EIGENFUNCTION CONCENTRATION VIA GEODESIC BEAMS
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ABSTRACT. In this article we develop new techniques for studying concentration
of Laplace eigenfunctions ¢, as their frequency, A, grows. The method consists of
controlling ¢x(x) by decomposing ¢ into a superposition of geodesic beams that
run through the point x. Each beam is localized in phase-space on a tube centered
around a geodesic whose radius shrinks slightly slower than A~2. We control ox(z)
by the L?-mass of ¢ on each geodesic tube and derive a purely dynamical statement
through which ¢ (x) can be studied. In particular, we obtain estimates on ¢x(x) by
decomposing the set of geodesic tubes into those that are non self-looping for time
T and those that are. This approach allows for quantitative improvements, in terms
of T, on the available bounds for L°° norms, L” norms, pointwise Weyl laws, and
averages over submanifolds.

1. INTRODUCTION

On a smooth, compact, Riemannian manifold (M", g) with no boundary, we consider
sequences of Laplace eigenfunctions {¢,} solving

(—Ag = A*)¢r =0, [0All2 ) = 1- (1.1)
From a quantum mechanics point of view, |¢(z)|? represents the probability density for
finding a quantum particle of energy A2 at the point = € M. As a result, understanding
how ¢) concentrates across M is an important problem in the mathematical physics
community.

In this article, we construct tools to examine the behavior of ¢, by decomposing
it into geodesic beams. To study how ¢, concentrates near x € M, we rewrite ¢, as
a sum of functions, each of which is microlocalized to a shrinking neighborhood of a
geodesic that runs through z. The analysis of this decomposition, including a precise
description of the L> behavior of each geodesic beam, yields a bound on ¢, () in terms
of the local structure of the L?-mass of ¢, along each of the geodesic tubes starting
at z. In addition, through an application of Egorov’s theorem, we obtain estimates on
the growth of ¢y (z) that rely only on the dynamical behavior of geodesics emanating
from z, and not on any other geometric structure of (M, g). Throughout the article,
we refer to the tools developed here as geodesic beam techniques.

The term geodesic beam is inspired by Gaussian beams. Recall that, on the round
sphere, these are eigenfunctions that concentrate in a A~'/2 neighborhood of a closed
geodesic that have a Gaussian profile transverse to the geodesic. Gaussian beams have
been extensively studied in the math and physics literature (see e.g. [BL67, [Arn73|
KST71, BBI1, [DGRO6L Zell5, Wei75l, Ral77, [Ral82]). Notably, Ralston [Ral76] con-
structed quasimodes associated to stable periodic orbits modelled on Gaussian beams.
These references concern modes associated to a single closed geodesic. In contrast,
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the methods developed here decompose functions into linear combinations of what we
call geodesic beams. Each building block is similar to a Gaussian beam in that it is
associated to a geodesic and concentrates in a small neighborhood thereof. However,
three facts crucial to our construction are: that geodesic beams are only locally de-
fined, that the geodesic need not close, and that they do not need to have a Gaussian
profile transverse to the geodesic.

In this article we build the geodesic beam tools and illustrate their application
by obtaining quantitative improvements to L°° norms for eigenfunctions on certain
integrable geometries (see .

In addition, the techniques developed in this paper have remarkable implications
in the study of L° norms and averages of eigenfunctions, LP norms, and pointwise
Weyl Laws. (See respectively.) However, all of these applications
require some additional non-trivial input e.g. controlling looping behavior of geodesics
in [CGI19a], understanding the local geometry of overlapping tubes in [CG20al, and
reduction of Weyl remainders to quasimode estimates in [CG20b]. We stress that the
crucial technique in each application is that of geodesic beams, which are developed in
this article. We briefly describe the applications to L norms, averages, LP norms,
and Weyl Laws now:

L*>® norms: Beginning in the 1950’s, the works of Levitan, Avakumovié, and
Hormander [Levh2l [Avas6, [Hor68| prove the estimate ||, || = O(\"T ) as A — oo;
known to be saturated on the round sphere. This bound was improved to o(A"z")
by Sogge, Toth, Zelditch and the second author [SZ02l [STZ11l [SZ16al [SZ16D, IGT1T,
Gall9] under various dynamical assumptions at xz. Notably, [SZ02] was the first to
study L> bounds under purely local dynamical assumptions. When (M, g) has no
conjugate points, a quantitative improvement of the form ||¢y[,. = O(A"= /v/Iog\)
has been known since the classical work of Bérard [Bér77, [Bonl7, Ran78]. However,
until the present time, no quantitative improvements were available without global geo-
metric assumptions on (M, g). In we present applications of our geodesic beam
techniques giving such improvements.

Lo (M)

Averages: Another measure of eigenfunction concentration is the average over a
submanifold H C M of codimesion k. In this case, the general bound [, ¢rdoy =
O()\%) was proved by Zelditch [Zel92] and is saturated on the round sphere. This
generalized the work of Good and Hejhal [Goo83l [Hej82]. Chen—Sogge [CS15] were
the first to obtain a refinement on the standard bounds. This work has since been
improved under various assumptions by Sogge, Xi, Zhang, Wyman, Toth, and the
authors [SXZ17, Wym17, Wym19a, Wym19b, Wym18|, [CGT18, [CG19b]. As before,
none of these results obtain quantitative improvements without global geometric as-
sumptions on (M, g). In we present applications of our geodesic beam techniques
giving such improvements.

LP norms: Since the seminal work of Sogge [Sog88], it has been known that

¢ N O(M®m) where §(p, n) depends on how p compares to the critical exponent
pe =22 Namely, d(p,n) = 252 — 2 if p > p. and d(p,n) = 232 — 2L if 2 < p < p,.

When (M, g) has non-positive sectional curvature, Hassell and Tacy [HT15] gave quan-
titative gains over this estimate of the form O(M®™) /(log \)?®™) when p > p. and
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with o(p,n) = L. Blair and Sogge [BS17, [BS18] also obtained an improvement when

2
2 < p < p. for some o(p,n) > 0 smaller than % In we present applications of our

geodesic beam techniques which yield y/log A improvements for LP norms with p > p.,
generalizing those of [HT15].

Weyl Laws: Let {)\?}j be the Laplace eigenvalues of (M, g). It is well known that

#{j Ay < A} = B A 4 B()) with B(A) = O(\"1) as A — 00, where B" C R”
is the unit ball. Indeed, this is the integrated version of the more refined statement
proved by Hérmander in [HOr68] which says that 3=, _, [éx, (2)|* = V‘()é(j: IAm + E(\, z)
for all x € M, with E(\,z) = O(A""!) uniform for z € M. This estimate has been
improved by Sogge—Zelditch [SZ02] and Bérard [Bér77] under various dynamical as-
sumptions. In we present improvements of these results based on geodesic beam

techniques.

1.1. Main results: Localizing eigenfunctions near geodesic tubes. In this sec-
tion we present Theorems [I] and [2], which are our main estimates for Laplace eigen-
functions. In §2| we present much more general versions of these two results, Theorems
and that hold for quasimodes of more general operators.

In fact, we work in the semiclassical framework, writing A = h~! and letting h — 0%.
Then, relabeling ¢\ = ¢5, we study

(=h*Ag = Dép =0, |¢nll,20,, = 1. (1.2)

This rescaling is useful because it allows us to work in compact subsets of phase space,
and in particular, near the cosphere bundle S*M where geodesic dynamics naturally
take place.

Our main results give an estimate for ¢y near a point x € M. We now introduce
the necessary objects to state these estimates. We will work with a cover of S;M
by short geodesic tubes A7(R(h)) C T*M. This notation roughly means that the
geodesic tube, A}(R(h)), is the flowout of a ball of radius R(h) around p for times
t € [-7—R(h),7+ R(h)]. We will, in fact, take 7 > 0 small. This is similar to an R(h)
thickening (with respect to the Sasaki metric on T*M) of the geodesic of length 27
centered at p € S;M (see for a precise definition). We say that {A7, (R(h))};\[:”1
is a (1, R(h))-cover of S%M if it covers A§;M(%R(h)) (see Deﬁnitionfor the definition
of a cover and for the definition of AT;M(%R(h))).

In addition, a é-partition of S M associated to the (7, R(h))-cover is a collection of
functions {x; }j\]:hl C Ss(T"M; [0,1]) so that each x; is supported in the tube A7 (R(h))
and with the property that Z;V:}ll Xj = 1 on A%, (3R(h)). (See Appendix |A.2| for a
description the symbol class Ss, and Definition [3| for the definition of a J-partition.)

The functions x; are used to microlocalize ¢y, to the tubes A} (R(h)). We refer to
Opn(x;)én as a geodesic beam through x. They are constructed in Proposition and
have the additional property that Opp(y;) nearly commutes with (—h?A, — 1) near
x (so that these localizers do not destroy the property of being a quasimode locally
near z). (See also Step 2 in the proof of Theorem [10}) The fact that Opp(x;) nearly
commutes with (—h2A, — 1) requires that we work with geodesic tubes of positive
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length, 7, independent of h rather than localizing to balls of radius R(h) centered in
S*M.

In the following result, we control ¢y (x) by the L?-mass of the geodesic beams
through z.

Theorem 1. Let x € M. There exist 9 = 10(M, g) > 0, Ry = Ro(M,g) >0, Cp, >0
depending only on n, so that the following holds.

Let 0<7<71,0<0< %, and 8h? < R(h) < Ry. Let {x; é\’:le be a d-partition for
SxM associated to a (1, R(h))-cover. Let N > 0.

Then, there are hg = ho(M,g,{x;},0) > 0 and C, > 0 with the property that for
any 0 < h < hg and ¢y, satisfying ,

Np
_1. 1-nm n—1
16nll o By < Cnr™ 202 R(R) TS [0pn(X7)Bhlla gy + Cuh™ 60l
j=1

Moreover, the constants hg and Cy, are uniform for x; in bounded subsets of Ss.

Crucially, this estimate makes no assumptions on the geometry of M or the dynamics
of the geodesic flow. Information on the dynamics of the geodesic flow will later allow
us to control the L? mass of the geodesic beams (see Theorem .

This result is a consequence of the more general and stronger result given in Theo-
rem [10| below. (See Remark |§| for the proof.) Indeed, the latter is stated as a bound
for f g Undop, where H C M is a general submanifold and wuy, is a quasimode for a
pseudodifferential operator with a real, classically elliptic symbol with respect to which
H is conormally transverse. Note that when H = {x} we have [, updog = up(x). See
for a detailed description.

One can conclude from Theorem [I] that, in order to have maximal sup-norm growth
at a point, an eigenfunction must have a component with L? norm bounded from below
that is distributed in the same way as the canonical example on the sphere (up to scale
ho for all § < 1). Indeed, if one restricts attention to (7,7) covers of S;M without too
many overlaps (see Definition ) it follows from Theorem (1| that there exists C),, > 0,
so that for all € > 0, if

n—1
#{j e R0 < 0P () enlll, < R(Z)z} < %Ny,
then |[8h]| oo (m(p poy) < €CnT 2h' 7.

To understand Theorem [I] heuristically, one should think of [|Opp(x;)énllz2(a) as

measuring the L? mass of ¢;, on the tube of radius R(h) around a geodesic that runs

through the point z. Since vol(suppx;) < R(h)"~!, an individual term in the sum in
Theorem [ is then

HOPh(Xj)GﬁhHQLQ(M)
vol(supp x;)

R(h)%||0ph(Xj)¢h”L2(M) = ( ) vol(supp x;),

where vol is the volume measure on S;M induced by the Sasaki metric on T*M. In
particular, the sum on the right of the estimate in Theorem [I] can be interpreted as

1
| SzM !% 2dvol, where y is the measure giving the distribution of the mass squared of
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¢p onSEM. This statement can be made precise by using defect measures (see [CG19b),
Theorem 6]), but the results using defect measures can only be used to obtain o(1)
improvements on eigenfunction bounds.

We emphasize now that Theorem [I]is the key estimate for the proofs of all the appli-
cations to L>°-norms, LP-norms, and Weyl Laws stated in respectively.

At first sight it may seem that it is not easy to extract information from the upper
bound provided in Theorem However, the strength of this bound is showcased in
our next result, Theorem [2 The latter combines the analytical bound of Theorem
together with Egorov’s Theorem to obtain a purely dynamical statement. Indeed,
¢n(x) is controlled by covers of AG. v (3R(h)) by “good” tubes that are non self-looping
under the geodesic flow, o := exp(tH¢|,) (where Hj¢|  is the Hamiltonian vector field
of |€]4), and “bad” tubes whose number is small.

Definition 1. (non-self looping sets) For 0 < ¢ty < Ty, we say that A C T*M is [to, To]
non-self looping if

To —to
Ue@)na=p o U @e(4na=o. (1.3)
t=to t=—To

The goal of our next result is to obtain quantitative control of ¢p(x) by splitting
the geodesic tubes into “good” tubes {A] (R(h))}jeg, that are [t¢, Ty] non self-looping
and “bad” tubes {A] (R(h))}jep that may be self-looping. The quantitative control
is then given in terms of t;, Ty, |G|, and |B|. Recall that 7 > 0 is a small parameter
so the tubes A7(R(h)) do not see the global dynamical structure of the geodesic flow.
It is only when Ty > 7 that one encounters this information.

It is convenient to work with covers by tubes for which the number of overlaps is
controlled. Indeed, we say that a (7, R(h))- covering by tubes is a (D, 7, R(h))-good
covering, if it can be split into ® > 0 families of disjoint tubes. See Definition [4]
for a precise definition. In Proposition [3.3] we prove that one can always work with
(D, 7, R(h))-good coverings, where ©,, only depends on n.

In what follows we write Apax for the maximal expansion rate of the flow and T, (h)

for the Ehrenfest time T, (h) := l;iﬁ: (see (2.15))).

Theorem 2. Letx € M, 0 <6 < % There exist positive constants hg = ho(M, g, 9),
70 = 10(M,g), Ry = Ro(M,g), and C,, depending only on n, so that for all 0 < 7<7y
and 0 < h < hg the following holds.

Let 8h° < R(h)<Ry, and {A7, (R(h))}jvzhl be a (D, 71, R(h))-good cover for SIM for

some® > 0. Let 0 < o < 1 —2limsupy,_,g lolgogéh) and suppose there exists a partition

of {1,...,Np} into B and {Gy}eer such that for every ¢ € L there exist Ty = Ty(h) > 0
and ty = tg(h) > 0 with t;(h) < Ty(h) < 2aT.(h) such that

U A;j(R(h)) is [te, Ty] non-self looping.
JEG,
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Then, for all N > 0 there exists C, = C (M, g, N, ,8) > 0 so that for ¢p, solving (1.2))

1
1. 1-n \ge\ t2
[9n i (5ot < CuD7~ 5" R(R) (|B| PSR Ol

teL Te

Remark 1. Note that, since the tubes A} (R(h)) are essentially time 7 flowouts of
balls around p; with radius R(h), if the ball of radius R(h) around p; is [t — 7,7 + 7]
non-self looping then A} (R(h)) is [t, T] non-self looping. Therefore, we could replace
the non-self looping assumption on A;j (R(h)) in Theorem [2| by an analogous non-self
looping assumption on B(pj, R(h)). Note, however, that these balls cannot be replaced
by balls inside S; M. We need them to have full dimension so that smooth cutoffs can
be supported inside A7 (R(h)). Moreover, it is necessary that they encode quantitative
information on how geodesics near the center of A7(R(h)) return close to .

This result is a consequence of the more general and stronger result given in Theo-
rem [I1] See Remark [7] for the proof. As with the previous theorem, the generalization
is stated for averages over submanifolds of quasimodes of general operators. See
for a detailed explanation. For examples where Theorem [2|is applicable see and

L5

We note that Theorem [2] distinguishes much finer features than that of self-conjugacy
with maximal multiplicity. Indeed, the theorem can be used to obtain estimates at
points all of whose geodesics return; provided the geodesics through the point have
some additional non-recurrent structure (e.g. the umbillic points on the triaxial el-
lipsoid; see . In particular, this estimate distinguishes recurrent structure and
non-recurrent structure as in Definition At this point, we do not know to what
extent it distinguishes periodic structure from recurrent structure.

Theorem [2 reduces estimates on ¢y (x) to the construction of covers of A;;M (3R(h))

by sets with appropriate structure. Here AT (%R(h)) denotes a £ R(h) thickening of
the set of geodesics through x, see (2.12)). If there is a cover of AT (%R(h)) by “good”

sets {Gr}eer and a “bad” set B, with every Gy being [t¢(h), Tg(h)] non-self looping,
the estimate reads

1 1
lon [vol(Gy)]zt}
|’¢h||Loo (z,h8)) = C’n’DT*%h12 [vol(B %_’_E : [v f g

T2 "¢h”L2(AI)’
el

where vol denotes the volume induced on S;M by the Sasaki metric on T*M, and
where we write vol(A4) = vol(A N SiM) for A C T*M. The additional structure
required on the sets Gy and B is that they consist of a union of tubes A7 (R(h)) and
that Ty(h) < 2(1 — 25)Tc(h).

