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Abstract. In this article we develop new techniques for studying concentration
of Laplace eigenfunctions φλ as their frequency, λ, grows. The method consists of
controlling φλ(x) by decomposing φλ into a superposition of geodesic beams that
run through the point x. Each beam is localized in phase-space on a tube centered

around a geodesic whose radius shrinks slightly slower than λ−
1
2 . We control φλ(x)

by the L2-mass of φλ on each geodesic tube and derive a purely dynamical statement
through which φλ(x) can be studied. In particular, we obtain estimates on φλ(x) by
decomposing the set of geodesic tubes into those that are non self-looping for time
T and those that are. This approach allows for quantitative improvements, in terms
of T , on the available bounds for L∞ norms, Lp norms, pointwise Weyl laws, and
averages over submanifolds.

1. Introduction

On a smooth, compact, Riemannian manifold (Mn, g) with no boundary, we consider
sequences of Laplace eigenfunctions {φλ} solving

(−∆g − λ2)φλ = 0, ‖φλ‖L2(M)
= 1. (1.1)

From a quantum mechanics point of view, |φλ(x)|2 represents the probability density for
finding a quantum particle of energy λ2 at the point x ∈M . As a result, understanding
how φλ concentrates across M is an important problem in the mathematical physics
community.

In this article, we construct tools to examine the behavior of φλ by decomposing
it into geodesic beams. To study how φλ concentrates near x ∈ M , we rewrite φλ as
a sum of functions, each of which is microlocalized to a shrinking neighborhood of a
geodesic that runs through x. The analysis of this decomposition, including a precise
description of the L∞ behavior of each geodesic beam, yields a bound on φλ(x) in terms
of the local structure of the L2-mass of φλ along each of the geodesic tubes starting
at x. In addition, through an application of Egorov’s theorem, we obtain estimates on
the growth of φλ(x) that rely only on the dynamical behavior of geodesics emanating
from x, and not on any other geometric structure of (M, g). Throughout the article,
we refer to the tools developed here as geodesic beam techniques.

The term geodesic beam is inspired by Gaussian beams. Recall that, on the round
sphere, these are eigenfunctions that concentrate in a λ−1/2 neighborhood of a closed
geodesic that have a Gaussian profile transverse to the geodesic. Gaussian beams have
been extensively studied in the math and physics literature (see e.g. [BL67, Arn73,
KS71, BB91, DGR06, Zel15, Wei75, Ral77, Ral82]). Notably, Ralston [Ral76] con-
structed quasimodes associated to stable periodic orbits modelled on Gaussian beams.
These references concern modes associated to a single closed geodesic. In contrast,
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the methods developed here decompose functions into linear combinations of what we
call geodesic beams. Each building block is similar to a Gaussian beam in that it is
associated to a geodesic and concentrates in a small neighborhood thereof. However,
three facts crucial to our construction are: that geodesic beams are only locally de-
fined, that the geodesic need not close, and that they do not need to have a Gaussian
profile transverse to the geodesic.

In this article we build the geodesic beam tools and illustrate their application
by obtaining quantitative improvements to L∞ norms for eigenfunctions on certain
integrable geometries (see §5).

In addition, the techniques developed in this paper have remarkable implications
in the study of L∞ norms and averages of eigenfunctions, Lp norms, and pointwise
Weyl Laws. (See §1.2, §1.3, §1.4 respectively.) However, all of these applications
require some additional non-trivial input e.g. controlling looping behavior of geodesics
in [CG19a], understanding the local geometry of overlapping tubes in [CG20a], and
reduction of Weyl remainders to quasimode estimates in [CG20b]. We stress that the
crucial technique in each application is that of geodesic beams, which are developed in
this article. We briefly describe the applications to L∞ norms, averages, Lp norms,
and Weyl Laws now:

L∞ norms: Beginning in the 1950’s, the works of Levitan, Avakumović, and
Hörmander [Lev52, Ava56, Hör68] prove the estimate ‖φλ‖L∞(M)

= O(λ
n−1
2 ) as λ→∞;

known to be saturated on the round sphere. This bound was improved to o(λ
n−1
2 )

by Sogge, Toth, Zelditch and the second author [SZ02, STZ11, SZ16a, SZ16b, GT17,
Gal19] under various dynamical assumptions at x. Notably, [SZ02] was the first to
study L∞ bounds under purely local dynamical assumptions. When (M, g) has no

conjugate points, a quantitative improvement of the form ‖φλ‖L∞ = O(λ
n−1
2 /
√

log λ)

has been known since the classical work of Bérard [Bér77, Bon17, Ran78]. However,
until the present time, no quantitative improvements were available without global geo-
metric assumptions on (M, g). In §1.2 we present applications of our geodesic beam
techniques giving such improvements.

Averages: Another measure of eigenfunction concentration is the average over a
submanifold H ⊂ M of codimesion k. In this case, the general bound

´
H
φλdσH =

O(λ
k−1
2 ) was proved by Zelditch [Zel92] and is saturated on the round sphere. This

generalized the work of Good and Hejhal [Goo83, Hej82]. Chen–Sogge [CS15] were
the first to obtain a refinement on the standard bounds. This work has since been
improved under various assumptions by Sogge, Xi, Zhang, Wyman, Toth, and the
authors [SXZ17, Wym17, Wym19a, Wym19b, Wym18, CGT18, CG19b]. As before,
none of these results obtain quantitative improvements without global geometric as-
sumptions on (M, g). In §1.2 we present applications of our geodesic beam techniques
giving such improvements.

Lp norms: Since the seminal work of Sogge [Sog88], it has been known that
‖φλ‖Lp(M)

= O(λδ(p,n)) where δ(p, n) depends on how p compares to the critical exponent

pc = 2(n+1)
n−1 . Namely, δ(p, n) = n−1

2 −
n
p if p ≥ pc and δ(p, n) = n−1

4 −
n−1
2p if 2 ≤ p ≤ pc.

When (M, g) has non-positive sectional curvature, Hassell and Tacy [HT15] gave quan-
titative gains over this estimate of the form O(λδ(p,n)/(log λ)σ(p,n)) when p > pc and
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with σ(p, n) = 1
2 . Blair and Sogge [BS17, BS18] also obtained an improvement when

2 < p ≤ pc for some σ(p, n) > 0 smaller than 1
2 . In §1.3 we present applications of our

geodesic beam techniques which yield
√

log λ improvements for Lp norms with p > pc,
generalizing those of [HT15].

Weyl Laws: Let {λ2
j}j be the Laplace eigenvalues of (M, g). It is well known that

#{j : λj ≤ λ} = vol(Bn) vol(M)
(2π)n λn + E(λ) with E(λ) = O(λn−1) as λ→∞, where Bn ⊂ Rn

is the unit ball. Indeed, this is the integrated version of the more refined statement
proved by Hörmander in [Hör68] which says that

∑
λj≤λ |φλj (x)|2 = vol(Bn)

(2π)n λn + E(λ, x)

for all x ∈ M , with E(λ, x) = O(λn−1) uniform for x ∈ M . This estimate has been
improved by Sogge–Zelditch [SZ02] and Bérard [Bér77] under various dynamical as-
sumptions. In §1.4 we present improvements of these results based on geodesic beam
techniques.

1.1. Main results: Localizing eigenfunctions near geodesic tubes. In this sec-
tion we present Theorems 1 and 2, which are our main estimates for Laplace eigen-
functions. In §2 we present much more general versions of these two results, Theorems
10 and 11, that hold for quasimodes of more general operators.

In fact, we work in the semiclassical framework, writing λ = h−1 and letting h→ 0+.
Then, relabeling φλ = φh, we study

(−h2∆g − 1)φh = 0, ‖φh‖L2(M)
= 1. (1.2)

This rescaling is useful because it allows us to work in compact subsets of phase space,
and in particular, near the cosphere bundle S∗M where geodesic dynamics naturally
take place.

Our main results give an estimate for φh near a point x ∈ M . We now introduce
the necessary objects to state these estimates. We will work with a cover of S∗xM
by short geodesic tubes Λτρ(R(h)) ⊂ T ∗M . This notation roughly means that the
geodesic tube, Λτρ(R(h)), is the flowout of a ball of radius R(h) around ρ for times
t ∈ [−τ −R(h), τ +R(h)]. We will, in fact, take τ > 0 small. This is similar to an R(h)
thickening (with respect to the Sasaki metric on T ∗M) of the geodesic of length 2τ

centered at ρ ∈ S∗xM (see (2.13) for a precise definition). We say that {Λτρj (R(h))}Nhj=1

is a (τ,R(h))-cover of S∗xM if it covers ΛτS∗xM (1
2R(h)) (see Definition 3 for the definition

of a cover and (2.12) for the definition of ΛτS∗xM (1
2R(h))).

In addition, a δ-partition of S∗xM associated to the (τ,R(h))-cover is a collection of

functions {χj}Nhj=1 ⊂ Sδ(T ∗M ; [0, 1]) so that each χj is supported in the tube Λτρj (R(h))

and with the property that
∑Nh

j=1 χj ≥ 1 on ΛτS∗xM (1
2R(h)). (See Appendix A.2 for a

description the symbol class Sδ, and Definition 3 for the definition of a δ-partition.)
The functions χj are used to microlocalize φh to the tubes Λτρj (R(h)). We refer to

Oph(χj)φh as a geodesic beam through x. They are constructed in Proposition 3.4 and
have the additional property that Oph(χj) nearly commutes with (−h2∆g − 1) near
x (so that these localizers do not destroy the property of being a quasimode locally
near x). (See also Step 2 in the proof of Theorem 10.) The fact that Oph(χj) nearly
commutes with (−h2∆g − 1) requires that we work with geodesic tubes of positive
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length, τ , independent of h rather than localizing to balls of radius R(h) centered in
S∗xM .

In the following result, we control φh(x) by the L2-mass of the geodesic beams
through x.

Theorem 1. Let x ∈ M . There exist τ0 = τ0(M, g) > 0, R0 = R0(M, g) > 0, Cn > 0
depending only on n, so that the following holds.

Let 0 < τ ≤ τ0, 0 ≤ δ < 1
2 , and 8hδ ≤ R(h) ≤ R0. Let {χj}Nhj=1 be a δ-partition for

S∗xM associated to a (τ,R(h))-cover. Let N > 0.
Then, there are h0 = h0(M, g, {χj}, δ) > 0 and CN > 0 with the property that for

any 0 < h < h0 and φh satisfying (1.2),

‖φh‖L∞(B(x,hδ)) ≤ Cnτ−
1
2h

1−n
2 R(h)

n−1
2

Nh∑
j=1

‖Oph(χj)φh‖L2(M)
+ CNh

N‖φh‖L2(M)
.

Moreover, the constants h0 and CN are uniform for χj in bounded subsets of Sδ.

Crucially, this estimate makes no assumptions on the geometry ofM or the dynamics
of the geodesic flow. Information on the dynamics of the geodesic flow will later allow
us to control the L2 mass of the geodesic beams (see Theorem 2).

This result is a consequence of the more general and stronger result given in Theo-
rem 10 below. (See Remark 6 for the proof.) Indeed, the latter is stated as a bound
for
´
H uhdσH , where H ⊂ M is a general submanifold and uh is a quasimode for a

pseudodifferential operator with a real, classically elliptic symbol with respect to which
H is conormally transverse. Note that when H = {x} we have

´
H uhdσH = uh(x). See

§2 for a detailed description.

One can conclude from Theorem 1 that, in order to have maximal sup-norm growth
at a point, an eigenfunction must have a component with L2 norm bounded from below
that is distributed in the same way as the canonical example on the sphere (up to scale
hδ for all δ < 1

2). Indeed, if one restricts attention to (τ, r) covers of S∗xM without too
many overlaps (see Definition 4) it follows from Theorem 1 that there exists Cn > 0,
so that for all ε > 0, if

#
{
j : ε2R(h)n−1 ≤ ‖Oph(χj)φh‖2

L2(M)
≤ R(h)n−1

ε2

}
≤ ε2Nh,

then ‖φh‖L∞(B(x,hδ)) ≤ εCnτ−
1
2h

1−n
2 .

To understand Theorem 1 heuristically, one should think of ‖Oph(χj)φh‖L2(M) as
measuring the L2 mass of φh on the tube of radius R(h) around a geodesic that runs
through the point x. Since vol(suppχj) � R(h)n−1, an individual term in the sum in
Theorem 1 is then

R(h)
n−1

2 ‖Oph(χj)φh‖L2(M) �

(
‖Oph(χj)φh‖2L2(M)

vol(suppχj)

) 1
2

vol(suppχj),

where vol is the volume measure on S∗xM induced by the Sasaki metric on T ∗M . In
particular, the sum on the right of the estimate in Theorem 1 can be interpreted as´
S∗xM

∣∣ dµ
d vol

∣∣ 1
2d vol, where µ is the measure giving the distribution of the mass squared of
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φh onS∗xM . This statement can be made precise by using defect measures (see [CG19b,
Theorem 6]), but the results using defect measures can only be used to obtain o(1)
improvements on eigenfunction bounds.

We emphasize now that Theorem 1 is the key estimate for the proofs of all the appli-
cations to L∞-norms, Lp-norms, and Weyl Laws stated in §1.2, 1.3, 1.4, respectively.

At first sight it may seem that it is not easy to extract information from the upper
bound provided in Theorem 1. However, the strength of this bound is showcased in
our next result, Theorem 2. The latter combines the analytical bound of Theorem 1
together with Egorov’s Theorem to obtain a purely dynamical statement. Indeed,
φh(x) is controlled by covers of ΛτS∗xM (1

2R(h)) by “good” tubes that are non self-looping

under the geodesic flow, ϕt := exp(tH|ξ|g) (where H|ξ|g is the Hamiltonian vector field
of |ξ|g), and “bad” tubes whose number is small.

Definition 1. (non-self looping sets) For 0 < t0 < T0, we say that A ⊂ T ∗M is [t0, T0]
non-self looping if

T0⋃
t=t0

ϕt(A) ∩A = ∅ or

−t0⋃
t=−T0

ϕt(A) ∩A = ∅. (1.3)

The goal of our next result is to obtain quantitative control of φh(x) by splitting
the geodesic tubes into “good” tubes {Λτρj (R(h))}j∈G` that are [t`, T`] non self-looping

and “bad” tubes {Λτρj (R(h))}j∈B that may be self-looping. The quantitative control

is then given in terms of t`, T`, |G`|, and |B|. Recall that τ > 0 is a small parameter
so the tubes Λτρ(R(h)) do not see the global dynamical structure of the geodesic flow.
It is only when T` � τ that one encounters this information.

It is convenient to work with covers by tubes for which the number of overlaps is
controlled. Indeed, we say that a (τ,R(h))- covering by tubes is a (D, τ, R(h))-good
covering, if it can be split into D > 0 families of disjoint tubes. See Definition 4
for a precise definition. In Proposition 3.3 we prove that one can always work with
(Dn, τ, R(h))-good coverings, where Dn only depends on n.

In what follows we write Λmax for the maximal expansion rate of the flow and Te(h)

for the Ehrenfest time Te(h) := log h−1

2Λmax
(see (2.15)).

Theorem 2. Let x ∈ M , 0 < δ < 1
2 . There exist positive constants h0 = h0(M, g, δ),

τ0 = τ0(M, g), R0 = R0(M, g), and Cn depending only on n, so that for all 0 < τ≤τ0

and 0 < h < h0 the following holds.

Let 8hδ ≤ R(h)≤R0, and {Λτρj (R(h))}Nhj=1 be a (D, τ, R(h))-good cover for S∗xM for

some D > 0. Let 0 ≤ α < 1− 2lim suph→0
logR(h)

log h and suppose there exists a partition

of {1, . . . , Nh} into B and {G`}`∈L such that for every ` ∈ L there exist T` = T`(h) > 0
and t` = t`(h) > 0 with t`(h) ≤ T`(h) ≤ 2αTe(h) such that

⋃
j∈G`

Λτρj (R(h)) is [t`, T`] non-self looping.
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Then, for all N > 0 there exists CN = CN (M, g,N, τ, δ) > 0 so that for φh solving (1.2)

‖φh‖L∞(B(x,hδ))≤ CnDτ−
1
2h

1−n
2 R(h)

n−1
2

(
|B|

1
2 +
∑
`∈L

|G`|
1
2 t

1
2
`

T
1
2
`

)
‖φh‖L2(M)

+CNh
N‖φh‖L2(M)

.

Remark 1. Note that, since the tubes Λτρj (R(h)) are essentially time τ flowouts of

balls around ρj with radius R(h), if the ball of radius R(h) around ρj is [t− τ, T + τ ]
non-self looping then Λτρj (R(h)) is [t, T ] non-self looping. Therefore, we could replace

the non-self looping assumption on Λτρj (R(h)) in Theorem 2 by an analogous non-self

looping assumption on B(ρj , R(h)). Note, however, that these balls cannot be replaced
by balls inside S∗xM . We need them to have full dimension so that smooth cutoffs can
be supported inside Λτρ(R(h)). Moreover, it is necessary that they encode quantitative
information on how geodesics near the center of Λτρ(R(h)) return close to x.

This result is a consequence of the more general and stronger result given in Theo-
rem 11. See Remark 7 for the proof. As with the previous theorem, the generalization
is stated for averages over submanifolds of quasimodes of general operators. See §2
for a detailed explanation. For examples where Theorem 2 is applicable see §1.2.2 and
§1.5.

We note that Theorem 2 distinguishes much finer features than that of self-conjugacy
with maximal multiplicity. Indeed, the theorem can be used to obtain estimates at
points all of whose geodesics return; provided the geodesics through the point have
some additional non-recurrent structure (e.g. the umbillic points on the triaxial el-
lipsoid; see §1.5). In particular, this estimate distinguishes recurrent structure and
non-recurrent structure as in Definition 2. At this point, we do not know to what
extent it distinguishes periodic structure from recurrent structure.

Theorem 2 reduces estimates on φh(x) to the construction of covers of Λτ
S∗xM

(1
2R(h))

by sets with appropriate structure. Here Λτ
S∗xM

(1
2R(h)) denotes a 1

2R(h) thickening of

the set of geodesics through x, see (2.12). If there is a cover of Λτ
S∗xM

(1
2R(h)) by “good”

sets {G`}`∈L and a “bad” set B, with every G` being [t`(h), T`(h)] non-self looping,
the estimate reads

‖φh‖L∞(B(x,hδ)) ≤ CnDτ−
1
2h

1−n
2

[vol(B)]
1
2 +

∑
`∈L

[vol(G`)]
1
2 t

1
2
`

T
1
2
`

‖φh‖L2(M)
,

where vol denotes the volume induced on S∗xM by the Sasaki metric on T ∗M , and
where we write vol(A) = vol(A ∩ S∗xM) for A ⊂ T ∗M . The additional structure
required on the sets G` and B is that they consist of a union of tubes Λτρi(R(h)) and
that T`(h) < 2(1− 2δ)Te(h).

With this in mind, Theorem 2 should be thought of as giving a non-recurrent con-
dition on S∗xM which guarantees quantitative improvements over the standard bounds
(see Definition 2 for a precise explanation of what we mean by non-recurrent struc-
ture). In particular, taking T`, t`, G` and B to be h-independent can be used to recover
the dynamical consequences in [CG19b, Gal19] (see [Gal18] and Section 1.6).



7

S∗
xM

ϕT (S∗
xM)

ϕt(S
∗
xM)

x

In §5 we illustrate how to build covers by good and bad tubes in some integrable
geometries, and how to use them to obtain quantitative improvements over the known
L∞-bounds. In the figure we illustrate how to cover S∗xM with “good” tubes (green)
and “bad” tubes (orange) for a point x on the square flat torus. The grid represents
the integer lattice on the universal cover of the torus. In the figure, there is only one
index i.e. ` = 1, and we chose t` = t = 1.6, T` = T= 2.7, τ = 0.2, and R = 0.01.
In the figure, the length of the green/orange tubes is 2(τ + R). Note that some of
the green tubes are not [3τ, T ] non-self looping but are [t, T ] non-self looping e.g. the
tube at angle π/4. In practice, to obtain quantitative gains, one needs to work with
T → ∞. The figure is drawn for one relatively small T because choosing a larger T
makes the figure illegible. A tube is “bad” if the geodesic generated by it returns to x
in time between t and T . Note, in addition, that t` must be positive since our tubes
have finite, positive width in the flow direction. Also, a set may be [t0, T ] self-looping,
but not [t̃0, T ] self-looping for some t̃0 > t0 e.g. a neighborhood, U \ V ⊂ T ∗M , where
U is a neighborhood around an unstable hyperbolic closed geodesic in phase space and
V is a slightly smaller neighborhood. While, at the moment we do not have examples
where it is necessary to send t` → ∞ with h, we anticipate this will be useful in the
future.

To understand why it is in general useful to have families of tubes G` with different
looping times, [t`, T`], we consider the following setup. We assume that the geodesic
flow is exponentially contracting in the sense that

‖dϕt|S∗xM‖ ≤ Ce
−Ct.

For simplicity, let dimM = 2. The way in which we work with the assumption on the
geodesic flow is that the flow out of an arc of length R in S∗xM will have length e−CTR
upon return to S∗xM at time T . We, in general, do not have information about the
place to which the arc returns. Suppose we want to cover S∗xM with tubes of radius
R and divide them into [t0, T (h)] non-self looping collections G` such that Theorem 2
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gives a log h−1 gain. Note that, for simplicity, we identify each tube with the arc of
length R that is formed by its intersection with S∗xM . Since R ≥ hδ, and, in order to
get a log h−1 improvement, we must take T (h) ∼ log h−1, we have R ≥ e−CT (h).

To simplify the situation further, we discretize the time and imagine that the return
map, Φ, has the properties above. To produce a non-self looping collection, we start
with an arc A0 of length ∼ 1. To construct a [t0, T (h)] non-self looping set, G0, we let

A1 :=
⋃

t0≤k≤T (h)

Φk(A0) ∩A0, G0 := A0 \A1.

