pρpσkT q “

2π

T

ÿ

kPZ

1r´1,1s ˚ ρσ{εp2πk{Tεq “
2π

T

ÿ

kPZ

ψ1,σ{ε

ˆ

2πk

Tε

˙

.

(2.34)

Motivated by the form of the above expression, we replace σ by εσ, which is permitted since
ε is fixed throughout this argument. Thus,

ÿ

kPZ

pψε,εσpkT q “
2π

T

ÿ

kPZ

ψ1,σ

ˆ

2πk

Tε

˙

. (2.35)
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Since ψ1,σ “ 1r´1,1s ˚ ρσ and 0 ă ε ă 2π
T
, we have that for k ‰ 0,

ˇ

ˇ

ˇ

ˇ

1

T
ψ1,σ

ˆ

k

Tε

˙
ˇ

ˇ

ˇ

ˇ

ď
CN
T

ˆ

1 `
|k|

Tεσ

˙´N

for any N.

Thus, if we choose N ě 2, we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPZ
k‰0

1

T
ψ1,σ

ˆ

k

Tε

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN
ÿ

kPZ
k‰0

pεσq
NT´1

pεσ ` |k|{T q
´N

ď CNpεσq
NT´1

ÿ

kPZ
k‰0

p|k|{T q
´N ,

which converges to 0 as σ Ñ 0. Also, when k “ 0, we have

ψ1,σp0q “
1

2π

8
ż

´8

2 sin t

t
pρpσtq dt Ñ ψp0q “ 1

as σ Ñ 0, and this finishes the proof of the claim in (2.33).
Combining (2.28), (2.29), (2.32), and (2.33) yields that the final step in the proof is to

eliminate the factor of Θ´ 1
2 px, yq implicit in the definition of L. For this, we observe that

Θ´ 1
2 px, xq “ 1 and its differential vanishes on the diagonal in M ˆ M . Hence, for small

dgpx, yq, we have

Θ´ 1
2 px, yq “ 1 ` dgpx, yq

2Gpx, yq

for some smooth, bounded function G. Thus, it suffices to show that

lim
δÑ0`

lim sup
ℓÑ8

sup
dgpx,yqďδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ν
|α|`|β|

ℓ

B
α
xB

β
y

¨

˚

˝

dgpx, yq
2

ż

S˚
yM

eiνℓxexp´1
y pxq,ωy dω

a

|gy|

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (2.36)

In the case where at most one derivative falls on the factor of dgpx, yq2, the above statement
holds trivially. If two or more derivatives fall on this factor, then at most |α| ` |β| ´2 factors
of νℓ can appear from differentiating the integral over S˚

yM , and so (2.36) also holds in this
case.

□

3. On-diagonal analysis of the spectral projector

The goal of this section is to establish a lower bound for the spectral function restricted
to the diagonal, which is critical for the purposes of comparing the smoothed projector to
the original. In particular, we show that most of the “mass” of the spectral function is
concentrated near

ď

ℓPN

“

νℓ ´ rℓ´ 1
2 , νℓ ` rℓ´ 1

2

‰

,

with νℓ as defined in (1.6). This is similar to the original eigenvalue clustering result of [DG75,

Theorem 3.1]. We expect that a stronger cluster estimate with rℓ´ 1
2 replaced with rℓ´1 should

hold, but we do not prove this here as the refined statement is not needed.
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Proposition 3.1. Let pM, gq be a Zoll manifold with uniform geodesic period T ą 0 and
let tφjuj be the corresponding Laplace eigenfunctions defined in (1.1). Let r ą 0 and fix a
multi-index α P Nn. Then, there exist K,C, λ0 ą 0 so that for all x P M and λ ě λ0

ÿ

λjPApK,r,λq

|B
α
xφjpxq|

2
ě
`

1 ´ Cr´2
˘

ÿ

|λj´λ|ďK

|B
α
xφjpxq|

2,

where

ApK, r, λq “

!

λj : |λj ´ λ| ď K, λj P
ď

ℓPN

“

νℓ ´ rℓ´ 1
2 , νℓ ` rℓ´ 1

2

‰

)

.