With this in mind, Theorem [2| should be thought of as giving a non-recurrent con-
dition on S; M which guarantees quantitative improvements over the standard bounds
(see Definition [2[ for a precise explanation of what we mean by non-recurrent struc-
ture). In particular, taking 7}, t;, Gy and B to be h-independent can be used to recover
the dynamical consequences in [CGI19b, [Gal19] (see [Gall8] and Section [1.6)).
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In §5| we illustrate how to build covers by good and bad tubes in some integrable
geometries, and how to use them to obtain quantitative improvements over the known
L*-bounds. In the figure we illustrate how to cover SM with “good” tubes (green)
and “bad” tubes (orange) for a point x on the square flat torus. The grid represents
the integer lattice on the universal cover of the torus. In the figure, there is only one
index i.e. £ = 1, and we chose t; =t =1.6, Ty = T=2.7, 7 = 0.2, and R = 0.01.
In the figure, the length of the green/orange tubes is 2(7 + R). Note that some of
the green tubes are not [37,T| non-self looping but are [t,T] non-self looping e.g. the
tube at angle w/4. In practice, to obtain quantitative gains, one needs to work with
T — oco. The figure is drawn for one relatively small T" because choosing a larger T’
makes the figure illegible. A tube is “bad” if the geodesic generated by it returns to x
in time between ¢ and 7. Note, in addition, that ¢, must be positive since our tubes
have finite, positive width in the flow direction. Also, a set may be [to, T] self-looping,
but not [fo, T] self-looping for some %y > ¢ e.g. a neighborhood, U\ V C T*M, where
U is a neighborhood around an unstable hyperbolic closed geodesic in phase space and
V is a slightly smaller neighborhood. While, at the moment we do not have examples
where it is necessary to send ty — oo with h, we anticipate this will be useful in the
future.

To understand why it is in general useful to have families of tubes G, with different
looping times, [tg, Ty], we consider the following setup. We assume that the geodesic
flow is exponentially contracting in the sense that

| dee|sen|] < Ce™ .

For simplicity, let dim M = 2. The way in which we work with the assumption on the
geodesic flow is that the flow out of an arc of length R in S; M will have length e TR
upon return to S;M at time 7. We, in general, do not have information about the
place to which the arc returns. Suppose we want to cover SiM with tubes of radius
R and divide them into [to,T'(h)] non-self looping collections Gy such that Theorem
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gives a log h~! gain. Note that, for simplicity, we identify each tube with the arc of
length R that is formed by its intersection with S;M. Since R > h?, and, in order to
get a log h~! improvement, we must take T'(h) ~ log h~!, we have R > e~ CT(h),

To simplify the situation further, we discretize the time and imagine that the return
map, P, has the properties above. To produce a non-self looping collection, we start
with an arc A of length ~ 1. To construct a [to, T'(h)] non-self looping set, Gy, we let

Al = U (I)k(Ao) N Ao, Gy := Ay \ Aj.
to<k<T(h)

Since we do not know the directions in which Ag returns, Ay apriori consists of intervals
of size e ¢, e2¢ ... e CT(")  Hence, A; has volume ~ e~¢ and is [to, T'(h)] self-
looping. In order to get a T'(h)~! improvement with only one T;(h) = T(h), any set
which is [tO,T (h)] self looping must have volume < CT'(h)~!. Since A;’s volume is
> T'(h)~!, we must iterate this process by putting

Ap = U (I)k(Agfl) N A[—l, Go_1:= A \Af

to<k<T(h)

Apriori, Ay has volume ~ e~ is [ty, T'(h)] self-looping, and consists of intervals of
size e=Cl e~ CUHD)  o=C(T(M+0), Therefore in order to gain T'(h)~! in our estimates,
we must iterate until e~ ~ T'(h)~!. That is, £(h) ~ log T(h). Note that in this case
the smallest arc in Ay, has length

e~ CTM+UR) ., jC(1)~C .

Now, depending on C, this may be < h®, which is the scale of our cover. There are a
two ways around this. We could shrink 7'(h) so that this scale is above R. However,
this would be somewhat unnatural since then our dynamical gain would necessarily
depend on the contraction rate. So that we may use our original T'(h), while still
having a scale above h?, we shrink the non-self looping times at each step so that
Gy is e C“2T(h) non-self looping. In doing this, we have that Gy is [to, e~ “/>T'(h)]
non-self looping and has volume ~ e~%*. In addition, the minimum size of an interval
in Ap is e i O) Iterating until £ ~ log T'(h), then enables us to obtain our
estimates.

In the following sections, §I.2] we showcase a few of the many applica-
tions of Theorem [2] in obtaining quantitative improvements for L norms, LP norms,
pointwise Weyl laws, and averages over submanifolds.

1.2. Improvements to L°°-norms and averages. In this section we introduce some
of the applications of geodesic beam techniques to the study of the L norms of ¢y,
and of the averages f 1 ¢ndoy over a submanifold H C M. The goal is to obtain
quantitative improvements on the known bounds [Hor68| [Zel92]

1—n

on(@) = O(h'F")  and / on()doy = O(h'F"), (1.4)

where k is the codimension of H. These bounds are sharp since they are, for example,
saturated on the round sphere. Note that the right hand estimate includes the left if
we take H = {z}. In §1.2.1| we present applications of our geodesic beam techniques
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to studying eigenfunction growth on manifolds with no conjugate points, or whose
geometries satisfy a weaker condition. These results, and many more, can be found in
[CG19a]. In we present applications to obtaining quantitative improvements of
L®° norms in integrable geometries. The proofs of these and more general results are
presented in

1.2.1. Results under conjugate point assumptions. It is well known that the L>° bound
in is saturated on the round sphere if one chooses ¢j, to be a zonal harmonic that
peaks at the given point x € S™. This phenomenon is possible since all geodesics
through z are closed. In addition, on the sphere every point is maximally self-
conjugate. In general, a point x € M is said to be conjugate to y € M if there
exists a unit speed geodesic v joining x and y, together with a non-trivial Jacobi field
along v that vanishes at z and y. The number of such Jacobi fields that are linearly
independent is called the multiplicity of x with respect to y and is always bounded by
n—1. When the multiplicity equals n—1 the point z is said to be maximally conjugate
to y. As a consequence of our geodesic beam techniques, we obtain quantitative im-
provements on the L*° norm of an eigenfunction near a point = that, loosely speaking,
is not maximally self-conjugate.
Consider the set = of unit speed geodesics on (M, g) and define

Cit = {~(t)|v € E,7(0) = =, In — 1 conjugate points to = in y(t —r,t +7)}, (1.5)

where we count conjugate points with multiplicity. Note that if 7, — 01 as |t| — oo,
then saying that x € citt for t large indicates that x behaves like a point that is
maximally self-conjugate. This is the case for every point on the sphere. The following
result applies under the assumption that this does not happen and obtains quantitative
improvements in that setting. The obvious case where our next theorem applies is that
of manifolds without conjugate points, where Co' = for 0 < r < |t|. In addition, the
theorem applies to all non-trivial product manifolds M = M; x My (see § .

Theorem 3 ([CG19a, Theorem 1]). Let V' C M and assume that there exist to > 0
and a > 0 so that

inf d(z,Ctt) > 7y, t>t
égv (:c . )_rt fort > tg,

with ry = %e_at. Then, there exist C' > 0 and hg > 0 so that for 0 < h < hg and
u e D'(M)

1 [l log hi1
iy <007 (e VIR, e, )

\/1og h—1

For a definition of the semiclassical Sobolev spaces HZ, see (A.3). Here and below,
when we write ||v|| s for some v € D’ with v ¢ HE,, we define v ps, = oo.

Before stating our next theorem, we recall that if (M, g) has strictly negative sec-
tional curvature, then it also has Anosov geodesic flow [Ano67]. Also, both Anosov
geodesic flow [KIi74] and non-positive sectional curvature imply that (M, g) has no

conjugate points.
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Theorem 4 ([CG19a, Theorems 3 and 4]). Let (M,g) be a smooth, compact Rie-
mannian manifold of dimension n. Let H C M be a closed embedded submanifold of

codimension k. Suppose one of the following assumptions holds:

(M, g) has no conjugate points and H has codimension k > ”TH
(M, g) has no conjugate points and H is a geodesic sphere.

(M, g) is a surface with Anosov geodesic flow.

Sawe

(M, g) is non-positively curved and has Anosov geodesic flow, and H has codi-
mension k > 1.

=

(M, g) is non-positively curved and has Anosov geodesic flow, and H is totally
geodesic.
F. (M, g) has Anosov geodesic flow and H is a subset of M that lifts to a horo-
sphere in the universal cover.
Then, there exists C > 0 so that for all w € C(H) the following holds. There is
ho > 0 so that for 0 < h < hy and u € D'(M)

_ [Jull VIog h—1
| / wudon| < Ch'F wloo (=222 4+ Y280 (<22 — D] ws ). (16)
H v/log h H f (M)

Remark 2. Note that while C' > 0 in (1.6 is independent of w, the choice of hg > 0
depends on high order derivatives of w.

To the authors’ knowledge, the results in [CG19a] improve and extend all exist-
ing bounds on averages over submanifolds for eigenfunctions of the Laplacian, in-
cluding those on L* norms (without additional assumptions on the eigenfunctions;
see Remark |8 for more detail on other types of assumptions). Our estimates imply
those of |[CGI19Db] and therefore give all previously known improvements of the form
[y udog = o(h%k). Moreover, we are able to improve upon the results of [WymI8§|
Wym19al [SXZ17, Bér77, Bonl7, Ran7§].

1.2.2. Integrable geometries. Next, we present a class of integrable geometries for which
log h~! improvements over the standard bounds are a consequence of Theorem [2{ and
its generalization, Theorem We apply Theorem to the case of Schrodinger
operators, —thg + V, acting on spheres of revolution where the bicharacteristic flow
is integrable. When V' = 0, these examples give manifolds with many conjugate points
where we are able to obtain quantitatively improved L° bounds away from the poles
of S2.

To state our results, we identify the surface of revolution M with [0, ] x S* endowed
with the metric g(r,0) = dr? + a(r)?df*. We then consider operators of the form
P(h) = —h?A, — V with V > 0. The Hamiltonian for this problem is then

p(97ra 59757“) - 51? + ﬁ fg - V(T>

and we assume that the map r — «a(r)/V(r) has a single critical point at r = 7
which is a non-degenerate maximum. In order that M be equivalent to a sphere, a(r)
must satisfy o(?#)(0) = 0 and ?*) (1) = 0 for all non-negative integers k.

Since {p, &} = 0, the pair (M, p) yields an integrable system on T*M. Let (©,1) €
T2 xR? be action-angle coordinates so that T*M = | | 1er2 T7 is the foliation by Liouville
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tori (possibly with some singular elements). That is, in the (©, I) coordinates p = p(I)
and hence the Hamiltonian flow is given by

Sot(@7j) = (@ + talp(l)a I)'

There is a single singular torus corresponding to the closed Hamiltonian bicharacteristic
vs := {r = rs}. In addition, we make the following assumption

(1) The map {p =0} > I ~ 9rp(I) € RP? is a diffeomorphism. When this is the
case at Ij, we say p is iso-energetically non-degenerate at Iy on {p = 0}.

Theorem 5. Let o and V satisfy the assumptions above. Then, for
P=—h*A,—V(r)+hQ (1.7)

with Q € V(M) self-adjoint, and K C [0,27] x (0,7) compact, there exists C > 0 with
the following properties. For all L > 0 there exists hg > 0 so that for 0 < h < hg, and
u e D(M)

=)
ey < - iz EVEERT TP, 4,
U|| J,00 .
LK) = Ly/logh~1 h

Rllull 5
= o(w), then

In particular, if HPUHH Tog h-1

-4
sel (M)

h2
||UHL°<>(K) =0 <\/logTHuHL2(M)> .

Remark 3. Note that we make no assumptions on w. In particular, u need not
be a joint eigenfunction of the quantum completely integrable system. Furthermore,
the addition of the perturbation hQ (for @) general) destroys the quantum complete
integrability of the operator.

1.3. Logarithmic improvements for LP-norms. Since the work of Sogge [Sog8§]
it has been known that

n—1 n
_ 5 T D 2 De;
[[&n = O(h™°P™) S(p,n) =<2 P
e ’ 7 n41 - n2p1 2 S p S Des
where p. = 2(::1). This bound is saturated on the sphere by zonal harmonics when

p > p. and by highest weight spherical harmonics (a.k.a Gaussian beams) when p < p,.
(See e.g [Tacl8| for a description of extremizing quasimodes.)

It is then natural to look for quantitative improvements on this bound under different
geometric assumptions. When (M, g) has non-positive sectional curvature, a bound of
the form

h—0(p.n)
all Locary = O<(10gh_1)g(m)

was proved by Hassell-Tacy [HT15], with o(p,n) = %, for the case p > p.. In the

same setting, Blair-Sogge [BS17, [BS18] studied the 2 < p < p. case and obtained a
logarithmic improvement for some o(p,n) that is smaller than %
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An application of Theorem 2| gives (log h_l)% improvement when p > p. under very
weak assumptions on the set of conjugate points of (M,g). Indeed, given = € M,
r > 0, and ¢ > 0, we continue to write Cot for the set of points defined in . Note
that if 7, — 0% as |[t| — oo, then saying that y € Ci*" for ¢ large indicates that y
behaves like point that is maximally conjugate to x.

Theorem 6 ([CG20a]). Let p > p.. Let V.C M and assume that there exist ty > 0
and a > 0 so that

Jnf d(y.C) = r, fort >,

with ry = e_at. Then, there exist C > 0 and hg > 0 so that for 0 < h < hg, and ¢p

satisfying (.2,
p—8(pn)

Vg h—1

One should think of the assumption in Theorem [0] as ruling out maximal conjugacy
of the points z and y uniformly up to time oo.

onllrvy < C

Remark 4. There are estimates in terms of the dynamical properties of covers by tubes
similar to Theorem [2] for each of the bounds in Theorems and [0} In particular,
these estimates do not require global geometric assumptions on (M, g), instead only
using dynamical properties near S;M or SN*H.

1.4. Logarithmic improvements for pointwise Weyl Laws. Let {hj_Q}j be the

eigenvalues of (M, g). It is well known that #{j : h;' <h™'} = %}’gl(mh—" + E(h)
with E(h) = O(h'~"). Indeed, this result is the integrated version of the more refined
statement proved by Hoérmander in [Hor68| which says that for all z € M
vol(B™)  _
S ln (@) = 2B pon g, ), (18)

hTi<h—1 (%)
;<

with E(h,z) = O(h'~") uniformly for z € M. When the set of looping directions over x
has measure zero [SZ02] proved that E(h,x) = o(h'~"). Also, Duistermaat-Guillemin
[DGT75] proved an integrated version of this result by showing that E(h) = o(h'~") if
the set of closed geodesics in M has measure zero. In terms of quantitative improve-
ments, [Bér77, BonlT] prove that E(h,z) = O(h*~"/logh~!) if (M, g) has no conjugate
points. As before, another application of geodesic beam techniques is that logh ™
improvements can be obtained under weaker assumptions than having no conjugate
points.

Theorem 7 ([CG20b]). Let V C M and assume that there exist to > 0 and a > 0 so
that

inf d(z,Cot) >, t > to,
;2\/ (:c . )_rt fort >ty

with ry = %e‘at. Then, there exist C > 0 and hg > 0 so that for 0 < h < hg and

E(h,z) as in (L8),
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We remark that there are generalizations of this result to Kuznecov sums estimates,
where evaluation at x is replaced by an integral average over a submanifold H (see
[Zel92] for the first results in this direction). In addition, in the same way that The-
orem [2| can be used to obtain quantitative improvements in L°° bounds in concrete
geometric settings, the dynamical version of the estimate in Theorem [7] can be used to
obtain improved remainder estimates for pointwise Weyl laws. We show, for example,
that all non-trivial product manifolds satisfy the assumptions of Theorem [7] at every

point in § [I.5]

1.5. Examples. We now record some examples to which our theorems apply. We refer
the reader to [CG19al for many more examples. First, note that Theorem 3| applies
when M is a manifold without conjugate points. The following examples may (and
typically do) have conjugate points.

1.5.1. Product manifolds.

Lemma 1.1. Let (M;,g;), i = 1,2, be two compact Riemannian mamfolds Let M =
My x My endowed with the product metric g = g1 ® go. Then, Cm =0 for all x € M,
[t| >0, and 0 < r < t.

Proof. Let x = (z1,x2) € M and ~(t) be a unit speed geodesic on M with ~(0) = 0.
Then, there are unit speed geodesics y; and 2 in M7 and Ms respectively such that
~v1(0) = x1, 12(0) = x2, and there exists §y € R such that

v(t) = (71 (t cosbp),v2(tsinby)) € My x Mo.
Moreover, for every § € R, the curve vy := (71(tcos@),y2(tsinf)) is a unit speed
geodesic. In particular, one perpendicular Jacobi field along v = vy, is given by
J(t) = gy }0:90 = t(— sin Oy (t cos Op), cos Oy (t sinbp)).

Thus, ||J(t)|| = t, and hence J vanishes only at ¢ = 0. In particular, since there exists
a Jacobi field vanishing only at ¢ = 0, Ci* = 0) for all 0 < r < [t]. O

We point out that although Cy' is empty for 0 < 7 < |t|, M may, and often does,
have self conjugate points. For example, this is the case if M; = S™ for ny > 2.

Corollary 8. Let (M;,g;), i = 1,2, be two compact Riemannian manifolds of dimen-
ston n; > 0. Let M = M x My endowed with the metric g = g1 @ go. Then, there is
C > 0 such that for all x € M and u € D'(M),

T Viogh T
lu(z)] < ChE (ﬁ A o = Dl e S(M)).