Since we do not know the directions in which A0 returns, A1 apriori consists of intervals
of size e−C , e−2C , . . . , e−CT (h). Hence, A1 has volume ∼ e−C and is [t0, T (h)] self-
looping. In order to get a T (h)−1 improvement with only one T`(h) = T (h), any set
which is [t0, T (h)] self looping must have volume ≤ CT (h)−1. Since A1’s volume is
� T (h)−1, we must iterate this process by putting

A` :=
⋃

t0≤k≤T (h)

Φk(A`−1) ∩A`−1, G`−1 := A`−1 \A`.

Apriori, A` has volume ∼ e−C`, is [t0, T (h)] self-looping, and consists of intervals of

size e−C`, e−C(`+1), . . . e−C(T (h)+`). Therefore, in order to gain T (h)−1 in our estimates,
we must iterate until e−C` ∼ T (h)−1. That is, `(h) ∼ log T (h). Note that in this case
the smallest arc in A`(h) has length

e−C(T (h)+`(h)) ∼ hCT (h)−C .

Now, depending on C, this may be � hδ, which is the scale of our cover. There are a
two ways around this. We could shrink T (h) so that this scale is above R. However,
this would be somewhat unnatural since then our dynamical gain would necessarily
depend on the contraction rate. So that we may use our original T (h), while still
having a scale above hδ, we shrink the non-self looping times at each step so that
G` is e−C`/2T (h) non-self looping. In doing this, we have that G` is [t0, e

−C`/2T (h)]
non-self looping and has volume ∼ e−C`. In addition, the minimum size of an interval

in A` is e−
∑`
j=0 e

−Cj/2T (h). Iterating until ` ∼ log T (h), then enables us to obtain our
estimates.

In the following sections, §1.2, §1.3, §1.4, we showcase a few of the many applica-
tions of Theorem 2 in obtaining quantitative improvements for L∞ norms, Lp norms,
pointwise Weyl laws, and averages over submanifolds.

1.2. Improvements to L∞-norms and averages. In this section we introduce some
of the applications of geodesic beam techniques to the study of the L∞ norms of φh,
and of the averages

´
H φhdσH over a submanifold H ⊂ M . The goal is to obtain

quantitative improvements on the known bounds [Hör68, Zel92]

φh(x) = O(h
1−n

2 ) and

ˆ
H
φh(x)dσH = O(h

1−k
2 ), (1.4)

where k is the codimension of H. These bounds are sharp since they are, for example,
saturated on the round sphere. Note that the right hand estimate includes the left if
we take H = {x}. In §1.2.1 we present applications of our geodesic beam techniques
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to studying eigenfunction growth on manifolds with no conjugate points, or whose
geometries satisfy a weaker condition. These results, and many more, can be found in
[CG19a]. In §1.2.2 we present applications to obtaining quantitative improvements of
L∞ norms in integrable geometries. The proofs of these and more general results are
presented in §5.

1.2.1. Results under conjugate point assumptions. It is well known that the L∞ bound
in (1.4) is saturated on the round sphere if one chooses φh to be a zonal harmonic that
peaks at the given point x ∈ Sn. This phenomenon is possible since all geodesics
through x are closed. In addition, on the sphere every point is maximally self-
conjugate. In general, a point x ∈ M is said to be conjugate to y ∈ M if there
exists a unit speed geodesic γ joining x and y, together with a non-trivial Jacobi field
along γ that vanishes at x and y. The number of such Jacobi fields that are linearly
independent is called the multiplicity of x with respect to y and is always bounded by
n−1. When the multiplicity equals n−1 the point x is said to be maximally conjugate
to y. As a consequence of our geodesic beam techniques, we obtain quantitative im-
provements on the L∞ norm of an eigenfunction near a point x that, loosely speaking,
is not maximally self-conjugate.

Consider the set Ξ of unit speed geodesics on (M, g) and define

Cr,tx :=
{
γ(t)

∣∣ γ ∈ Ξ, γ(0) = x, ∃n− 1 conjugate points to x in γ(t− r, t+ r)
}
, (1.5)

where we count conjugate points with multiplicity. Note that if rt → 0+ as |t| → ∞,

then saying that x ∈ Crt,tx for t large indicates that x behaves like a point that is
maximally self-conjugate. This is the case for every point on the sphere. The following
result applies under the assumption that this does not happen and obtains quantitative
improvements in that setting. The obvious case where our next theorem applies is that
of manifolds without conjugate points, where Cr,tx = ∅ for 0 < r < |t|. In addition, the
theorem applies to all non-trivial product manifolds M = M1 ×M2 (see § 1.5).

Theorem 3 ([CG19a, Theorem 1]). Let V ⊂ M and assume that there exist t0 > 0
and a > 0 so that

inf
x∈V

d
(
x, Crt,tx

)
≥ rt, for t ≥ t0,

with rt = 1
ae
−at. Then, there exist C > 0 and h0 > 0 so that for 0 < h < h0 and

u ∈ D′(M)

‖u‖L∞(V ) ≤ Ch
1−n

2

(
‖u‖

L2(M)√
log h−1

+

√
log h−1

h

∥∥(−h2∆g − 1)u
∥∥
H

n−3
2

scl
(M)

)
.

For a definition of the semiclassical Sobolev spaces Hs
scl see (A.3). Here and below,

when we write ‖v‖Hs
scl

for some v ∈ D′ with v /∈ Hs
scl, we define ‖v‖Hs

scl
=∞.

Before stating our next theorem, we recall that if (M, g) has strictly negative sec-
tional curvature, then it also has Anosov geodesic flow [Ano67]. Also, both Anosov
geodesic flow [Kli74] and non-positive sectional curvature imply that (M, g) has no
conjugate points.
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Theorem 4 ([CG19a, Theorems 3 and 4]). Let (M, g) be a smooth, compact Rie-
mannian manifold of dimension n. Let H ⊂ M be a closed embedded submanifold of
codimension k. Suppose one of the following assumptions holds:

A. (M, g) has no conjugate points and H has codimension k > n+1
2 .

B. (M, g) has no conjugate points and H is a geodesic sphere.

C. (M, g) is a surface with Anosov geodesic flow.

D. (M, g) is non-positively curved and has Anosov geodesic flow, and H has codi-
mension k > 1.

E. (M, g) is non-positively curved and has Anosov geodesic flow, and H is totally
geodesic.

F. (M, g) has Anosov geodesic flow and H is a subset of M that lifts to a horo-
sphere in the universal cover.

Then, there exists C > 0 so that for all w ∈ C∞c (H) the following holds. There is
h0 > 0 so that for 0 < h < h0 and u ∈ D′(M)∣∣∣ˆ

H
wudσH

∣∣∣ ≤ Ch 1−k
2 ‖w‖∞

( ‖u‖
L2(M)√

log h−1
+

√
log h−1

h
‖(−h2∆g − 1)u‖

H
k−3
2

scl
(M)

)
. (1.6)

Remark 2. Note that while C > 0 in (1.6) is independent of w, the choice of h0 > 0
depends on high order derivatives of w.

To the authors’ knowledge, the results in [CG19a] improve and extend all exist-
ing bounds on averages over submanifolds for eigenfunctions of the Laplacian, in-
cluding those on L∞ norms (without additional assumptions on the eigenfunctions;
see Remark 8 for more detail on other types of assumptions). Our estimates imply
those of [CG19b] and therefore give all previously known improvements of the form´
H
udσH = o(h

1−k
2 ). Moreover, we are able to improve upon the results of [Wym18,

Wym19a, SXZ17, Bér77, Bon17, Ran78].

1.2.2. Integrable geometries. Next, we present a class of integrable geometries for which
log h−1 improvements over the standard bounds are a consequence of Theorem 2 and
its generalization, Theorem 11. We apply Theorem 11 to the case of Schrödinger
operators, −h2∆g + V , acting on spheres of revolution where the bicharacteristic flow
is integrable. When V = 0, these examples give manifolds with many conjugate points
where we are able to obtain quantitatively improved L∞ bounds away from the poles
of S2.

To state our results, we identify the surface of revolution M with [0, π]×S1 endowed
with the metric g(r, θ) = dr2 + α(r)2dθ2. We then consider operators of the form
P (h) = −h2∆g − V with V > 0. The Hamiltonian for this problem is then

p(θ, r, ξθ, ξr) = ξ2
r + 1

α(r)2 ξ
2
θ − V (r)

and we assume that the map r 7→ α(r)
√
V (r) has a single critical point at r = rs

which is a non-degenerate maximum. In order that M be equivalent to a sphere, α(r)

must satisfy α(2k)(0) = 0 and α(2k)(π) = 0 for all non-negative integers k.
Since {p, ξθ} = 0, the pair (M,p) yields an integrable system on T ∗M . Let (Θ, I) ∈

T2×R2 be action-angle coordinates so that T ∗M =
⊔
I∈R2 TI is the foliation by Liouville
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tori (possibly with some singular elements). That is, in the (Θ, I) coordinates p = p(I)
and hence the Hamiltonian flow is given by

ϕt(Θ, I) = (Θ + t∂Ip(I), I).

There is a single singular torus corresponding to the closed Hamiltonian bicharacteristic
γs := {r = rs}. In addition, we make the following assumption

(1) The map {p = 0} 3 I 7→ ∂Ip(I) ∈ RP2 is a diffeomorphism. When this is the
case at I0, we say p is iso-energetically non-degenerate at I0 on {p = 0}.

Theorem 5. Let α and V satisfy the assumptions above. Then, for

P = −h2∆g − V (r) + hQ (1.7)

with Q ∈ Ψ2(M) self-adjoint, and K ⊂ [0, 2π]× (0, π) compact, there exists C > 0 with
the following properties. For all L > 0 there exists h0 > 0 so that for 0 < h < h0, and
u ∈ D′(M)

‖u‖L∞(K) ≤ Ch−
1
2

(
‖u‖

L2(M)

L
√

log h−1
+
L
√

log h−1‖Pu‖
H
− 1

2
scl

(M)

h

)
.

In particular, if ‖Pu‖
H
− 1

2
scl

(M)
= o
(h‖u‖

L2(M)

log h−1

)
, then

‖u‖L∞(K) = o

(
h−

1
2√

log h−1
‖u‖

L2(M)

)
.

Remark 3. Note that we make no assumptions on u. In particular, u need not
be a joint eigenfunction of the quantum completely integrable system. Furthermore,
the addition of the perturbation hQ (for Q general) destroys the quantum complete
integrability of the operator.

1.3. Logarithmic improvements for Lp-norms. Since the work of Sogge [Sog88]
it has been known that

‖φh‖Lp(M)
= O(h−δ(p,n)), δ(p, n) =

{
n−1

2 −
n
p p ≥ pc,

n−1
4 −

n−1
2p 2 ≤ p ≤ pc,

where pc = 2(n+1)
n−1 . This bound is saturated on the sphere by zonal harmonics when

p ≥ pc and by highest weight spherical harmonics (a.k.a Gaussian beams) when p ≤ pc.
(See e.g [Tac18] for a description of extremizing quasimodes.)

It is then natural to look for quantitative improvements on this bound under different
geometric assumptions. When (M, g) has non-positive sectional curvature, a bound of
the form

‖φh‖Lp(M)
= O

( h−δ(p,n)

(log h−1)σ(p,n)

)
was proved by Hassell-Tacy [HT15], with σ(p, n) = 1

2 , for the case p > pc. In the
same setting, Blair-Sogge [BS17, BS18] studied the 2 < p ≤ pc case and obtained a
logarithmic improvement for some σ(p, n) that is smaller than 1

2 .
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An application of Theorem 2 gives (log h−1)
1
2 improvement when p > pc under very

weak assumptions on the set of conjugate points of (M, g). Indeed, given x ∈ M ,

r > 0, and t > 0, we continue to write Cr,tx for the set of points defined in (1.5). Note

that if rt → 0+ as |t| → ∞, then saying that y ∈ Crt,tx for t large indicates that y
behaves like point that is maximally conjugate to x.

Theorem 6 ([CG20a]). Let p > pc. Let V ⊂ M and assume that there exist t0 > 0
and a > 0 so that

inf
x,y∈V

d
(
y, Crt,tx

)
≥ rt, for t ≥ t0,

with rt = 1
ae
−at. Then, there exist C > 0 and h0 > 0 so that for 0 < h < h0, and φh

satisfying (1.2),

‖φh‖Lp(V ) ≤ C
h−δ(p,n)√

log h−1
.

One should think of the assumption in Theorem 6 as ruling out maximal conjugacy
of the points x and y uniformly up to time ∞.

Remark 4. There are estimates in terms of the dynamical properties of covers by tubes
similar to Theorem 2 for each of the bounds in Theorems 3, 4, and 6. In particular,
these estimates do not require global geometric assumptions on (M, g), instead only
using dynamical properties near S∗xM or SN∗H.

1.4. Logarithmic improvements for pointwise Weyl Laws. Let {h−2
j }j be the

eigenvalues of (M, g). It is well known that #{j : h−1
j ≤ h−1} = vol(Bn) vol(M)

(2π)n h−n + E(h)

with E(h) = O(h1−n). Indeed, this result is the integrated version of the more refined
statement proved by Hörmander in [Hör68] which says that for all x ∈M∑

h−1
j ≤h−1

|φhj (x)|2 =
vol(Bn)

(2π)n
h−n + E(h, x), (1.8)

with E(h, x) = O(h1−n) uniformly for x ∈M . When the set of looping directions over x
has measure zero [SZ02] proved that E(h, x) = o(h1−n). Also, Duistermaat-Guillemin
[DG75] proved an integrated version of this result by showing that E(h) = o(h1−n) if
the set of closed geodesics in M has measure zero. In terms of quantitative improve-
ments, [Bér77, Bon17] prove that E(h, x) = O(h1−n/log h−1) if (M, g) has no conjugate
points. As before, another application of geodesic beam techniques is that log h−1

improvements can be obtained under weaker assumptions than having no conjugate
points.

Theorem 7 ([CG20b]). Let V ⊂ M and assume that there exist t0 > 0 and a > 0 so
that

inf
x∈V

d
(
x, Crt,tx

)
≥ rt, for t ≥ t0,

with rt = 1
ae
−at. Then, there exist C > 0 and h0 > 0 so that for 0 < h < h0 and

E(h, x) as in (1.8),

sup
x∈V

E(h, x) ≤ Ch1−n

log h−1
.
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We remark that there are generalizations of this result to Kuznecov sums estimates,
where evaluation at x is replaced by an integral average over a submanifold H (see
[Zel92] for the first results in this direction). In addition, in the same way that The-
orem 2 can be used to obtain quantitative improvements in L∞ bounds in concrete
geometric settings, the dynamical version of the estimate in Theorem 7 can be used to
obtain improved remainder estimates for pointwise Weyl laws. We show, for example,
that all non-trivial product manifolds satisfy the assumptions of Theorem 7 at every
point in § 1.5.

1.5. Examples. We now record some examples to which our theorems apply. We refer
the reader to [CG19a] for many more examples. First, note that Theorem 3 applies
when M is a manifold without conjugate points. The following examples may (and
typically do) have conjugate points.

1.5.1. Product manifolds.

Lemma 1.1. Let (Mi, gi), i = 1, 2, be two compact Riemannian manifolds. Let M =

M1 ×M2 endowed with the product metric g = g1 ⊕ g2. Then, Cr,tx = ∅ for all x ∈M ,
|t| > 0, and 0 < r < t.

Proof. Let x = (x1, x2) ∈ M and γ(t) be a unit speed geodesic on M with γ(0) = 0.
Then, there are unit speed geodesics γ1 and γ2 in M1 and M2 respectively such that
γ1(0) = x1, γ2(0) = x2, and there exists θ0 ∈ R such that

γ(t) = (γ1(t cos θ0), γ2(t sin θ0)) ∈M1 ×M2.

Moreover, for every θ ∈ R, the curve γθ := (γ1(t cos θ), γ2(t sin θ)) is a unit speed
geodesic. In particular, one perpendicular Jacobi field along γ = γθ0 is given by

J(t) = ∂θγθ
∣∣
θ=θ0

= t(− sin θ0γ̇1(t cos θ0), cos θ0γ̇2(t sin θ0)).

Thus, ‖J(t)‖ = t, and hence J vanishes only at t = 0. In particular, since there exists

a Jacobi field vanishing only at t = 0, Cr,tx = ∅ for all 0 < r < |t|. �

We point out that although Cr,tx is empty for 0 < r < |t|, M may, and often does,
have self conjugate points. For example, this is the case if M1 = Sn1 for n1 ≥ 2.

Corollary 8. Let (Mi, gi), i = 1, 2, be two compact Riemannian manifolds of dimen-
sion ni > 0. Let M = M1 ×M2 endowed with the metric g = g1 ⊕ g2. Then, there is
C > 0 such that for all x ∈M and u ∈ D′(M),

|u(x)| ≤ Ch
1−(n1+n2)

2

( ‖u‖L2(M)√
log h−1

+

√
log h−1

h

∥∥(−h2∆g − 1)u
∥∥
H

n1+n2−3
2

scl
(M)

)
.

1.5.2. The triaxial ellipsoid. We consider the triaxial ellipsoid

M := {x ∈ R3 : a2x2 + b2y2 + c2z2 = 1}
with 0 < a < b < c. It is well known that the four umbillic points (i.e. points at which
the normal curvatures are equal in all directions) on M are maximally self-conjugate.
In fact, for an umbillic point x0, there is T > 0 such that every geodesic through x0

returns to x0 at time T . Nevertheless, Theorem 2 and its generalization, Theorem 11,
are useful at these points. The reason for this is the presence of a hyperbolic closed
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geodesic through x0 to which every other geodesic through x0 exponentially converges
forward and backward in time (up to reversal of the parametrization). In particular,
letting (x0, ξ+) and (x0, ξ−) be the initial points of the hyperbolic geodesic, we have
that the stable direction for ξ+ is given by Tξ+S

∗
xM and the unstable direction for ξ−

is given by Tξ−S
∗
xM [Kli95, Theorem 3.5.16]. Thus, for each δ > 0 there is C > 0 such

that if d(ξ, ξ±) > δ, then in for all ∓t > 0 one has that∥∥dϕt∣∣
TξS
∗
x0
M

∥∥ ≤ Ce±Ct.
This type of exponential convergence can be used (see [GT18], [CG19a, Lemmas 3.1-
3.2]) to generate covers and obtain

|u(x0)| ≤ Ch−
1
2

(
‖u‖L2(M)√

log h−1
+

√
log h−1

h

∥∥(−h2∆g − 1)u
∥∥
H
− 1

2
scl

(M)

)
.

1.5.3. The spherical pendulum. One example to which Theorem 5 applies is that of
S2 = {x ∈ R3 : |x| = 1} the standard sphere equipped with the round metric, g, and
V ∈ C∞(S2) given by V (x1, x2, x3) = 2x3. The quantum spherical pendulum is then
the operator

P = −h2∆g + V.

Identifying the sphere with M = [0, π]r × [0, 2π]θ. The Hamiltonian is given by

p(θ, r, ξθ, ξr) = ξ2
r + 1

sin2 r
ξ2
θ + 2 cos r − E,

with E ∈ R. This Hamiltonian describes the movement of a pendulum of mass 1
moving without friction on the surface of a sphere of radius 1.

By [Hor93] for E ≥ 14√
17

, p is iso-energetically non-degenerate for all I0 on {p = 0}.
It is easy to check by explicit computations that E − 2 cos r > 0 for E > 2 and
r 7→ sin r

√
E − 2 cos r has a single non-degenerate maximum on [0, π]. Therefore,

taking E = E0 ≥ 14√
17

and Q = h−1(E0 − Eh) in Theorem 5 yields the following

Corollary 9.

Corollary 9. Let B > 0, E0 ≥ 14√
17

and δ > 0. There exists C > 0 such that for all

L > 0 there exists h0 > 0 so that the following holds. For all u ∈ D′(S2), 0 < h < h0

and Eh ∈ (E0 −Bh,E0 +Bh),

‖u‖L∞(|x3|<1−δ) ≤ Ch−
1
2

(
‖u‖

L2(S2)

L
√

log h−1
+
L
√

log h−1‖(P − Eh)u‖
H
− 1

2
scl

(S2)

h

)
.

In particular, if ‖u‖L2(S2) = 1 and Pu = o
(
h/ log h−1

)
L2 then

‖u‖L∞(|x3|<1−δ) = o
( h−

1
2√

log h−1

)
. (1.9)
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Note that if we define g̃ = g/
√
E0 − 2x3 with E0 ≥ 14√

17
, then Theorem 5 shows that

the eigenfunctions φh for (−h2∆g̃ − 1)φh = 0 satisfy the bound

‖φh‖L∞(|x3|<1−δ) = o
( h−

1
2√

log h−1

)
.

for any δ > 0.

1.6. Relations with previous dynamical conditions on pointwise estimates.
In this section, we recall the previous dynamical conditions guaranteeing improved
pointwise estimates [Saf88, VS92, SZ02, STZ11, SZ16a, SZ16a, Gal19]. We first define
the loop set at x by

Lx := {ρ ∈ S∗xM | ∃t ∈ R s.t. ϕt(ρ) ∈ S∗xM},
and recall that a point x is said to be non-self focal if volS∗xM (Lx) = 0. It is proved
in [Saf88, SZ02] that if x is non-self focal, then

|φh(x)| = o(h
1−n

2 ). (1.10)

Next, define T± : S∗xM → [0,∞] by T±(ρ) := ± inf{±t > 0 | ϕt(ρ) ∈ S∗xM} and
Φ± : T−1

± (0,∞)→ S∗xM by
Φ±(ρ) = ϕ

T±(ρ)
(ρ).

We then define Rx as the recurrent set for Φ. In [VS92, STZ11, Gal19], it is shown
that if volS∗xM (Rx) = 0, then (1.10) continues to hold. In that case x is called non-
recurrent. Finally, in [SZ16a, VS92, Gal19] it is shown that there need only be no
invariant L2(volS∗xM ) function for (1.10) to hold.