Proof. We begin by considering the case where α “ 0 separately. For this, we proceed in
close analogy to the proof of [DG75, Theorem 3.1]. Let χ P S pRq with χ ě 0 and pχ P C8

c pRq

with pχp0q ą 0. Repeating previous calculations, we have that for x P M

8
ÿ

j“0

χpλ ´ λjq|φjpxq|
2

“
1

2π

8
ż

´8

eitλpχptqUtpx, xq dt. (3.1)

Similarly,

8
ÿ

j“0

eipb´λjqTχpλ ´ λjq|φjpxq|
2

“
1

2π

8
ż

´8

eitλpχptqeibTUt`T px, xq dt. (3.2)

Recalling that Ut ´ eibTUt`T is an FIO defined by C of order ´1
4

´ 1 (see (2.4)), we know
that we can write

Utpx, xq ´ eibTUt`T px, xq “
1

p2πqn

ż

T˚
y M

eiϕpt,x,x,ξqBpt, x, x, ξq dξ,

where B is a symbol of order ´1 and ϕ is any admissible phase function which parametrizes
C (c.f. [DG75, p. 45]). As in the proof of Proposition 2.3, we can use the phase function
ϕpt, x, y, ξq “ xexp´1

y pxq, ξygy ´ t|ξ|gy . Hence,

1

2π

8
ż

´8

eitλpχptq
´

Utpx, xq ´ eibTUt`T px, xq

¯

dt “
1

p2πqn`1

8
ż

´8

ż

T˚
y M

eitpλ´|ξ|q
pχptqBpt, x, x, ξq dξ dt

“
λn

p2πqn`1

8
ż

´8

8
ż

0

ż

S˚
yM

pχptqeiλtp1´sqsn´1Bpt, x, x, λsωq ds dω dt

“ Opλn´2
q. (3.3)

Here, to obtain the bound in the last line we used the fact that B is a symbol of order ´1
and repeated the calculations from the proof of Proposition 2.3 that follow (2.16). From
(3.1)and (3.2) it follows that

8
ÿ

j“0

χpλ ´ λjq
`

1 ´ eipb´λjqT
˘

|φjpxq|
2

“ Opλn´2
q. (3.4)
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Thus, we can take real parts to obtain that
8
ÿ

j“0

p1 ´ cos pT pb ´ λjqqqχpλ ´ λjq|φjpxq|
2

“ Opλn´2
q (3.5)

as λ Ñ 8. For any r, ℓ ą 0 define the set

Epℓ, rq “ tλj P Specp
a

´∆gq : rℓ
´1{2

ď T |λj ´ νℓ| ď πu

Recall that νℓ “ 2πℓ
T

` b by (2.8). Thus, if λj P Epℓ, rq, we have that

1 ´ cos pT pb ´ λjqq “ 1 ´ cos
´

T pνℓ ´ λjq ´ 2πℓ
¯

ě 1
2
r2ℓ´1

´ 1
24
r4ℓ´2,

since 1 ´ cospθ ´ 2πℓq ě 1
2
θ2 ´ 1

24
θ4 for θ P r´π, πs and all ℓ P N. Therefore, using that

νℓ ě cℓ for ℓ large enough, together with (3.5), we obtain that for every r ą 0 there exist
C, ℓ0 ą 0 such that for all ℓ ě ℓ0, we have
ÿ

λjPEpℓ,rq

1
2
r2ℓ´1min

`

χpµq : |µ| ď π
T

˘

|φjpxq|
2

ď C
ÿ

λjPEpℓ,rq

p1 ´ cos ppb ´ λjqqqχpνℓ ´ λjq|φjpxq|
2

ď Cℓn´2.

If we adjust χ so that χpµq ą 0 for all |µ| ď π
T
, we obtain that

ÿ

λjPEpℓ,rq

|φjpxq|
2

ď Cr´2ℓn´1 (3.6)

for all r ą 0 and all ℓ large enough.
Next, observe that for any K, r ą 0,

ApK, r, λq “ tλj : |λj ´ λ| ď Ku X

8
č

ℓ“1

Epℓ, rqc.