1.5.2. The triaxial ellipsoid. We consider the triazial ellipsoid

M= {z e R®: a®2* + v*y* + *2? = 1}
with 0 < a < b < ¢. It is well known that the four umbillic points (i.e. points at which
the normal curvatures are equal in all directions) on M are maximally self-conjugate.
In fact, for an umbillic point xg, there is T' > 0 such that every geodesic through xg

returns to xg at time 7. Nevertheless, Theorem [2] and its generalization, Theorem
are useful at these points. The reason for this is the presence of a hyperbolic closed
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geodesic through g to which every other geodesic through xg exponentially converges
forward and backward in time (up to reversal of the parametrization). In particular,
letting (x0,&+) and (z9,&—) be the initial points of the hyperbolic geodesic, we have
that the stable direction for £ is given by T¢, S; M and the unstable direction for §_
is given by T¢_S;M [KIi95, Theorem 3.5.16]. Thus, for each § > 0 there is C' > 0 such
that if d(&,£F) > 6, then in for all Ft > 0 one has that

lag, ., Il < e

TS*

This type of exponential convergence can be used (see [GT18], [CG19a, Lemmas 3.1-
3.2]) to generate covers and obtain

|u<xo>|gcm(”“”“ + VO ey~ ), >)

logh—1 H.f

1.5.3. The spherical pendulum. One example to which Theorem [5] applies is that of
S%? = {x € R? : |z| = 1} the standard sphere equipped with the round metric, g, and
V € C*(S?) given by V(z1,z2,23) = 2x3. The quantum spherical pendulum is then
the operator

P=—h*A,+V.
Identifying the sphere with M = [0, 7], x [O, 27]p. The Hamiltonian is given by

p(ea T, 697 51”) = 572'

with £ € R. This Hamiltonian describes the movement of a pendulum of mass 1
moving without friction on the surface of a sphere of radius 1.
By [Hor93] for £ > ﬁ’ p is iso-energetically non-degenerate for all Iy on {p = 0}.

€2 +2cosr — E,

Sln T

It is easy to check by explicit computations that £ — 2cosr > 0 for £ > 2 and
r +— sinry/E —2cosr has a single non-degenerate maximum on [0,7]. Therefore,
taking £ = Ey > % and Q = h™'(Ey — Ej) in Theorem [5| yields the following
Corollary [9}

Corollary 9. Let B > 0, Ey > \}—% and § > 0. There exists C > 0 such that for all

L > 0 there exists hg > 0 so that the following holds. For all u € D'(S?), 0 < h < hg
and Ey, € (Eg — Bh, Ey + Bh),

—1 _ 1
< -} H lpge,  LVIBRTHP = Ep)ull -y
[[ull oo (jg | <1-6) Tog 11 W :

In particular, if [[ul|2(s2y = 1 and Pu = o(h/log h_l)L2 then

1
h™z
lll o< aaj<1-9) = 0 === ). (1.9

\/1ogh—1
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Note that if we define § = g/v/Ep — 2z3 with Ey > \}%, then Theorem [5| shows that

the eigenfunctions ¢y, for (—h%2A; — 1)¢y, = 0 satisfy the bound

1
h™2
Pnll oo (g |<1—5) = 0<7>-

log h=1

for any § > 0.

1.6. Relations with previous dynamical conditions on pointwise estimates.
In this section, we recall the previous dynamical conditions guaranteeing improved
pointwise estimates [Saf88| VS92l [SZ02, [STZ11), [SZ16al [SZ16al, [Gal19]. We first define
the loop set at x by

Ly:={peS;M| 3tecRs.t. plp) € S;M},

and recall that a point x is said to be non-self focal if volg:rs(Ly) = 0. It is proved
in [Saf88| [SZ02] that if z is non-self focal, then

1-n
|on(z)| = o(h™=2"). (1.10)
Next, define Ty : SEM — [0,00] by T (p) := £inf{tt > 0 | pi(p) € SiM} and

dy:T7H(0,00) = SEM by

Pi(p) = Pry (p) (p)-
We then define R, as the recurrent set for ®. In [VS92, [STZ11l |Gall9], it is shown
that if volg:as(Rz) = 0, then (L.10) continues to hold. In that case x is called non-
recurrent. Finally, in [SZ16al, VS92, [Gall9] it is shown that there need only be no
invariant L?(volgs ) function for (L.10) to hold.

Definition 2. For the purposes of this section, we will say that a point z is (¢o, T'(h))
non-looping via covers if there is a (7, R(h)) cover for SiM, {A;J.(R(h))}jyzhl, and
BUG ={l,... Ny}, such that

R(h)l—n

U A7 (R(h)) is [to, T(h)] non-self looping and |B| < )

JEG
(See also [CG20b, Definition 2.1].) We will say that x is T(h) non-recurrent via

covers if there are sets of indices Gy C {1,... Np,} and pairs of times (tg, Ty) such that
{1, R Nh} = UGy and

T : . G'2,””  R(n)="
U A7 (R(h)) isn [t¢, Ty] non-self looping and Gl 1/25 < T( h) R
J€Ge L TZ ( )

(See also [CG20D, Definition 2.2].)

First of all, we point out that = being T'(h) non-looping via covers implies that it is
T'(h) non-recurrent via covers and that Theorem [2|states that if z is T'(h) non-recurrent
via covers for some T'(h) < T¢(h), then there is C' > 0 such that

(1.11)
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In order to relate these two concepts to the concept of a non-self focal point and a
non-recurrent point respectively, we prove the following two Lemmas in Appendix

Lemma 1.2. Suppose that x is non-self focal. Then there are to >0 and T : (0,1) —
(0,00) such that limp o T'(h) = 0o and x is (to, T'(h)) non-looping via covers.

Lemma 1.3. Suppose that x is non-recurrent. Then there is T : (0,1) — (0,00) such
that limp, o T'(h) = oo and x is T'(h) non-recurrent via covers.

In particular, lemmas [I.2] and [I.3] recover the fact that = being non-recurrent im-
plies (1.10).

1.7. Outline of the paper. In §2|we present Theorems[10] and [II] which are the gen-
eralization of Theorems[I] and [2 to quasimodes of general pseudo-differential operators
P. In we perform the analysis of quasimodes for P and in particular prove Theo-
rem In §4 we give the proof of Theorem In §5] we construct non-self looping
covers on spheres of revolution and prove Corollary [0l Finally, in §6] we prove that
the Hamiltonian flow for |¢ \3 — 1 can be replaced by that for |£|, — 1. In Appendix

we present an index of notation and background on semiclassical analysis.
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also to the anonymous referees for many suggestions which improved the exposition.
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Sciences Postdoctoral Research Fellowship DMS-1502661. Y.C. is grateful to the Alfred
P. Sloan Foundation.

2. GENERAL RESULTS: BICHARACTERISTIC BEAMS

Our main estimate gives control on eigenfunction averages in terms of microlocal
data. The ideas leading to the estimate build on the tools first constructed in [Gall9)
for sup-norms and generalized for use on submanifolds in [CG19b].

Since it entails little extra difficulty, we work in the general setup of semiclassical
pseudodifferential operators (see e.g. [Zwol2] or [DZ19, Appendix E] for a treatment of
semiclassical analysis, see for a brief description of notation). Indeed, instead of
only working with Laplace eigenfunctions, all our results can be proved for quasimodes
of a pseudodifferential operator of any order that has real, classically elliptic symbol.
We now introduce the necessary objects to state this estimate.

Let H C M be a submanifold. For p € S™(T*M) define

Yy, = {p=0}NN"H, (2.1)
where N*H is the conormal bundle to H and consider the Hamiltonian flow
@t = exp(tHp). (2.2)

Here, and in what follows, H,, is the Hamiltonian vector field generated by p. In
practice, we will prove our main result with H replaced by a family of submanifolds
{Hp}p such that for all @ multiindex there exists I, > 0 such that for all ~ > 0

|07 Ry, | + 1010, | < K, (2.3)
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where R, and II,, -~ denote the sectional curvature and the second fundamental form of
Hj,. Next, we assume that there is € > 0 so that for all A > 0, the map (—¢,¢) x ¥,  —
M?

(t,p) = m(pe(p)) is a diffeomorphism. (2.4)

We will say that a family of submanifolds { Hy }1, is regular if it satisfies and .
In addition, we will prove uniform statements in a shrinking neighborhood of Hy. In
particular, we prove stimates on Hj, where Hj, is another family of submanifolds such
that
sup d(p, S, ) <A, 09R . | +0911, | < 2K, (2.5)
PEX Hyp hoP h h
for all h > 0. Note that when Hj, is a family of points, the curvature bounds become
trivial, and so in place of we work with d(zy,, ;) < h® and we may take K, to be
arbitrarily close to 0. It will often happen that the constants involved in our estimates
depend on {H}p} only through finitely many of the K constants.
For p € S™(T*M), we say that p is classically elliptic if there exists K, > 0 so that

\p(x,g)\ 2 lg‘m/KPa ’§| Z Kp? TE M. (26)

In addition, for p € S®°(T*M;R), we say that a submanifold H C M of codimension
k is conormally transverse for p if given f1,..., fr € C°(M;R) locally defining H i.e.
with
k
H = ﬂ{f ; =0} and {df;} linearly independent on H,
i=1
we have

k
NH < {p£0}u | J{Hyfi # 0}, (2.7
=1

where H), is the Hamiltonian vector field associated to p, and N*H is the set of conormal
directions to H. Here, we interpret f; as a function on the cotangent bundle by pulling
it back through the canonical projection map. In addition, let rg : M — R be the
geodesic distance to H; 1, (z) = d(x, H). Then, define [H,r,|: %, — R by

| Hyry |(p) = lin [Hpry, (2(p)) - (2.8)

A family of submanifolds { Hp,}}, is said to be uniformly conormally transverse for p if
Hj, is conormally transverse for p for all h and there exists J; > 0 so that for all A > 0

i {Hyry (0) 23, (2.9)

Note that when p(x,§) = ]5\3(@ — 1 then ¥, = SN*H and |Hpr,|(p) = 2 for all
pe SN*H.

Let {Hp},C M be a regular and uniformly conormally transverse family of subman-
ifolds. Then, we may fix a family of regular hypersurfaces depending on h, £, C T*M
such that

Ly, is uniformly transverse to H, with EHh’p C Ly (2.10)
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and so that with ¥ : R x T*"M — T*M defined by ¥(t,q) = ¢i(q), there is 0 < 7 <1
(independent of h) so that
\Il|(77_

T
inj’'inj

yxc, s injective (2.11)
for all h > 0.

Remark 5. Working with a family {H}},, and obtaining uniform estimates for it,
is needed in Theorem In this case, Hp, = {x} for every h and H;, is a point
Zp, € B(x,h’). Moreover, it is often useful to allow Hj, itself to vary with h (see
e.g. [CG20a]). Note that any h-independent submanifold H C M that is conormally
transverse is automatically regular and uniformly conormally transverse. While in
some applications it is useful to have h-dependent submanifolds H},, as well as uniform
estimates in a neighborhood of Hj, the reader may wish to ignore the dependence of
Hj, on h as well as letting H = H for simplicity of reading.

Given A C T*M define
AT = @A)

lt|<r
For R >0 and A C ZH’p we define
A:;(T) = ATIZ, A ={peLy:dpA) <r}. (2.12)

where d denotes the distance induced by the Sasaki metric on 7*M (see e.g. [Blal0,
Chapter 9] for an explanation of the Sasaki metric). In particular, the tube

A(r) = |J @(LnnBlpr)). (2.13)

[t|I<T+T

bicharacteristic
through p;

FIGURE 1. The tubes A} (R(h)) through ¥, .
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Definition 3. Let A C X, , 7 > 0, and {pj(r)}j»v;l C A. We say that the collection
of tubes {A] (r) j-vzhl is a (7,7)-cover of a set A C X, provided

Ny
Au(zr) € | A, ().
j=1

In addition, for 0 < § < 3 and R(h) > 8h%, we say that a collection {x; j-\[:hl C
Ss(T*M;[0,1]) is a d-partition for A associated to the (1, R(h))-cover if {x; jy:hl is
bounded in Ss and
(1) suppx; C A} (R(h)),
(2) S = 1 on AYP(R().
The main estimate is the following.

Theorem 10. Let P € ¥ (M) have real, classically elliptic symbol p € S™(T*M;R).
Let {Hp}n C M be a regular family of submanifolds of codimension k that is uniformly
conormally transverse for p. There exist

TOZTO(Mvpannjajoa{Hh}h)> 07 ROZRO(M7p7k7IC T jo)> 07

09 lingo
Ch.r > 0 depending only on (n,k), and Cy > 0 depending only on (M,p), so that the
following holds.

Let 0 <7 <75, 0< 6 < %, and 8h° < R(h) < Ry. Let {x; j-V:hl be a d-partition
for Xy, associated to a (7, R(h))-cover. Let N > 0 and {Hy}, € M be a family of
submanifolds of codimension k satisfying .

There exist C > 0, so that for every family {wp}n with wy, € Ss OCSO(I:Ih) there are
Cy >0 and

ho = hO(M7 P, {Xj}7 57 jov {Hh}h) >0
with the property that for any 0 < h < hg and u € D'(M),

k=1 CJC n—1
W] [ wnudo, | < Aol R0 Y (0Ol
Hn T2 JETn(wn)
—1 N
+ Ch Nlwnlloo | Pull pspss |4 Coh™ (ull oy + 1Pl s ),
where

Tn(wp) = {j = A (2R(h)) N7~ (suppwy) # 0}, (2.14)
and T : Zﬁh , Hy, is the canonical projection. Moreover, the constants C,C,,, hy are

uniform for x; in bounded subsets of Ss5. The constants 19, C, Cy, ho depend on {Hp}p
only through finitely many of the constants K, in (2.3)). The constant C,, is uniform
for {wp}p in bounded subsets of Ss.

Remark 6 (Proof of Theorem . We emphasize now that Theorem is the key
analytical estimate of this article. In particular, Theorem [1|is a direct consequence of
it. Indeed, we work with P = —h2A, — I, Pu = 0. Let H, = {z} and H;, = {3}
with z;, € B(z,h%). Let wy = 1 for all h. In particular, J,(wy) = {1,..., Np}.
Note that since Hj, = {z}, then SN*H = S;M. Also, in this case 7, ({z}) can be
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chosen uniform on M, and we have Hpry = 2 and J;, = 2. Moreover, K, can be taken
arbitrarily small. This yields 1o = 179(M, g), Ro = Ro(M, g) and hg = ho(M, g,{x;},9).
Theorem [I] follows.

We next present Theorem which combines Theorem with an application of
Egorov’s theorem to control eigenfunction averages using dynamical information at
¥, In fact, all the applications to obtaining quantitative improvements for L*
bounds and averages described in the introduction are reduced to a purely dynamical
argument together with an application of Theorem

As explained before Theorem [2] it will be convenient for us to work with covers by
tubes without too much redundancy. We therefore introduce the following definition.

Definition 4. Let A C %, , 7, ® > 0, and {p, (r)}j\f:rl C A. We say that the collection
of tubes {A] (r)}j\[;1 is a (D,7,7)-good cover of a set A C %,  provided that it is a
(7,7)-cover for A and there exists a partition {J;}7_; of {1,..., N, } so that for every
te{l,...,D}

ALBINALG =0 ijed i#j

In Proposition we prove that there exists a (D, 7,7)-good cover for ¥, where D,
only depends on n. Thus, one can always work with such a cover.

We define the mazimal expansion rate and the Ehrenfest time at frequency h~!
respectively:

1 log h~!
Amax := limsup —log sup ||dei(z, &), T.(h) := o8
[t| =00 | | {‘p|§%} 2Amax

. (2.15)

Note that Apax € [0,00) and if Apax = 0, we may replace it by an arbitrarily small
positive constant.

The next theorem involves many parameters; their role is to provide flexibility when
applying the theorem. This theorem controls averages over uniformly conormally trans-
verse families of submanifolds in terms of families {G,}, of tubes that run conormally
to the submanifolds and are [t;, Ty] non self-looping. For an explanation on the roles
of these tubes and non-looping times, see the text after Theorem

Theorem 11. Let P € V™ (M) be a self-adjoint operator with classically elliptic
symbol p. Let {Hp}p C M be a regular family of submanifolds of codimension k
that is uniformly conormally transverse for p. Let {Hp}n be a family of submani-

folds of codimension k satisfying (2.5). Let 0 < 0 < %, N > 0 and {wp} with
wy, € Sy N C(Hy). There exist positive constants 1o = 0(M,p,7,;, o, {Hn}n), Ro =
Ro(M,p, Ky, k,7,,,3,), and Cy, . depending only onn and k, ho = ho(M, P, 5,3, {Hp}n),

and for each 0 < 7 < 19 there are
C = C(Ma D, T, (57 jov {Hh}h>7 CN = CN (Ma Pa N7 T, 67 {wh}ha j07 {Hh}h)v

so that the following holds.

Let 8h? < R(h)< Rp, 0 < a < 1 —2limsupy,_, %, and suppose {A7 (R(h))};\[:h1
J

is a (D, 7, R(h))-good cover of ¥, = for some ® > 0. In addition, suppose there evist
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B cC{l,...,Np} and a finite collection {Ge}locr C {1,..., Ny} with
In(wy) C BU U Gr,
lel

where Jn(wp,) is defined in (2.14), and so that for every ¢ € L there exist t; = t;(h) >0
and Ty = Ty(h) with ty(h) < Ty < 2aTe(h) so that

U A;j (R(h)) is [te,Ty] non-self looping.

J€Ge
Then, for u € D'(M) and 0 < h < hy,

n—1 1
kot Cr k@ |lwp |l R(h) 2 [ )1 (IGe|te)?
h /H thdUHh‘ <= ‘B|2+27 HUHLQ(M)
h

1
2

).