Definition 2. For the purposes of this section, we will say that a point x is (t0, T (h))

non-looping via covers if there is a (τ,R(h)) cover for S∗xM , {Λτρj (R(h))}Nhj=1, and

B t G = {1, . . . Nh}, such that⋃
j∈G

Λτρj (R(h)) is [t0, T (h)] non-self looping and |B| ≤ R(h)1−n

T (h)
.

(See also [CG20b, Definition 2.1].) We will say that x is T (h) non-recurrent via
covers if there are sets of indices G` ⊂ {1, . . . Nh} and pairs of times (t`, T`) such that
{1, . . . Nh} = ∪`G` and

⋃
j∈G`

Λτρj (R(h)) isn [t`, T`] non-self looping and
∑
`

|G`|1/2t
1/2
`

T
1/2
`

≤ R(h)
1−n

2

T (h)1/2
.

(See also [CG20b, Definition 2.2].)

First of all, we point out that x being T (h) non-looping via covers implies that it is
T (h) non-recurrent via covers and that Theorem 2 states that if x is T (h) non-recurrent
via covers for some T (h)� Te(h), then there is C > 0 such that

|φh(x)| ≤ Ch
1−n

2

T (h)1/2
. (1.11)
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In order to relate these two concepts to the concept of a non-self focal point and a
non-recurrent point respectively, we prove the following two Lemmas in Appendix B

Lemma 1.2. Suppose that x is non-self focal. Then there are t0 > 0 and T : (0, 1)→
(0,∞) such that limh↓0 T (h) =∞ and x is (t0, T (h)) non-looping via covers.

Lemma 1.3. Suppose that x is non-recurrent. Then there is T : (0, 1)→ (0,∞) such
that limh↓0 T (h) =∞ and x is T (h) non-recurrent via covers.

In particular, lemmas 1.2 and 1.3 recover the fact that x being non-recurrent im-
plies (1.10).

1.7. Outline of the paper. In §2 we present Theorems 10 and 11 which are the gen-
eralization of Theorems 1 and 2 to quasimodes of general pseudo-differential operators
P . In §3, we perform the analysis of quasimodes for P and in particular prove Theo-
rem 10. In §4 we give the proof of Theorem 11. In §5 we construct non-self looping
covers on spheres of revolution and prove Corollary 9. Finally, in §6, we prove that
the Hamiltonian flow for |ξ|2g − 1 can be replaced by that for |ξ|g − 1. In Appendix A
we present an index of notation and background on semiclassical analysis.

Acknowledgements. Thanks to Pat Eberlein, John Toth, Andras Vasy, and Maciej
Zworski for many helpful conversations and comments on the manuscript. Thanks
also to the anonymous referees for many suggestions which improved the exposition.
J.G. is grateful to the National Science Foundation for support under the Mathematical
Sciences Postdoctoral Research Fellowship DMS-1502661. Y.C. is grateful to the Alfred
P. Sloan Foundation.

2. General results: Bicharacteristic beams

Our main estimate gives control on eigenfunction averages in terms of microlocal
data. The ideas leading to the estimate build on the tools first constructed in [Gal19]
for sup-norms and generalized for use on submanifolds in [CG19b].

Since it entails little extra difficulty, we work in the general setup of semiclassical
pseudodifferential operators (see e.g. [Zwo12] or [DZ19, Appendix E] for a treatment of
semiclassical analysis, see §A.2 for a brief description of notation). Indeed, instead of
only working with Laplace eigenfunctions, all our results can be proved for quasimodes
of a pseudodifferential operator of any order that has real, classically elliptic symbol.
We now introduce the necessary objects to state this estimate.

Let H ⊂M be a submanifold. For p ∈ Sm(T ∗M) define

ΣH,p = {p = 0} ∩N∗H, (2.1)

where N∗H is the conormal bundle to H and consider the Hamiltonian flow

ϕt := exp(tHp). (2.2)

Here, and in what follows, Hp is the Hamiltonian vector field generated by p. In
practice, we will prove our main result with H replaced by a family of submanifolds
{Hh}h such that for all α multiindex there exists Kα > 0 such that for all h > 0

|∂αxRHh
|+ |∂αxΠHh

| ≤ Kα (2.3)
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where RHh
and ΠHh

denote the sectional curvature and the second fundamental form of

Hh. Next, we assume that there is ε > 0 so that for all h > 0, the map (−ε, ε)×ΣH,p →
M ,

(t, ρ) 7→ π(ϕt(ρ)) is a diffeomorphism. (2.4)

We will say that a family of submanifolds {Hh}h is regular if it satisfies (2.3) and (2.4).
In addition, we will prove uniform statements in a shrinking neighborhood of Hh. In
particular, we prove stimates on H̃h where H̃h is another family of submanifolds such
that

sup
ρ∈Σ

Hh,p

d(ρ,Σ
H̃h,p

) ≤ hδ, |∂αxRH̃h
|+ |∂αxΠ

H̃h
| ≤ 2Kα (2.5)

for all h > 0. Note that when Hh is a family of points, the curvature bounds become
trivial, and so in place of (2.5) we work with d(xh, x̃h) < hδ and we may take K0 to be
arbitrarily close to 0. It will often happen that the constants involved in our estimates
depend on {Hh} only through finitely many of the Kα constants.

For p ∈ Sm(T ∗M), we say that p is classically elliptic if there exists Kp > 0 so that

|p(x, ξ)| ≥ |ξ|m/Kp, |ξ| ≥ Kp, x ∈M. (2.6)

In addition, for p ∈ S∞(T ∗M ;R), we say that a submanifold H ⊂ M of codimension
k is conormally transverse for p if given f1, . . . , fk ∈ C∞c (M ;R) locally defining H i.e.
with

H =

k⋂
i=1

{fi = 0} and {dfi} linearly independent on H,

we have

N∗H ⊂ {p 6= 0} ∪
k⋃
i=1

{Hpfi 6= 0}, (2.7)

whereHp is the Hamiltonian vector field associated to p, andN∗H is the set of conormal
directions to H. Here, we interpret fi as a function on the cotangent bundle by pulling
it back through the canonical projection map. In addition, let rH : M → R be the
geodesic distance to H; rH (x) = d(x,H). Then, define |HprH | : ΣH,p → R by

|HprH |(ρ) := lim
t→0
|HprH (ϕt(ρ))|. (2.8)

A family of submanifolds {Hh}h is said to be uniformly conormally transverse for p if
Hh is conormally transverse for p for all h and there exists I0 > 0 so that for all h > 0

inf
ρ∈Σ

H,p

|HprHh |(ρ) ≥ I0 . (2.9)

Note that when p(x, ξ) = |ξ|2g(x) − 1 then ΣH,p = SN∗H and |HprH |(ρ) = 2 for all

ρ ∈ SN∗H.
Let {Hh}h⊂M be a regular and uniformly conormally transverse family of subman-

ifolds. Then, we may fix a family of regular hypersurfaces depending on h, Lh ⊂ T ∗M
such that

Lh is uniformly transverse to Hp with ΣHh,p ⊂ Lh (2.10)
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and so that with Ψ : R× T ∗M → T ∗M defined by Ψ(t, q) = ϕt(q), there is 0 < τinj ≤ 1
(independent of h) so that

Ψ|(−τinj ,τinj )×Lh is injective (2.11)

for all h > 0.

Remark 5. Working with a family {H̃h}h, and obtaining uniform estimates for it,

is needed in Theorem 1. In this case, Hh = {x} for every h and H̃h is a point
x̃h ∈ B(x, hδ). Moreover, it is often useful to allow Hh itself to vary with h (see
e.g. [CG20a]). Note that any h-independent submanifold H ⊂ M that is conormally
transverse is automatically regular and uniformly conormally transverse. While in
some applications it is useful to have h-dependent submanifolds Hh, as well as uniform
estimates in a neighborhood of Hh, the reader may wish to ignore the dependence of
Hh on h as well as letting H̃ = H for simplicity of reading.

Given A ⊂ T ∗M define

Λτ
A

:=
⋃
|t|≤τ

ϕt(A).

For R > 0 and A ⊂ ΣH,p we define

Λτ
A

(r) := Λτ+r
A
R
, Ar := {ρ ∈ Lh : d(ρ,A) < r}. (2.12)

where d denotes the distance induced by the Sasaki metric on T ∗M (see e.g. [Bla10,
Chapter 9] for an explanation of the Sasaki metric). In particular, the tube

Λτρ(r) :=
⋃

|t|≤τ+r

ϕt
(
Lh ∩B(ρ, r)

)
. (2.13)

ΣH,p

R(h)

τ

ρj

bicharacteristic
through ρj

Λτρj (R(h))

Figure 1. The tubes Λτρj (R(h)) through ΣH,p .
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Definition 3. Let A ⊂ ΣH,p , r > 0, and {ρj(r)}Nrj=1 ⊂ A. We say that the collection

of tubes {Λτρj (r)}
Nh
j=1 is a (τ, r)-cover of a set A ⊂ ΣH,p provided

ΛτA(1
2r) ⊂

Nr⋃
j=1

Λτρj (r).

In addition, for 0 ≤ δ ≤ 1
2 and R(h) ≥ 8hδ, we say that a collection {χj}Nhj=1 ⊂

Sδ(T
∗M ; [0, 1]) is a δ-partition for A associated to the (τ,R(h))-cover if {χj}Nhj=1 is

bounded in Sδ and

(1) suppχj ⊂ Λτρj (R(h)),

(2)
∑Nh

j=1 χj ≥ 1 on Λ
τ/2
A (1

2R(h)).

The main estimate is the following.

Theorem 10. Let P ∈ Ψm(M) have real, classically elliptic symbol p ∈ Sm(T ∗M ;R).
Let {Hh}h ⊂M be a regular family of submanifolds of codimension k that is uniformly
conormally transverse for p. There exist

τ0 = τ0(M,p, τinj , I0 , {Hh}h)> 0, R0 = R0(M,p, k,K0 , τinj , I0)> 0,

Cn,k > 0 depending only on (n, k), and C0 > 0 depending only on (M,p), so that the
following holds.

Let 0 < τ ≤ τ0, 0 ≤ δ < 1
2 , and 8hδ ≤ R(h) ≤ R0. Let {χj}Nhj=1 be a δ-partition

for ΣH,p associated to a (τ,R(h))-cover. Let N > 0 and {H̃h}h ⊂ M be a family of
submanifolds of codimension k satisfying (2.5).

There exist C > 0, so that for every family {wh}h with wh ∈ Sδ ∩C∞c (H̃h) there are
CN > 0 and

h0 = h0(M,P, {χj}, δ, I0 , {Hh}h) > 0

with the property that for any 0 < h < h0 and u ∈ D′(M),

h
k−1

2

∣∣∣ˆ
H̃h

whu dσH̃h

∣∣∣ ≤ Cn,k

τ
1
2I

1
2

0

‖wh‖∞ R(h)
n−1

2

∑
j∈Jh(wh)

‖Oph(χj)u‖L2(M)

+ Ch−1‖wh‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N
(
‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)

)
,

where
Jh(wh) := {j : Λτρj (2R(h)) ∩ π−1(suppwh) 6= ∅}, (2.14)

and π : Σ
H̃h,p
→ H̃h is the canonical projection. Moreover, the constants C,CN , h0 are

uniform for χj in bounded subsets of Sδ. The constants τ0, C, CN , h0 depend on {Hh}h
only through finitely many of the constants Kα in (2.3). The constant CN is uniform
for {wh}h in bounded subsets of Sδ.

Remark 6 (Proof of Theorem 1). We emphasize now that Theorem 10 is the key
analytical estimate of this article. In particular, Theorem 1 is a direct consequence of
it. Indeed, we work with P = −h2∆g − I, Pu = 0. Let Hh = {x} and H̃h = {xh}
with xh ∈ B(x, hδ). Let wh = 1 for all h. In particular, Jh(wh) = {1, . . . , Nh}.
Note that since Hh = {x}, then SN∗H = S∗xM . Also, in this case τinj({x}) can be
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chosen uniform on M , and we have HprH = 2 and I0 = 2. Moreover, Kα can be taken
arbitrarily small. This yields τ0 = τ0(M, g), R0 = R0(M, g) and h0 = h0(M, g, {χj}, δ).
Theorem 1 follows.

We next present Theorem 11 which combines Theorem 10 with an application of
Egorov’s theorem to control eigenfunction averages using dynamical information at
ΣH,p . In fact, all the applications to obtaining quantitative improvements for L∞

bounds and averages described in the introduction are reduced to a purely dynamical
argument together with an application of Theorem 11.

As explained before Theorem 2, it will be convenient for us to work with covers by
tubes without too much redundancy. We therefore introduce the following definition.

Definition 4. Let A ⊂ ΣH,p , r, D > 0, and {ρj(r)}Nrj=1 ⊂ A. We say that the collection

of tubes {Λτρj (r)}
Nr
j=1 is a (D, τ, r)-good cover of a set A ⊂ ΣH,p provided that it is a

(τ, r)-cover for A and there exists a partition {J`}D`=1 of {1, . . . , Nr} so that for every
` ∈ {1, . . . ,D}

Λτρj (3r) ∩ Λτρi(3r) = ∅ i, j ∈ J`, i 6= j.

In Proposition 3.3 we prove that there exists a (Dn, τ, r)-good cover for ΣH,p where Dn

only depends on n. Thus, one can always work with such a cover.
We define the maximal expansion rate and the Ehrenfest time at frequency h−1

respectively:

Λmax := lim sup
|t|→∞

1

|t|
log sup
{|p|≤ 1

2
}
‖dϕt(x, ξ)‖, Te(h) :=

log h−1

2Λmax
. (2.15)

Note that Λmax ∈ [0,∞) and if Λmax = 0, we may replace it by an arbitrarily small
positive constant.

The next theorem involves many parameters; their role is to provide flexibility when
applying the theorem. This theorem controls averages over uniformly conormally trans-
verse families of submanifolds in terms of families {G`}` of tubes that run conormally
to the submanifolds and are [t`, T`] non self-looping. For an explanation on the roles
of these tubes and non-looping times, see the text after Theorem 2.

Theorem 11. Let P ∈ Ψm(M) be a self-adjoint operator with classically elliptic
symbol p. Let {Hh}h ⊂ M be a regular family of submanifolds of codimension k

that is uniformly conormally transverse for p. Let {H̃h}h be a family of submani-
folds of codimension k satisfying (2.5). Let 0 < δ < 1

2 , N > 0 and {wh}h with

wh ∈ Sδ ∩ C∞c (H̃h). There exist positive constants τ0 = τ0(M,p, τinj , I0 , {Hh}h), R0 =
R0(M,p,K0 , k, τinj , I0), and Cn,k depending only on n and k, h0 = h0(M,P, δ, I0 , {Hh}h),
and for each 0 < τ ≤ τ0 there are

C = C(M,p, τ, δ, I0 , {Hh}h), CN = CN (M,P,N, τ, δ, {wh}h, I0 , {Hh}h),

so that the following holds.

Let 8hδ ≤ R(h)< R0, 0 ≤ α < 1− 2lim suph→0
logR(h)

log h , and suppose {Λτ
ρj

(R(h))}Nhj=1

is a (D, τ, R(h))-good cover of ΣH,p for some D > 0. In addition, suppose there exist
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B ⊂ {1, . . . , Nh} and a finite collection {G`}`∈L ⊂ {1, . . . , Nh} with

Jh(wh) ⊂ B ∪
⋃
`∈L
G`,

where Jh(wh) is defined in (2.14), and so that for every ` ∈ L there exist t` = t`(h) > 0
and T` = T`(h) with t`(h) ≤ T` ≤ 2αTe(h) so that⋃

j∈G`

Λτ
ρj

(R(h)) is [t`, T`] non-self looping.

Then, for u ∈ D′(M) and 0 < h < h0,

h
k−1

2

∣∣∣ˆ
H̃h

whu dσH̃h

∣∣∣ ≤ Cn,kD‖wh‖∞R(h)
n−1

2

τ
1
2I

1
2

0

(
|B|

1
2 +

∑
`∈L

(|G`|t`)
1
2

T
1
2
`

)
‖u‖

L2(M)

+
Cn,kD‖wh‖∞R(h)

n−1
2

τ
1
2I

1
2

0

∑
`∈L

(|G`|t`T`)
1
2

h
‖Pu‖

L2(M)

+ Ch−1‖wh‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N
(
‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)

)
.

Here, the constant CN depends on {wh}h only through finitely many Sδ seminorms of
wh. The constants τ0, C, CN , h0 depend on {Hh}h only through finitely many of the
constants Kα in (2.3).

Remark 7 (Proof of Theorem 2). Note that making the same observations in Remark
6 it is straightforward to see that Theorem 2 is a generalization of Theorem 11. The
only consideration is that the tubes are built using the geodesic flow, which is generated
by the symbol p(x, ξ) = |ξ|g(x) − 1 instead of p0(x, ξ) = |ξ|2g(x) − 1. We explain how to

pass from one flow to the other in §6.

Remark 8. Note that in this paper we study averages of relatively weak quasimodes
for the Laplacian with no additional assumptions on the functions. This is in contrast
with results which impose additional conditions on the functions such as: that they be
Laplace eigenfunctions that simultaneously satisfy additional equations [IS95, GT18,
Tac19, TZ03]; that they be eigenfunctions in the very rigid case of the flat torus [Bou93,
Gro85]; or that they form a density one subsequence of Laplace eigenfunctions [JZ16].

Remark 9. We also note that the norm C‖Pu‖
H

k−2m+1
2

scl
(M)

in Theorems 11 and 10 may

be replaced by Cε‖Pu‖
H

k−2m+ε
2

scl
(M)

for any ε > 0. However, for notational convenience

we have chosen to use a sub-optimal Sobolev embedding to produce the ‖Pu‖
H

k−2m+1
2

scl
(M)

term.

3. Estimates near bicharacteristics: Proof of Theorem 10

The proof of Theorem 10 relies on several estimates. In what follows we give an
outline of the proof to motivate three propositions that together yield the proof of
Theorem 10.
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A note on notation. Throughout this section to ease notation we write

H, H̃, w, instead of Hh, H̃h, wh.

Proof Theorem 10. Let 0 < δ < 1
2 . In what follows τ0, R0, ε0 and h0 are the

constants given by Proposition 3.5. Let 8hδ ≤ R(h)≤R0, and N > 0.

Let 0 < τ ≤ τ0 and {ρj}Nhj=1 ⊂ ΣH,p be so that the tubes {Λτ
ρj

(R(h))}Nhj=1 form a

(τ,R(h))- covering of ΣH,p . We divide the proof into three steps, each of which relies
on a proposition.

Step 1 (Localization near conormal directions). Let χ0 ∈ C∞c (R; [0, 1]) be a smooth
cut-off function with χ0(t) = 1 for t ≤ 1

2 and χ0(t) = 0 for t ≥ 1. Let K > 0 be defined
as in (3.8) below and define

βδ(x
′, ξ′) := χ0

(
K|ξ′|

H̃

hδ

)
, (3.1)

where |ξ′|
H̃

denotes the length of ξ′ as an element of T ∗x′H̃ with respect to the Rie-

mannian metric induced on H̃. In Proposition 3.2 we prove that for w ∈ Sδ ∩C∞c (H̃)
there exists CN > 0, depending on P , finitely many seminorms of w, and finitely many
of the constants Kα in (2.3), so that for all h > 0∣∣∣ ˆ

H̃
wudσH̃

∣∣∣ ≤ ‖wOph(βδ)u‖L1(H̃)
+ CNh

N
(
‖u‖

L2(M)
+‖Pu‖

H
k−2m+1

2
scl

(M)

)
. (3.2)

Step 2 (Coverings by bicharacteristic beams). Let R̃(h) = 1
2R(h), τ̃ = τ

4 .
In Proposition 3.3 we prove that there exist a constant Dn, depending only on n,

points {ρ̃j}Ñhj=1 ⊂ ΣH,p , and a partition {Ji}Dni=1 of {1, . . . , Ñh}, so that

• Λτ̃
Σ
H,p

(1
2R̃(h)) ⊂

⋃Ñh
j=1 Λτ̃

ρ̃j
(R̃(h)),

• Λτ̃
ρ̃j

(3R̃(h)) ∩ Λτ̃
ρ̃`

(3R̃(h))) = ∅, j, ` ∈ Ji, j 6= `.

That is, we work with a (Dn, τ̃ , R̃(h))-good cover.
In Proposition 3.4 we prove that there exists C0 > 0 so that for 0 < ε < ε0 and

0 < h ≤ h0 there is a partition of unity {χPj }j for Λτ̃
Σ
H,p

(1
2R̃(h)) with

• χPj ∈ Sδ ∩ C∞c (T ∗M ; [−C0h
1−2δ, 1 + C0h

1−2δ]),

• suppχPj ⊂ Λτ̃+ε
ρ̃j

(R̃(h)),

• MSh([P,Oph(χPj )]) ∩ Λτ̃
Σ
H,p

(ε) = ∅.

Indeed, this follows from applying Proposition 3.4 since R̃(h) = 1
2R(h) ≥ 1

28hδ ≥ 2hδ.
From now on we fix ε > 0 so that ε < ε0 and ε < τ

4 . See Appendix A.3 for background
on microsupports.

Step 3 (Estimates near bicharacteristics). In Proposition 3.5 we prove that there exist

Cn,k > 0, CN > 0, h0 > 0, and C > 0 so that for all w ∈ Sδ ∩ C∞c (H̃) and 0 < h < h0,
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if {χPj } is as before, then

h
k−1

2 ‖wOph(βδ)u‖L1(H̃)
≤ Cn,k‖w‖∞R(h)

n−1
2

∑
j∈Ĩh(w)

‖Oph(χPj )u‖
L2(M)

τ
1
2 |HprH (ρ̃j)|

1
2

+ Ch−1‖w‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N‖w‖∞‖u‖L2(M)

, (3.3)

where Ĩh(w) = {j : Λτ̃ρ̃j (R̃(h)) ∩ π−1(supp(w)) 6= ∅}.