Therefore,

ÿ

λjPApK,r,λq

|φjpxq|
2

“
ÿ

|λj´λ|ďK

|φjpxq|
2

´

8
ÿ

ℓ“1

ÿ

λjPt|λj´λ|ďKuXEpℓ,rq

|φjpxq|
2. (3.7)

Note that

tλj : |λj ´ λ| ď Ku X Epℓ, rq “ H if |νℓ ´ λ| ą K ` π.

Thus, if we define

Vpλ,Kq “ tℓ : |νℓ ´ λ| ď K ` πu,

by (3.7)
ÿ

λjPApK,r,λq

|φjpxq|
2

“
ÿ

|λj´λ|ďK

|φjpxq|
2

´
ÿ

ℓPVpλ,Kq

ÿ

λjPt|λj´λ|ďKuXEpℓ,rq

|φjpxq|
2. (3.8)

In addition, for each ℓ P Vpλ,Kq, we have that νℓ « λ, and so by (3.6) that
ÿ

λjPt|λj´λ|ďKuXEpℓ,rq

|φjpxq|
2

ď Cr´2λn´1 (3.9)

since ℓ « νℓ « λ. Next, we need the following lemma whose proof we postpone until the end
of this section.
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Lemma 3.2. Let pM, gq be any compact smooth manifold of dimension n with Laplace eigen-
functions tφjuj as in (1.1). Then, for every multi-index α P N there exist K,C, λ0 ą 0 so
that

ÿ

|λ´λj |ďK

|B
α
xφjpxq|

2
ě Cλn´1`2|α|

for all λ ě λ0.

Returning to the proof of Proposition 3.1, we can combine Lemma 3.2 with (3.9) to obtain
that for K sufficiently large,

ÿ

λjPt|λj´λ|ďKuXEpℓ,rq

|φjpxq|
2

ď Cr´2
ÿ

|λj´λ|ďK

|φjpxq|
2. (3.10)

Furthermore, since the cardinality of Vpλ,Kq is proportional to K, we can combine (3.10)
with (3.8) to obtain

ÿ

λjPApK,r,λq

|φjpxq|
2

ě

ˆ

1 ´
C

r2

˙

ÿ

|λj´λ|ďK

|φjpxq|
2,

which completes the proof in case where |α| “ 0.
In order to prove the statement for higher order derivatives Bαx , one need only show the

appropriate analogue of (3.4). In particular, this will follow from

1

2π

8
ż

´8

eitλpχptqB
α
xB

α
y

´

Utpx, yq ´ eibTUt`T px, yq

¯

ˇ

ˇ

y“x
dt “ Opλn´2`2|α|

q. (3.11)

This follows directly from the off-diagonal analogue of (3.3), which is given by

1

2π

8
ż

´8

eitλpχptq
´

Utpx, yq ´ eibTUt`T px, yq

¯

dt

“
λn

p2πqn`1

8
ż

´8

ż

T˚
y M

eiλpxexp´1
y pxq,ξy`tp1´|ξ|qq

pχptq pBpt, x, y, λξq dξ dt.

Thus, each derivative in x or y yields at most one additional power of λ, and so by previous
arguments we obtain (3.11). The rest of the argument proceeds identically to the |α| “ 0
case.

□

Proof of Lemma 3.2. The proof of this lower bound relies on the generalized local Weyl law,
which states that if A is a classical polyhomogeneous pseudodifferential operator of order
zero, then

AΠr0,λsA
˚
px, xq “

ÿ

λjďλ

|Aφjpxq|
2

“ LApx, λqλn ` RApλ, xq, (3.12)

where

LApxq :“ C

ż

S˚
xM

|σ0pAqpx, ξq|
2 dξ
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for some C ą 0, and supxPM |RApλ, xq| ď CAλ
n´1 for some CA ą 0 and all λ ě 1 (c.f. [Sog14,

Theorem 5.2.3]). We note that since A is of order zero, |LApxq| ď C 1
A for some C 1

A ą 0.
Given these facts, we define for each multi-index α the operator

A “ B
α
x p1 ` ∆gq

´|α|{2
P Ψ0

cℓpMq

whose principal symbol is a homogeneous function in C8pT ˚Mz0q which can be written in
local coordinates as

σ0pAqpx, ξq “
i|α|ξα

|ξ|
|α|
g

.