T2 tec Ty
n—1 1
Cr D wnllo R(R) 2 < (1Ge|teTr)?
T2 teL
—1 N
+ Ch HwhHoo||PUHH7’:;2§"“(M) + Cyh (Hu||L2<M> + HPU”HﬁzgnH(M)

Here, the constant C,, depends on {wp}n only through finitely many Ss seminorms of
wy. The constants 19, C,Cy,, ho depend on {Hp}p, only through finitely many of the

constants IC in (2.3).

Remark 7 (Proof of Theorem . Note that making the same observations in Remark
[0] it is straightforward to see that Theorem [2]is a generalization of Theorem [I1I} The
only consideration is that the tubes are built using the geodesic flow, which is generated
by the symbol p(z,§) = |€|g(x) — 1 instead of py(z,§) = |§|§(x) — 1. We explain how to
pass from one flow to the other in

Remark 8. Note that in this paper we study averages of relatively weak quasimodes
for the Laplacian with no additional assumptions on the functions. This is in contrast
with results which impose additional conditions on the functions such as: that they be
Laplace eigenfunctions that simultaneously satisfy additional equations [IS95, IGT18|
Tac19,[TZ03]; that they be eigenfunctions in the very rigid case of the flat torus [Bou93,
Gro85]; or that they form a density one subsequence of Laplace eigenfunctions [JZ16].

Remark 9. We also note that the norm C|Pul| £-2n+1 in Theorems [11)and {10/ may
H_, (M)
be replaced by C¢| Pul| s=2msee  for any € > 0. However, for notational convenience
H (M)

we have chosen to use a sub-optimal Sobolev embedding to produce the || Pu|| s—2m+1
H 2 (M)

scl

term.

3. ESTIMATES NEAR BICHARACTERISTICS: PROOF OF THEOREM [1(]

The proof of Theorem relies on several estimates. In what follows we give an
outline of the proof to motivate three propositions that together yield the proof of
Theorem
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A note on notation. Throughout this section to ease notation we write

H, H, w, instead of Hy,, Hy, wp,.

Proof Theorem |1 Let 0 < § < % In what follows 79, Ry, €9 and hgy are the
constants given by Propos1t10n E Let 82° < R(h)<Ry, and N > 0.

Let 0 < 7 < 79 and {pj};vzhl C %, be so that the tubes {Aij (R(h))}jvzhl form a

(7, R(h))- covering of %, . We divide the proof into three steps, each of which relies
on a proposition.

Step 1 (Localization near conormal directions). Let x, € C°(R;[0,1]) be a smooth
cut-off function with x,(t) = 1 for ¢ < § and x,(t) = 0 for ¢ > 1. Let K > 0 be defined
as in (3.8) below and define

von (KIE,
Bs(z', &) == x, 5 , (3.1)

where |¢'| . denotes the length of ¢’ as an element of T}, H with respect to the Rie-

mannian metric induced on H. In Proposition [3.2| we prove that for w € Ss N C>®(H)
there exists C, > 0, depending on P, finitely many seminorms of w, and finitely many
of the constants IC, in (2.3)), so that for all » > 0

| /H wudog| < 00D (Bl g, + Colt™ ([l HIPul s ). (32)

Step 2 (Coverings by bicharacteristic beams). Let R(h) = tR(h), 7 =1.
In Proposition [3.3] we prove that there exist a constant ©,, depending only on n,
points {ﬁj}jvzhl C EHP, and a partition {ji}?:”l of {1,..., Ny}, so that

o AL (BR(h) € UMy AT (R(R)).
.AT@Rm»mA;@Rm»y:& e Ji, j#L

That is, we work With a (Dn, 7, R(h))-good cover.
In Proposition we prove that there exists Cy > 0 so that for 0 < € < g9 and
0 < h < hg there is a partition of unity {x} }; for A; ) with

‘Xfe%ﬂcfﬂﬂﬂkamkﬁl+amlm)
o supp X} C AZF(R(h)),
o MSy([P, Opn(x7)] mAg -

Indeed, this follows from applymg Proposition since R(h) = %R(h) > %8h5 > 249,
From now on we fix ¢ > 0 so that € < g9 and € < 7. See Appendix for background
on microsupports.

Step 3 (Estimates near bicharacteristics). In Proposition we prove that there exist
Chnr>0,Cy >0, hg>0,and C > 0 so that for all w € SsNCP(H) and 0 < h < hy,
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if {x]} is as before, then

n—1 Z ||Oph(X;)u||L2<N[>

7 | wOpn(Bs)ull,, o < Cogllwll R(R)*T

L1() 1 N
JE€Tn (w) TZ‘HPTH(pj)P

+ Ch ool Pull psges, 4+ G ]l ul (33)

L2(M)’
where Zp,(w) = {j : A,T:)j (R(h)) N7~ (supp(w)) # 0}.

Remark 10. It is crucial that the cutoffs x; supported in disjoint tubes act almost
orthogonally. This allows for efficient decomposition and recombination of estimates
based on tubes and we use this fact throughout the text.

Next, let {Xg}é\f:hl be a §-partition associated to the (7, R(h))-cover {A] (R(h)) éV:hl
of ¥, . We claim that for each j € Tn(w)

fEAj
where )
Aj = {€: N2(R(R)) N AT, (R(R)) # 0}
Indeed, this follows from two observations. The first one is that supp x; C A;J/ 2(R(h))
since ¢ < 7. The second observation is that on A;J/, 2(lff(h)) we have Zévz"l Xe =
Srea, xe > 1since 0% xp > 1 on AL, (R(R)) and suppy, C A7, (R(h)). Com-
bining this with the fact that x7 <1+ Coh'=29 yields the claim in (3.4)).

Next, note that if j € Zp,(w), then A; C Jp(w) where Jj,(w) = {£ : A7, (2R(h)) N
7~ Y(supp(w)) # 0}. This follows from the fact that if £ € A;, then A;J/Q(f%(h)) C
A7, (2R(h)).

To complete the proof we claim that there exists C,, > 0 depending only on n so
that for every ¢ € {1,..., Ny},

#{j€ In(w) : L€ A} < Cy. (3.5)
Assuming the claim for now, we conclude from ({3.4]) that

10 (X} )ull,» -1
> S <43t Y D 0p(xoull s,

F€Tn(w) ‘HPTH (ﬁ])|§ JE€IL(w) LEA;

_1
JETn(w)
Combining this with (3.3]) and (3.2) finishes the proof of Theorem
We now prove ([3.5). Suppose that £ € A;. Then,

B(pe, R(h)) N B(p;, R(h)) N Ly, # 0.

In particular,

B(pj, R(h)) N Ly C B(pe,2R(h)) N Lp.
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Therefore, A;J(R(h)) C AZZ(ZR(h)). Thus, since the tubes {A;J_(SR(h))}jeji are dis-
joint for each i = 1,...,9,, there exists C,, > 0, depending only on n, such that for
every £ € {1,..., Ny}

sup, vol(A7 (2R(h))

P < Ch.
inf; VOI(AEJ_ (R(h)))

#{j: e A} <D,

O
We proceed to state and prove all the propositions needed in the proof of Theo-

rem [0l

3.1. Step 1: Localization near conormal directions. Our first result is quite
general, and it shows that in order to study integral averages over H of a function v
it suffices to restrict ourselves to studying the conormal behavior of v. That is, the
non-oscillatory behavior of v along H is encoded in Opn(Bs)v.

Lemma 3.1. Let 0 < § < %, N >0, and w € Ss OC’(?O(I;T). Then, there is C,, > 0,
depending on finitely many seminorms of w € Ss and finitely many of the constants

K, in (2.3)), so that for all v € D'(H)
’/Hw(l - OPh(ﬁé))(U)ng’ < O N[0l 2y

Proof. Let h > 0. Here, we work in coordinates (, 2') € RF x R"* where H = Hj, =
{z = 0}. Let N be so that N<k —n + N(1 —26). Let g. denote the metric induced

1
7

on H. Then, integrating by parts with L := L (Z;:f {;th«j) , gives

/ w(z) (1 — Opu(B5))v(x)da (x) =
H

= (271'h1)”_k ///ei(ﬂ?—x’,§'>w(x)(1 — Bs(z, &)v(a) |gf1 (x/)Hgg (z)|dadz’d¢’
= (zﬂhl)n_k /// et @ (LN (@) (1 - Bs(w, €))v(a) |gﬁ(x’)Hgﬁ(:r)]}d:rdac’d§’

k—n-+N(1-25
< Cyh Tt ( )||UHL2(1L})~
Here, C,, depends on the CY norm of w as well as finitely many of the constants
IC.,. The second fact follows since the transition maps for the coordinate change which

flattens H have CV norm bounded by finitely many of the constants IC,. g
We next apply Lemma to the setup of Theorem

Proposition 3.2. Let P be as in Theorem . Let 0 < § < %, N >0, and w €
Ss N C(?O(f[) Then, there exists Cy, > 0, depending on P, finitely many seminorms of
w € Sy, and finitely many of the constants K, in (2.3), so that for all w € D'(M) and

allh >0

| [ 0= OB oy | < O (s, + 1Pl s ).

H (M)
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Proof. In order to use Lemma we first bound ||u|| L2(i7)- For this, observe that since
p is classically elliptic, by a standard elliptic parametrix construction (see e.g [DZ19]
Appenix EJ)

lull ep < C(]lull

H 2 (M) L2(M) (M)

where C' depends only on P. In particular, the semiclassical Sobolev estimates (see
e.g. [Gall9, Lemma 6.1]) imply that

1Pl posps )

_Ek
lull oy < Ch5 (lull oy, + 1Pl sogps ).

L2 (M) H_, (M)
Using Lemma [3.1] then gives
N
| [ - OmEs)@dog| < Gl + I1Pull g, )
O

3.2. Step 2: Coverings by bicharacteristic beams. We first prove that there is
D, > 0, depending only on n, so that for 7,7 small enough, there is a (D, 7, 7)-good
cover of ¥, . We adapt the proof of [CM11], Lemma 2] to our purposes.

Proposition 3.3. There exist ©, > 0 depending only on n, Ry = Ro(n,k,K,) > 0,

and 0 < T < Tl—;“ depending only on 7, ., such that for 0 <1 < Ry, 0 < 1o < 7,
and 0 < 7 < T there exist {p]};\fzr%l C %, and a partition {ji}i@:”l of {1,...,N,}

so that
N,
o A7, (r0) UM AT (),
i A;j(37“1)mAZZ(3T‘1) :Q)a j)ge\jia ]#f
Proof. Let {pj}jv:rll be a maximal % separated set in ¥, . Fix i € {1,..., N, } and

suppose that B(p;,,3r1) N B(pe,3r1) # 0 for all £ € L;, € {1,..., N, }. Then for all
t e Liy, B(pe,5) C B(pig,8r1). In particular,

> vol(Blpe, 3)) < vol(B(piy, 871)).
eE[:iO

Now, there exist ©,, > 0 and Ry > 0 depending on (n, k) and a lower bound on the
Ricci curvature of 3, ', and hence on only (n,k,K,), so that for 1 < Ry,

vol(B(pig, 8r1)) < vol(B(pe, 14r1)) < Dy vol(B(pe, ).

Hence,

> vol(B(pe, 3)) < vol(B(piy, 8r1)) < Q" > vol(B(pe, 3))
el

and in particular, |L;,| < D,,.
Now, suppose that
A7 (3ri)N A;O (3r1) # 0.
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Then, there exists qx € B(pk,3r1) N Ln, ¢y, € B(piy,3r1) N Ly, and tg, t;, € [—7, 7| so
that

Pr,— tig (Qk) = Gip-
Here, L}, is the hypersurface defined in - In particular, choosing T, iy < Tin T /2,
this implies that gx = qi,, tx = ti, and hence B(pg, 3r1) N B(psy, 3r1) # 0. This 1mphes

that j € £;, and hence that there are at most ©,, such distinct j (including ip).
At this point we have proved that each of the tubes A7 (r1) intersects at most D, —1
J

other tubes. We now construct the sets 71, ..., Jp, using a greedy algorithm. We will
say that ¢ intersects j if

AT (r) NAT (1) # 0.

First place 1 € J;. Then suppose we have placed j = 1,...,¢ in J1,..., o, so that
each of the J;’s consists of disjoint indices. Then, since ¢+ 1 intersects at most ®,, — 1
indices, it is disjoint from 7; for some i. We add ¢ to J;. By induction we obtain the
partition Ji,...,J9,,.

Now, suppose 79 < 71 and that there exists p € A;Hp (ro) so that p ¢ |, AT (r1).

Then, there are |t| < 7+ rg and ¢ € L}, so that
p=wula),  dlg.%,,) <ro,  mind(g,p;) =71
In particular, by the triangle inequality, there exists p € 35, ,
d(p, pi) = d(q, pi) — d(q, p) > r1 — 70

This contradicts the maximality of {,Oj}j\[:”1 if ro <r/2.

0

We proceed to build a d-partition of unity associated to the cover we constructed in
Proposition The key feature in this partition will be that it is invariant under the
bicharacteristic flow. Indeed, the partition is built so that its quantization commutes
with the operator P in a neighborhood of ¥, |

Proposition 3.4. There exist 1y = 71(7,,) > 0 and €1 = e1(n1) > 0, and given
0<d< %, 0 < & < g1 there exists hy > 0, so that for any 0 < 7 < 11, and R(h) > 2h%,
the following holds.

There exist C1 > 0 so that for all 0 < h < hy and all (7, R(h))-covers of ¥,  there

exists a partition of unity x; € SsNCX(T*M; [~C1h' =2 14+C1h'=2°]) on AgH (3R(R))
P
for which
o supp x; C ApF(R(h)),
o MSy ([P, Opn( XJ ﬁA;— 0,
and the x; are uniformly bounded in S(;.

Proof. Let L be as in (2.10) 71 < lr and ix 0 < 7 < 74. Then let &1 > 0

2 'inj

be so small that AT1 (61) C AQTl( 0), fix 0 < &€ < 1 and let h; be so small that

hd < e for all 0 < h < hi. For each j € {1,..., Ny} let H; = L, N A} (R(h)). Let
{w;} € CX(Ly;[0,1])NSs be a partition of umty on Ly N A;H (1 R(h)) subordinate
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to {Hj}j-vzhl that is uniformly bounded in Ss5. Then, define a;o € S5 on A;-H,p (e) by
solving

ajolc, = ¥j, Hpajo=0 on AETH,p ().
Clearly, a; defined in this way is a partition of unity for A;H’p (%R(h)) Furthermore,

we can extend ajg to T*M as an element of S5 so that

suppajo C | @u(Hy) CAJTE(R(R),  0<a<1
[t|<T+e+R(h)

Note also that since P € W (M) and Hpa;o = 0, for b € S5 with suppb C A;H (e),
P
Opi(b)[P, Opp(ajo)] € h*~*Ws(M).

We define a; by induction. Suppose we have a;,, £ = 0,...,k —1, so that if we set
k— _
Xik—1 = Y g—o W' a;,, then

Np
A) Y xua =1 onAp, (AR()
7j=1

B) e = a(hflfk(lf%)[P, Oph(xjk_l)]) €Ss5 on A;Hp(s-:).
Then, for every k > 1 define a;j € S5 by

aj7k|£h = 0, Hpaj7k = —Z'ej,k; on A;H’p (5) (3.6)
Next extend a;j to T"M as an element of S5 so that

supp a; i C U wi(Hj) C A;jE(R(h)).
[t|<T+e+R(h)

Now, since Zjvzhl Xjk—1 =1 on A;H (3R(R)), by (B) we see that for p € AETH (AR(n)),
P sP

% ejk(p) =0 (h_l_k(l_%) [P, Opp, ( % Xj,k—l)] ) (p) = 0.
j=1 j=1

In particular, (3.6 gives that E;V:hl ajr =0 on AETH (3R(h)). Therefore, since X =
P

Xjk—1+ hk(l_%)aj7k, we conclude that

Np,
Sowk=1  on AL (AR(M)
j=1

and hence (A) is satisfied for a;, with £ =0, ..., k. To show that (B) is also satisfied,
let b € S5 with suppb C A;H (¢). By assumption, we have
sP

Opn(b)[P, Opp(xjk—1)] € W HFI=29)w5 (1),
Also, using once again that P € W™ (M) and that H,a;, = —iej
Opn(b)[P, Opn(a;x)] € hWs(M) + h*~2Ws(M).
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Hence,
Opn () [P, Opn(x;k)] = Opn(b) [P, Opn(xjh—1 + P2V a; )] € B HHO20w5(0),
and so, on AgH (e)
\p

o (h™ K29 Opy, (b)[P, Opr (xjk)]) =

= o h M0 =20p,(6) (1P Op1 (xg-1)] + WP, Opn(az)]) )
=b(ejr —ejr) =0.
In particular,
Opn(b)[P, Opi(x; )] € W HEFDU=20w;5(0r), (3.7)
and ej ;41 € S5 on AETH,p (¢) as claimed.
Finally, let

Xj ~ Z h€(1—25)a
=0

Then, using ,
MSh ([P, Opn(x;)] AE

Now, note that by construction {x;} remains a partltlon of unity modulo O(h*°) and
by adding an h* correction to teach term, we construct {X]} so that it forms a partition
of unity. We also have by construction that x; € C°(T*M;[~C1h'=2°,1 + C1h1=%))
for some C; depending only on (M, p) and finitely many of the constants Ko 0

3.3. Step 3: Estimate near bicharacteristics. Let h > 0. Let (2/,%) be Fermi
coordinates near H = Hj, with corresponding dual coordinates (¢, é) Then, since
H is uniformly conormally transverse for p, H and on Eﬁ’p, there exists j so that
H,z; # 0. In particular,

dp, {dz;}i_y, {d&/}7—[ are linearly independent near %,

Thus, there exist y1,...,yn—1 € C°(T*M;R) so that (p,z,&’,y) are coordinates on
T*M near ¥ for which ¥_ = {p = 0,7 = 0, = 0}. In particular, there exists

C>0 dependlng only on (M p, KC,) so that
A((@0.€0), 2, )2 < Clplao, &) + |0l + IEh/2).
We define the constant K > 0 introduced in the definition of 5 to be large
enough so that
If d((z0.%), %, ) > 3h’  (20,&) €supp s, and d(z, H) < 4,
then |p(zo,&)| > 3R’ (3.8)

As introduced in Step 1 in the proof of Theorem [10} let x, € CX(R;[0,1]) be a
smooth cut-off function with x,(t) =1 for t < 3 and x,(t) = 0 for ¢ > 1. Let B5(2/, &)
be defined as in In what follows 71,1, h; are the positive constants given by

Proposition @
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Our next proposition estimates the main contribution to averages. In particular,
we control the average near zero frequency by the L? mass along bicharacteristics co-
normal to the submanifold H. One of the main estimates used in the proof of Propo-
sition is found in Lemma In particular, p is factored as e(z,£) (&1 — a(z, &)
so that it can be treated using elementary estimates. This idea comes from [KTZ07]
where, to the best of the authors’ knowledge, it was first used to control L* norms.

