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Abstract

The h-version of the finite-element method (h-FEM) applied to the high-frequency Helmholtz
equation has been a classic topic in numerical analysis since the 1990s. It is now rigorously
understood that (using piecewise polynomials of degree p on a mesh of a maximal width h) the
conditions “(hk)pρ sufficiently small” and “(hk)2pρ sufficiently small” guarantee, respectively,
k-uniform quasioptimality (QO) and bounded relative error (BRE), where ρ is the norm of
the solution operator with ρ ∼ k for non-trapping problems. Empirically, these conditions are
observed to be optimal in the context of h-FEM with a uniform mesh. This paper demonstrates
that QO and BRE can be achieved using certain non-uniform meshes that violate the conditions
above on h and involve coarser meshes away from trapping and in the perfectly matched layer
(PML). The main theorem details how varying the meshwidth in one region affects errors both
in that region and elsewhere. One notable consequence is that, for any scattering problem
(trapping or nontrapping), in the PML one only needs hk to be sufficiently small; i.e. there is
no pollution in the PML.

The motivating idea for the analysis is that the Helmholtz data-to-solution map behaves
differently depending on the locations of both the measurement and data, in particular, on the
properties of billiards trajectories (i.e. rays) through these sets. Because of this, it is natural
that the approximation requirements for finite-element spaces in a subset should depend on
the properties of billiard rays through that set. Inserting this behaviour into the latest duality
arguments for the FEM applied to the high-frequency Helmholtz equation allows us to retain
detailed information about the influence of both the mesh structure and the behaviour of the
true solution on local errors in FEM.
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1 Introduction
1.1 The main result in its simplest form
The scattering problem and its finite-element approximation using a PML. We study
computing approximations to the solution of sound-soft or sound-hard scattering problems using
the finite-element method with non-uniform meshes. We consider scattering by an open obstacle
Ω− b Rd with smooth boundary and connected complement, Ω+ := Rd \Ω−: given f ∈ L2

comp(Ω+),
find u ∈ H1

loc(Ω+) such that

− k−2 div(A∇u)− nu = f in Ω+, (Bu)|∂Ω+ = 0, (k−1∂r − i)u = or→∞(r
1−d

2 ), (1.1)

where A is a smooth, symmetric, positive-definite matrix with real coefficients, n ∈ C∞(Ω+;R+),
supp(A − I) ∪ supp(n − 1) b Ω+, and Bu = u in the sound-soft case and Bu = ∂νu, with ν the
normal to ∂Ω+ in the sound-hard case.

We approximate the Sommerfeld radiation condition using a radial perfectly matched layer
(PML): let Ωtr b Rd be open and contain the closed convex hull of Ω−∪supp(A−I)∪supp(n−1). We
truncate the problem (1.1) to the computational domain Ω := Ω+∩Ωtr and apply the finite-element
method to the problem: given f ∈ L2(Ω), find u ∈ H1(Ω) such that

Pku := −k−2 div(Aθ∇u) + k−2bθ · ∇u− nθu = f in Ω, (Bu)|∂Ω+ = 0, u|∂Ωtr = 0, (1.2)

where Aθ, bθ, and nθ are defined in §A (and Aθ, bθ, and nθ are respectively A, 0, and n in the
non-PML region). Let ak(·, ·) be the sesquilinear form associated with (1.2).

Definition 1.1 Given a subspace V ⊂ H1(Ω) ∩ H1
0 (Ω+) (or H1

0 (Ω) in the sound-soft case), a
finite-element/Galerkin solution of (1.2) is an element uh ∈ V such that

ak(uh, wh) = 〈f, wh〉 for all wh ∈ V. (1.3)

Let
ρ = ρ(k) := sup

{
‖u‖L2(Ω) : u solves (1.2) with ‖f‖L2(Ω) = 1

}
.

Recall that, with the normalisation used in (1.1), for all k0 > 0 there exists c > 0 such that
ρ(k) ≥ ck for k > k0. By [GLS23, Theorem 1.6], for a radial PML (defined in §A), there exist
C, k1 > 0 such that for k > k1 and χ ≡ 1 on the convex hull of Ω,

ρ ≤ C sup
{
‖χu‖L2(Ω+) : u solves (1.1) with ‖χf‖L2(Ω+) = 1

}
;

i.e. the PML solution operator is controlled by the scattering solution operator.