By the local Weyl law, we have

AΠrλ´K,λ`KsA
˚
px, xq “

´

AΠλ`KA
˚
px, xq ´ LApxqpλ ` Kq

n
¯

´

´

AΠλ´KA
˚
px, xq ´ LApxqpλ ´ Kq

n
¯

` LApxq ppλ ` Kq
n

´ pλ ´ Kq
n
q

“ RApλ ` K, xq ´ RApλ ´ K, xq ` LApxq
`

Kλn´1
` OK,Apλn´2

q
˘

.

Since |RApλ, xq| ď CAλ
n´1 and LApxq ě δ ą 0 for all x P M and all λ ě 1, we have that

AΠrλ´K,λ`KsA
˚
px, xq ě pδK ´ CAqλn´1

` OK,Apλn´2
q.

Thus, if we choose K large enough so that δK ´ CA ą 0, there exists a λ0 ą 0 so that

AΠrλ´K,λ`KsA
˚
px, xq ě Cλn´1 (3.13)

for some C ą 0 and all λ ě λ0. On the other hand, we can use the functional calculus for
∆g to write

AΠrλ´K,λ`KsA
˚
px, xq “

ÿ

|λ´λj |ďK

p1 ` λ2jq
´|α|

|B
α
xφjpxq|

2.

Observe that
ˇ

ˇ

ˇ

ˇ

1 ` λ2

1 ` λ2j
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇλ2 ´ λ2j
ˇ

ˇ

1 ` λ2j
ď

Kp2λ ` Kq

1 ` pλ ´ Kq2
,

Since 1 ` pλ ´ Kq2 ě 1
2
λ2 if λ ě 1

4
K, we obtain

ˇ

ˇ

ˇ

ˇ

1 ` λ2

1 ` λ2j
´ 1

ˇ

ˇ

ˇ

ˇ

ď CKλ´1
` OKpλ´2

q

as λ Ñ 8. Using binomial expansion, we also obtain
ˇ

ˇ

ˇ

ˇ

p1 ` λ2q|α|

p1 ` λ2jq
|α|

´ 1

ˇ

ˇ

ˇ

ˇ

ď CαKλ
´1

` OK,αpλ´2
q

for any α. Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p1 ` λ2q|α|AΠrλ´K,λ`KsA
˚
px, xq ´

ÿ

|λj´λ|ďK

|B
α
xφjpxq|

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

´

CαKλ
´1

` OK,αpλ´2
q

¯

ÿ

|λj´λ|ďK

|B
α
xφjpxq|

2. (3.14)
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Hence, by (3.13),

Cλn´1`2|α|
ď p1`λ2q

|α|AΠrλ´K,λ`KsA
˚
px, xq ď

´

1`CαKλ
´1

`OK,αpλ´2
q

¯

ÿ

|λj´λ|ďK

|B
α
xφjpxq|

2

Since CαKλ
´1 ` OK,αpλ´2q tends to zero as λ Ñ 8 for any fixed K ą 0, this proves the

claim.
□

4. Proof of the main results

In this section we prove Theorem 1 and Corollary 1.2.

4.1. Proof of Theorem 1. With Proposition 2.4 in place, the proof of Theorem 1 reduces
to the claim that for any ε ă π

2T
, and each pair of multi-indices α, β, we have

lim
σÑ0`

lim sup
ℓÑ8

ν
1´n´|α|´|β|

ℓ sup
x,yPM

ˇ

ˇ

ˇ
B
α
xB

β
y

`

Πrνℓ´ε,νℓ`εspx, yq ´ ρσ ˚ Πrνℓ´ε,νℓ`εspx, yq
˘

ˇ

ˇ

ˇ
“ 0. (4.1)