Proposition 3.5. There exist constants 0 < 19 < 71, 0 < €9 < €1, with 19 =
T0(M,p,7,,,%) and o = eo(70), Ro = Ro(M,p,k,Ky,7,,,T,) > 0 and a constant
Ch i depending only on n,k, and for each 0 < < ; there exists 0 < hg < hy so that
the following holds.

Let 0 < 7 < 19, 0 < € < g9, 4h° < R(h) < Ry. Let D, be the constant from
Propositionn 0<h< ho, and {AT( (h ))}Nh be a (Dp, T, R(h))-good cover for

Y, - In addition, let {Xy 1 be the partition of unity built in Proposition
Then there exists C' > () so that for all N >0 there is Cy > 0 with the ollowmg
properties. For all w = w(z';h) € SsNCX(H), 0 < h < hg, and u € D'(M),

HOph(Xj)u”L2(M)

k=1 n-d
BT |wOpn (Bs)ull g7y < Capllwl R()T D7 — T
JEIp(w) 72’H TH(Pj)|2

+ O wllooll Pull psges, |+ Gy o
scl

L2(M)’

where Ip(w) = {j : A}, (R(h)) N 7~ (suppw) # 0}. Moreover the constants C,C,,, hg
are uniform for x; in bounded subsets of S5, uniform in 7,e¢,J, when these are bounded
away from 0, and uniform for IC, bounded.

Proof. We define 79 > 0, g9 > 0 to be the constants given by Lemma below. Let
Xo € C°(R; [0, 1]) be a smooth cut-off function with y,(t) =1 for ¢t < 5 and x,(t) = 0

for t > 1. We first decompose ||[wOpp(5s)ul| with respect to {Xj};y:hl. We write

Ll(H)
Kd(z, H Kd(xz, H
0m(55) = [1x0 (80 0y 35, (K22 0, 5 S 01500
7=1
with
Kd(z,H) Al
Opn(X) = Xo (T)Oph(ﬁa (1 — ) Opu(xy) )
7j=1
First, note that [1 — XO(Kd( ))]Oph (Bs u|H = 0. Therefore,
10pn(Bs)ul 1 ) < Ho;ahmzo;ahm)uu o H1OPOOul gy (39)

j=1
We first study the HOPh(X)UHLl(g) term. To do this let ¢p € C°(T*M) be so that

Ip(x,&)| > €™ on supp(1l — ). Then, by a standard elliptic parametrix construction
(see e.g [DZ19, Appendix E|) together with the semiclassical Sobolev estimates (see
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e.g. |Gall9, Lemma 6.1]) there exist C' > 0 and 0 < hg < h; so that the following
holds. For all NV there exists C, > 0 such that for all 0 < h < hg

10p(1 = $)OP(X)ull 27y < Ch™2|0pr (1 = $)Opn ()l s

H_Z (M)

scl
< Ch™3||Pul| sezmes  + C b
He 2 ()

uf

L2(M) "
Together with Lemma (below) applied to ¥x and the fact that |Pul, an S
||Pu|| =2m+1  this implies
Hig 2 (1)
_k_5 N
0900l 5, < OH 58Pl s OVl (310)

Indeed, to see that Lemma applies, let (zg,&n) € supp®y. Then observe that
C
supp x C (AEH (2h5)) and hence
3D

d((z0, &), %, ) >R’

H,p

Next, note that d((zo,&), N*H) < %h‘s since (zg,&)) € suppBs. Therefore, since
d((w0,6). %, ) = b, d(a, ) < J-h?, and (20, ) € supp B, by the definition (B5)
of K we obtain that |p(zo,&o)| > %6 for all 0 < h < hg. To see that |dp| > 1> 0on
supp ¥y, we observe that [H,| > J, > 0 on %, . It follows from (3.9) and (3.10) that

Np,
[wOpn(Bs)ull 1 ) < || D wOP(B)Op(x;)u
j=1

L1(H)

k_
+ Cllwlloch™> 5HPUIIH%(MﬁCNhNHWIIOOIIUII (3.11)

L2(M)"

By Proposition or more precisely its proof, there exist a collection of balls
{Bz}f\i}i in H of radius R(h) < Ry(n, k, K,) and constants «, , depending only on n, k,

so that
My,

FI C U B;
i=1
and each z € H lies in at most ay, balls B;. Let {wz}f\i " be a partition of unity on H
subordinate to {B;}™*. Then, by (3.11), for all 0 < h < h,

M, Ny

||w0ph(ﬁ5)uHL1(g) < Z Z ”ﬂ’iUJOph(ﬁ&)OP(Xj)UHLl(H)
i=1 j=1 (3.12)

_k_5 N
+ OW 5 oo | Pl psps, | +Coh™ [l u

L2(M) "

We next note that on H, the volume of a ball of radius r satisfies

| vol 5 (B(z,r)) — cn’kr"_k] < C’Co pnktl
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where C’,CO > 0 is a constant depending only on K and ¢, } is a constant that depends

only on (n, k), (this can be seen by working in geodesic normal coordinates). Therefore,
for some ¢, ;, > 0 and any R(h) < Ry = Ro(K,)

[4iwOpn(B5)Op(x;)ull 11 7y < cnpR(D )%kH”t/fz'wOph(Ba)OP(Xj)UHLz(fI)- (3.13)

We next bound Hwinph(Bg)Op(Xj)uHLz(H). By Lemma below there exist
Crr > 0 depending only on (n,k), and C > 0 so that the following holds. For
every N > 0 there exists C; > 0, independent of (4, j), so that for all 0 < h < hg

14iwOpn(B5)Opn(X;j)ull 127
10pn(x;)u HLz(M)
TQ‘H rH(PJ)|

< Cullwll kTR 'T ( +Ch 1uoph<x1>PunL2<M>)

+ChY [w]|oo ul (3.14)

L2(M)°
Also, note that if j ¢ Zj(¢;w) for some i € {1,..., My}, then
T —1 _
AL (R(R)) N (supp iw) = 0.

Therefore, since supp x; C A}, (R(h)) for all j, for all N there exists C,, > 0 so that
the following holds. For all i € {1,..., M} and j ¢ Zp(¢w)

lwOpn(B5)Opn (3l iy < Coh™ Tl -

In particular, since Nj, and M), grow like a polynomial power of h, we can choose N’
so that

My,
Yo D awOpn(Bs)Opn(xs)ull 2y < Cxh™ [wlloollull - (3.15)
i=1 &Iy (hiw)

Putting (3.13] , and - into (| -, we find that for some adjusted Cj, j

and0<h§h0

lwOph(Bs)ull 11 (7

< cn,kuwnoohl ) Z 3 (

=1 ]EIh(zmw

_k_5
+ Ch 5wl Pl ppss | + Ok wlclf

scl

(0910l
TQ‘H T (PJ)’

+ Ch™ 1||Oph(XJ)PuHL2<M)>

L2(M) "

We have used that both M}, and Nj grow like a polynomial power of i to collect all
the C hN HUHL2<M> error terms in (3.14). Furthermore, since the balls {B;} are built

so that every point in H lies in at most «a, . balls, and each 1); is supported on B;, we
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have

HWOph(ﬁé)UHU(g)

< Cogllwl b2 R(h)

act 10pr(x;5)ull,, B
2 < =0+ ChOpn () Pull 2,
JETL(w)

1 1
72 |Hpru(pj)|2
(3.16)

L2(M)"

_k_
+ Ch™E P wllol| Pull sages, -+ Ch™ o]
scl

Now, since x; is supported in A7, (R(h)), and the tubes were built so that every point
in AzTH,p (h°) lies in at most B,k tubes, we have Z;V:hl Ixj|? < Bk This implies

Np,
S 0mO)Pull,,, < 2604l Pul?

L2(M) — L2(M)
Jj=1

Next, notice that since dim ¥, = n — 1, we have |Z,(w)| < cnxR(h)' " vol(%, ) for
some ¢y, 1 > 0 depending only on n, k. Therefore,

NG

Np
1
> 10m G Pull g,y < Ta()E (D 108006 Pul?, )
JEIR(w) j=1
n—1

< o R(R) ™7 vol(,,) || Pul

L2(M)’
for some ¢, ;, > 0 depending only on n,k. Using this in (3.16) together with § < %,

gives

= n- 10pr (x;5)ull
lwOph(Bs)ull 1y < Cosllwl b2 R(h)"T 372 ary

1 1
jetnw) T2 Hpra(p))|?

14k
+ONF ol Pl sosges |+ Gk ool

L2(n)”

as claimed. Note that the constants C, C , hg are uniform for x; in bounded subsets of
Ss, and are also uniform in 7, €9, J, when these are bounded away from 0. Furthermore,
they depend only on finitely many of the constants K.

d

We now state the following result which gives elliptic estimates in regions that are
h® away from the characteristic variety of p.

Lemma 3.6. Let 0 <§ < %, O0<k<mn. Lt ©: W C R" — M be coordinates on M.
Let x € SgompﬂCSO(T*M; [—Coh'=20 1+ Coh'=2%]) be so that there exist c, hy > 0 with
suppx C {|p| = ch® , |p| + |dp| > ¢}

for 0 < h < hy. Then, there exists C > 0 such that for all x € Ss N C(T*M; [0, 1])
with x = 1 on supp x, there exists 0 < hg < hy so that the following holds. For all
N > 0 there exists Cy, > 0 such that for 0 < h < hg

_k_ ~
10ph(X)ull o 2, < CR™27°||Opn(X) Pull 2z + Cy ™l 2,
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where x = (2/,T) € R % x R¥ are the coordinates induced by ©. Moreover, C, C are
uniform for x, x in bounded subsets of Ss, and for © in bounded subsets of C'*°.

Proof. First, let ¢ € C°(R) with ¢» = 1 on [—1, 1]. Then, using the standard elliptic
parametrix construction [DZ19, Appendix E] there exists b € S5°"F with sup [b1| <
2¢71 4+ O1ht29 guch that

Opn(x)Opn(1 — ¢ (2p)) = Opp(b1)Opn(X)P + O(h™)y—o. (3.17)

Next, we show that there exists by € S5 with sup |ba| < ¢71h=0 +C1h*=3 so that
Opn(x)Opn (v (2p)) = Opn(b2)Opp(X) P + O(h™) g—cc. (3.18)

Using that |p| > ch?® on supp x one can carry out an elliptic parametrix construction
in the second microlocal calculus associated to p = 0. Using a partition of unity, since

|dp| > § on supp x N suppq/)(%p) we may assume that there exist an h-independent

neighborhood Vj of supp x, Vi C T*R" a neighborhood of 0, and a symplectomorphism
k: V1 — Vg so that k*p = &;. Let U be a microlocally unitary FIO quantizing x. Then

P := U*PU = hD,, + hOpk(r),
with r € S™P(R") and Opﬁ denotes the left quantization of r. Moreover, there exist
a,a e S§°"P(T*R™) so that
Opf(a) = U*Opy(x)Opn (¥ (2p))U
and
Opy (&) = U*Opn(X)U
with suppa C {|¢&| > ch’} and & = 1 on suppa. Now, for b € S5*"P(T*R") supported
on |&] > ch?,
020 (67"b)| < Cogh™(AHeDd | =1,

Let by = a/¢;. Then by € 055" and
sup |bo| < ¢ A0,
Observe that
Opj; (bo)Opj; (B)P = Opy;(a) + Opy, (e1) + O(h™) g~
with suppe; C {|¢1] > ch’} and, since & = 1 on supp by,

pleljlel . plel+1glal X
er~ Yy D2 (bo) D (&1) + > o DE(bo) DE(r).
la[>1 ’ la|>0 '

In particular, e; € h! 7208 Then, setting by = —e,/&; € R1720)70G5MP and

Opj; (e¢+1) = Opy (be) Opy; (&)P+O0pj; (eg) + O(h™)y =

(041)(1-26) Seomp

we have ep11 € h with suppeg,1 C {|¢1] > ch?}. In particular, putting

Opj; (b)Opy; ()P = Opj; (a) + O(h™)y-=.



34 YAIZA CANZANI AND JEFFREY GALKOWSKI

It follows that
UOpj;(b)U*Opy(X) P = UOp} (b)U*UOpy, () U*UPU* + O(h™)y -
= UOpk(b)OpE(2)PU* + O(h™°) -
= UOpy(a)U* + O(h™) y-=
= Opi(x)Opr(¢(2p)) + O(h™)g-

In particular, there exists by € h=0S5""P(T*M) with sup |bo| < ¢ 1h™% + C1hY% so
that

Opn(b2) = UOpK (b)U* + O(h™)y-
Therefore, as claimed in that

Opn(X)Opn(¥(2p)) = Opi(b2)Opp(X)P + O(h™®)g-cc,

for all y supported in Vy and some suitable by with ||Opy,(b2)|| < 2¢7'h~°. Next, using
that Opy,(x)Pu is compactly microlocalized, we apply the Sobolev Embedding [Gall9,
Lemma 6.1] (see also [Zwol2, Lemma 7.10]) in the Z coordinates. Writing b = b + bo,
we obtain using and that there exists hg > 0, and for all N > 0 there
exists C, > 0, such that if 0 < h < hg, then for every z

10pR(X)u(@, )l 2, = 10pn(0)OPR(X) Pu(z, )12, + Coh™ ull 12
< 2¢7'Cph ™2 0 |Op(X)Pull 2 + Cy b ful 13-
Since this is true for any Z, the claim follows. 0

The following lemma contains the key new ideas used to prove our main theorems. In
particular, it converts quantitative localization along a bichacteristic into quantitative
gains in averages. This idea is at the heart of the bicharacteristic beam techniques and
originated in |Gall9].

Lemma 3.7. There exist C), ;. > 0, depending only on n and k, and positive constants
70 = 70(M, D, 7,0 Jos {Hn}n), €0 = 60(70) Ro = Ro(M,p,k,,,,73,) so that the following
holds. Let 0 <7 <1719, 0<4d < 2, and 2h° < R(h) < Ry. Let vy be a bicharacteristic

through %, , and x € S5 N C°(T*M; [-Cyh'~ 21+ C1h'=2)) with py ==~ N Y, €
Supp X,
supp(x) C AL (R(h)), (3.19)
and
MSy ([P, Opn(x AE (eg) = 0. (3.20)

Then, there are C' > 0 and hg > 0 with the followmg properties. For every N > 0
there exists Cy, > 0 such that, if 0 < h < hg, then for uw € D'(M),

R(h)kfl

k—1 2 7
h ||Oph(55)0ph(x)u||,;z(g) < Cn,k T|HpTH(p7)| HOph( ) ||L2(M)
+ CR(h)* 2| Opr () Pull?, (3.21)
+ Cyh™Jul)?

£2(M)’
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The constants 19, C,Cy,, ho are uniform for x in bounded subsets of S5, uniform for
7 > 0 and J, uniformly bounded away from zero, and only depend on {Hy}y through
finitely many of the constants K in (2.3)).

Proof. The proof of this result relies heavily on Lemma below. Let © : W C R™ —
M be coordinates on M. Let h > 0. Note that we may adjust coordinates so that
H = Hj, C {z1 =0}, da1|s,—0 € N*H, $Hpry<0¢,p, and so that the C¥ norm of the
coordinate map O is bounded by finitely many of the constants K,. Therefore, since
10, 0(p)| > %30 by (2.9), we may apply Lemma with J := 13,. Let rg, 7o, Co,
depending only on (M,p,J,,©), be the constants from Lemma Note that they
are uniform for © in bounded sets of C*. Therefore, they depend on {H}};, through
finitely many of the constants K,. Next, let r1 = ri(M,p,J,,0) be small enough so
that for all p € X,

)
infB(pﬂ”l) ’HpTH| 1

SUPg(p,ry) [ Hpru| — 27

(3.22)

Let r = 3 min{ry,ro} and let {p;}}£, C ¥, be a maximal r separated set. Then for all
q € ¥, there exists i so that d(q, p;) < r and in particular, B(q,) C B(p;,2r) C V),
where V), is the subset from Lemma associated to p;.