Remark 10. It is crucial that the cutoffs χj supported in disjoint tubes act almost
orthogonally. This allows for efficient decomposition and recombination of estimates
based on tubes and we use this fact throughout the text.

Next, let {χ`}Nh`=1 be a δ-partition associated to the (τ,R(h))-cover {Λτρ`(R(h))}Nh`=1

of ΣH,p . We claim that for each j ∈ Ĩh(w)

χPj ≤ 2
∑
`∈Aj

χ`, (3.4)

where
Aj = {` : Λ

τ/2
ρ̃j

(R̃(h)) ∩ Λτρ`(R(h)) 6= ∅}.

Indeed, this follows from two observations. The first one is that suppχPj ⊂ Λ
τ/2
ρ̃j

(R̃(h))

since ε < τ
4 . The second observation is that on Λ

τ/2
ρ̃j

(R̃(h)) we have
∑Nh

`=1 χ` =∑
`∈Aj χ` ≥ 1 since

∑Nh
`=1 χ` ≥ 1 on Λ

τ/2
S∗xM

(R̃(h)) and suppχ` ⊂ Λτρ`(R(h)). Com-

bining this with the fact that χPj ≤ 1 + C0h
1−2δ yields the claim in (3.4).

Next, note that if j ∈ Ĩh(w), then Aj ⊂ Jh(w) where Jh(w) = {` : Λτρ`(2R(h)) ∩
π−1(supp(w)) 6= ∅}. This follows from the fact that if ` ∈ Aj , then Λ

τ/2
ρ̃j

(R̃(h)) ⊂
Λτρ`(2R(h)).

To complete the proof we claim that there exists Cn > 0 depending only on n so
that for every ` ∈ {1, . . . , Nh},

#{j∈ Ĩh(w) : ` ∈ Aj} ≤ Cn. (3.5)

Assuming the claim for now, we conclude from (3.4) that∑
j∈Ĩh(w)

‖Oph(χPj )u‖
L2(M)

|HprH (ρ̃j)|
1
2

≤ 4I
− 1

2
0

∑
j∈Ĩh(w)

∑
`∈Aj

‖Oph(χ`)u‖L2(M)

≤ 4CnI
− 1

2
0

∑
j∈Jh(w)

‖Oph(χj)u‖L2(M)
.

Combining this with (3.3) and (3.2) finishes the proof of Theorem 10.
We now prove (3.5). Suppose that ` ∈ Aj . Then,

B(ρ`, R(h)) ∩B(ρ̃j , R̃(h)) ∩ Lh 6= ∅.
In particular,

B(ρ̃j , R̃(h)) ∩ Lh ⊂ B(ρ`, 2R(h)) ∩ Lh.
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Therefore, Λτ̃ρ̃j (R̃(h)) ⊂ Λτ̃ρ`(2R(h)). Thus, since the tubes {Λτ̃ρ̃j (3R̃(h))}j∈Ji are dis-

joint for each i = 1, . . . ,Dn, there exists Cn > 0, depending only on n, such that for
every ` ∈ {1, . . . , Nh}

#{j : ` ∈ Aj} ≤ Dn

sup` vol(Λτ̃ρ`(2R(h))

infj vol(Λτ̃ρ̃j (R̃(h)))
≤ Cn.

�
We proceed to state and prove all the propositions needed in the proof of Theo-

rem 10.

3.1. Step 1: Localization near conormal directions. Our first result is quite
general, and it shows that in order to study integral averages over H̃ of a function v
it suffices to restrict ourselves to studying the conormal behavior of v. That is, the
non-oscillatory behavior of v along H̃ is encoded in Oph(βδ)v.

Lemma 3.1. Let 0 ≤ δ < 1
2 , N > 0, and w ∈ Sδ ∩ C∞c (H̃). Then, there is CN > 0,

depending on finitely many seminorms of w ∈ Sδ and finitely many of the constants
Kα in (2.3), so that for all v ∈ D′(H̃)∣∣∣ ˆ

H̃
w(1−Oph(βδ))(v)dσH̃

∣∣∣ ≤ CNhN‖v‖L2(H̃).

Proof. Let h > 0. Here, we work in coordinates (x̄, x′) ∈ Rk ×Rn−k where H̃ = H̃h =

{x̄ = 0}. Let Ñ be so that N<k − n + Ñ(1 − 2δ). Let g
H̃

denote the metric induced

on H̃. Then, integrating by parts with L := 1
|ξ′|2

(∑n−k
j=1 ξ

′
jhDxj

)
, gives

ˆ
H̃
w(x) (1−Oph(βδ))v(x)dσ

H̃
(x) =

=
1

(2πh)n−k

˚
e
i
h
〈x−x′,ξ′〉w(x)(1− βδ(x, ξ′))v(x′)

√
|g
H̃

(x′)||g
H̃

(x)|dxdx′dξ′

=
1

(2πh)n−k

˚
e
i
h
〈x−x′,ξ′〉(L∗)Ñ

[
w(x)(1− βδ(x, ξ′))v(x′)

√
|g
H̃

(x′)||g
H̃

(x)|
]
dxdx′dξ′

≤ CNh
k−n+Ñ(1−2δ)‖v‖L2(H̃).

Here, CN depends on the CÑ norm of w as well as finitely many of the constants
Kα . The second fact follows since the transition maps for the coordinate change which

flattens H̃ have CÑ norm bounded by finitely many of the constants Kα. �

We next apply Lemma 3.1 to the setup of Theorem 10.

Proposition 3.2. Let P be as in Theorem 10. Let 0 ≤ δ < 1
2 , N > 0, and w ∈

Sδ ∩C∞c (H̃). Then, there exists CN > 0, depending on P , finitely many seminorms of
w ∈ Sδ, and finitely many of the constants Kα in (2.3), so that for all u ∈ D′(M) and
all h > 0 ∣∣∣ ˆ

H̃
w(1−Oph(βδ))(u)dσH̃

∣∣∣ ≤ CNhN (‖u‖
L2(M)

+ ‖Pu‖
H

k−2m+1
2

scl
(M)

).
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Proof. In order to use Lemma 3.1, we first bound ‖u‖L2(H̃). For this, observe that since

p is classically elliptic, by a standard elliptic parametrix construction (see e.g [DZ19,
Appenix E])

‖u‖
H

k+1
2

scl
(M)
≤ C(‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)
)

where C depends only on P . In particular, the semiclassical Sobolev estimates (see
e.g. [Gal19, Lemma 6.1]) imply that

‖u‖L2(H̃) ≤ Ch
− k

2 (‖u‖
L2(M)

+ ‖Pu‖
H

k−2m+1
2

scl
(M)

).

Using Lemma 3.1 then gives∣∣∣ ˆ
H̃
w(1−Oph(βδ))(u)dσH̃

∣∣∣ ≤ CNhN (‖u‖
L2(M)

+ ‖Pu‖
H

k−2m+1
2

scl
(M)

).

�

3.2. Step 2: Coverings by bicharacteristic beams. We first prove that there is
Dn > 0, depending only on n, so that for τ, r small enough, there is a (Dn, τ, r)-good
cover of ΣH,p . We adapt the proof of [CM11, Lemma 2] to our purposes.

Proposition 3.3. There exist Dn > 0 depending only on n, R0 = R0(n, k,K0) > 0,

and 0 < τΣ
H,p

<
τinj
2 depending only on τinj, such that for 0 < r1 < R0, 0 < r0 ≤ r1

2 ,

and 0 < τ < τΣ
H,p

there exist {ρj}
Nr1
j=1 ⊂ ΣH,p and a partition {Ji}Dni=1 of {1, . . . , Nr1}

so that

• Λτ
ΣH,p

(r0) ⊂
⋃Nr1
j=1 Λτ

ρj
(r1),

• Λτ
ρj

(3r1) ∩ Λτ
ρ`

(3r1) = ∅, j, ` ∈ Ji, j 6= `.

Proof. Let {ρj}
Nr1
j=1 be a maximal r1

2 separated set in ΣH,p . Fix i0 ∈ {1, . . . , Nr1} and

suppose that B(ρi0 , 3r1) ∩ B(ρ`, 3r1) 6= ∅ for all ` ∈ Li0 ⊂ {1, . . . , Nr1}. Then for all
` ∈ Li0 , B(ρ`,

r1
2 ) ⊂ B(ρi0 , 8r1). In particular,∑

`∈Li0

vol(B(ρ`,
r1
2 )) ≤ vol(B(ρi0 , 8r1)).

Now, there exist Dn > 0 and R0 > 0 depending on (n, k) and a lower bound on the
Ricci curvature of ΣH,p , and hence on only (n, k,K0), so that for r1 < R0,

vol(B(ρi0 , 8r1)) ≤ vol(B(ρ`, 14r1)) ≤ Dn vol(B(ρ`,
r1
2 )).

Hence, ∑
`∈Li0

vol(B(ρ`,
r1
2 )) ≤ vol(B(ρi0 , 8r1)) ≤ Dn

|Li0 |
∑
`∈Li0

vol(B(ρ`,
r1
2 ))

and in particular, |Li0 | ≤ Dn.
Now, suppose that

Λτ
ρk

(3r1) ∩ Λτ
ρi0

(3r1) 6= ∅.
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Then, there exists qk ∈ B(ρk, 3r1) ∩ Lh, qi0 ∈ B(ρi0 , 3r1) ∩ Lh and tk, ti0 ∈ [−τ, τ ] so
that

ϕtk−ti0
(qk) = qi0 .

Here, Lh is the hypersurface defined in (2.10). In particular, choosing τΣ
H,p

< τinj/2,

this implies that qk = qi0 , tk = ti0 and hence B(ρ`, 3r1)∩B(ρi0 , 3r1) 6= ∅. This implies
that j ∈ Li0 and hence that there are at most Dn such distinct j (including i0).

At this point we have proved that each of the tubes Λτ
ρj

(r1) intersects at most Dn−1

other tubes. We now construct the sets J1, . . . ,JDn using a greedy algorithm. We will
say that i intersects j if

Λτ
ρi

(r1) ∩ Λτ
ρj

(r1) 6= ∅.
First place 1 ∈ J1. Then suppose we have placed j = 1, . . . , ` in J1, . . . ,JDn so that
each of the Ji’s consists of disjoint indices. Then, since `+ 1 intersects at most Dn− 1
indices, it is disjoint from Ji for some i. We add ` to Ji. By induction we obtain the
partition J1, . . . ,JDn .

Now, suppose r0 ≤ r1 and that there exists ρ ∈ Λτ
Σ
H,p

(r0) so that ρ /∈
⋃
i Λτ

ρi
(r1).

Then, there are |t| < τ + r0 and q ∈ Lh so that

ρ = ϕt(q), d(q,ΣH,p) < r0, min
i
d(q, ρi) ≥ r1.

In particular, by the triangle inequality, there exists ρ̃ ∈ ΣH,p ,

d(ρ̃, ρi) ≥ d(q, ρi)− d(q, ρ̃) > r1 − r0.

This contradicts the maximality of {ρj}
Nr1
j=1 if r0 ≤ r1/2.

�

We proceed to build a δ-partition of unity associated to the cover we constructed in
Proposition 3.3. The key feature in this partition will be that it is invariant under the
bicharacteristic flow. Indeed, the partition is built so that its quantization commutes
with the operator P in a neighborhood of ΣH,p .

Proposition 3.4. There exist τ1 = τ1(τinj) > 0 and ε1 = ε1(τ1) > 0, and given

0 < δ < 1
2 , 0 < ε ≤ ε1 there exists h1 > 0, so that for any 0 < τ ≤ τ1, and R(h) ≥ 2hδ,

the following holds.
There exist C1 > 0 so that for all 0 < h ≤ h1 and all (τ,R(h))-covers of ΣH,p there

exists a partition of unity χj ∈ Sδ∩C∞c (T ∗M ; [−C1h
1−2δ, 1+C1h

1−2δ]) on Λτ
ΣH,p

(1
2R(h))

for which

• suppχj ⊂ Λτ+ε
ρj (R(h)),

• MSh([P,Oph(χj)]) ∩ Λτ
ΣH,p

(ε) = ∅,
and the χj are uniformly bounded in Sδ.

Proof. Let Lh be as in (2.10) τ1 < 1
2τinj and fix 0 < τ ≤ τ1. Then let ε1 > 0

be so small that Λτ1Σ
H,p

(ε1) ⊂ Λ2τ1
Lh (0), fix 0 < ε < ε1 and let h1 be so small that

hδ ≤ ε for all 0 < h ≤ h1. For each j ∈ {1, . . . , Nh} let Hj = Lh ∩ Λτρj (R(h)). Let

{ψj} ⊂ C∞c (Lh; [0, 1])∩Sδ be a partition of unity on Lh ∩ Λτ
ΣH,p

(1
2R(h)) subordinate
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to {Hj}Nhj=1 that is uniformly bounded in Sδ. Then, define aj,0 ∈ Sδ on Λτ
ΣH,p

(ε) by

solving

aj,0|Lh = ψj , Hpaj,0 = 0 on Λτ
ΣH,p

(ε).

Clearly, aj,0 defined in this way is a partition of unity for Λτ
ΣH,p

(1
2R(h)). Furthermore,

we can extend aj,0 to T ∗M as an element of Sδ so that

supp aj,0 ⊂
⋃

|t|≤τ+ε+R(h)

ϕt(Hj) ⊂ Λτ+ε
ρj (R(h)), 0 ≤ aj,0 ≤ 1

Note also that since P ∈ Ψm(M) and Hpaj,0 = 0, for b ∈ Sδ with supp b ⊂ Λτ
ΣH,p

(ε),

Oph(b)[P,Oph(aj,0)] ∈ h2−2δΨδ(M).

We define aj,k by induction. Suppose we have aj,`, ` = 0, . . . , k− 1, so that if we set

χj,k−1 :=
∑k−1

`=0 h
`(1−2δ)aj,`, then

A)

Nh∑
j=1

χj,k−1 ≡ 1 on Λτ
ΣH,p

(1
2R(h)),

B) ej,k := σ
(
h−1−k(1−2δ)[P,Oph(χj,k−1)]

)
∈ Sδ on Λτ

ΣH,p
(ε).

Then, for every k ≥ 1 define aj,k ∈ Sδ by

aj,k|Lh = 0, Hpaj,k = −iej,k on Λτ
ΣH,p

(ε). (3.6)

Next extend aj,k to T ∗M as an element of Sδ so that

supp aj,k ⊂
⋃

|t|≤τ+ε+R(h)

ϕt(Hj) ⊂ Λτ+ε
ρj (R(h)).

Now, since
∑Nh

j=1 χj,k−1 ≡ 1 on Λτ
ΣH,p

(1
2R(h)), by (B) we see that for ρ ∈ Λτ

ΣH,p
(1

2R(h)),

Nh∑
j=1

ej,k(ρ) = σ
(
h−1−k(1−2δ)

[
P,Oph

( Nh∑
j=1

χj,k−1

)])
(ρ) = 0.

In particular, (3.6) gives that
∑Nh

j=1 aj,k = 0 on Λτ
ΣH,p

(1
2R(h)). Therefore, since χj,k =

χj,k−1 + hk(1−2δ)aj,k, we conclude that

Nh∑
j=1

χj,k = 1 on Λτ
ΣH,p

(1
2R(h)),

and hence (A) is satisfied for aj,` with ` = 0, . . . , k. To show that (B) is also satisfied,
let b ∈ Sδ with supp b ⊂ Λτ

ΣH,p
(ε). By assumption, we have

Oph(b)[P,Oph(χj,k−1)] ∈ h1+k(1−2δ)Ψδ(M).

Also, using once again that P ∈ Ψm(M) and that Hpaj,k = −iej,k
Oph(b)[P,Oph(aj,k)] ∈ hΨδ(M) + h2−2δΨδ(M).
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Hence,

Oph(b)[P,Oph(χj,k)] = Oph(b)
[
P,Oph(χj,k−1 + hk(1−2δ)aj,k)

]
∈ h1+k(1−2δ)Ψδ(M),

and so, on Λτ
ΣH,p

(ε),

σ(h−1−k(1−2δ)Oph(b)[P,Oph(χj,k)]) =

= σ
(
h−1−k(1−2δ)Oph(b)

(
[P,Oph(χj,k−1)] + hk(1−2δ)[P,Oph(aj,k)]

))
= b(ej,k − ej,k) = 0.

In particular,

Oph(b)[P,Oph(χj,k)] ∈ h1+(k+1)(1−2δ)Ψδ(M), (3.7)

and ej,k+1 ∈ Sδ on Λτ
ΣH,p

(ε) as claimed.

Finally, let

χj ∼
∞∑
`=0

h`(1−2δ)aj,`.

Then, using (3.7),

MSh([P,Oph(χj)]) ∩ Λτ
ΣH,p

(ε) = ∅.

Now, note that by construction {χj} remains a partition of unity modulo O(h∞) and
by adding an h∞ correction to teach term, we construct {χj} so that it forms a partition

of unity. We also have by construction that χj ∈ C∞c (T ∗M ; [−C1h
1−2δ, 1 + C1h

1−2δ])
for some C1 depending only on (M,p) and finitely many of the constants Kα. �

3.3. Step 3: Estimate near bicharacteristics. Let h > 0. Let (x′, x̃) be Fermi

coordinates near H̃ = H̃h with corresponding dual coordinates (ξ′, ξ̃). Then, since

H is uniformly conormally transverse for p, H̃ and on Σ
H̃,p

, there exists j so that

Hpx̃j 6= 0. In particular,

dp, {dx̃i}ki=1, {dξ′i}n−ki=1 are linearly independent near ΣH,p .

Thus, there exist y1, . . . , yn−1 ∈ C∞(T ∗M ;R) so that (p, x̃, ξ′, y) are coordinates on
T ∗M near Σ

H̃,p
for which Σ

H̃,p
= {p = 0, x̃ = 0, ξ′ = 0}. In particular, there exists

C > 0 depending only on (M,p,K0) so that

d((x0, ξ0),Σ
H̃,p

)2 ≤ C(p(x0, ξ0)2 + |x̃0|2 + |ξ′0|2).

We define the constant K > 0 introduced in the definition (3.1) of βδ to be large
enough so that

If d((x0, ξ0),Σ
H̃,p

) ≥ 1
2h

δ, (x′0, ξ
′
0) ∈ suppβδ, and d(x, H̃) ≤ 1

Kh
δ,

then |p(x0, ξ0)| ≥ 1
3h

δ. (3.8)

As introduced in Step 1 in the proof of Theorem 10, let χ0 ∈ C∞c (R; [0, 1]) be a
smooth cut-off function with χ0(t) = 1 for t ≤ 1

2 and χ0(t) = 0 for t ≥ 1. Let βδ(x
′, ξ′)

be defined as in (3.1). In what follows τ1, ε1, h1 are the positive constants given by
Proposition 3.4.
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Our next proposition estimates the main contribution to averages. In particular,
we control the average near zero frequency by the L2 mass along bicharacteristics co-
normal to the submanifold H. One of the main estimates used in the proof of Propo-
sition 3.5 is found in Lemma 3.8. In particular, p is factored as e(x, ξ)(ξ1 − a(x, ξ′))
so that it can be treated using elementary estimates. This idea comes from [KTZ07]
where, to the best of the authors’ knowledge, it was first used to control L∞ norms.

Proposition 3.5. There exist constants 0 < τ0 ≤ τ1, 0 < ε0 ≤ ε1, with τ0 =
τ0(M,p, τinj , I0) and ε0 = ε0(τ0), R0 = R0(M,p, k,K0 , τinj , I0) > 0 and a constant

Cn,k depending only on n, k, and for each 0 < δ < 1
2 there exists 0 < h0 ≤ h1 so that

the following holds.
Let 0 < τ ≤ τ0, 0 < ε < ε0, 4hδ ≤ R(h) ≤ R0. Let Dn be the constant from

Proposition 3.3, 0 < h < h0, and {Λτ
ρj

(R(h))}Nhj=1 be a (Dn, τ, R(h))-good cover for

ΣH,p. In addition, let {χj}Nhj=1 be the partition of unity built in Proposition 3.4.
Then, there exists C > 0 so that for all N > 0 there is CN > 0 with the following

properties. For all w = w(x′;h) ∈ Sδ ∩ C∞c (H̃), 0 < h ≤ h0, and u ∈ D′(M),

h
k−1

2 ‖wOph(βδ)u‖L1(H̃) ≤ Cn,k‖w‖∞R(h)
n−1

2

∑
j∈Ih(w)

‖Oph(χj)u‖L2(M)

τ
1
2 |HprH(ρj)|

1
2

+ Ch−1‖w‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N‖w‖∞‖u‖L2(M)

,

where Ih(w) = {j : Λτρj (R(h)) ∩ π−1(suppw) 6= ∅}. Moreover the constants C,CN , h0

are uniform for χj in bounded subsets of Sδ, uniform in τ, ε0, I0 when these are bounded
away from 0, and uniform for Kα bounded.

Proof. We define τ0 > 0, ε0 > 0 to be the constants given by Lemma 3.7 below. Let
χ0 ∈ C∞c (R; [0, 1]) be a smooth cut-off function with χ0(t) = 1 for t ≤ 1

2 and χ0(t) = 0

for t ≥ 1. We first decompose ‖wOph(βδ)u‖L1(H̃)
with respect to {χj}Nhj=1. We write

Oph(βδ) =
[
1−χ0

(Kd(x, H̃)

hδ

)]
Oph(βδ)+χ0

(Kd(x, H̃)

hδ

)
Oph(βδ)

Nh∑
j=1

Oph(χj)+Oph(χ)

with

Oph(χ) = χ0

(Kd(x, H̃)

hδ

)
Oph(βδ)

(
1−

Nh∑
j=1

Oph(χj)
)
.