We proceed to prove (4.1). Noting that

Fτ ÞÑt

`

1r´ε,εspτq
˘

“

ε
ż

´ε

e´itτ dτ “
2 sinptεq

t
,

we can rewrite

Πrλ´ε,λ`εspx, yq ´ ρσ ˚ Πrλ´ε,λ`εspx, yq “

8
ÿ

j“0

hε,σpλ ´ λjqφjpxqφjpyq, (4.2)

where

hε,σpτq “ 1r´ε,εspτq ´
1

π

8
ż

´8

eitτ pρσptq
sinptεq

t
dt. (4.3)

We claim that hε,σ satisfies a bound of the form

|hε,σpτq| ď CN

´

1 `
||τ | ´ ε|

σ

¯´N

for any N P N. (4.4)

To see this, recall that ρ is a Schwartz-class function with
ş

R ρ dt “ pρp0q “ 1 and ρσpτq “
1
σ
ρpτ{σq. Thus,

1

π

8
ż

´8

eitτ pρσptq
sinptεq

t
dt “

ε
ż

´ε

1

σ
ρ
´τ ´ µ

σ

¯

dµ “

τ`ε
σ
ż

τ´ε
σ

ρpµq dµ.

Suppose τ ą ε. Then,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τ`ε
σ
ż

τ´ε
σ

ρpµq dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ż

τ´ε
σ

|ρpµq| dµ ď CN

´

1 `
τ ´ ε

σ

¯´N
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for any N since ρ is Schwartz. The analogous estimate clearly holds in the case where
τ ă ´ε. If instead |τ | ă ε, then since ρ integrates to 1 and is rapidly decaying, along with
the fact that 1r´ε,εs is identically one on r´ε, εs, we have that

|hε,σpτq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1r´ε,εspτq ´

τ`ε
σ
ż

τ´ε
σ

ρpµq dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

τ´ε
σ
ż

´8

|ρpµq| dµ `

8
ż

τ`ε
σ

|ρpµq| dµ ď CN

´

1 `
||τ | ´ ε|

σ

¯´N

for any N . Finally, in the case where |τ | “ ε, (4.4) only claims that hε,σpτq is uniformly
bounded in ε, σ, which follows immediately from the fact that

|hε,σpεq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´

ż 2ε
σ

0

ρpµq dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1

along with the analogous statement for τ “ ´ε. Therefore, we have proved (4.4).
Observe that by (4.2) and (4.3) we have
ˇ

ˇB
α
xB

β
y

`

Πrλ´ε,λ`εspx, yq ´ ρσ ˚ Πrλ´ε,λ`εspx, yq
˘
ˇ

ˇ

ď

˜

8
ÿ

j“0

|hε,σpλ ´ λjq||B
α
xφjpxq|

2

¸
1
2
˜

8
ÿ

j“0

|hε,σpλ ´ λjq||B
β
yφjpyq|

2

¸
1
2

.

Thus, the claim in (4.1) would follow once we prove that given α P N,

lim
σÑ0`

lim
ℓÑ8

1

ν
n´1`2|α|

ℓ

8
ÿ

j“0

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
“ 0. (4.5)

For each ℓ, decompose N “ J1pℓq Y J2pℓq Y J3pℓq with

J1pℓq :“ tj : |λj ´ νℓ| ą π
T

u, J2pℓq :“ tj : |λj ´ νℓ| ă rℓ´1{2
u,

J3pℓq :“ tj : rℓ´1{2
ă |λj ´ νℓ| ď π

T
u.

First, note that

ÿ

jPJ1pℓq

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
“

8
ÿ

m“1

ÿ

|λj´νℓ|Prmπ
T
, pm`1qπ

T
s

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2. (4.6)

Whenever |λj ´ νℓ| P rmπ
T
, pm`1qπ

T
s with m ě 1 and ε ă π

2T
, we have that

|hε,σpνℓ ´ λjq| ď CN

ˆ

1 `
1

σ

ˇ

ˇ

ˇ

mπ

T
´ ε

ˇ

ˇ

ˇ

˙´N

ď C 1
N

´m

σ

¯´N

for some C 1
N ą 0 by (4.4). For the same range of λj, we also have that

ÿ

|λj´νℓ|Prmπ{T,pm`1qπ{T s

|B
α
xφjpxq|

2
ď Cp1 ` νℓ ` mπ{T q

n´1`2|α|

for some C,C 1 ą 0 by the local Weyl law (3.12). Therefore, by (4.6)