Fix po € {pi}E,. Without loss of generality assume that d(p-,po) < r. Next, let
0<m < Tigj , Ro > 0, g9 > 0 small enough (depending only on (M, P,J,,7,.)) so that
AJIFE0(Rg) C V. Next, by letting

T0 — Hlin{7~'(],’7~'1} (323)
we have
supp(x) C AL (R(h)) C Vi,
for all 0 < 7 < 79 and h small enough. This will allow us to apply Lemma to our
X-

We work in coordinates so that ¢, p(py) # 0, which we can assume since v is a
bicharacteristic through 3, ~and py = yN 3, . In what follows we abuse notation
slightly and redefine Z as the normal coordinates to H that are not xz;. With this
notation x = (z1,,z’).

Given a function v, € C*°(M) we may bound ”UhHLz(M) using the version of the
Sobolev Embedding Theorem given in [Gall9, Lemma 6.1] which gives, after setting
k = ¢, that for all & > 0 there exists Cy > 0 depending only on k so that

k
lon(as, @, )2 < Cih'™* (a’“nvm,on; 4 a S (AD v, | ) .
T z,x o Z,r
(3.24)
We proceed to choose vy, so that

10PA(B5) (Opn ()W) (@1, ) 2 = on (@1, 2:)]] 2 (3.25)

and in such a way that the terms in (3.24)) can be controlled efficiently. Let 0 < 7 < 79,
and set 7, := 7|0¢,p(po)|-
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Since v is a bicharacteristic through ¥, , we may define a function a = a(z1) so that
& —a(x1) vanishes along . This is possible since we are working in coordinates so that
O¢,p(py) # 0, and hence v may be locally written (near p,) as y(z1) = (z(x1),a(z1))
for a and z smooth.

Define

k(z,§) = X0(|(x172j)|>><0 <3|T$1) Bs(x', €,

€0 P0
where g9 < 1 is so that the coordinates are well defined if |(x1,Z)| < €o. Let

Vp, 1= 6_%<i‘ ’ a(xl»Oph(H)Oph(X)uﬂ

where a(z1) = (az(x1),...,ax(z1)) is so that a(x1) = (a1(z1),a(x1)). The reason for
working with this function vy, is that not only (3.25) is satisfied, but also

(hDy,)*op, = e~ 5 8@) (D, — a;)¥(Opp(k)Ops (X)),

for i = 2,...,k, and this will allow us to obtain a gain in the L?-norm bound once we
use that, by Lemma for (19,€0) small enough (depending only on p),
sup  max|& — ai(z1)] < 3R(h). (3.26)
AT (R(M)

We bound the terms in ([3.24]) by applying Lemma with x and . We first bound
the non-derivative term on the RHS of (3.24).
By Lemmawe have that infy, |0¢ p| > 319, p(po)| on A7F(R(h)). This implies

(Azr= (RO N AL, (20))°) € {larl2Fm0 ). (3.27)

Let b € C*(R;[0,1]) with b =1 on {x1 : |21| < 75 /2}, suppb C {x1 : |21| < 37,,/4}.
By (819) and (3:20) we have MSy([P, Opr(x)]) € (AZF**(R(M)N (AL (e0))°)- There-

fore, by ,
WEFL(b) N MSy ([P, Opn(x)]) = 0. (3.28)

Throughout the rest of the proof we will write C, C,, for constants that are uniform
as claimed. We also note that when bounding ||Oph(a)uHL2(M) by 2 sup |a|||u|]L2(M), h
need only be taken small enough depending on finitely many seminorms of a in Ss.
Let Cop = Co(M, P,J,) as above and 79 as in (3.23)). Applying Lemma with &, ¥,
b, ¢ =1, and using that b =1 on |z1] < 7,,/2, ||Opp(K)|| < 2 and 0 < 7 < 79, we have
that there exists hg > 0 such that for all 0 < h < hg

_1 1
lon(r, )2, < 8750 [0 OPR OO Ul 5 ) +2Comih ™ [Ib POPA(x)ul

L2(a1) FOD(3.29)
+ CNhNHuHL2(M).
Next, note that
b POp(x) = bOpn(x)P + b [P, Opn(x)]-
Therefore, since |b] < 1,
16 POpr(x)ull, 2,y < 210pa ()Pl 5, + 0[P, Opu()]ull 2, -
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Using the previous bound, equation (3.29)) turns into

_1 1
lon (@ Mgz, < 167507 [0pn(x)ull»,,, +4C075 0~ [ Opn(x) Pul|

L2 (M)

) (3.30)
+ 200 b b IP, Opn(lul oy, + Oyl -
We proceed to bound the derivative terms in . For this, we first note that
|(hDa)oon(@1, e, = [QiOpn(x)Opn(x)u(ws, )z, , after setting
Qi := (hDy, — a;)", (3.31)
for i = 2,... k. Writing Q; = Opn(g;) we get ¢; = (& — a;)* and Q; commutes with
Opp (k) modulo O(h). Note that there are no remainder terms since a; is a function of

only 1. Then, Lemma 3.8 gives that there exists Cy > 0, independent of 7, and some
C,C, > 0 so that

L2(M

1

_1 1
|hDa Yo on(er Mgz, < 8700° [DQiOPRO)U], 0, + 2Comih [0 PQIOPL(Jul 1,

+100pu(), @OPCuCr Mz, + OVl
(3.32)
for all 0 < h < hg where hg was possibly adjusted. We proceed to find efficient bounds
for all the terms in . Throughout the rest of the proof we use Cy for a positive
constant that depends only on P and finitely may Ss seminorms of (g, x), possibly
bigger than that above. We also write C, for a positive constant that depends only on
k. These constants may increase from line to line.
First, let Y € SsNC°(T*M; [0,1]) with X = 1 on supp x and supp X C A;F°(R(R)).
Then note that by and there exists C, > 0 such that

< ChR(W)*(|Opa(xX)ull 2, + Ch N lu]

for all 0 < h < hg for hg small enough.
Second, using that

b PQiOpn(x) = bQiOpa(X)P + b [P, QilOpn(x) + b Qi [P, Opn(x)],
we claim that there exists C,, > 0 such that

16 PQiOPR(X)ull, 2,y < CkR(A)*|Opr(x) Pz, + CohR(P)*[Opa(x)ull, s,
+ 18 QilP. Opn()]ull 2., + Cu ™l

(3.33)

L2(M L2(M)’

L2(Mm) "
(3.34)
Indeed, the estimate on b [P, Q;]Opp(x) was obtained as follows. We observe that

Hpq; = k(& — ai)" P Hy(& — ay).

and since Hy,(&; — a;) vanishes on «y, Hpq; vanishes to order k on 7. Therefore, using
Y as in ([3:32)), on supp ¥ we have |H,q;| < CoR(h)* and there exists C,, > 0 such that

16[P, Q:]Opr(x)ull,z,,,, < COhR(h)k||Oph(X)U||L2(M)
+ [I([P, Qi] — %Oph(Hin))Oph()Z)Oph(X)qu(M) + CNhNHUHLz(M)-
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Finally, observe that ([P,Q;] — 2O0pj( pql))Oph( ) € h2R(h)*=2Ss and hence the
bound follows since R(h) > 2h% and § < &
Finally, to bound the fourth term in 1) note that by |Gall9, Lemma 6.1]

1
11Opn (%), Qi]Opn (X )ulz1; ) 2 < Crrp,roh™ 2 [|[Opn(k), QilOpr(X)ull s -
Then, observe that [Opy(k), Qs]Opn(X) € hR(h)*~1Ss since for i = 2,..., k we have
0z;q; = 0 for j # 1, Og;x = 0, Jg;q; = 0 for all j # 4, and O,k € S5 because b5 is a
tangential symbol. We then obtain that there exists C,, > 0 such that

1 _
11091 (R), QIOPA (1, Mo < CHERM ™ [Opu(x)ull sy, + Coch ul

Combining (3-33)), (3.34), and (3.35)) into (3.32) it follows that 339
RO (D oner, 2, < <0k 4 Clyr, + ChER(h)” ) 10p ()l
+ CiCorh ™ 0P () Pl
+ o b B QUIP, Opr (0Nl + cNhNnunLQ((M), |
3.36

for some C' > 0, C, > 0, and for all 0 < h < hy with hy small enough.
By ([3.28) we also know that there exists C,, > 0 and hy > 0so that forall0 < h < hg

16 1P, Opr ()]l s,y + 116 QilP, Opn (X)]ull 2,y SC ™l
Feeding (3.37)) into (3.30) and (3.36]), and combining them in to (3.24), we have

(3.37)

L2 (M) L2(M)"

R(h)l_khk_lﬂvh(xl,f,')H%i, < Cy (HUh(fCl,')H%i ZkZH (hDz,)*vn (1, )HL2 ,> :
< Gy (155" + CoTpy + ChR( )?) ||Oph( Xl

Taking 7 < Cj* (supz |H ri|)~! and hg small enough so that ChR(h)™2 < 7'_1
proves the desired result because of (3.25)). Also, note that, since p, € V,,, in view of

, we have
1
519:p(po)| < 196:p(py)] < 210g p(po)l-

We may therefore rewrite the bound for ||vp||3, (i) I terms of |Hprm(py)| which com-

pletes the proof.
O

In what follows we work with points z € R™ and (z,§) € T*R™. We will isolate one
position coordinate 1 and write (x,§) = (x1,,&1,&). This lemma is based on [Gall9,
Lemma 4.3] which in turn draws on the factorization ideas from [KTZ0T].
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Lemma 3.8. Let © : W C R" — M be coordinates on M, py € T*R™ and J > 0 be so
that

10e,p(po)| > T > 0.

Then, there exist 7o > 0, Cy > 0, ro > 0 depending only on (M, p,J,0) and Vy C T*R™
neighborhood of po, so that B(po,ro) C Vo,

3 . 4
Z|6§1p(:00)| < l‘r/lf |a§1p‘ < sup ’a&p‘ < §|8€1p(p0)‘, (3.38)
o Vo

and the following holds.

Let0 <6 < 3 and0 < 7 < 7. Let I; = {wy : =5 < @y < 2} with 7, := 7|9, p(po)|,
and
k = k(z1,4,€) € SN O™ (IT X T*R”_1>.

Let x € S5 N C®(Vo;[-2,2]) and q = q(z1) € C®°(R; S®(T*R"1)). Then, there is
C > 0 such that for all N > 0, there is Cy, > 0 and hg > 0 so that for all 0 < h < hy,
and all x1,

_1
10pr(q)Opn(k)Opr(X)u(@1, )l 2 < 4700° [[Opr (£) [1OPa (@) OPh (X)tll 22 (21 | <7, /2)

+ Cort, k0P () || POPA(@) 0P 00t 12 1 < 2
+ [1Opn (%), Opr(@)]Opn (x)u(er, )| L2
Y |-

Also, all constants are uniform when x, k,q are taken in bounded subsets of S5, © is

taken in bounded subset of C*, and when 3, T are taken uniformly bounded away from
0.

Proof. There exists an open neighborhood Vj of pg so that |0¢, p| > % on Vy. Therefore,
we may assume that there is e € C°(T*R") elliptic on Vp, and a = a(z1,%,§) €
C™®(R x SY(T*R"1)) so that for all ¢ € C°(Vp)
(@, )p(,€) = e(z,€)(& — ala1,7,))¢(x,),
with e satisfying that for every «, 3,
||€71HOO S Cl - CI(M7 Pu j)u

waB N (3.39)
1020¢ e(x, )]0 < C' = C(M, P, T, 0, 3,0)

where C(M, P,J,a, 3,0) depends on © through finitely many C* norms. Moreover,
there exists ro = ro(M, p,T) so that B(pg,r9) C Vp.

Using this factorization, we see that there exists R € S°(T*R") so that for all
(ONS S(s(‘/b)?

POpy () = Opp(€)(hDzy — Opp(a))Opn(v) + hOpp(R)Opp(¥) + Reo.

where we write Ry, for an O(h™)y-« operator that may change from line to line
but whose seminorms are bounded by those of P,v,e,e”'. Moreover, there exists an
element a; € hC™ (R x SY(T*R"1)) so that for each fixed z1 the operator Opy,(a(x1)+
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ai(ry)) : L2 — L2 is self-adjoint. Abusing notation slightly, we relabel a + a; as a and
Opp(R) — Opn(e)Opp(a1) as Opp(R). Then, for all ¢ € S5(Vo)

POpp(¢) = Opp(e)(hDz, — Opp(a))Opn(v) + hOpna(R)Opp(¥) + Reo.

Therefore, letting Opp,(e)~! denote a microlocal parametrix for Opy,(e) on Vp, we have
for all ¢ € S5(V)),

(hDg, — Opn(a))Opp(¥) = Opp(e)” " POpy,(¥) + hOpp(Ro)Opp () + Reo  (3.40)

where Ry is such that Opy(Ry) = —Opp(e) 1Opp(R). From the symbolic calculus
together with (3.39)) we see that for every a, 3
10207 Ro(, &) [0 < C' = C(M, P,3,0, ,0), (3.41)

where C' depends on © through finitely many C* norms. Shrinking Vg (in a way
depending only on (M, p,J) and the C? norm of ©), if necessary, we may also assume
that

106, p(p0)] < nf 19,7 < sup 10,9l < 5106, p(po).
0 Vo
Define
w := Opp(q)Opp(X)u, (3.42)
with Opp(¢) = Opr(q)Opp(x) we have by that
(hDy, — Opp(a))w = f,

for
f := [Opn(e) ™ POpi(q)Opn(x) + hOpp(Ro)Opn(a)Opn (x)]u + Reo. (3.43)
Defining the operator U(x1,t) by
(hDy, — Opp(a))U(x1,t) =0, U(t,t) = 1d,
we obtain that for all z1,t € R
ot
w(xy,Z) = Uz, hw(t,z) — % U(x1,s)f(s,2)ds.
1
Let € = () be defined as
Tpo _ T10ep(po)|
— Too _ 44
im0 - T0P)] (3.44)

and let ® € C°(R; [0,3e7!]) with supp® C [0,¢] and [ ® = 1. Then, integrating in
t,

w(z,2) = /R(I)(t)U(xl,t)w(t,fc)dt - % R<I>(7f) /zl U(z1,s)f(s,Z)dsdt. (3.45)

Let 7y satisfy

3 _ _
1o <[ 210k o) 1Opa (B (3.46
where Opp(Rp) is as in (3.40). Note that by (3.41]) 79 only depends on (M, P,J,0).

From now on, we write
C: C(M7 P7j7507T’X’ q7 K‘/7 @)7 a‘nd C’N :CN(M7P7 N’ T7j’ 807X7 q’ K'/’ @)
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for constants depending on finitely many seminorms of the given parameters. To bound
the first term in (3.45) we apply Cauchy-Schwarz and use that U(x,t) is a unitary
operator acting on L% to get

/R@(t)Oph(/i)U(:El,t)w(t,i)dt

< 1@z [0 (W) 1wl 22 (¢ <e)-

Lgs L2

To bound the second term in (3.45)) we apply Minkowski’s integral inequality, use that
the support of ® is contained in [0, ¢], and that supp s C {|z1| < €} to get

/CD(t)/ Opp(k)U(z1,5) f(s, Z)dsdt
R T

L LZ

[ 2w ( Lo 1[_€,€]<s>oph<fe>v<x1,s>f<s,:z>ds)2d:z> C

12 ey ()22 102R N Flz2  oj<e)-

IN

La

IN

Feeding these two bounds into (3.45), and using that ®(¢) < 3! and [ ®(t)dt =1
give [|®]| 2y < V3572, we obtain
_1 1,
10pn (k) w(a1, )2 < V32| Opr(R)[wll 22 (21 1<) + V262 R ORI £l 2.y <) -
(3.47)
Finally, note that according to (3.43)
£ 1122 (j2r | <e) < 10 (€)™ POPR(q)Op (X)tl| 12 (f2y <)
+ h||Opr(Ro)Opr(q)Opn(X)ull £2 (121 )<c) + Cu b lull 2
< GollPOpr(9)Opn(x)ull £2 (121 |<3¢/2)
+ h|Opr(Ro) | |Opn (6)Opn (@) Opn (X)ull £2 (121 | <3¢ 2) + Oy ™ [l 2.
Using (3.39)), we see that Cy > 0 depends only (M, P,J). Therefore, since
Opn(q)Opn(%)Opr(x) = Opn(x)Opr(q)Opn(X) + [Opn(q), Opn(r)]Opr(X),
we may combine definition ([3.42)) of w with (3.47)) to obtain
1
1024 (9)Opn (%) Opr () ul1, ) 2 < V32| Opr(w)[1|Opw(0) O () ull 2 (21 1<)
1
+ Coh™'2||Opp (k) 1I1POPL (@) Opn (X) | 12 (1| <3¢ /2)
1
+ V222 {|Opi(Ro) 1| Opn (5) |1 Opn (@) Opn (X)ull £2 (121 <3 /2)
+ Cyh [l g2 + 1[Opr(a), Opa(%)]Opr(xX)u(a1, )l 2

To finish the proof we combine the first and third terms in the bound above using that
1 _1
V372 = 37,,% and that (3.46) gives v/222[|Opp(Ro)|| < 7po2-
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4. NON-LOOPING PROPACATION ESTIMATES: PROOF OF THEOREM [L1]

The main result in this section is the proof of Theorem [T1] which we present in what
follows. The proof is based on an application of Egorov’s theorem (see Lemma 4.1
which in turn uses that cutoffs with disjoint support act almost orthogonally.