Assumption 1.2 The set J ⊂ R+, Ω−, Aθ, bθ, and nθ are such that there are C > 0, N > 0 such
that ρ(k) ≤ CkN for k ∈ R+ \ J .

By [LSW21] and [GLS23, Theorem 1.6], for any δ > 0, Assumption 1.2 holds for a radial PML, any
(Ω−, A, n), and some Jδ with |Jδ| < δ.
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State-of-the-art analysis of the h-FEM. The h-version of the finite-element method (FEM)
considers the Galerkin solution to (1.2) with V given by the space of piecewise polynomials of a
fixed degree, p, on a mesh with maximum width h. The accuracy of the solution is then increased
by decreasing h.

Many authors have studied k-explicit conditions on the meshwidth guaranteeing that the finite-
element solution exists and has controlled error. The best existing result is the following: if (hk)2pρ
is sufficiently small, then for m ∈ {0, . . . , p− 1},

‖u− uh‖H1−m
k

(Ω) ≤ C
(

(hk)m + ρ(hk)p
)

inf
wh∈V pTk

‖u− wh‖H1
k
(Ω). (1.4)

This estimate was proved for general Helmholtz problems and general p ∈ Z+ in [GS25] (with earlier
work in [FW09, MS10, FW11, MS11, Wu14, DW15, BCFG17, LW19, CFN20, Pem20, CFGT22,
LSW22a]) and is empirically sharp when the mesh considered has uniform width h. The bound (1.4)
implies that if ρ(hk)p is bounded then the FE solution is quasi-optimal (QO) in the sense that
‖u − uh‖H1

k
(Ω) is, up to a constant, the best-approximation error. Since ρ & k, the requirement

ρ(hk)p . 1 implies that hk . ρ1/p � k−1/p– this fact that hk must decrease with k is the pollution
effect [BS00].

Using standard piecewise-polynomial approximation results in the right-hand side of (1.4), one
obtains that

‖u− uh‖H1−m
k

(Ω) ≤ C
(

(hk)m + ρ(hk)p
)

(hk)p‖u‖Hp+1
k

(Ω). (1.5)

If the data is k-oscillatory, then so is the solution (by elliptic regularity; see [GS25, Page 9]), with
‖u‖Hp+1

k
(Ω) ≤ C‖u‖H1

k
(Ω). In this case, (1.5) implies that the Galerkin solution has bounded relative

error (BRE) if (hk)2pρ is sufficiently small. We highlight that this threshold for BRE was famously
identified for 1-d problems in the work of Ihlenburg and Babuška [IB95, IB97] (see [IB97, Page 350,
penultimate displayed equation], [Ihl98, Equation 4.7.41]).

To date, all k-explicit a priori analyses of the h-FEM consider uniform meshes. The goal of this
paper is to study non-uniform meshes, designed by considering the ray dynamics in Ω+, and give
local – as opposed to global – criteria on the meshwidths. In particular, we show that there exist
meshes that obtain QO/BRE while severely violating the mesh thresholds above, and thus involve
many fewer degrees of freedom (see Table 1.1 below).

Subsets of Ω defined by ray dynamics. We define billiard trajectories to be geodesics for
the metric g−1 = A/n in Ω+ continued by reflection with respect to g at the boundary of Ω+

1–
when A = I and n = 1, these are straight line paths continued using the Snell–Descartes law at the
boundary. Next, we define the cavity K ⊂ Ω+ as the set of points x ∈ Ω+ such that there is a billiard
trajectory passing over x that remains in a compact set for all positive and negative times. We also
define the visible set V ⊂ Ω+ as those points x ∈ Ω+ such that there is a billiard trajectory passing
over x that remains in a compact set for all positive times or all negative times. Finally, we define
the invisible set I := Ω+ \ (V ∪ K) (the adjectives visible and invisible are relative to the cavity).
Let ΩP ⊂ Ω be an open neighbourhood of ∂Ωtr that is strictly contained in the PML. Next, let ΩK,
ΩV and ΩI be open neighbourhoods of the intersections with Ω of, respectively, K, V \ (K ∪ ΩP),
and I \ ΩP in the subspace topology of Ω such that ΩK ∩ ∂Ωtr = ΩV ∩ ∂Ωtr = ΩI ∩ ∂Ωtr = ∅.