First, note that
[
1− χ0

(Kd(x,H̃)
hδ

)]
Oph(βδ)u

∣∣
H̃
≡ 0. Therefore,

‖Oph(βδ)u‖L1(H̃) ≤
∥∥∥Oph(βδ)

Nh∑
j=1

Oph(χj)u
∥∥∥
L1(H̃)

+ ‖Oph(χ)u‖L1(H̃). (3.9)

We first study the ‖Oph(χ)u‖L1(H̃) term. To do this let ψ ∈ C∞c (T ∗M) be so that

|p(x, ξ)| ≥ c|ξ|m on supp(1−ψ). Then, by a standard elliptic parametrix construction
(see e.g [DZ19, Appendix E]) together with the semiclassical Sobolev estimates (see
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e.g. [Gal19, Lemma 6.1]) there exist C > 0 and 0 < h0 ≤ h1 so that the following
holds. For all N there exists CN > 0 such that for all 0 < h ≤ h0

‖Oph(1− ψ)Oph(χ)u‖L2(H̃) ≤ Ch
− k

2 ‖Oph(1− ψ)Oph(χ)u‖
H

k+1
2

scl
(M)

≤ Ch−
k
2 ‖Pu‖

H
k−2m+1

2
scl

(M)
+ CNh

N‖u‖
L2(M)

.

Together with Lemma 3.6 (below) applied to ψχ and the fact that ‖Pu‖
L2(M)

≤
‖Pu‖

H
k−2m+1

2
scl

(M)
this implies

‖Oph(χ)u‖
L2(H̃)

≤ Ch−
k
2
−δ‖Pu‖

H
k−2m+1

2
scl

(M)
+ CNh

N‖u‖
L2(M)

. (3.10)

Indeed, to see that Lemma 3.6 applies, let (x0, ξ0) ∈ suppψχ. Then observe that

suppχ ⊂
(

ΛτΣ
H,p

(2hδ)
)c

and hence

d((x0, ξ0),Σ
H̃,p

) ≥ hδ.

Next, note that d((x0, ξ0), N∗H̃) ≤ 1
Kh

δ since (x0, ξ0) ∈ suppβδ. Therefore, since

d((x0, ξ0),Σ
H̃,p

) ≥ hδ, d(x, H̃) ≤ 1
Kh

δ, and (x0, ξ0) ∈ suppβδ, by the definition (3.8)

of K we obtain that |p(x0, ξ0)| ≥ hδ

3 for all 0 < h ≤ h0. To see that |dp| > I0
2 > 0 on

suppψχ, we observe that |Hp| > I0 > 0 on ΣH,p . It follows from (3.9) and (3.10) that

‖wOph(βδ)u‖L1(H̃)
≤
∥∥∥ Nh∑
j=1

wOph(βδ)Op(χj)u
∥∥∥
L1(H̃)

+ C‖w‖∞h−
k
2
−δ‖Pu‖

H
k−2m+1

2
scl

(M)
+CNh

N‖w‖∞‖u‖L2(M)
. (3.11)

By Proposition 3.3, or more precisely its proof, there exist a collection of balls

{Bi}Mh
i=1 in H̃ of radius R(h) ≤ R0(n, k,K0) and constants αn,k depending only on n, k,

so that

H̃ ⊂
Mh⋃
i=1

Bi

and each x ∈ H̃ lies in at most αn,k balls Bi. Let {ψi}Mh
i=1 be a partition of unity on H̃

subordinate to {Bi}Mh
i=1. Then, by (3.11), for all 0 < h ≤ h0,

‖wOph(βδ)u‖L1(H̃) ≤
Mh∑
i=1

Nh∑
j=1

‖ψiwOph(βδ)Op(χj)u‖L1(H̃)

+ Ch−
k
2
−δ‖w‖∞‖Pu‖

H
k−2m+1

2
scl

(M)
+CNh

N‖w‖∞‖u‖L2(M)
.

(3.12)

We next note that on H̃, the volume of a ball of radius r satisfies

| volH̃(B(x, r))− cn,krn−k| ≤ CK0
rn−k+1
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where CK0
> 0 is a constant depending only on K0 and cn,k is a constant that depends

only on (n, k), (this can be seen by working in geodesic normal coordinates). Therefore,
for some cn,k > 0 and any R(h) ≤ R0 = R0(K0)

‖ψiwOph(βδ)Op(χj)u‖L1(H̃) ≤ cn,kR(h)
n−k

2 ‖ψiwOph(βδ)Op(χj)u‖L2(H̃). (3.13)

We next bound ‖ψiwOph(βδ)Op(χj)u‖L2(H̃). By Lemma 3.7 below there exist

Cn,k > 0 depending only on (n, k), and C > 0 so that the following holds. For

every Ñ > 0 there exists C
Ñ
> 0, independent of (i, j), so that for all 0 < h ≤ h0

‖ψiwOph(βδ)Oph(χj)u‖L2(H̃)

≤ Cn,k‖w‖∞h
1−k

2 R(h)
k−1

2

(
‖Oph(χj)u‖L2(M)

τ
1
2 |HprH(ρj)|

1
2

+Ch−1‖Oph(χj)Pu‖L2(M)

)
+C

Ñ
hÑ‖w‖∞‖u‖L2(M)

. (3.14)

Also, note that if j /∈ Ih(ψiw) for some i ∈ {1, . . . ,Mh}, then

Λτρj (R(h)) ∩ π−1(suppψiw) = ∅.

Therefore, since suppχj ⊂ Λτρj (R(h)) for all j, for all N ′ there exists C
N′ > 0 so that

the following holds. For all i ∈ {1, . . . ,Mh} and j /∈ Ih(ψiw)

‖ψiwOph(βδ)Oph(χj)u‖L2(H̃) ≤ CN′h
N ′‖w‖∞‖u‖L2(M)

.

In particular, since Nh and Mh grow like a polynomial power of h, we can choose N ′

so that

Mh∑
i=1

∑
j /∈Ih(ψiw)

‖ψiwOph(βδ)Oph(χj)u‖L2(H̃) ≤ CNh
N‖w‖∞‖u‖L2(M)

. (3.15)

Putting (3.13), (3.14) and (3.15) into (3.12), we find that for some adjusted Cn,k
and 0 < h ≤ h0

‖wOph(βδ)u‖L1(H̃)

≤ Cn,k‖w‖∞h
1−k

2 R(h)
n−1

2

Mh∑
i=1

∑
j∈Ih(ψiw)

(
‖Oph(χj)u‖L2(M)

τ
1
2 |HprH (ρj)|

1
2

+ Ch−1‖Oph(χj)Pu‖L2(M)

)

+ Ch−
k
2
−δ‖w‖∞‖Pu‖

H
k−2m+1

2
scl

(M)
+ CNh

N‖w‖∞‖u‖L2(M)
.

We have used that both Mh and Nh grow like a polynomial power of h to collect all

the C
Ñ
hÑ‖u‖

L2(M)
error terms in (3.14). Furthermore, since the balls {Bi} are built

so that every point in H̃ lies in at most αn,k balls, and each ψi is supported on Bi, we
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have

‖wOph(βδ)u‖L1(H̃)

≤ Cn,k‖w‖∞h
1−k

2 R(h)
n−1

2

∑
j∈Ih(w)

(
‖Oph(χj)u‖L2(M)

τ
1
2 |HprH(ρj)|

1
2

+ Ch−1‖Oph(χj)Pu‖L2(M)

)

+ Ch−
k
2
−δ‖w‖∞‖Pu‖

H
k−2m+1

2
scl

(M)
+ CNh

N‖w‖∞‖u‖L2(M)
. (3.16)

Now, since χj is supported in Λτρj (R(h)), and the tubes were built so that every point

in Λτ
ΣH,p

(hδ) lies in at most βn,k tubes, we have
∑Nh

j=1 |χj |2 ≤ βn,k. This implies

Nh∑
j=1

‖Oph(χj)Pu‖2
L2(M)

≤ 2βn,k‖Pu‖2
L2(M)

.

Next, notice that since dim ΣH,p = n − 1, we have |Ih(w)| ≤ cn,kR(h)1−n vol(ΣH,p) for
some cn,k > 0 depending only on n, k. Therefore,∑

j∈Ih(w)

‖Oph(χj)Pu‖L2(M)
≤ |Ih(w)|

1
2

( Nh∑
j=1

‖Oph(χj)Pu‖2
L2(M)

) 1
2

≤ cn,kR(h)−
n−1

2 vol(ΣH,p)
1
2 ‖Pu‖

L2(M)
,

for some cn,k > 0 depending only on n, k. Using this in (3.16) together with δ < 1
2 ,

gives

‖wOph(βδ)u‖L1(H̃) ≤ Cn,k‖w‖∞h
1−k

2 R(h)
n−1

2

∑
j∈Ih(w)

‖Oph(χj)u‖L2(M)

τ
1
2 |HprH(ρj)|

1
2

+ Ch−
1+k

2 ‖w‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N‖w‖∞‖u‖L2(M)

,

as claimed. Note that the constants C,CN , h0 are uniform for χj in bounded subsets of
Sδ, and are also uniform in τ, ε0, I0 when these are bounded away from 0. Furthermore,
they depend only on finitely many of the constants Kα.

�

We now state the following result which gives elliptic estimates in regions that are
hδ away from the characteristic variety of p.

Lemma 3.6. Let 0 ≤ δ < 1
2 , 0 < k < n. Let Θ : W ⊂ Rn →M be coordinates on M .

Let χ ∈ Scomp
δ ∩C∞c (T ∗M ; [−C0h

1−2δ, 1+C0h
1−2δ]) be so that there exist c, h1 > 0 with

suppχ ⊂ {|p| ≥ chδ , |p|+ |dp| > c}
for 0 < h ≤ h1. Then, there exists C > 0 such that for all χ̃ ∈ Sδ ∩ C∞c (T ∗M ; [0, 1])
with χ̃ ≡ 1 on suppχ, there exists 0 < h0 < h1 so that the following holds. For all
N > 0 there exists CN > 0 such that for 0 < h < h0

‖Oph(χ)u‖L∞x̄ L2
x′
≤ Ch−

k
2
−δ‖Oph(χ̃)Pu‖L2

x
+ CNh

N‖u‖L2
x
,
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where x = (x′, x̄) ∈ Rn−k ×Rk are the coordinates induced by Θ. Moreover, C,CN are
uniform for χ̃, χ in bounded subsets of Sδ, and for Θ in bounded subsets of C∞.

Proof. First, let ψ ∈ C∞c (R) with ψ ≡ 1 on [−1, 1]. Then, using the standard elliptic
parametrix construction [DZ19, Appendix E] there exists b1 ∈ Scomp

δ with sup |b1| ≤
2c−1 + C1h

1−2δ such that

Oph(χ)Oph(1− ψ
(

2
cp
)
) = Oph(b1)Oph(χ̃)P +O(h∞)Ψ−∞ . (3.17)

Next, we show that there exists b2 ∈ Scomp
δ with sup |b2| ≤ c−1h−δ+C1h

1−3δ so that

Oph(χ)Oph(ψ
(

2
cp
)
) = Oph(b2)Oph(χ̃)P +O(h∞)Ψ−∞ . (3.18)

Using that |p| ≥ chδ on suppχ one can carry out an elliptic parametrix construction
in the second microlocal calculus associated to p = 0. Using a partition of unity, since
|dp| > c

2 on suppχ ∩ suppψ
(

2
cp
)

we may assume that there exist an h-independent
neighborhood V0 of suppχ, V1 ⊂ T ∗Rn a neighborhood of 0, and a symplectomorphism
κ : V1 → V0 so that κ∗p = ξ1. Let U be a microlocally unitary FIO quantizing κ. Then

P := U∗PU = hDx1 + hOpLh (r),

with r ∈ Scomp(Rn) and OpLh denotes the left quantization of r. Moreover, there exist
a, ã ∈ Scomp

δ (T ∗Rn) so that

OpLh (a) = U∗Oph(χ)Oph(ψ
(

2
cp
)
)U

and

OpLh (ã) = U∗Oph(χ̃)U

with supp a ⊂ {|ξ1| ≥ chδ} and ã ≡ 1 on supp a. Now, for b ∈ Scomp
δ (T ∗Rn) supported

on |ξ1| ≥ chδ,
|∂αx ∂

β
ξ (ξ−1

1 b)| ≤ Cαβh−(|β|+|α|)δ|ξ1|−1.

Let b0 = a/ξ1. Then b0 ∈ h−δScomp
δ and

sup |b0| ≤ c−1h−δ.

Observe that

OpLh (b0)OpLh (ã)P = OpLh (a) +OpLh (e1) +O(h∞)Ψ−∞

with supp e1 ⊂ {|ξ1| ≥ chδ} and, since ã ≡ 1 on supp b0,

e1 ∼
∑
|α|≥1

h|α|i|α|

α!
Dα
x (b0)Dα

ξ (ξ1) +
∑
|α|≥0

h|α|+1i|α|

k!
Dα
x (b0)Dα

ξ (r).

In particular, e1 ∈ h1−2δScomp
δ . Then, setting b` = −e`/ξ1 ∈ h`(1−2δ)−δScomp

δ , and

OpLh (e`+1) := OpLh (b`)Op
L
h (ã)P+OpLh (e`) +O(h∞)Ψ−∞

we have e`+1 ∈ h(`+1)(1−2δ)Scomp
δ with supp e`+1 ⊂ {|ξ1| ≥ chδ}. In particular, putting

b ∼
∑

` b`,

OpLh (b)OpLh (ã)P = OpLh (a) +O(h∞)Ψ−∞ .
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It follows that

UOpLh (b)U∗Oph(χ̃)P = UOpLh (b)U∗UOpLh (ã)U∗UPU∗ +O(h∞)Ψ−∞

= UOpLh (b)OpLh (ã)PU∗ +O(h∞)Ψ−∞

= UOpLh (a)U∗ +O(h∞)Ψ−∞

= Oph(χ)Oph(ψ
(

2
cp
)
) +O(h∞)Ψ−∞ .

In particular, there exists b2 ∈ h−δScomp
δ (T ∗M) with sup |b2| ≤ c−1h−δ + C1h

1−3δ so
that

Oph(b2) = UOpLh (b)U∗ +O(h∞)Ψ−∞ .

Therefore, as claimed in (3.18) that

Oph(χ)Oph(ψ
(

2
cp
)
) = Oph(b2)Oph(χ̃)P +O(h∞)Ψ−∞ ,

for all χ supported in V0 and some suitable b2 with ‖Oph(b2)‖ ≤ 2c−1h−δ. Next, using
that Oph(χ̃)Pu is compactly microlocalized, we apply the Sobolev Embedding [Gal19,
Lemma 6.1] (see also [Zwo12, Lemma 7.10]) in the x̄ coordinates. Writing b = b1 + b2,
we obtain using (3.17) and (3.18) that there exists h0 > 0, and for all N > 0 there
exists CN > 0, such that if 0 < h < h0, then for every x̄

‖Oph(χ)u(x̄, ·)‖L2
x′

= ‖Oph(b)Oph(χ̃)Pu(x̄, ·)‖L2
x′

+ CNh
N‖u‖L2

x

≤ 2c−1Ckh
− k

2
−δ‖Oph(χ̃)Pu‖L2

x
+ CNh

N‖u‖L2
x
.

Since this is true for any x̄, the claim follows. �

The following lemma contains the key new ideas used to prove our main theorems. In
particular, it converts quantitative localization along a bichacteristic into quantitative
gains in averages. This idea is at the heart of the bicharacteristic beam techniques and
originated in [Gal19].

Lemma 3.7. There exist Cn,k > 0, depending only on n and k, and positive constants
τ0 = τ0(M,p, τinj , I0 , {Hh}h), ε0 = ε0(τ0), R0 = R0(M,p, k, τinj , I0) so that the following

holds. Let 0 < τ ≤ τ0, 0 ≤ δ < 1
2 , and 2hδ ≤ R(h) ≤ R0. Let γ be a bicharacteristic

through ΣH,p, and χ ∈ Sδ ∩ C∞c (T ∗M ; [−C1h
1−2δ, 1 + C1h

1−2δ]) with ργ := γ ∩ ΣH,p ∈
suppχ,

supp(χ) ⊂ Λτ+ε0
ργ (R(h)), (3.19)

and

MSh([P,Oph(χ)]) ∩ Λτ
ΣH,p

(ε0) = ∅. (3.20)

Then, there are C > 0 and h0 > 0 with the following properties. For every N > 0
there exists CN > 0 such that, if 0 < h ≤ h0, then for u ∈ D′(M),

hk−1‖Oph(βδ)Oph(χ)u‖2
L2(H̃)

≤ Cn,k
R(h)k−1

τ |HprH(ργ)|
‖Oph(χ)u‖2

L2(M)

+ CR(h)k−1h−2‖Oph(χ)Pu‖2
L2(M)

+ CNh
N‖u‖2

L2(M)
,

(3.21)
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The constants τ0, C, CN , h0 are uniform for χ in bounded subsets of Sδ, uniform for
τ > 0 and I0 uniformly bounded away from zero, and only depend on {Hh}h through
finitely many of the constants Kα in (2.3).

Proof. The proof of this result relies heavily on Lemma 3.8 below. Let Θ : W ⊂ Rn →
M be coordinates on M . Let h > 0. Note that we may adjust coordinates so that
H̃ = H̃h ⊂ {x1 = 0}, dx1|x1=0 ∈ N∗H̃, 1

2HprH≤∂ξ1p, and so that the Ck norm of the
coordinate map Θ is bounded by finitely many of the constants Kα. Therefore, since
|∂ξ1p(ργ)| ≥ 1

2I0 by (2.9), we may apply Lemma 3.8 with I := 1
2I0 . Let r0, τ̃0, C0,

depending only on (M,p, I0 ,Θ), be the constants from Lemma 3.8. Note that they
are uniform for Θ in bounded sets of Ck. Therefore, they depend on {Hh}h through
finitely many of the constants Kα. Next, let r1 = r1(M,p, I0 ,Θ) be small enough so
that for all ρ ∈ ΣH,p ,

infB(ρ,r1) |HprH |
supB(ρ,r1) |HprH |

≥ 1

2
. (3.22)

Let r = 1
2 min{r1, r0} and let {ρi}Ki=1 ⊂ ΣH,p be a maximal r separated set. Then for all

q ∈ ΣH,p , there exists i so that d(q, ρi) < r and in particular, B(q, r) ⊂ B(ρi, 2r) ⊂ Vρi
where Vρi is the subset from Lemma 3.8 associated to ρi.

Fix ρ0 ∈ {ρi}Ki=1. Without loss of generality assume that d(ργ , ρ0) < r. Next, let

0 < τ̃1 <
τinj

2 , R0 > 0, ε0 > 0 small enough (depending only on (M,P, I0 , τinj)) so that

Λτ̃1+ε0
ργ (R0) ⊂ Vρ0 . Next, by letting

τ0 = min{τ̃0, τ̃1} (3.23)

we have

supp(χ) ⊂ Λτ+ε0
ργ (R(h)) ⊂ Vρ0 ,

for all 0 < τ < τ0 and h small enough. This will allow us to apply Lemma 3.8 to our
χ.

We work in coordinates so that ∂ξ1p(ργ) 6= 0, which we can assume since γ is a
bicharacteristic through ΣH,p and ργ = γ ∩ ΣH,p . In what follows we abuse notation

slightly and redefine x̄ as the normal coordinates to H̃ that are not x1. With this
notation x = (x1, x̄, x

′).
Given a function vh ∈ C∞(M) we may bound ‖vh‖L2(M)

using the version of the

Sobolev Embedding Theorem given in [Gal19, Lemma 6.1] which gives, after setting
k = `, that for all α > 0 there exists Ck > 0 depending only on k so that

‖vh(x1, x̄, ·)‖2L2
x′
≤ Ckh1−k

(
αk−1‖vh(x1, ·)‖2L2

x̄,x′
+ α−1−k

k∑
i=2

‖(hDxi)
kvh(x1, ·)‖2L2

x̄,x′

)
.

(3.24)
We proceed to choose vh so that

‖Oph(βδ)(Oph(χ)u)(x1, x̄, ·)‖
L2
x′

= ‖vh(x1, x̄, ·)‖
L2
x′
, (3.25)

and in such a way that the terms in (3.24) can be controlled efficiently. Let 0 < τ < τ0,
and set τρ0 := τ |∂ξ1p(ρ0)|.
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Since γ is a bicharacteristic through ΣH,p , we may define a function a = a(x1) so that
ξ−a(x1) vanishes along γ. This is possible since we are working in coordinates so that
∂ξ1p(ργ) 6= 0, and hence γ may be locally written (near ργ) as γ(x1) = (x(x1), a(x1))
for a and x smooth.

Define

κ(x, ξ) = χ0

( |(x1, x̄)|
ε2

0

)
χ0

(3|x1|
τρ0

)
βδ(x

′, ξ′),

where ε0 < 1 is so that the coordinates are well defined if |(x1, x̄)| < ε0. Let

vh := e−
i
h
〈x̄ , ā(x1)〉Oph(κ)Oph(χ)u,

where ā(x1) = (a2(x1), . . . , ak(x1)) is so that a(x1) = (a1(x1), ā(x1)). The reason for
working with this function vh is that not only (3.25) is satisfied, but also

(hDxi)
kvh = e−

i
h
〈x̄ , ā(x1)〉(hDxi − ai)k(Oph(κ)Oph(χ)u),

for i = 2, . . . , k, and this will allow us to obtain a gain in the L2-norm bound once we
use that, by Lemma A.3, for (τ0, ε0) small enough (depending only on p),

sup
Λ
τ0+ε0
ργ (R(h))

max
i
|ξi − ai(x1)| ≤ 3R(h). (3.26)

We bound the terms in (3.24) by applying Lemma 3.8 with κ and χ. We first bound
the non-derivative term on the RHS of (3.24).