Proof of Theorem By Theorem [10] there exist 79, Ry, and C), 5 > 0 so that

if0<7<7,0<6<3 N >0, and 8° < R(h) < Ry, then for {A7 (R(R))}; a
J

(D, 7, R(h))-good cover of ¥, , and {x;}; a d-partition associated to the cover, there

exist C' > 0, hg > 0, so that for all w = w(a’;h) € S5 N CX(H) there is C,, > 0 with
the property that for any 0 < h < hg and u € D'(M),

k-1

B

T
| wudog| < AR 108 06)ula,, (4.1
H 72737 JEITn(w)
+ OBl Pull s+ O (Julla

scl cl

1Pl posps ).

(a2 (M)

Next, suppose there exist B C {1,..., N} and a finite collection {Gy}pep C {1,..., Np}
satisfying Ji(w) C BUUyep Gr, and with {Gy}ec, having the non self looping prop-
erties described in the statement of the theorem. Furthermore, since we are working
with a (D, 7, R(h))-good cover, we split each G, into D families {G,;}7 ; of disjoint
tubes.

Note that
D
JETh(w) teL i=1 jeGy JjeB
Since

U A7, (R(R)) is [te(h), Ty(h)] non-self looping,
J€Ge

and the tubes in G,; are disjoint, we may apply Lemma below to G = G,; and
(tj,Tj) = (tg, Ty) for all j € Gy; together with Cauchy-Schwarz to get

3 10pn (x;)ull? 5 Ly
Z ”OPh(Xj)u|]L2(M) < (Wgﬂ) ( Z Jte L2(M) )

€6, J€Ge.s

tf‘gf‘ ng %
= ( ) (H ”L%M)jLﬁH HL2<M>) '

On the other hand, using Cauchy-Schwarz and the fact that there are © families of
disjoint tubes,

1
S0P ()l sy, < 201812 lulls .
jeB
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Therefore, after adjusting C), ;, in (4.1)),

/ wudaH‘
H

Cp®wll, R(h) ™" [~ (teldil\ 3 77 -
< = ) (i, + 35 1Pl ) 1812l

7237 teL

k—1

h 2

‘I’Ch_lHU}HooHPuH %( +CN(||UHL2(M) + HPUH k72;n+1(1u))
n—1
Cr i @||w| R(h) = te|Gel\ 2 1GelteTy 3
< 5 [ 8 M+ 32 (P )" 1Pulagyy, + 1812l s, |
7277 tel el

+ Ch 7 wlooll Pl pgpss  + Gy (lulz

scl scl

+ HPuHHk_25n+1 )

(M)

O
The next lemma relies on Egorov’s theorem to the Ehrenfest time (see for exam-
ple [DG14, Proposition 3.8], [Zwol2]).

Lemma 4.1. Assume that P is self adjoint. Let 0 < dg < %, 0 < 2eg9 < 1-20g, and let
G be a set of indices with |G| < h= for some N > 0. For each ¢ € G let 0 < §; < &,
0 <y < 1—235 —2eq, and x¢ € Ss,(T*M) N CX(T*M;[—-Cyh' 2% 1+ C1R1=2%]). In
addition, for each £ € G let ty(h) >0 and 0 < Ty(h) < 2ay Te(h) be so that

|J supp x& N o—i(supp x¢) = 0 (4.2)
keg
for allt € [te(h), Ty(h)] ort € [=Ty(h),—te(h)], and suppose that
|J supp x Nsupp xe = 0. (4.3)
ey,

Then, there exists a constant hg > 0 so that for 0 < h < hg

10ph (xe)ull?, ,, Te(h ) T( )

h
> < Afull?, ,, +4max 1Pul?,
= te(h) L2(M) teg L2(M)’

Moreover, the constant hg can be chosen to be uniform for x, in bounded subsets of
Ss(T*M) and N < Ny.

Proof. Throughout this proof it will be convenient to write || - || for || - HLZ(M). Define
X by
zkteP ikty P
Opn(X) = Z e i Opp(xe)e »
A@Egk 7T£

2ty
First, we claim that there exists hg > 0 so that for all 0 < h < hg

N 3
1Op(X)ull® < 3 Jlul®. (4.4)

\V]
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Indeed, Egorov’s Theorem [DG14, Proposition 3.9] gives that there exists Cy, > 0 and
ho > 0 so that for every k
ikt P _iktyP o
e Opu(xe)e™ 7 = Oph(Xre) + O(h®)g-oe, Xkt =Xt 0@y, +Te(h), (45)
where 7, € hl_d’“"(h)_%zSdk,,_;(h)/2+5,_;» supp rg,¢ C SUPP X7 © Pty
_ _ 124
ree(R)| < O B~k (h) =200 and dio(h) < |k| v,
()] < O ) < bl
for all 0 < h < hy. Note that since {x¢}seg — X is a continuous map from
HS(;Z(T*M) — S%_
Leg

(T"M),

€0

the constant C) can be chosen to be uniform for {x/}scg in bounded subsets of
I1,S5,(T*M ), and that then the same is true for hy.
Now, let £,m € G with ¢ # m and assume without loss that T, < T;,. Then,

using (4.2)) and (4.3)), we have for %{Eh) <k< Té(h), Tl < j < Tml)

te 2tm 2tm

P 4, (SUPP X2) N p_j, (SUPD Xm) = SUPP X¢ N ¢y, ... (SUPP Xim) = 0.

In addition, using (4.2)), we have if £ = m, then for _:gigh) <k<j< ngj),

P, (SUPP X¢) N o, (SUPP Xm) = SUPP X¢ N, ), (SUPP Xm) = 0.
Thus, it follows from (4.5)) that

Ty

2ty

X = Z Z Xﬂotpkt[ —|—7“(h)

leg k:*%

with |r(h)] < Cyh? for all 0 < h < hg, and Cy, ho can be chosen uniform for {x,}/_,
in bounded subsets of Ss,. We have used that the support of the 7 ’s are disjoint,
together with the fact that 2e9 < 1 — ap — 20, implies 29 < 1 — dj ¢(h) — 2d;, to get
the bound on r(h). This implies that

X €S and — O\ h* < x < 14 C h*o, (4.6)

=—g0

for all 0 < h < hyg.
Note that by the sharp Garding inequality (4.6]) yields

( (14 Cxh**® = Opy(X)*Opn(X)) u, u) > =Cyh° |[ul|72,

which in turn gives

10p(X)ull* < (1 +2Ch%) [[ul® (4.7)

for all 0 < h < hg. Also, note that since g9 > 0, we may shrink hg so that (4.7) gives
. 3

|OpR(X)ull? < §|yu\|2, (4.8)

for 0 < h < hg as claimed in (4.4]).
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Next, note that since the supports of the x;, o ¢, ~and xy o Dur, A€ disjoint for
(j,m) # (k,¢), Egorov’s Theorem also gives

< ’LJth _ijtmP zkteP ikty P

Opn(em)e™ 5w, 1 Oprxe™ 1 u) = O, () Jul?,  (49)

where the constant in O, (hY) depends only on the |a| < C’N n seminorms of y, where
Cy is a universal constant. It then follows from (4.8) and (4.9)) that

zkteP 'theP

Opu(x)e™ " E ]|+ O (= max Tl (1.20)

LSS Z B

(e Tt
2ty

as long as we work with 0 < h < hy and hy small enough so that r(h) can be absorbed
5llull?.
ikt, P

On the other hand, since the propagators e » are unitary operators,

zkteP ikty P _iktyP |2
) Opn(xe)e” * UH = HOPh(Xe)e 2 UH
(4.11)
= 10pn(xe)ull* = Tre — T
where
_iktyP
I = (Opn(xo)lu — e~ ul, Opn(xo)u)
_iktyP _iktyP
Iyp = <0ph(Xe)€ nu, Opp(xe)fu —e™ u]>-
It follows from (4.11]) that
T, Ty
o . 2 T k]
SO0 || Opn(x e =S SO Oeeul? =D Y ke + e
0 Ty ¢t ¢ T
2ty 2tp
(4.12)

Observe that

: kte .
i _isP
Io = h/ <0ph(xz)€ n Pu, Oph(Xz)U> ds = Ayg + By,
0
where
) kt[ 18 18 _is
Ap = 2/ <€TP0Ph(Xe) ~ Pu,e'i Opp(xe)e” hPU> ds
0

kty .
1 zsP _ isP __isP
By = / < Opn(xe)e 5 Pu,e r Opp(xe)(u—e r u)>ds
0
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To deal with the Ay, terms note that

EZMWZ/Hﬁmeme%mmﬂﬁw

N

isP isP isP __isP
Z/H“Omw 5 Pul2ds Z/ e Opn(xe)e™ ¥ ull%ds
In addition, observe that for v € L?,

kté isP
[ e
ok V0

isP
- Opn(xe)e™ 7 v|*ds < {Lv,v), (4.13)

with L := Z&k’ fokte e¥0ph(xg)*0ph (Xg)e_%ds. Also, another application of Egorov’s
theorem gives

kty
L = Opy, § / IX¢|? 0 @5 + Tri(s, h)ds | +O(h™)y-
0

where Fie(s. ) € hlidkl(h)i%zsdk,z/ﬂae with supp 7 ¢(s, h) C supp x¢ o s and
|Fre(s, h)| < Cy bt~ de(h) =20

Next, we claim that (4.2) gives

kty
\A Xl © s + T, h)ds| < to(1+ Oyt e =200), (4.14)
To see this, let p € T*M, s,t € [—%, ], be so that ¢s(p) € supp xe and ¢;(p) €

supp x¢. Suppose s > t and note that

©s(p) € @s—t(supp x¢) N supp xe-

Therefore, since 0 < s —t < Ty, we obtain 0 < s —t < ¢, from (4.2]). This proves the
claim.

In addition, we claim that combining (4.14)) with . ) gives

kty
>/ m%%+m@WH9%mwuﬁme (4.15)
ok 70

To see this, first observe that #{k‘ € —2%, E } < Ty/te. Together with (| - ) this
implies

kty
‘ Z/ Ixel? © s + (s, h)ds‘ < Ty(1 4 Cyht ). (4.16)
k 0

Second, note that

ktp Ty/2

supp Z/ xel? 005 + Fre(s,h)ds ) € | ps(supp xo)-
s=—Ty/2

N~——7
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Therefore, by (4.3) for £ # j
kty kt;
o gt alos)is) nsupp (3 [ 1l o s+ Pt h)ds) =0

Supp < / L\S,
zk: 0 o Jo

(4.17)
Combining (4.16)) with (4.17) we obtain (4.15)) as claimed.

Using (4.13)) and (4.15]) together with the same argument we used for y, for hg small
enough (uniform for x, in bounded subsets of S, )

kty
[t
k70

W Opu(xe)e” T vlds < 2max Ty(h)|lo]*

In particular,
Ty(h
maxe LM b al.

)%A“‘Sz h

We next turn to dealing with By ». Note that
1 ktp S i(t—s)P  is ; .
kot = hQ/ / <€ e Opp(xe)e T Pu,e't Opy(xe)e” thPPU> dtds.

Therefore, by a similar argument this time using

kty kty
]/ / Ix¢e|? 0 @s + Tri(s, h)dtds| < kt2(1 + Cy bt~ k() =200),

we obtain

‘ Z By ¢
0k

kte isP itP itP
- Z [ [ e omnaie 5 Pulle opte 5 Puldeds

kte kte isP isP )
< Z / / e Opn(xe)e™ % Pul2dsdt

L}“T( i Pul?.

<2
- h2
(4.18)
We have therefore shown that
man Tg( ) HlanT ( )
12@4 o Pullul] 4+ 25 | Pl (4.19)
Next, note that
7zkt[P zkteP
< Je R u,Opp(xe)[u—e 2 u]>
i [k thgp —iktyP ikty P isP
:h/ < Opn(xe)e” ® u,e Oph(Xg)e*TPu> ds
1 ki, ikZZP —ikt, P ik(tp—s)P stp _isP
< |1 Om e e Oy (v Puas.
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ity—sP
Then, by unitarity of e~ % and (4.13]),

T,
\Zﬂu\ < 255 Pl full. (4.20)
£,k
In particular, from and ( we have
maxz Ty maxy 17 manT
|3 T+ I < 4 | Pullllall + 2==5=5 1| Pul < 2ljul® + 4= 5 || Pul>
(4.21)

By possibly shrinking hg we may assume that the error term in (4.10)) is smaller than

$l|lul[? for 0 < h < hy. We conclude from (4.10) together with (£.11), (4.12) and (£.21))
that

manT
2/ull® > Z |0ph Oee)ull? = 2l|ull® — 4——5~5 | Pull. (4.22)
Therefore, (4 gives
(@) ul|“T, max, T7

ZH Ph(X ) H Z()§<4Hu||2+4 ﬁ E”P H)

Leg
for 0 < h < hg. As noted right after (4.5 the constant hy can be chosen to be uniform
for x, in compact subsets of Ss,(T*M). O

D. QUANTITATIVE IMPROVEMENTS IN INTEGRABLE GEOMETRIES

In this section, we focus on the special case of spheres of revolution M = [0, 27]g X
[0, 7], with Hamiltonian

p(0,7,&0,6) = & + sy & + V (1),

and operate under the assumptions of Theorem
In this setting, one can explicitly describe the Liouville tori intersected with {p = 0}
as

Te, = {(0.16): € =V0) - 2p&}.

In particular,

Te, N Sy r)M = {§r = i\/V(To) - Wfﬁ}a

and for any § > 0 there is ¢ > 0 so that if o € [d,2m — 0] the two intersections are

separated by at least
e/ alro)V/V(ro) - . (5.1)

Let Ry > 0 and define
Ai,R1 = {(07T7€97£T) S T*M : :l:fr Z Rl}

Theorem [5] is a consequence of the following Lemma which constructs non-looping
covers together with Theorem
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Lemma 5.1. Let the above assumptions hold. Fiz § > 0 and let {A: (R) };.Vfl be as in
; -

Proposition[3.3. Then there exists B > 0 so that if ro € [§,2n—06], H = {z} = {(r0,60)}
the following holds. For all0 < 7 < 79, oy > 0,0 < R< 1, and 0 < T < ¢cR“~1,
there exists B C {1,...,Ngr} so that for Ry = R*
‘B‘ < 5T3R17a1 L R™
and for j ¢ B with AT (R) N AT, (R) #0,
Pj OEH,p

At Ry

d(A7, s, B, U @A) (R)) 2 2R

Ai,le H,p
te[1,T]

In particular,

U AZj (R) is [1,T] non-self looping.

j¢B
Proof. We start by removing tubes covering the intersection of an R'~®! neighborhood
of &g = \/V(ro)a(re) with ¥, . This requires R~ tubes of radius R. In particular,
this covers an R!'~®! neighborhood of the singular torus and we may restrict our
attention to A4 g, .

We claim that there is C' > 0 so that if py, p2 are at least o away from the singular

torus, then

0(p1) — ©(p2)| + [1(p1) — I(p2)| < Ca”'d(p1, po)- (5.2)
Indeed, by (e.g. [Tot09 eqn. (3.37)], [VuNOG, Theorem 3.12], [Eli90, Theorem. Page
9]) there are Birkhoff normal form symplectic coordinates in a neighborhood of the
stable bicharacteristic v, so that p = (t,z,7,£) € S' x R x R? with 7, given by
{(t,0,0,0) : t € S'} so that

pt,z,7.6) =7+ f(a® +€2,7),
f € C®((~4,0)%R) for some 6 > 0 and f(u,v) = a(v)u + O(v?) + O, (u?) for some
a € C®((—9,0);R).
In particular, we may work with action-angle coordinates (O, I) given by

L =, I, = %(332 + fz) T = /215 COS(@Q), E=+/21 Sin(@g).

In these coordinates p(©,1) = I + f(212, 1), the action coordinate function I1(z,§)
measures the squared distance from (z,§) to the singular torus, and we have
10, 60| < C/\/2I, = Ca™ .

This yields (5.2)) as claimed.
Next, suppose

d(p, Ty, NAr ) <2R,  d(¢i(p), Sy, N Asp,) < 2R.
There exists p € ¥, , N A+ g, with d(p,p) < 2R. Therefore, for some C > 0,
d(e:(p), pi(p)) < CRE
and hence, for t < T,
d(ei(p), 2y, N AL r,) < (CT +1)R.
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Now, for RT < R, by (5.1)) since p is at least R~ away from the singular torus,
the only intersection of Ty, (5 with

{q : d(q, ZH,p N A:th) < (CT + I)R}
happens at ¢ with d(q, p) < (CT + 1)R. In particular,
and hence by (5.2)
d(torp(Iy), 2nZ%) < CTRR™To1,

That is, p is CTR* close to a rational torus of period ¢t. Thus, the same is true for
the original p with possibly a different constant.