ÿ

jPJ1pℓq

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
ď rCNσ

N
8
ÿ

m“1

p1 ` νℓ ` mπ{T q
n´1`2|α|m´N
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for some rCN ą 0. Taking any N ě n ` 1 ` 2α, we thus obtain
ÿ

jPJ1pℓq

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
ď C1σ

Nν
n´1`2|α|

ℓ (4.7)

for some C1 ą 0 and any σ ą 0 small.
Next, to estimate the sum over J2pℓq we note that for each fixed r, ε ą 0, one can take ℓ

sufficiently large so that |rℓ´1{2 ´ ε| ě ε
2
, in which case by (4.4) that

|hε,σpνℓ ´ λjq| ď CN

´

1 `
ε

σ

¯´N

ď CN

´σ

ε

¯N

for |νℓ ´ λj| ď rℓ´1{2. By the local Weyl law, we have
ÿ

jPJ2pℓq

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
ď C2

´σ

ε

¯N

ν
n´1`2|α|

ℓ (4.8)

for some C2 ą 0 and all ℓ sufficiently large.
Finally, to estimate the sum over J3pℓq we apply Proposition 3.1, which implies that there

exist K ą 0 and ℓ0 ą 0 such that for all ℓ ě ℓ0
ÿ

jPJ3pℓq

|B
α
xφjpxq|

2
ď Cr´2

ÿ

|λj´νℓ|ďK

|B
α
xφjpxq|

2
ď C 1r´2ν

n´1`2|α|

ℓ ,

where the final inequality follows from the local Weyl law (3.12). Therefore, since hε,σ is
bounded by a uniform constant for all ε, σ ą 0, we have

ÿ

jPJ3pℓq

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
ď C3r

´2ν
n´1`2|α|

ℓ (4.9)

for some C3 ą 0, all r ą 0, and all ℓ sufficiently large. Combining (4.7), (4.8), and (4.9),

lim
ℓÑ8

1

ν
n´1`2|α|

ℓ

8
ÿ

j“0

|hε,σpνℓ ´ λjq||B
α
xφjpxq|

2
ď C1σ

N
` C2pσ{εqN ` C3r

´2

for all ε ă π
2T

and all σ, r ą 0. Recalling that ε ą 0 was fixed in the statement of the
proposition, we may send σ Ñ 0 and r Ñ 8 to obtain (4.5), which completes the proof.

□

4.2. Proof of Corollary 1.2. The proof of Corollary 1.2 follows from Theorem 1 quite
directly. First, we observe that (1.4) yields

1

p2πqn

ż

S˚
yM

eiλxexp´1
y pxq,ωyg

dω
a

|gy|
“

1

p2πqn{2

Jn´2
2

p|λdgpx, yq|q

pλdgpx, yqq
n´2
2

.

Next, choose rescaled normal coordinates so that x “ expx0pu{λq, y “ expx0pv{λq. If we set

F pτq “
Jνpτq

τν
for ν “ n´2

2
, we then have

|F pλdgpx, yqq ´ F p|u ´ v|q| ď |λdgpx, yq ´ |u ´ v||

since F 1 is uniformly bounded on R. Furthermore, by the properties of geodesic normal
coordinates, we know that

ˇ

ˇ

ˇ

ˇ

dgpx, yq ´
|u ´ v|

λ

ˇ

ˇ

ˇ

ˇ

ď
C|u ´ v|2

λ2
.
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Hence,

1

p2πqn

ż

S˚
yM

eiλxexp´1
y pxq,ωyg

dω
a

|gy|
“

1

p2πqn{2

Jn´2
2

p|u ´ v|q

|u ´ v|
n´2
2

` O
ˆ

|u ´ v|2

λ2

˙

.

It only remains to note that by [DG75, Theorem 3.] we have that

dimpHνℓ,εq “
2π

T
¨
volpS˚Mq

p2πqn
νn´1
ℓ ` opνn´1

ℓ q.

□
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