By Lemma 3.8 we have that infVρ0 |∂ξ1p| ≥
3
4 |∂ξ1p(ρ0)| on Λτ+ε0

ργ (R(h)). This implies(
Λτ+ε0
ργ (R(h)) ∩ (Λτ

ΣH,p
(ε0))c

)
⊂ {|x1|≥3

4τρ0}. (3.27)

Let b ∈ C∞c (R; [0, 1]) with b ≡ 1 on {x1 : |x1| ≤ τρ0/2}, supp b ⊂ {x1 : |x1| < 3τρ0/4}.
By (3.19) and (3.20) we have MSh([P,Oph(χ)]) ⊂ (Λτ+ε0

ργ (R(h))∩(Λτ
ΣH,p

(ε0))c). There-

fore, by (3.27),

WFh(b) ∩MSh([P,Oph(χ)]) = ∅. (3.28)

Throughout the rest of the proof we will write C,CN for constants that are uniform
as claimed. We also note that when bounding ‖Oph(a)u‖

L2(M)
by 2 sup |a|‖u‖

L2(M)
, h

need only be taken small enough depending on finitely many seminorms of a in Sδ.
Let C0 = C0(M,P, I0) as above and τ0 as in (3.23). Applying Lemma 3.8 with κ, χ,
b, q = 1, and using that b ≡ 1 on |x1| ≤ τρ0/2, ‖Oph(κ)‖ ≤ 2 and 0 < τ < τ0, we have
that there exists h0 > 0 such that for all 0 < h < h0

‖vh(x1, ·)‖L2
x̄,x′
≤ 8τ

− 1
2

ρ0 ‖bOph(χ)u‖
L2(M)

+ 2C0τ
1
2
ρ0h
−1‖b POph(χ)u‖

L2(M)

+ CNh
N‖u‖

L2(M)
.

(3.29)

Next, note that

b POph(χ) = bOph(χ)P + b [P,Oph(χ)].

Therefore, since |b| ≤ 1,

‖b POph(χ)u‖
L2(M)

≤ 2‖Oph(χ)Pu‖
L2(M)

+ ‖b [P,Oph(χ)]u‖
L2(M)

.
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Using the previous bound, equation (3.29) turns into

‖vh(x1, ·)‖L2
x̄,x′
≤ 16τ

− 1
2

ρ0 ‖Oph(χ)u‖
L2(M)

+ 4C0τ
1
2
ρ0h
−1‖Oph(χ)Pu‖

L2(M)

+ 2C0τ
1
2
ρ0h
−1‖b [P,Oph(χ)]u‖

L2(M)
+ CNh

N‖u‖
L2(M)

.

(3.30)

We proceed to bound the derivative terms in (3.24). For this, we first note that
‖(hDxi)

kvh(x1, ·)‖Lx̄,x′ = ‖QiOph(κ)Oph(χ)u(x1, ·)‖Lx̄,x′ after setting

Qi := (hDxi − ai)k, (3.31)

for i = 2, . . . , k. Writing Qi = Oph(qi) we get qi = (ξi − ai)k and Qi commutes with
Oph(κ) modulo O(h). Note that there are no remainder terms since ai is a function of
only x1. Then, Lemma 3.8 gives that there exists C0 > 0, independent of τ , and some
C,CN > 0 so that

‖(hDxi)
kvh(x1, ·)‖L2

x̄,x′
≤ 8τ

− 1
2

ρ0 ‖bQiOph(χ)u‖
L2(M)

+ 2C0τ
1
2
ρ0h
−1‖b PQiOph(χ)u‖

L2(M)

+ ‖[Oph(κ), Qi]Oph(χ)u(x1, ·)‖L2
x̄,x′

+ CNh
N‖u‖

L2(M)
,

(3.32)
for all 0 < h < h0 where h0 was possibly adjusted. We proceed to find efficient bounds
for all the terms in (3.32). Throughout the rest of the proof we use C0 for a positive
constant that depends only on P and finitely may Sδ seminorms of (q, χ), possibly
bigger than that above. We also write Ck for a positive constant that depends only on
k. These constants may increase from line to line.

First, let χ̃ ∈ Sδ∩C∞c (T ∗M ; [0, 1]) with χ̃ ≡ 1 on suppχ and supp χ̃ ⊂ Λτ+ε0
ργ (R(h)).

Then note that by (3.26) and (3.31) there exists CN > 0 such that

‖bQiOph(χ)u‖
L2(M)

≤ ‖bQiOph(χ̃)Oph(χ)u‖
L2(M)

+ CNh
N‖u‖

L2(M)

≤ CkR(h)k‖Oph(χ)u‖
L2(M)

+ CNh
N‖u‖

L2(M)
,

(3.33)

for all 0 < h < h0 for h0 small enough.
Second, using that

b PQiOph(χ) = bQiOph(χ)P + b [P,Qi]Oph(χ) + bQi[P,Oph(χ)],

we claim that there exists CN > 0 such that

‖b PQiOph(χ)u‖
L2(M)

≤ CkR(h)k‖Oph(χ)Pu‖
L2(M)

+ C0hR(h)k‖Oph(χ)u‖
L2(M)

+ ‖bQi[P,Oph(χ)]u‖
L2(M)

+ CNh
N‖u‖

L2(M)
.

(3.34)
Indeed, the estimate on b [P,Qi]Oph(χ) was obtained as follows. We observe that

Hpqi = k(ξi − ai)k−1Hp(ξi − ai).
and since Hp(ξi − ai) vanishes on γ, Hpqi vanishes to order k on γ. Therefore, using

χ̃ as in (3.32), on supp χ̃ we have |Hpqi| ≤ C0R(h)k and there exists CN > 0 such that

‖b [P,Qi]Oph(χ)u‖
L2(M)

≤ C0hR(h)k‖Oph(χ)u‖
L2(M)

+ ‖([P,Qi]− h
iOph(Hpqi))Oph(χ̃)Oph(χ)u‖

L2(M)
+ CNh

N‖u‖
L2(M)

.
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Finally, observe that ([P,Qi] − h
iOph(Hpqi))Oph(χ̃) ∈ h2R(h)k−2Sδ and hence the

bound follows since R(h) ≥ 2hδ and δ < 1
2 .

Finally, to bound the fourth term in (3.32) note that by [Gal19, Lemma 6.1]

‖[Oph(κ), Qi]Oph(χ)u(x1, ·)‖
L2
x̄,x′
≤ CM,p,R0h

− 1
2 ‖[Oph(κ), Qi]Oph(χ)u‖

L2(M)
.

Then, observe that [Oph(κ), Qi]Oph(χ̃) ∈ hR(h)k−1Sδ since for i = 2, . . . , k we have
∂xjqi = 0 for j 6= 1, ∂ξ1κ = 0, ∂ξjqi = 0 for all j 6= i, and ∂xiκ ∈ Sδ because βδ is a
tangential symbol. We then obtain that there exists CN > 0 such that

‖[Oph(κ), Qi]Oph(χ)u(x1, ·)‖
L2
x̄,x′
≤ Ch

1
2R(h)k−1‖Oph(χ)u‖

L2(M)
+ CNh

N‖u‖
L2(M)

.

(3.35)
Combining (3.33), (3.34), and (3.35) into (3.32) it follows that

R(h)−k‖(hDxi)
`vh(x1, ·)‖L2

x̄,x′
≤
(
Ckτ

− 1
2

ρ0 + C0τ
1
2
ρ0 + Ch

1
2R(h)−1

)
‖Oph(χ)u‖

L2(M)

+ CkC0τ
1
2
ρ0h
−1‖Oph(χ)Pu‖

L2(M)

+ C0τ
1
2
ρ0h
−1‖bQi[P,Oph(χ)]u‖

L2(M)
+ CNh

N‖u‖
L2(M)

,

(3.36)
for some C > 0, CN > 0, and for all 0 < h < h0 with h0 small enough.

By (3.28) we also know that there exists CN > 0 and h0 > 0 so that for all 0 < h < h0

‖b [P,Oph(χ)]u‖
L2(M)

+ ‖bQi[P,Oph(χ)]u‖
L2(M)

≤CNh
N‖u‖

L2(M)
. (3.37)

Feeding (3.37) into (3.30) and (3.36), and combining them in to (3.24), we have

R(h)1−khk−1‖vh(x1, x̄, ·)‖2L2
x′
≤ Ck

(
‖vh(x1, ·)‖2L2

x̄,x′
+R(h)−2k

k∑
i=2

‖(hDxi)
kvh(x1, ·)‖2L2

x̄,x′

)
.

≤ Ck
(
τ−1
ρ0

+ C0τρ0 + ChR(h)−2
)
‖Oph(χ)u‖2

L2(M)

+ Ch−2‖Oph(χ)Pu‖2
L2(M)

+ CNh
N‖u‖

L2(M)
.

Taking τ0 ≤ C−1
0 (supΣ

H,p
|HprH |)−1 and h0 small enough so that ChR(h)−2 ≤ τ−1

ρ0

proves the desired result because of (3.25). Also, note that, since ργ ∈ Vρ0 , in view of
(3.22), we have

1

2
|∂ξ1p(ρ0)| ≤ |∂ξ1p(ργ)| ≤ 2|∂ξ1p(ρ0)|.

We may therefore rewrite the bound for ‖vh‖2L2(H) in terms of |HprH(ργ)| which com-

pletes the proof.
�

In what follows we work with points x ∈ Rn and (x, ξ) ∈ T ∗Rn. We will isolate one

position coordinate x1 and write (x, ξ) = (x1, x̃, ξ1, ξ̃). This lemma is based on [Gal19,
Lemma 4.3] which in turn draws on the factorization ideas from [KTZ07].
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Lemma 3.8. Let Θ : W ⊂ Rn →M be coordinates on M , ρ0 ∈ T ∗Rn and I > 0 be so
that

|∂ξ1p(ρ0)| ≥ I > 0.

Then, there exist τ0 > 0, C0 > 0, r0 > 0 depending only on (M,p, I,Θ) and V0 ⊂ T ∗Rn
neighborhood of ρ0, so that B(ρ0, r0) ⊂ V0,

3

4
|∂ξ1p(ρ0)| ≤ inf

V0

|∂ξ1p| ≤ sup
V0

|∂ξ1p| ≤
4

3
|∂ξ1p(ρ0)|, (3.38)

and the following holds.

Let 0 ≤ δ < 1
2 and 0 < τ < τ0. Let Iτ = {x1 : − τρ0

3 ≤ x1 ≤
τρ0
3 } with τρ0 := τ |∂ξ1p(ρ0)|,

and

κ = κ(x1, x̃, ξ̃) ∈ Sδ ∩ C∞c
(
Iτ ×T ∗Rn−1

)
.

Let χ ∈ Sδ ∩ C∞c (V0; [−2, 2]) and q = q(x1) ∈ C∞(R;S∞(T ∗Rn−1)). Then, there is
C > 0 such that for all N > 0, there is CN > 0 and h0 > 0 so that for all 0 < h ≤ h0,
and all x1,

‖Oph(q)Oph(κ)Oph(χ)u(x1, ·)‖L2
x̃
≤ 4τ

− 1
2

ρ0 ‖Oph(κ)‖‖Oph(q)Oph(χ)u‖L2
x(|x1|<τρ0/2)

+ C0τ
1
2
ρ0h
−1‖Oph(κ)‖‖POph(q)Oph(χ)u‖L2

x(|x1|<τρ0/2)

+ ‖[Oph(κ), Oph(q)]Oph(χ)u(x1, ·)‖L2
x̃

+ CNh
N‖u‖L2

x
.

Also, all constants are uniform when χ, κ, q are taken in bounded subsets of Sδ, Θ is
taken in bounded subset of Ck, and when I, τ are taken uniformly bounded away from
0.

Proof. There exists an open neighborhood V0 of ρ0 so that |∂ξ1p| > I
2 on V0. Therefore,

we may assume that there is e ∈ C∞(T ∗Rn) elliptic on V0, and a = a(x1, x̃, ξ̃) ∈
C∞(R× S0(T ∗Rn−1)) so that for all ψ ∈ C∞c (V0)

p(x, ξ)ψ(x, ξ) = e(x, ξ)(ξ1 − a(x1, x̃, ξ̃))ψ(x, ξ),

with e satisfying that for every α, β,

‖e−1‖∞ ≤ C1 = C1(M,P, I),

‖∂αx ∂
β
ξ e(x, ξ)‖∞ ≤ C = C(M,P, I, α, β,Θ)

(3.39)

where C(M,P, I, α, β,Θ) depends on Θ through finitely many Ck norms. Moreover,
there exists r0 = r0(M,p, I) so that B(ρ0, r0) ⊂ V0.

Using this factorization, we see that there exists R ∈ S0(T ∗Rn) so that for all
ψ ∈ Sδ(V0),

POph(ψ) = Oph(e)(hDx1 −Oph(a))Oph(ψ) + hOph(R)Oph(ψ) +R∞.

where we write R∞ for an O(h∞)Ψ−∞ operator that may change from line to line
but whose seminorms are bounded by those of P,ψ, e, e−1. Moreover, there exists an
element a1 ∈ hC∞(R×S0(T ∗Rn−1)) so that for each fixed x1 the operator Oph(a(x1)+
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a1(x1)) : L2
x̃ → L2

x̃ is self-adjoint. Abusing notation slightly, we relabel a+ a1 as a and
Oph(R)−Oph(e)Oph(a1) as Oph(R). Then, for all ψ ∈ Sδ(V0)

POph(ψ) = Oph(e)(hDx1 −Oph(a))Oph(ψ) + hOph(R)Oph(ψ) +R∞.

Therefore, letting Oph(e)−1 denote a microlocal parametrix for Oph(e) on V0, we have
for all ψ ∈ Sδ(V0),

(hDx1 −Oph(a))Oph(ψ) = Oph(e)−1POph(ψ) + hOph(R0)Oph(ψ) +R∞ (3.40)

where R0 is such that Oph(R0) = −Oph(e)−1Oph(R). From the symbolic calculus
together with (3.39) we see that for every α, β

‖∂αx ∂
β
ξ R0(x, ξ)‖∞ ≤ C = C(M,P, I, α, β,Θ), (3.41)

where C depends on Θ through finitely many Ck norms. Shrinking V0 (in a way
depending only on (M,p, I) and the C2 norm of Θ), if necessary, we may also assume
that

3

4
|∂ξ1p(ρ0)| ≤ inf

V0

|∂ξ1p| ≤ sup
V0

|∂ξ1p| ≤
4

3
|∂ξ1p(ρ0)|.

Define
w := Oph(q)Oph(χ)u, (3.42)

with Oph(ψ) = Oph(q)Oph(χ) we have by (3.40) that

(hDx1 −Oph(a))w = f,

for

f := [Oph(e)−1POph(q)Oph(χ) + hOph(R0)Oph(q)Oph(χ)]u+R∞u. (3.43)

Defining the operator U(x1, t) by

(hDx1 −Oph(a))U(x1, t) = 0, U(t, t) = Id,

we obtain that for all x1, t ∈ R

w(x1, x̃) = U(x1, t)w(t, x̃)− i

h

ˆ t

x1

U(x1, s)f(s, x̃)ds.

Let ε = ε(τ) be defined as

ε :=
τρ0

3
=
τ |∂ξ1p(ρ0)|

3
, (3.44)

and let Φ ∈ C∞c (R; [0, 3ε−1]) with supp Φ ⊂ [0, ε] and
´
R Φ = 1. Then, integrating in

t,

w(x1, x̃) =

ˆ
R

Φ(t)U(x1, t)w(t, x̃)dt− i

h

ˆ
R

Φ(t)

ˆ t

x1

U(x1, s)f(s, x̃)dsdt. (3.45)

Let τ0 satisfy

τ0 <

√
3

2
|∂ξ1p(ρ0)|−1‖Oph(R0)‖−1, (3.46)

where Oph(R0) is as in (3.40). Note that by (3.41) τ0 only depends on (M,P, I,Θ).
From now on, we write

C = C(M,P, I, ε0, τ, χ, q, κ,Θ), and CN = CN (M,P,N, τ, I, ε0, χ, q, κ,Θ)
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for constants depending on finitely many seminorms of the given parameters. To bound
the first term in (3.45) we apply Cauchy-Schwarz and use that U(x1, t) is a unitary
operator acting on L2

x̃ to get∥∥∥∥ˆ
R

Φ(t)Oph(κ)U(x1, t)w(t, x̃)dt

∥∥∥∥
L∞x1

L2
x̃

≤ ‖Φ‖2 ‖Oph(κ)‖‖w‖L2
t,x̃(|t|≤ε).

To bound the second term in (3.45) we apply Minkowski’s integral inequality, use that
the support of Φ is contained in [0, ε], and that suppκ ⊂ {|x1| < ε} to get∥∥∥∥ˆ

R
Φ(t)

ˆ t

x1

Oph(κ)U(x1, s)f(s, x̃)dsdt

∥∥∥∥
L∞x1

L2
x̃

≤

∥∥∥∥∥∥
ˆ
R

Φ(t)

(ˆ
Rn−1

(ˆ
R

1[−ε,ε](s)Oph(κ)U(x1, s)f(s, x̃)ds

)2

dx̃

) 1
2

dt

∥∥∥∥∥∥
L∞x1

≤ ‖1[−ε,ε](s)‖L2
s
‖Oph(κ)‖‖f‖L2

s,x̃(|s|≤ε) .

Feeding these two bounds into (3.45), and using that Φ(t) ≤ 3ε−1 and
´
R Φ(t)dt = 1

give ‖Φ‖L2(R) ≤
√

3ε−
1
2 , we obtain

‖Oph(κ)w(x1, ·)‖L2
x̃
≤
√

3ε−
1
2 ‖Oph(κ)‖‖w‖L2

x(|x1|≤ε) +
√

2ε
1
2h−1‖Oph(κ)‖‖f‖L2

x(|x1|≤ε) .

(3.47)

Finally, note that according to (3.43)

‖f‖L2
x(|x1|≤ε) ≤ ‖Oph(e)−1POph(q)Oph(χ)u‖L2

x(|x1|≤ε)

+ h‖Oph(R0)Oph(q)Oph(χ)u‖L2
x(|x1|≤ε) + CNh

N‖u‖L2
x

≤ C0‖POph(q)Oph(χ)u‖L2
x(|x1|≤3ε/2)

+ h‖Oph(R0)‖‖Oph(b)Oph(q)Oph(χ)u‖L2
x(|x1|≤3ε/2) + CNh

N‖u‖L2
x
.

Using (3.39), we see that C0 > 0 depends only (M,P, I). Therefore, since

Oph(q)Oph(κ)Oph(χ) = Oph(κ)Oph(q)Oph(χ) + [Oph(q), Oph(κ)]Oph(χ),

we may combine definition (3.42) of w with (3.47) to obtain

‖Oph(q)Oph(κ)Oph(χ)u(x1, ·)‖L2
x̃
≤
√

3ε−
1
2 ‖Oph(κ)‖‖Oph(q)Oph(χ)u‖L2

x(|x1|≤ε)

+ C0h
−1ε

1
2 ‖Oph(κ)‖‖POph(q)Oph(χ)u‖L2

x(|x1|≤3ε/2)

+
√

2ε
1
2 ‖Oph(R0)‖‖Oph(κ)‖‖Oph(q)Oph(χ)u‖L2

x(|x1|≤3ε/2)

+ CNh
N‖u‖L2

x
+ ‖[Oph(q), Oph(κ)]Oph(χ)u(x1, ·)‖L2

x̃
.

To finish the proof we combine the first and third terms in the bound above using that
√

3ε−
1
2 = 3τ

− 1
2

ρ0 and that (3.46) gives
√

2ε
1
2 ‖Oph(R0)‖ ≤ τ−

1
2

ρ0 .

�
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4. Non-looping Propagation Estimates: Proof of Theorem 11

The main result in this section is the proof of Theorem 11 which we present in what
follows. The proof is based on an application of Egorov’s theorem (see Lemma 4.1)
which in turn uses that cutoffs with disjoint support act almost orthogonally.

Proof of Theorem 11. By Theorem 10 there exist τ0, R0, and Cn,k > 0 so that

if 0 < τ ≤ τ0, 0 ≤ δ < 1
2 , N > 0, and 8hδ ≤ R(h) < R0, then for {Λτ

ρj
(R(h))}j a

(D, τ, R(h))-good cover of ΣH,p , and {χj}j a δ-partition associated to the cover, there

exist C > 0, h0 > 0, so that for all w = w(x′;h) ∈ Sδ ∩ C∞c (H̃) there is CN > 0 with
the property that for any 0 < h < h0 and u ∈ D′(M),

h
k−1

2

∣∣∣ˆ
H̃
wudσH̃

∣∣∣ ≤ Cn,k‖w‖∞
τ

1
2I

1
2

0

R(h)
n−1

2

∑
j∈Jh(w)

‖Oph(χj)u‖L2(M)
(4.1)

+ Ch−1‖w‖∞‖Pu‖
H

k−2m+1
2

scl
(M)

+ CNh
N
(
‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)

)
.

Next, suppose there exist B ⊂ {1, . . . , Nh} and a finite collection {G`}`∈L ⊂ {1, . . . , Nh}
satisfying Jh(w) ⊂ B ∪

⋃
`∈L G`, and with {G`}`∈L having the non self looping prop-

erties described in the statement of the theorem. Furthermore, since we are working
with a (D, τ, R(h))-good cover, we split each G` into D families {G`,i}Di=1 of disjoint
tubes.

Note that

∑
j∈Jh(w)

‖Oph(χj)u‖L2(M)
≤
∑
`∈L

D∑
i=1

∑
j∈G`,i

‖Oph(χj)u‖L2(M)
+
∑
j∈B
‖Oph(χj)u‖L2(M)

.

Since ⋃
j∈G`

Λτρj (R(h)) is [t`(h), T`(h)] non-self looping,

and the tubes in G`,i are disjoint, we may apply Lemma 4.1 below to G = G`,i and
(tj , Tj) = (t`, T`) for all j ∈ G`,i together with Cauchy-Schwarz to get

∑
j∈G`,i

‖Oph(χj)u‖L2(M)
≤
( t`|G`|

T`

) 1
2
( ∑
j∈G`,i

‖Oph(χj)u‖2
L2(M)

T`

t`

) 1
2

≤ 2
( t`|G`|

T`

) 1
2
(
‖u‖2

L2(M)
+
T 2
`

h2
‖Pu‖2

L2(M)

) 1
2
.