Now, the points that are C'T'"R** close to the intersection of ¥, N Ay with Ty, can
be covered by CT R~ tubes. Moreover, since p is isoenergetically non-degenerate,
there is ¢ > 0 so that the rational tori of period < T, are separated by ¢I'~2. Hence,
there are at most CT? such tori and we require CT?R'~! tubes. ]

Proof of Theorem[8. Fix L > 0, rg € [5,2r — 8], 6y € [0,7] and a; = 3. Then for
0<R<land0<T< R_%, we may apply Lemma Let {A;j(R)}jy:Rl be the

cover of ¥, given by Proposition Then, there are G, B C {1,..., Nr} so that

Bl < (BT*+1)R™2,  {l,...,Ng} CGUB

U A7 (R) is [1, T] non-self looping.
Jj€G
FixO0<e<id< %, let R =h® and T = L?log h~'. We next apply Theoremwith P

as in (1.7), Go =G, Ty = T and t, = 1 for all £. Then, there exist C' > 0 independent
of L, for any N > 0, C, > 0, and hg > 0, so that for all 0 < h < hg

1
R [[ull Loe (B((ro,00).1%))

: 1B, e h2 h=2L\/logh—1
gcm([(logh D2h 7} u +hIIPUIL2<M>>

+ChPul, g+ G (g, + 1Pl

+

H;I%(Al) )

3, ¢ 1 L+/logh=1
< 3 - Zviosh .
N C(ﬁ{(logh )2+ L+/log h—l] HUHL2<M> + h HPuHHCRM))

6. CHANGE OF THE HAMILTONIAN

When studying quasimodes for the Laplacian, it will be convenient to replace the
operator Py := —hQAg — 1 by an operator whose dynamics agree with those of p =

[€lg — 1.
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Lemma 6.1. There exists P € WO(M) with real, classically eliptic symbol p such that
{p=0}=S5*M, p=|¢|, — 1 in a neighborhood of S*M and there exist Q € W~2(M),
E € h>°U~>°(M) satisfying

P=QF +E.
In particular, for all s € R there exists a constant Cs > 0 depending only on s so that
for all N > 0, there exist Cns = C(N,s,M,g) > 0 and hg = ho(N,s,M,g) > 0 so
that for 0 < h < hg and u € D'(M),

N
||PUHH;C1(M) < C ||P0uHHs 2 () C’Nsh ||u|| s_clN<M)
Proof. Let 11 € C°(R;[0,1]) with supp¢; C (— %, %) and ¢, = 1 on [—1 T 4] Next, let
Yo € CP°(R; [0, 1]) with 2 =1 on [—4, —f] [% 4] so that 1 := 11 + 19 has ) =1 on
[—4,4]. Define
P=P + P+ P
with
Pri= 31 (=h2A,),  Pyi=aha(—hPAg)\/—h2D,,  Pyi=2(1—¢(—hPAy)).

(6.1)
Note that by the functional calculus [Zwol2, Theorem 14.9] P € W(M) with symbol
P = 501(€]5) + a(I€R)IElg +2(1 — v(€13))

In particular, p = |{|, in a neighborhood of S*M.
Next, observe that

(P+I)(P—1I)= Py+h®A, + P?
=Py — (I —3(=h*Ay))(—=h*Ay) + PE + P} + 2P\ Py + 2P, P3+2P, Ps
Now, there exists ¢ > 0 so that
WE,(P1) UWF,(P5) UWE (I — 5(—=h*A,)) C {|o(R)] > e(€)*}.

In particular, by the elliptic parametrix construction (see e.g. [DZ19, Appendix E.2])
there is Q1 € W~2(M) so that

(P+1)(P—1)= Q1P+ O(h™)y—c.
Now, o(P + I) > 1 therefore, (P + I)~! € ¥(M) and we have that
P—T=(P+1)7'QiPy+ O(h™®)y-w

which completes the proof of the lemma after letting Q@ = (P+1)"'Q; and P = P—1.
]

Applying Theorem [11| to P from Lemma where Py := —h?A, — 1, and then
estimating Pu by Lemma we obtain the following theorem.

Theorem 12. Let {Hp}p C M be a regular family of suQmanifolds of codimension
k that is uniformly conormally transverse for p. Let {Hp}p be a family of sub-

manifolds of codimension k satisfying (2.5). Let 0 < ¢ < %, N > 0 and {wp}n

with wp, € S5 N C’OO(}NI;L). There exist positive constants 7o = 10(M, g, 7, {Hn}n),
Ry =Ro(M,g,K,,k,7,.), Cpi depending only onn and k, and ho = ho(M, g,0,{ Hp}p)

Y Ting
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and for each 0 < 7 < 79 there exist, C = C(M,qg,7,0,,{Hp}n) > 0 and C, =
Cy(M,g,N,7,0,{wn}tn, {Hn}tn) >0, so that the following holds.

Let 8h% < R(h)< Ry, 0 < a < 1 —2limsupy,_,q e R(h) " 4nd suppose {A7 (R(h))} "
J

logh j=1
is a (D,71,R(h)) cover of SN*H for some © > 0.
In addition, suppose there exist B C {1,..., Ny} and a finite collection {Gy}leer C
{1,..., Ny} with

JIn(wp) C BU U Go,
ter

where Jn(wy,) is defined in (2.14), and so that for every £ € L there exist ty = ty(h) >0
and Ty = Ty(h) < 2aT(h) so that

A:_ (R(h)) is [te, Ty] non-self looping for oy := exp(tH|§|g).
J
71€Gy

Then, for u € D'(M) and 0 < h < hg,

Co @ lwnll RW) T (|1 (1Gelte)?
/H thde{h‘ < T B2 + > | lulla )
h

2
ter Ty

k—1

h 2

Cou i@ wn o R(W) T = (|GeltTy)2
+ : > -

T2 ter
+ Ch_l”whHooHPOUHH%(M) + CyhN ([Jul]

scl

[ Poull

L2 (M)

+ ||P0’LL|| k=3 )
H

L2(M) : )

Here, the constant C, depends on {wp}n only through finitely many Ss seminorms of
wy. The constants 19,C,C,, hg depend on {Hp}p only through finitely many of the

constants IC,, in (2.3)).

APPENDIX A.

A.1. Index of Notation.

In general we denote points in T*M by p. When position and momentum need to be
distinguished we write p = (x,&) for x € M and £ € T;) M. Sets of indices are denoted
in calligraphic font (e.g Z). Next, we list symbols that are used repeatedly in the text
along with the location where they are first defined.
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crt Hy, 210 Bs (3.1)
XHp Toni 2.11 Dy Prop.
o AT(r) (212 ok A ]]
K, A7 (r) 2.13 Sk A]]
ry Th(w) 2.14 HskCl [A3]
K, T.(h) (215 MS,  Def. [
7, Amax 2.15

For the definition of [t, T] non-self looping, see ((1.3)). For that of (D, 7,7) good covers,
see Definition 4l

A.2. Notation from semiclassical analysis. We refer the reader to [Zwol2] or [DZ19,
Appendix E] for a complete treatment of semiclassical analysis, but recall some of the
relevant notation here. We say a € C®(T*M) is a symbol of order m and class
0 <4 < 3, writing a € SJ*(T*M) if there exists Cpg > 0 so that

10507 a(,€)| < Cagh™UHEN ()m=IF1(g) o= (1 4 J¢ )/, (A.1)

Note that we implicitly allow a to also depend on h, but omit it from the notation. We
then define S§°(T*M) := J,,, S5*(T*M). We sometimes write S (T*M ) for Sg*(T™*M ).

comp

We also sometimes write S5 for S§*. Next, we say that a € S5 (T*M) if a is supported
in an h-independent compact subset of T*M.
Next, there is a quantization procedure Opy, : S§* — L(C*°(M), D'(M)) and we say
A € U5 (M) if there exists a € S§*(T*M) so that Opy(a) — A = O(h*™)g-~ where we
say an operator is O(h¥)y-—« if for all N > 0 there exists C,, > 0 so that
[ Aul| g (ary < CNhk”uHH_N(M)7
and say an operator, A, is O(h™)y- if for all N > 0 there exists C,, > 0 so that
[ Aw|| gy ary < Cy N ull = (ary -
For a € S§"' (T*M) and b € S§**(T*M), we have that

Opn(a)Opn(b) = Opp(c),  c(x,§) ~ Z W Laj(a(x, €)b(y,n)) (A.2)

§:7
where Lo; is a differential operator of order j in (x,&) and order j in (y, 7).
There is a symbol map o : WF(M) — SF(T*M)/h =2 S5~ 1(T*M) so that
o(Opp(a)) = a,
o(Opp(a)Opp(b)) = ab,

o(Opp(a)*) = a,
o([Opn(a), Opp(b)]) = —ih{a, b},
and
0 — R'RUPTH M) — UF (M) = S5 (M)/h' 2S5 (M) — 0
is exact.

The main consequence of (A.2) that we will use is that if p € S™(M) and a €
SE(T*M), then

[Opn(p), Opn(a)] = %Oph(Hpa) + B2 Opy(r)
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with r € SPHR2(TM).
We define the semiclassical Sobolev spaces H?

scl(M) by
M) = {u € D) | fully, 0 < 0b Nl ) = 10PR(E Nl 2ar)- (A3)

A.3. Background on Microsupports and Egorov’s Theorem.

Definition 5. For a pseudodifferential operator A € WP (M), we say that A is
microsupported in a family of sets {V(h)}, and write MSy(A) C V(h) if

A = Opp(a) + O(h™)y-o
and for all o, N, there exists C, v > 0 so that

sup Oy ea(x,§)| < Conh.

|
(z,£)eT*M\V (h)
For B(h) C T*M, will also write MSy,(A) N B(h) = 0 for MS,(A) C (B(h))°.
Note that the notation MSy(A) C V(h) is a shortening for MSy(A) C {V(h)}4.

Lemma A.1. Let 0 < § < § and &' > 6, ¢ > 0. Suppose that A € U"™P(M) and that
MSh(A) C V(). Then,

MSy(4) € { (@,€) | d((2,€), V(h)) < n”}.
Proof. Let A = Opp(a) + O(h™)g-. Suppose that
2r(h) := d(p1, V(R)) < ch®
and let pg € V(h)¢ with d(p1, po) < r(h). Then, for any N > 0,

|0%(p1)| < Z |aa+/3a(p0)|r(h)|ﬁ|—|—C'|a‘+N sup 0 alr ()N
IBI<SN—-1 |k|<|a|+N,T*M
< Y supl0*Pap)r(m)? + Canh™0r ()™
BI<N-1 V°

< Conprh™ + Conh™Nor(n)N
So, letting N > M (&' — )71,
0%a(p1)] < Canrh™.
O

Lemma A.2. Let 0 < § < % and A,B € U™P(M). Suppose that MSp(A) C V(h)
and MSy(B) C W (h).

(1) The statement MSy,(A) C V(h) is well defined. In particular, it does not depend

on the choice of quantization procedure.

(2) MSL(AB) C V(h) N W (h)

(3) MSK(A*) C V(h)

(4) If V(h) = 0, then WF(A) = (.

(5) If A= Opp(a) + O(h™)gy-o, then MSy(a) C suppa.
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Proof. The proofs of 1-3 are nearly identical, relying on the asymptotic expansion for,
respectively, the change of quantization, composition, and adjoint so we write the proof
for only (2). Write
Then,
Opn(a)Opi(b) = Opn(a#b) + O(h™)g-o
where '
a#tb(z,€) ~ > Loja(x, )by, n) .=y
j &=n
and Lo; are differential operators of order 2j. Suppose that MSy(A) C V. Then, for
any N > 0.
sup [0%| < Conh?Y.
VC

So, choosing M > (N + §la|)(1 — 28)7 1,

|0%a#b] < (0% > i Loja(a, ©)b(y,n) |s—y| + Canrh™ 72071000 < 0y n™

j<M §&=n

In particular,
sup |0%a#b| < Conh™™.
VC

An identical argument shows
sup |0%a#b| < Conh™™.
WC
(4) follows from the definition since if V(h) =0, a € h™S;.
(5) follows easily from the definition. O

Lemma A.3. Let ¢, := exp(tHy,) and ¥ C T*M compact. There exists § > 0 small
enough and C1 > 0 so that uniformly for t € [0,9], and (x;,&;) € .

%d((ﬂfhfl)v (22,&2)) — Crd((21,&1), ($2,§2))2 < d(pi(w1, &), pr(w2,£1))
< 2d((21,61), (w2,62)) + Crd((21,61), (w2,62))°  (A4)

where d is the distance induced by the Sasaki metric. Furthermore if pi(x;, &) =
dy(@1(2), 22(t)) < dpg(z1, m2) + Crd((21,£1), (22,82))0 (A.5)

where dyy is the distance induced by the metric on M.

Proof. By Taylor’s theorem

i(r1,81) — @i(2,&2) = doi(w2,§2) (21 — 22) + depi(22,62) (61 — &2)
+ Oces (Slelg |d®pe(q)|(161 — &I + |21 — 22%)
q

Now,

¢t($,§) = (‘/L‘aé) + (85])(1‘,5)@ _893]7(1"’5)75) + O(tz)
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SO
der(z,€) = (0,1) + t(9p, —0,p) + O(t*)
dypr(,€) = (1,0) + t(d5ep, —03p) + O(1).
In particular,
ee(w1,81) — pe(x2,82) = ((0,1) + O()) (&1 — &2) + ((1,0) + O()) (z1 — x2)
+O0((é1 — &) + (21 — 12)?)
and choosing § > 0 small enough gives the result. O

APPENDIX B. PROOFS oF LEMMAS [I.2] AND [[.3]

Lemma B.1. Let t,T > 0 and suppose that G C SiM is a closed set that is [t,T]
non-self looping. Then there is R > 0 such that Bp«y (G, R) is [t,T| non-self looping.

Proof. We will assume that ¢4(G)NG = 0 for s € [t, T], the case of s € [T, —t] being
similar. Let ¢ € G. We claim there is 2, > 0 such that

U #e(Brea(a, Ry)) N Brea(G, Ry) = 0.
s€(t,T]

Suppose not. Then there are ¢, — ¢ and s, € [¢t,T] such that d(ps,(qn),G) — 0.
Extracting subsequences, we may assume s, — s € [t,T] and @5, (¢,) = p € G. But
then ¢s(¢) = p and, in particular, G is not [t,T] non-self looping.

Now, G C quG B(q,R,;) and hence, by compactness, there are ¢;, i = 1,... N,
such that G ¢ UY., B(g, Ry,). In particular, there is 0 < R < min; R,, such that
B(G, R) c UY, B(¢i, Ry;). This implies that B(G, R) is [t, T] non-self looping. O
Lemma B.2. Let 7,9,¢,T > 0, R(h) > 8h°, and {A} (R(h))}jeg be a (D, 7, R(h))

good cover of SEM. Suppose that G C SEM is closed and [t,T] non-self looping. Then,
for all e > 0, there is R > 0 small enough such that for R(h) < R,

G:={jeJ|A,(R(h)NBs;m(G,R) # 0}
satisfies
U A7 (R(Rh)) is [max(t,37), max(t, 37, T)] non-self looping (B.1)
Jj€g
and

9] < DR(W) " (volg: s (@) + ). (B2)

Proof. By Lemma there is Ry > 0 such that B(G, Ry) is [t,T] non-self looping.
Furthermore, since G is closed, there is R; > 0 such that

VOIS:»;M(B(G, Rl)) < VOISE;M(G) + €.
Therefore, putting R = min(Ry/4, R1/4), for R(h) < R, and j € G,
J A7, (R(h)) N S3M C By (G, min(Ro, Ry)).
JEG

In particular, (B.1]) and (B.2]) hold. O
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Proof of Lemma[1.2 Suppose that z non-self focal. Let £ := T;l([O,T]) and note
that for all T > 0, LI is closed. Thus, by Lemma for all T' > 0 there is Ry =
Ro(T) > 0 such that for R(h) < Ro, with B := {j | A} (R(h)) N Bssm(LE, Ro)}, one
has ()1
B < B
Next, since G := S:M \ B(LL, Ry) is closed and [inj M /2, T| non-self looping, there
is Ry = R1(T) > 0 such for R(h) < R; and

G = {j | A7, (R(h) N B(G, R)},
equation holds with ¢ = inj M /2 and T' = T'. Putting R(T") := min(Ry(T), R2(T)),
B := B\ G, and defining

ho(T) = inf{h >0 | R(h) > R(T)}, T(h) =sup{T > 0| ho(T) > h},
we have shown that z is (inj M/2,T(h)) non-looping. O

Proof of Lemma[I.3. Let RE* be the set of points p € S*M for which there exists
0 < +t < S such that ¢(p) € SEM and d(¢i(p), p) < J. Then,

Re= () UJRY, R =[RS
6>05>0 +
Note that Rg’s is closed for all ¢, .5, and that for all € > 0 there is 0 > 0 such that for
all. § >0
VO]S;M(R%&) <vols:y(Re) + €.

Now, assume that x is non-recurrent. Then for all € > 0, there is 6 = §(¢) > 0 such

that for all S >0
V015;M<R§’6) <e.

Let {p;}"¥) € S*M be such that S*M C U;B(p;,3/4) and N(6) < 51",

Letting Gg := 72;?7‘5, by Lemma there is Ry = Rp(e,S) > 0 such that for
R(h) < Ry, defining Go := {j | A} (R(h)) N Bsya(Gi, Ro)}, we have

1Go| < DR(h)! ",

Next, let G; := Bgxa(pi, 6/4) \ BS;M(Rg’d,RO) so that G; is closed and [inj M /2, 5]
non-self looping. By Lemma there are R; = R;(e,5) > 0 such that for R(h) <
min; R;, if we set G; := {] ’ A;j (R(h)) N BS;M(Gu RZ)}, then

Gil < R(h)'"D5" i > 1
and for ¢ > 1,
U A7 (R(h)) is [inj M/2, S] non-self looping.
j€g;
Then, we have

N [ el - —
s 25 29



58 YAIZA CANZANI AND JEFFREY GALKOWSKI

Now, for € := 3+ let § := 6(¢) and set S := 2N%(6)6"'Dinj M. Working with
R; = Ri(e,5) = Ri(T) as defined before, we have

XN: Gl R(r)"Yini M _ [T
— 25 =\

Defining
ho(T) = inf{h >0 | R(h) > miinRi(T)}, T(h) =sup{T > 0| ho(T') > h},

we have shown that z is (inj M/2,T(h)) non-recurrent. O
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