On the other hand, using Cauchy-Schwarz and the fact that there are D families of
disjoint tubes, ∑

j∈B
‖Oph(χj)u‖L2(M)

≤ 2D|B|
1
2 ‖u‖

L2(M)
.
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Therefore, after adjusting Cn,k in (4.1),

h
k−1

2

∣∣∣ˆ
H
wudσH

∣∣∣
≤
Cn,kD‖w‖∞R(h)

n−1
2

τ
1
2I

1
2

0

[∑
`∈L

( t`|G`|
T`

) 1
2
(
‖u‖2

L2(M)
+
T 2
`

h2
‖Pu‖2

L2(M)

) 1
2

+ |B|
1
2 ‖u‖

L2(M)

]
+ Ch−1‖w‖∞‖Pu‖

H
k−2m+1

2
scl

(M)
+ CN

(
‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)

)
≤
Cn,kD‖w‖∞R(h)

n−1
2

τ
1
2I

1
2

0

[∑
`∈L

( t`|G`|
T`

) 1
2 ‖u‖

L2(M)
+
∑
`∈L

( |G`|t`T`
h2

) 1
2 ‖Pu‖

L2(M)
+ |B|

1
2 ‖u‖

L2(M)

]
+ Ch−1‖w‖∞‖Pu‖

H
k−2m+1

2
scl

(M)
+ CN

(
‖u‖

L2(M)
+ ‖Pu‖

H
k−2m+1

2
scl

(M)

)
.

�
The next lemma relies on Egorov’s theorem to the Ehrenfest time (see for exam-

ple [DG14, Proposition 3.8], [Zwo12]).

Lemma 4.1. Assume that P is self adjoint. Let 0 ≤ δ0 <
1
2 , 0 < 2ε0 < 1−2δ0, and let

G be a set of indices with |G| ≤ h−N for some N > 0. For each ` ∈ G let 0 ≤ δ` ≤ δ0,
0 < α` < 1− 2δ`− 2ε0, and χ` ∈ Sδ`(T ∗M)∩C∞c (T ∗M ; [−C1h

1−2δ0 , 1 +C1h
1−2δ0 ]). In

addition, for each ` ∈ G let t`(h) > 0 and 0 < T`(h) ≤ 2α` Te(h) be so that⋃
k∈G

suppχk ∩ ϕ−t(suppχ`) = ∅ (4.2)

for all t ∈ [t`(h), T`(h)] or t ∈ [−T`(h),−t`(h)], and suppose that⋃
k 6=`

suppχk ∩ suppχ` = ∅. (4.3)

Then, there exists a constant h0 > 0 so that for 0 < h < h0∑
`∈G

‖Oph(χ`)u‖2
L2(M)

T`(h)

t`(h)
≤ 4‖u‖2

L2(M)
+ 4 max

`∈G

T`(h)2

h2
‖Pu‖2

L2(M)
.

Moreover, the constant h0 can be chosen to be uniform for χ` in bounded subsets of
Sδ(T

∗M) and N < N0.

Proof. Throughout this proof it will be convenient to write ‖ · ‖ for ‖ · ‖
L2(M)

. Define

χ̃ by

Oph(χ̃) =
∑
`∈G

T`
2t∑̀

k=
−T`
2t`

e
ikt`P

h Oph(χ`)e
− ikt`P

h .

First, we claim that there exists h0 > 0 so that for all 0 < h < h0

‖Oph(χ̃)u‖2 ≤ 3

2
‖u‖2. (4.4)



44 YAIZA CANZANI AND JEFFREY GALKOWSKI

Indeed, Egorov’s Theorem [DG14, Proposition 3.9] gives that there exists Cχ > 0 and
h0 > 0 so that for every k

e
ikt`P

h Oph(χ`)e
− ikt`P

h = Oph(χk,`) +O(h∞)Ψ−∞ , χk,` = χ` ◦ ϕkt` + rk,`(h), (4.5)

where rk,` ∈ h1−dk,`(h)−2δ`Sdk,`(h)/2+δ` , supp rk,` ⊂ suppχ` ◦ ϕkt` ,

|rk,`(h)| ≤ Cχh1−dk,`(h)−2δ` and dk,`(h) ≤ |k| t`
Te(h)

,

for all 0 < h < h0. Note that since {χ`}`∈G 7→ χ̃ is a continuous map from∏
`∈G

Sδ`(T
∗M)→ S 1

2
−ε0(T ∗M),

the constant Cχ can be chosen to be uniform for {χ`}`∈G in bounded subsets of
Π`Sδ`(T

∗M), and that then the same is true for h0.
Now, let `,m ∈ G with ` 6= m and assume without loss that T` ≤ Tm. Then,

using (4.2) and (4.3), we have for −T`(h)
2t`

≤ k ≤ T`(h)
2t`

, −Tm(h)
2tm

≤ j ≤ Tm(h)
2tm

,

ϕ−kt` (suppχ`) ∩ ϕ−jtm (suppχm) = suppχ` ∩ ϕkt`−jtm (suppχm) = ∅.

In addition, using (4.2), we have if ` = m, then for −T`(h)
2t`

≤ k < j ≤ T`(h)
2t`

,

ϕ−kt` (suppχ`) ∩ ϕ−jt` (suppχm) = suppχ` ∩ ϕ(k−j)t`
(suppχm) = ∅.

Thus, it follows from (4.5) that

χ̃ =
∑
`∈G

T`
2t∑̀

k=− T`
2t`

χ` ◦ ϕkt` + r(h).

with |r(h)| ≤ Cχh2ε0 for all 0 < h < h0, and Cχ, h0 can be chosen uniform for {χ`}J`=1
in bounded subsets of Sδ0 . We have used that the support of the rk,`’s are disjoint,
together with the fact that 2ε0 < 1 − α` − 2δ` implies 2ε0 < 1 − dk,`(h) − 2δ`, to get
the bound on r(h). This implies that

χ̃ ∈ S 1
2
−ε0 and − Cχh2ε0 ≤ χ̃ ≤ 1 + Cχh

2ε0 , (4.6)

for all 0 < h < h0.
Note that by the sharp G̊arding inequality (4.6) yields〈 (

1 + Cχh
2ε0 −Oph(χ̃)∗Oph(χ̃)

)
u, u

〉
≥ −Cχh2ε0‖u‖2L2 ,

which in turn gives

‖Oph(χ̃)u‖2 ≤ (1 + 2Cχh
2ε0)‖u‖2 (4.7)

for all 0 < h < h0. Also, note that since ε0 > 0, we may shrink h0 so that (4.7) gives

‖Oph(χ̃)u‖2 ≤ 3

2
‖u‖2, (4.8)

for 0 < h < h0 as claimed in (4.4).
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Next, note that since the supports of the χm ◦ ϕjtm and χ` ◦ ϕkt` are disjoint for

(j,m) 6= (k, `), Egorov’s Theorem also gives〈
e
ijtmP
h Oph(χm)e−

ijtmP
h u , e

ikt`P

h Oph(χ`)e
− ikt`P

h u
〉

= Oχ(h∞)‖u‖2, (4.9)

where the constant in Oχ(hN ) depends only on the |α| ≤ CN n seminorms of χ, where
CN is a universal constant. It then follows from (4.8) and (4.9) that

3

2
‖u‖2 ≥

∑
`∈G

T`
2t∑̀

k=− T`
2t`

∥∥∥e ikt`Ph Oph(χ`)e
− ikt`P

h u
∥∥∥2

+Oχ(h∞max
`
|T`|))‖u‖2, (4.10)

as long as we work with 0 ≤ h ≤ h0 and h0 small enough so that r(h) can be absorbed
by 3

2‖u‖
2.

On the other hand, since the propagators e
ikt`P

h are unitary operators,∥∥∥e ikt`Ph Oph(χ`)e
− ikt`P

h u
∥∥∥2

=
∥∥∥Oph(χ`)e

− ikt`P
h u

∥∥∥2

= ‖Oph(χ`)u‖2 − Ik,` − IIk,`

(4.11)

where

Ik,` =
〈
Oph(χ`)[u− e−

ikt`P

h u], Oph(χ`)u
〉
,

IIk,` =
〈
Oph(χ`)e

− ikt`P
h u,Oph(χ`)[u− e−

ikt`P

h u]
〉
.

It follows from (4.11) that

∑
`

T`
2t∑̀

k=− T`
2t`

∥∥∥eikt`P/hOph(χ`)e
−ikt`P/hu

∥∥∥2
=
∑
`

T`
t`
‖Oph(χ`)u‖2 −

∑
`

T`
2t∑̀

k=− T`
2t`

Ik,` + IIk,`.

(4.12)
Observe that

Ik,` =
i

h

ˆ kt`

0

〈
Oph(χ`)e

− isP
h Pu,Oph(χ`)u

〉
ds = Ak,` +Bk,`,

where

Ak,` :=
i

h

ˆ kt`

0

〈
e
isP
h Oph(χ`)e

− isP
h Pu, e

isP
h Oph(χ`)e

− isP
h u
〉
ds

Bk,` :=
i

h

ˆ kt`

0

〈
e
isP
h Oph(χ`)e

− isP
h Pu, e

isP
h Oph(χ`)(u− e−

isP
h u)

〉
ds
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To deal with the Ak,` terms note that∑
k,`

Ak,` ≤
1

h

∑
k,`

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h Pu‖‖e

isP
h Oph(χ`)e

− isP
h u‖ds

≤ 1

h

∑
`,k

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h Pu‖2ds

 1
2
∑

`,k

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h u‖2ds

 1
2

.

In addition, observe that for v ∈ L2,∑
`,k

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h v‖2ds ≤ 〈Lv, v〉 , (4.13)

with L :=
∑

`,k

´ kt`
0 e

isP
h Oph(χ`)

∗Oph(χ`)e
− isP

h ds. Also, another application of Egorov’s
theorem gives

L = Oph

∑
`,k

ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)ds

+O(h∞)Ψ−∞

where r̃k,`(s, h) ∈ h1−dk,`(h)−2δ`Sdk,`/2+δ` with supp r̃k,`(s, h) ⊂ suppχ` ◦ ϕs and

|r̃k,`(s, h)| ≤ Cχh1−dk,`(h)−2δ` .

Next, we claim that (4.2) gives∣∣∣ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)ds

∣∣∣ ≤ t`(1 + Cχh
1−dk,`(h)−2δ`). (4.14)

To see this, let ρ ∈ T ∗M , s, t ∈ [−T`
2 ,

T`
2 ], be so that ϕs(ρ) ∈ suppχ` and ϕt(ρ) ∈

suppχ`. Suppose s ≥ t and note that

ϕs(ρ) ∈ ϕs−t(suppχ`) ∩ suppχ`.

Therefore, since 0 ≤ s − t ≤ T`, we obtain 0 ≤ s − t ≤ t` from (4.2). This proves the
claim.

In addition, we claim that combining (4.14) with (4.3) gives∣∣∣∑
`,k

ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)ds

∣∣∣ ≤ max
`
T`(h)(1 + Cχh

1−ε0). (4.15)

To see this, first observe that #
{
k ∈ [− T`

2t`
, T`2t`

]
}
≤ T`/t`. Together with (4.14) this

implies ∣∣∣∑
k

ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)ds

∣∣∣ ≤ T`(1 + Cχh
1−ε0). (4.16)

Second, note that

supp
(∑

k

ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)ds

)
⊂

T`/2⋃
s=−T`/2

ϕ−s(suppχ`).
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Therefore, by (4.3) for ` 6= j

supp
(∑

k

ˆ kt`

0
|χ`|2 ◦ϕs+ r̃k,`(s, h)ds

)
∩ supp

(∑
k

ˆ ktj

0
|χj |2 ◦ϕs+ r̃k,`(s, h)ds

)
= ∅.

(4.17)
Combining (4.16) with (4.17) we obtain (4.15) as claimed.

Using (4.13) and (4.15) together with the same argument we used for χ̃, for h0 small
enough (uniform for χ` in bounded subsets of Sδ`)∑

`,k

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h v‖2ds ≤ 2max

`
T`(h)‖v‖2.

In particular, ∣∣∣∑
`,k

Ak,`

∣∣∣ ≤ 2
max` T`(h)

h
‖Pu‖‖u‖.

We next turn to dealing with Bk,`. Note that

Bk,` =
1

h2

ˆ kt`

0

ˆ s

0

〈
e
i(t−s)P

h e
isP
h Oph(χ`)e

− isP
h Pu, e

itP
h Oph(χ`)e

− itP
h Pu

〉
dtds.

Therefore, by a similar argument this time using∣∣∣ˆ kt`

0

ˆ kt`

0
|χ`|2 ◦ ϕs + r̃k,`(s, h)dtds

∣∣∣ ≤ kt2` (1 + Cχh
1−dk,`(h)−2δ`),

we obtain∣∣∣∑
`,k

Bk,`

∣∣∣ ≤ 1

h2

∑
`,k

ˆ kt`

0

ˆ s

0
‖e

isP
h Oph(χ`)e

− isP
h Pu‖‖e

itP
h Oph(χ`)e

− itP
h Pu‖dtds

≤ 1

h2

∑
`,k

ˆ kt`

0

ˆ kt`

0
‖e

isP
h Oph(χ`)e

− isP
h Pu‖2dsdt

≤ 2
max` T

2
` (h)

h2
‖Pu‖2.

(4.18)
We have therefore shown that∣∣∣∑

`,k

Ik,`

∣∣∣ ≤ 2
max` T`(h)

h
‖Pu‖‖u‖+ 2

max` T
2
` (h)

h2
‖Pu‖2. (4.19)

Next, note that

IIk,` =
〈
Oph(χ`)e

−ikt`P
h u,Oph(χ`)[u− e−

ikt`P

h u]
〉

=
i

h

ˆ kt`

0

〈
e
ikt`P

h Oph(χ`)e
−ikt`P

h u, e
ikt`P

h Oph(χ`)e
− isP

h Pu
〉
ds

≤ 1

h

ˆ kt`

0
‖e

ikt`P

h Oph(χ`)e
−ikt`P

h u‖‖e
ik(t`−s)P

h e
iksP
h Oph(χ`)e

− isP
h Pu‖ds.
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Then, by unitarity of e−
it`−sP

h and (4.13),∣∣∣∑
`,k

IIk,`

∣∣∣ ≤ 2
max` T`

h
‖Pu‖‖u‖. (4.20)

In particular, from (4.19) and (4.20) we have∣∣∣∑
`,k

Ik,` + IIk,`

∣∣∣ ≤ 4
max` T`

h
‖Pu‖‖u‖+ 2

max` T
2
`

h2
‖Pu‖2 ≤ 2‖u‖2 + 4

max` T
2
`

h2
‖Pu‖2.

(4.21)
By possibly shrinking h0 we may assume that the error term in (4.10) is smaller than
1
2‖u‖

2 for 0 < h < h0. We conclude from (4.10) together with (4.11), (4.12) and (4.21)
that

2‖u‖2 ≥
∑
`

T`(h)

t`
‖Oph(χ`)u‖2 − 2‖u‖2 − 4

max` T
2
`

h2
‖Pu‖2. (4.22)

Therefore, (4.22) gives∑
`∈G

‖Oph(χ`)u‖2T`(h)

t`
≤
(

4‖u‖2 + 4
max` T

2
`

h2
‖Pu‖2

)
for 0 < h < h0. As noted right after (4.5) the constant h0 can be chosen to be uniform
for χ` in compact subsets of Sδ0(T ∗M). �

5. Quantitative improvements in integrable geometries

In this section, we focus on the special case of spheres of revolution M = [0, 2π]θ ×
[0, π]r with Hamiltonian

p(θ, r, ξθ, ξr) = ξ2
r + 1

α(r)2 ξ
2
θ + V (r),

and operate under the assumptions of Theorem 5.
In this setting, one can explicitly describe the Liouville tori intersected with {p = 0}

as

Tξθ =
{

(θ, r, ξr) : ξ2
r = V (r)− 1

α(r)2 ξ
2
θ

}
.

In particular,

Tξθ ∩ S
∗
(θ0,r0)M =

{
ξr = ±

√
V (r0)− 1

α(r0)2 ξ
2
θ

}
,

and for any δ > 0 there is c > 0 so that if r0 ∈ [δ, 2π − δ] the two intersections are
separated by at least

c

√
α(r0)

√
V (r0)− ξθ. (5.1)

Let R1 > 0 and define

A±,R1 := {(θ, r, ξθ, ξr) ∈ T ∗M : ±ξr ≥ R1}.

Theorem 5 is a consequence of the following Lemma which constructs non-looping
covers together with Theorem 11.
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Lemma 5.1. Let the above assumptions hold. Fix δ > 0 and let
{

Λτ
ρj

(R)
}NR
j=1

be as in

Proposition 3.3. Then there exists β > 0 so that if r0 ∈ [δ, 2π−δ], H = {x} = {(r0, θ0)}
the following holds. For all 0 < τ < τ0, α1 > 0, 0 < R � 1, and 0 < T < cRα1−1,
there exists B ⊂ {1, . . . , NR} so that for R1 = Rα1

|B| ≤ βT 3R1−α1 +R−α1

and for j /∈ B with Λτ
ρj

(R) ∩ Λτ
A±,R1

∩Σ
H,p

(R) 6= ∅,

d
(

Λτ
A±,R1

∩Σ
H,p

(R),
⋃

t∈[1,T ]

ϕt(Λ
τ
ρj

(R))
)
≥ 2R

In particular, ⋃
j /∈B

Λτ
ρj

(R) is [1, T ] non-self looping.

Proof. We start by removing tubes covering the intersection of an R1−α1 neighborhood
of ξθ =

√
V (r0)α(r0) with ΣH,p . This requires R−α1 tubes of radius R. In particular,

this covers an R1−α1 neighborhood of the singular torus and we may restrict our
attention to A±,R1 .

We claim that there is C > 0 so that if ρ1, ρ2 are at least α away from the singular
torus, then

|Θ(ρ1)−Θ(ρ2)|+ |I(ρ1)− I(ρ2)| ≤ Cα−1d(ρ1, ρ2). (5.2)

Indeed, by (e.g. [Tot09, eqn. (3.37)], [VuN06, Theorem 3.12], [Eli90, Theorem. Page
9]) there are Birkhoff normal form symplectic coordinates in a neighborhood of the
stable bicharacteristic γs so that ρ = (t, x, τ, ξ) ∈ S1 × R × R2 with γs given by
{(t, 0, 0, 0) : t ∈ S1} so that

p(t, x, τ, ξ) = τ + f(x2 + ξ2, τ),

f ∈ C∞((−δ, δ)2;R) for some δ > 0 and f(u, v) = α(v)u + O(v2) + Ov(u
2) for some

α ∈ C∞((−δ, δ);R).
In particular, we may work with action-angle coordinates (Θ, I) given by

I1 = τ, I2 =
1

2
(x2 + ξ2) x =

√
2I2 cos(Θ2), ξ =

√
2I2 sin(Θ2).

In these coordinates p(Θ, I) = I1 + f(2I2, I1), the action coordinate function I2(x, ξ)
measures the squared distance from (x, ξ) to the singular torus, and we have

|∂I,Θρ| ≤ C/
√

2I2 = Cα−1.

This yields (5.2) as claimed.
Next, suppose

d(ρ,ΣH,p ∩A±,R1) < 2R, d(ϕt(ρ),ΣH,p ∩A±,R1) < 2R.

There exists ρ̃ ∈ ΣH,p ∩A±,R1 with d(ρ, ρ̃) < 2R. Therefore, for some C > 0,

d(ϕt(ρ̃), ϕt(ρ)) < CRt

and hence, for t ≤ T ,

d(ϕt(ρ̃),ΣH,p ∩A±,R1) < (CT + 1)R.
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Now, for RT � Rα1 , by (5.1) since ρ is at least R1−α1 away from the singular torus,
the only intersection of TI0(ρ̃) with

{q : d(q,ΣH,p ∩A±,R1) < (CT + 1)R}

happens at q with d(q, ρ̃) < (CT + 1)R. In particular,

d(ϕt(ρ̃), ρ̃) < (CT + 1)R,

and hence by (5.2)

d(t∂Ip(I0), 2πZ2) < CTRR−1+α1 .

That is, ρ̃ is CTRα1 close to a rational torus of period t. Thus, the same is true for
the original ρ with possibly a different constant.

Now, the points that are CTRα1 close to the intersection of ΣH,p ∩A± with TI0 can

be covered by CTR1−α1 tubes. Moreover, since p is isoenergetically non-degenerate,
there is c > 0 so that the rational tori of period ≤ T , are separated by cT−2. Hence,
there are at most CT 2 such tori and we require CT 3R1−α1 tubes. �

Proof of Theorem 5. Fix L > 0, r0 ∈ [δ, 2π − δ], θ0 ∈ [0, π] and α1 = 1
2 . Then for

0 < R � 1 and 0 < T < R−
1
2 , we may apply Lemma 5.1. Let {Λτρj (R)}NRj=1 be the

cover of ΣH,p given by Proposition 3.3. Then, there are G,B ⊂ {1, . . . , NR} so that

|B| ≤ (βT 3 + 1)R−
1
2 , {1, . . . , NR} ⊂ G ∪ B⋃

j∈G
Λτρj (R) is [1, T ] non-self looping.

Fix 0 < ε < δ < 1
2 , let R = hε and T = L2 log h−1. We next apply Theorem 11 with P

as in (1.7), G` = G, T` = T and t` = 1 for all `. Then, there exist C > 0 independent
of L, for any N > 0, CN > 0, and h0 > 0, so that for all 0 < h < h0

h
1
2 ‖u‖L∞(B((r0,θ0),hδ))

≤ Ch
ε
2

([
(log h−1)

3
2h−

ε
4 +

h−
ε
2

L
√

log h−1

]
‖u‖

L2(M)
+
h−

ε
2L
√

log h−1

h
‖Pu‖

L2(M)

)
+ Ch−1‖Pu‖

H
− 1

2
scl

(M)
+ CNh

N
(
‖u‖

L2(M)
+ ‖Pu‖

H
− 1

2
scl

(M)

)
≤ C

(
β
[
(log h−1)

3
2h

ε
4 +

1

L
√

log h−1

]
‖u‖

L2(M)
+
L
√

log h−1

h
‖Pu‖

H
− 1

2
scl

(M)

)
.

�

6. Change of the Hamiltonian

When studying quasimodes for the Laplacian, it will be convenient to replace the
operator P0 := −h2∆g − 1 by an operator whose dynamics agree with those of p =
|ξ|g − 1.
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Lemma 6.1. There exists P ∈ Ψ0(M) with real, classically eliptic symbol p such that
{p = 0} = S∗M , p = |ξ|g − 1 in a neighborhood of S∗M and there exist Q ∈ Ψ−2(M),
E ∈ h∞Ψ−∞(M) satisfying

P = QP0 + E.

In particular, for all s ∈ R there exists a constant Cs > 0 depending only on s so that
for all N > 0, there exist CN,s = C(N, s,M, g) > 0 and h0 = h0(N, s,M, g) > 0 so
that for 0 < h < h0 and u ∈ D′(M),

‖Pu‖
Hs

scl
(M)
≤ Cs‖P0u‖

Hs−2
scl

(M)
+ CN,sh

N‖u‖
H−N

scl
(M)

.

Proof. Let ψ1 ∈ C∞c (R; [0, 1]) with suppψ1 ⊂ (−1
2 ,

1
2) and ψ1 ≡ 1 on [−1

4 ,
1
4 ]. Next, let

ψ2 ∈ C∞c (R; [0, 1]) with ψ2 ≡ 1 on [−4,−1
2 ] ∪ [1

2 , 4] so that ψ := ψ1 + ψ2 has ψ ≡ 1 on
[−4, 4]. Define

P̃ = P̃1 + P̃2 + P̃3

with

P̃1 := 1
2ψ1(−h2∆g), P̃2 := ψ2(−h2∆g)

√
−h2∆g, P̃3 := 2(1− ψ(−h2∆g)).

(6.1)

Note that by the functional calculus [Zwo12, Theorem 14.9] P̃ ∈ Ψ(M) with symbol

p̃ := 1
2ψ1(|ξ|2g) + ψ2(|ξ|2g)|ξ|g + 2(1− ψ(|ξ|2g))

In particular, p̃ = |ξ|g in a neighborhood of S∗M .
Next, observe that

(P̃ + I)(P̃ − I) = P0 + h2∆g + P̃ 2

= P0 − (I − ψ2
2(−h2∆g))(−h2∆g) + P̃ 2

1 + P̃ 2
3 + 2P̃1P̃2 + 2P̃2P̃3+2P̃1P̃3

Now, there exists c > 0 so that

WFh(P̃1) ∪WFh(P̃3) ∪WFh(I − ψ2
2(−h2∆g)) ⊂ {|σ(P0)| > c〈ξ〉2}.

In particular, by the elliptic parametrix construction (see e.g. [DZ19, Appendix E.2])
there is Q1 ∈ Ψ−2(M) so that

(P̃ + I)(P̃ − I) = Q1P0 +O(h∞)Ψ−∞ .

Now, σ(P̃ + I) > 1 therefore, (P̃ + I)−1 ∈ Ψ(M) and we have that

P̃ − I = (P̃ + I)−1Q1P0 +O(h∞)Ψ−∞

which completes the proof of the lemma after letting Q = (P̃ +I)−1Q1 and P = P̃ −I.
�

Applying Theorem 11 to P from Lemma 6.1, where P0 := −h2∆g − 1, and then
estimating Pu by Lemma 6.1, we obtain the following theorem.

Theorem 12. Let {Hh}h ⊂ M be a regular family of submanifolds of codimension

k that is uniformly conormally transverse for p. Let {H̃h}h be a family of sub-
manifolds of codimension k satisfying (2.5). Let 0 < δ < 1

2 , N > 0 and {wh}h
with wh ∈ Sδ ∩ C∞c (H̃h). There exist positive constants τ0 = τ0(M, g, τinj , {Hh}h),
R0 = R0(M, g,K0 , k, τinj), Cn,k depending only on n and k, and h0 = h0(M, g, δ, {Hh}h)
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and for each 0 < τ ≤ τ0 there exist, C = C(M, g, τ, δ, , {Hh}h) > 0 and CN =
CN (M, g,N, τ, δ, {wh}h, {Hh}h) > 0, so that the following holds.

Let 8hδ ≤ R(h)< R0, 0 ≤ α < 1− 2lim suph→0
logR(h)

log h , and suppose {Λτ
ρj

(R(h))}Nhj=1

is a (D, τ, R(h)) cover of SN∗H for some D > 0.
In addition, suppose there exist B ⊂ {1, . . . , Nh} and a finite collection {G`}`∈L ⊂

{1, . . . , Nh} with

Jh(wh) ⊂ B ∪
⋃
`∈L
G`,

where Jh(wh) is defined in (2.14), and so that for every ` ∈ L there exist t` = t`(h) > 0
and T` = T`(h) ≤ 2αTe(h) so that

⋃
j∈G`

Λτ
ρj

(R(h)) is [t`, T`] non-self looping for ϕt := exp(tH|ξ|g).

Then, for u ∈ D′(M) and 0 < h < h0,

h
k−1

2

∣∣∣ ˆ
H̃h

whu dσH̃h

∣∣∣ ≤ Cn,kD‖wh‖∞R(h)
n−1

2

τ
1
2

(
|B|

1
2 +

∑
`∈L

(|G`|t`)
1
2

T
1
2
`

)
‖u‖

L2(M)

+
Cn,kD‖wh‖∞R(h)

n−1
2

τ
1
2

∑
`∈L

(|G`|t`T`)
1
2

h
‖P0u‖L2(M)

+ Ch−1‖wh‖∞‖P0u‖
H

k−3
2

scl
(M)

+ CNh
N
(
‖u‖

L2(M)
+ ‖P0u‖

H
k−3
2

scl
(M)

)
.

Here, the constant CN depends on {wh}h only through finitely many Sδ seminorms of
wh. The constants τ0, C, CN , h0 depend on {Hh}h only through finitely many of the
constants Kα in (2.3).

Appendix A.

A.1. Index of Notation.

In general we denote points in T ∗M by ρ. When position and momentum need to be
distinguished we write ρ = (x, ξ) for x ∈M and ξ ∈ T ∗xM . Sets of indices are denoted
in calligraphic font (e.g I). Next, we list symbols that are used repeatedly in the text
along with the location where they are first defined.
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Cr,tx (1.5)
ΣH,p (2.1)
ϕt (2.2)
Kα (2.3)
rH (2.8)
Kp (2.6)
I0 (2.9)

HΣ (2.10)
τinj (2.11)
Λτ
A

(r) (2.12)
Λτρ(r) (2.13)
Jh(w) (2.14)
Te(h) (2.15)
Λmax (2.15)

βδ (3.1)
Dn Prop. 3.3
Ψk
δ (A.1)

Skδ (A.1)

Hk
scl (A.3)

MSh Def. 5

For the definition of [t, T ] non-self looping, see (1.3). For that of (D, τ, r) good covers,
see Definition 4.

A.2. Notation from semiclassical analysis. We refer the reader to [Zwo12] or [DZ19,
Appendix E] for a complete treatment of semiclassical analysis, but recall some of the
relevant notation here. We say a ∈ C∞(T ∗M) is a symbol of order m and class
0 ≤ δ < 1

2 , writing a ∈ Smδ (T ∗M) if there exists Cαβ > 0 so that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβh−δ(|α|+|β|)〈ξ〉m−|β|, 〈ξ〉 := (1 + |ξ|2g)1/2. (A.1)

Note that we implicitly allow a to also depend on h, but omit it from the notation. We
then define S∞δ (T ∗M) :=

⋃
m S

m
δ (T ∗M). We sometimes write Sm(T ∗M) for Sm0 (T ∗M).

We also sometimes write Sδ for Smδ . Next, we say that a ∈ Scomp
δ (T ∗M) if a is supported

in an h-independent compact subset of T ∗M .
Next, there is a quantization procedure Oph : Smδ → L(C∞(M),D′(M)) and we say

A ∈ Ψm
δ (M) if there exists a ∈ Smδ (T ∗M) so that Oph(a)− A = O(h∞)Ψ−∞ where we

say an operator is O(hk)Ψ−∞ if for all N > 0 there exists CN > 0 so that

‖Au‖HN (M) ≤ CNh
k‖u‖H−N (M),

and say an operator, A, is O(h∞)Ψ−∞ if for all N > 0 there exists CN > 0 so that

‖Au‖HN (M) ≤ CNh
N‖u‖H−N (M).

For a ∈ Sm1
δ (T ∗M) and b ∈ Sm2

δ (T ∗M), we have that

Oph(a)Oph(b) = Oph(c), c(x, ξ) ∼
∑
j

hjL2j(a(x, ξ)b(y, η))
∣∣∣x=y
ξ=η

(A.2)

where L2j is a differential operator of order j in (x, ξ) and order j in (y, η).

There is a symbol map σ : Ψm
δ (M)→ Smδ (T ∗M)/h1−2δSm−1

δ (T ∗M) so that

σ(Oph(a)) = a, σ(Oph(a)∗) = ā,

σ(Oph(a)Oph(b)) = ab, σ([Oph(a), Oph(b)]) = −ih{a, b},
and

0 −→ h1−2δΨm−1
δ (M) −→ Ψm

δ (M)
σ−→ Smδ (M)/h1−2δSm−1

δ (M) −→ 0

is exact.
The main consequence of (A.2) that we will use is that if p ∈ Sm(M) and a ∈

Skδ (T ∗M), then

[Oph(p), Oph(a)] =
h

i
Oph(Hpa) + h2−2δOph(r)
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with r ∈ Sm+k−2
δ (T ∗M).

We define the semiclassical Sobolev spaces Hs
scl(M) by

Hs
scl(M) := {u ∈ D′(M) | ‖u‖

Hs
scl

(M)
<∞}, ‖u‖

Hs
scl

(M)
:= ‖Oph(〈ξ〉s)u‖L2(M). (A.3)

A.3. Background on Microsupports and Egorov’s Theorem.

Definition 5. For a pseudodifferential operator A ∈ Ψcomp
δ (M), we say that A is

microsupported in a family of sets {V (h)}h and write MSh(A) ⊂ V (h) if

A = Oph(a) +O(h∞)Ψ−∞

and for all α,N , there exists Cα,N > 0 so that

sup
(x,ξ)∈T ∗M\V (h)

|∂αx,ξa(x, ξ)| ≤ Cα,NhN .

For B(h) ⊂ T ∗M , will also write MSh(A) ∩B(h) = ∅ for MSh(A) ⊂ (B(h))c.

Note that the notation MSh(A) ⊂ V (h) is a shortening for MSh(A) ⊂ {V (h)}h.

Lemma A.1. Let 0 ≤ δ < 1
2 and δ′ > δ, c > 0. Suppose that A ∈ Ψcomp

δ (M) and that
MSh(A) ⊂ V (h). Then,

MSh(A) ⊂
{

(x, ξ)
∣∣ d((x, ξ), V (h)c

)
≤ chδ′

}
.

Proof. Let A = Oph(a) +O(h∞)Ψ−∞ . Suppose that

2r(h) := d
(
ρ1, V (h)c

)
≤ chδ′

and let ρ0 ∈ V (h)c with d(ρ1, ρ0) ≤ r(h). Then, for any N > 0,

|∂αa(ρ1)| ≤
∑

|β|≤N−1

|∂α+βa(ρ0)|r(h)|β| + C|α|+N sup
|k|≤|α|+N,T ∗M

|∂ka|r(h)N

≤
∑

|β|≤N−1

sup
V c
|∂α+βa(ρ)|r(h)|β| + CαNh

−Nδr(h)N

≤ CαNMhM + CαNh
−Nδr(h)N

So, letting N ≥M(δ′ − δ)−1,

|∂αa(ρ1)| ≤ CαMhM .

�

Lemma A.2. Let 0 ≤ δ < 1
2 and A,B ∈ Ψcomp

δ (M). Suppose that MSh(A) ⊂ V (h)
and MSh(B) ⊂W (h).

(1) The statement MSh(A) ⊂ V (h) is well defined. In particular, it does not depend
on the choice of quantization procedure.

(2) MSh(AB) ⊂ V (h) ∩W (h)
(3) MSh(A∗) ⊂ V (h)
(4) If V (h) = ∅, then WFh(A) = ∅.
(5) If A = Oph(a) +O(h∞)Ψ−∞, then MSh(a) ⊂ supp a.
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Proof. The proofs of 1-3 are nearly identical, relying on the asymptotic expansion for,
respectively, the change of quantization, composition, and adjoint so we write the proof
for only (2). Write

A = Oph(a) +O(h∞)Ψ−∞ , B = Oph(b) +O(h∞)Ψ−∞ .

Then,
Oph(a)Oph(b) = Oph(a#b) +O(h∞)Ψ−∞

where

a#b(x, ξ) ∼
∑
j

hjL2ja(x, ξ)b(y, η)
∣∣∣x=y
ξ=η

and L2j are differential operators of order 2j. Suppose that MSh(A) ⊂ V . Then, for
any N > 0.

sup
V c
|∂αa| ≤ CαNhN .

So, choosing M > (N + δ|α|)(1− 2δ)−1,

|∂αa#b| ≤

∣∣∣∣∣∂α ∑
j<M

hjL2ja(x, ξ)b(y, η)
∣∣∣x=y
ξ=η

∣∣∣∣∣+ CαMh
M(1−2δ)−|α|δ ≤ CαNhN

In particular,
sup
V c
|∂αa#b| ≤ CαNhN .

An identical argument shows

sup
W c
|∂αa#b| ≤ CαNhN .

(4) follows from the definition since if V (h) = ∅, a ∈ h∞Sδ.
(5) follows easily from the definition. �

Lemma A.3. Let ϕt := exp(tHp) and Σ ⊂ T ∗M compact. There exists δ > 0 small
enough and C1 > 0 so that uniformly for t ∈ [0, δ], and (xi, ξi) ∈ Σ.

1

2
d
(
(x1, ξ1), (x2, ξ2)

)
− C1d

(
(x1, ξ1), (x2, ξ2)

)2 ≤ d(ϕt(x1, ξ2), ϕt(x2, ξ1)
)

≤ 2d
(
(x1, ξ1), (x2, ξ2)

)
+ C1d

(
(x1, ξ1), (x2, ξ2)

)2
(A.4)

where d is the distance induced by the Sasaki metric. Furthermore if ϕt(xi, ξi) =
(xi(t), ξi(t)),

dM (x1(t), x2(t)) ≤ dM (x1, x2) + C1d
(
(x1, ξ1), (x2, ξ2)

)
δ (A.5)

where dM is the distance induced by the metric on M .

Proof. By Taylor’s theorem

ϕt(x1, ξ1)− ϕt(x2, ξ2) = dxϕt(x2, ξ2)(x1 − x2) + dξϕt(x2, ξ2)(ξ1 − ξ2)

+OC∞(sup
q∈Σ
|d2ϕt(q)|(|ξ1 − ξ2|2 + |x1 − x2|2)

Now,
ϕt(x, ξ) = (x, ξ) + (∂ξp(x, ξ)t,−∂xp(x, ξ)t) +O(t2)
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so

dξϕt(x, ξ) = (0, I) + t(∂2
ξp,−∂2

ξxp) +O(t2)

dxϕt(x, ξ) = (I, 0) + t(∂2
xξp,−∂2

xp) +O(t2).

In particular,

ϕt(x1, ξ1)− ϕt(x2, ξ2) = ((0, I) +O(t))(ξ1 − ξ2) + ((I, 0) +O(t))(x1 − x2)

+O((ξ1 − ξ2)2 + (x1 − x2)2)

and choosing δ > 0 small enough gives the result. �

Appendix B. Proofs of Lemmas 1.2 and 1.3

Lemma B.1. Let t, T > 0 and suppose that G ⊂ S∗xM is a closed set that is [t, T ]
non-self looping. Then there is R > 0 such that BT ∗M (G,R) is [t, T ] non-self looping.

Proof. We will assume that ϕs(G)∩G = ∅ for s ∈ [t, T ], the case of s ∈ [−T,−t] being
similar. Let q ∈ G. We claim there is Rq > 0 such that⋃

s∈[t,T ]

ϕt(BT ∗M (q,Rq)) ∩BT ∗M (G,Rq) = ∅.

Suppose not. Then there are qn → q and sn ∈ [t, T ] such that d(ϕsn(qn), G) → 0.
Extracting subsequences, we may assume sn → s ∈ [t, T ] and ϕsn(qn) → ρ ∈ G. But
then ϕs(q) = ρ and, in particular, G is not [t, T ] non-self looping.

Now, G ⊂
⋃
q∈GB(q,Rq) and hence, by compactness, there are qi, i = 1, . . . N ,

such that G ⊂
⋃N
i=1B(qi, Rqi). In particular, there is 0 < R < miniRqi such that

B(G,R) ⊂
⋃N
i=1B(qi, Rqi). This implies that B(G,R) is [t, T ] non-self looping. �

Lemma B.2. Let τ,D, t, T > 0, R(h) ≥ 8hδ, and {Λτρj (R(h))}j∈G be a (D, τ, R(h))

good cover of S∗xM . Suppose that G ⊂ S∗xM is closed and [t, T ] non-self looping. Then,
for all ε > 0, there is R > 0 small enough such that for R(h) < R,

G := {j ∈ J | Λτρj (R(h)) ∩BS∗xM (G,R) 6= ∅}

satisfies ⋃
j∈G

Λτρj (R(h)) is [max(t, 3τ),max(t, 3τ, T )] non-self looping (B.1)

and
|G| ≤ DR(h)1−n(volS∗xM (G) + ε). (B.2)

Proof. By Lemma B.1, there is R0 > 0 such that B(G,R0) is [t, T ] non-self looping.
Furthermore, since G is closed, there is R1 > 0 such that

volS∗xM (B(G,R1)) < volS∗xM (G) + ε.

Therefore, putting R = min(R0/4, R1/4), for R(h) ≤ R, and j ∈ G,⋃
j∈G

Λτρj (R(h)) ∩ S∗xM ⊂ BT ∗M (G,min(R0, R1)).

In particular, (B.1) and (B.2) hold. �
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Proof of Lemma 1.2. Suppose that x non-self focal. Let LTx := T−1
+ ([0, T ]) and note

that for all T > 0, LTx is closed. Thus, by Lemma B.2 for all T > 0 there is R0 =

R0(T ) > 0 such that for R(h) ≤ R0, with B̃ := {j | Λτρj (R(h)) ∩ BS∗xM (LTx , R0)}, one

has

|B̃| ≤ R(h)1−n

T
.

Next, since G := S∗xM \B(LTx , R0) is closed and [injM/2, T ] non-self looping, there
is R1 = R1(T ) > 0 such for R(h) ≤ R1 and

G = {j | Λτρj (R(h)) ∩B(G,R1)},

equation (B.1) holds with t = injM/2 and T = T . PuttingR(T ) := min(R1(T ), R2(T )),

B := B̃ \ G, and defining

h0(T ) = inf{h > 0 | R(h) > R(T )}, T (h) = sup{T > 0 | h0(T ) > h},
we have shown that x is (injM/2, T (h)) non-looping. �

Proof of Lemma 1.3. Let R±,δ,Sx be the set of points ρ ∈ S∗xM for which there exists
0 < ±t ≤ S such that ϕt(ρ) ∈ S∗xM and d(ϕt(ρ), ρ) ≤ δ. Then,

Rx =
⋂
δ>0

⋃
S>0

Rδ,Sx , Rδ,Sx :=
⋂
±
R±,δ,Sx .

Note that Rδ,Sx is closed for all δ, S, and that for all ε > 0 there is δ > 0 such that for
all S > 0

volS∗xM (RS,δx ) ≤ volS∗xM (Rx) + ε.

Now, assume that x is non-recurrent. Then for all ε > 0, there is δ = δ(ε) > 0 such
that for all S > 0

volS∗xM (RS,δx ) ≤ ε.

Let {ρi}N(δ)
i=1 ⊂ S∗xM be such that S∗xM ⊂ ∪iB(ρi, δ/4) and N(δ) ≤ Cδ1−n.

Letting G0 := RS,δx , by Lemma B.2 there is R0 = R0(ε, S) > 0 such that for

R(h) ≤ R0, defining G̃0 := {j | Λτρj (R(h)) ∩BS∗xM (Gi, R0)}, we have

|G̃0| ≤ DR(h)1−nε,

Next, let Gi := BS∗xM (ρi, δ/4) \ BS∗xM (RT,δx , R0) so that Gi is closed and [injM/2, S]
non-self looping. By Lemma B.2, there are Ri = Ri(ε, S) > 0 such that for R(h) ≤
miniRi, if we set G̃i := {j | Λτρj (R(h)) ∩BS∗xM (Gi, Ri)}, then

|G̃i| ≤ R(h)1−nDδn−1, i ≥ 1

and for i ≥ 1, ⋃
j∈G̃i

Λτρj (R(h)) is [injM/2, S] non-self looping.

Then, we have

N∑
i=0

√
|G̃i|R(h)n−1 injM

2S
≤ N(δ)δ

n−1
2

√
D injM

2S
+
√
Dε.
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Now, for ε := 1
4DT let δ := δ(ε) and set S := 2N2(δ)δn−1D injM . Working with

Ri = Ri(ε, S) = Ri(T ) as defined before, we have

N∑
i=0

√
|G̃i|R(h)n−1 injM

2S
≤
√

1

T
.

Defining

h0(T ) = inf{h > 0 | R(h) > min
i
Ri(T )}, T (h) = sup{T > 0 | h0(T ) > h},

we have shown that x is (injM/2, T (h)) non-recurrent. �
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