The finite-element space. Given a mesh, T of Ω, we define hK, hV , hI , hP > 0, to be upper
bounds for the diameter of any mesh element that intersects ΩK, ΩV , ΩI , and ΩP respectively,
and let h := max{hK, hV , hI , hP}. Since Ω is C∞, some elements of the mesh need to be curved;
however, our results can, in principle, be combined with those of [CFS25] to prove results about
simplicial meshes. Let γ(T ) denote the shape-regularity constant of the mesh T (see, e.g., [BS08,
Equation (4.4.16)]). We define the following measure of local uniformity of the mesh at scale ε > 0:

U(T , ε) := sup
x∈Ω

sup
T1,T2∈T

T1∩B(x,ε)6=∅
T2∩B(x,ε)=∅

diam(T1)
diam(T2) .

1In fact, we use a somewhat more complicated notion, the generalised broken bicharacteristic [Hör85, Section
24.3].
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Figure 1.1: The domains ΩK,ΩV ,ΩI , and ΩP , when Ω− consists of two (rounded) aligned rectangles

We say that a family of meshes (Tk)k>0 is wavelength-scale quasiuniform with constant γ0 > 0 if
the mesh is shape regular with γ(Tk) ≥ γ0 and U(T , (1 + k)−1) ≤ γ−1

0 for all k > 0.
For a mesh T and p ∈ {1, 2, . . . }, we denote by V pT ⊂ H1

0 (Ω) (or H1
0 (Ωtr) ∩ H1(Ω) in the

sound-hard case) the space of Lagrange piecewise polynomials of degree p on the mesh T .

The main result in its simplest form. Define

C :=


ρ

√
kρ 0 0√

kρ k k 0
0 k k 0
0 0 0 1

 , H :=


hK 0 0 0
0 hV 0 0
0 0 hI 0
0 0 0 hP

 , F :=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

T :=


1 (hVk)2p√kρ (hVk)2p√kρ(hIk)2pk 0

(hKk)2p√kρ 1 (hIk)2pk 0
(hKk)2p√kρ(hVk)2pk (hVk)2pk 1 0

0 0 0 1

 .

(1.6)

Conceptually, C is the norm of the localised data-to-solution map (with C standing for “communica-
tion”) and T controls the propagation of Galerkin errors between subdomains according to the
graph in Figure 9.1 (with a simplified version – Figure 1.2 – given in the sketch of the proof in
§1.3.2).

We work in k-weighted Sobolev spaces defined for U ⊂ Rd by

‖u‖2Hn
k

(U) :=
∑
|α|≤n

k−2|α|‖∂αu‖2L2(U), n ∈ N, (1.7)

and let H−nk (U) be the normed dual of Hn
k (U).

The following is a particular case of our main result (Theorem 3.11 below).
Theorem 1.3 Let k0, N, γ0 > 0, p ∈ N \ {0}, J ⊂ R+ such that Assumption 1.2 holds, and let Ω′?
be compactly contained in Ω? with respect to the subspace topology of Ω, ? ∈ {K,V, I,P}.

There exist c, C > 0 such that for all families of meshes (Tk)k>0 that are wavelength-scale
quasiuniform with constant γ0 and satisfy

(hKk)2pρ(k) + (hVk)2pk + (hIk)2pk + (hPk)2p ≤ c, (1.8)

all k ∈ (k0,∞) \ J , and all wh,? ∈ V pTk , with ? ∈ {K,V, I,P}, the Galerkin solution, uh ∈ V pTk ,
to (1.2) exists, is unique, and satisfies, for 0 ≤ m ≤ p,

‖u− uh‖H1−m
k

(Ω′K)

‖u− uh‖H1−m
k

(Ω′V)

‖u− uh‖H1−m
k

(Ω′I)

‖u− uh‖H1−m
k

(Ω′P)

 ≤ C
[
(Hk)m + T C(Hk)p + k−N (hk)mF

]
‖u− wh,K‖H1

k
(ΩK)

‖u− wh,V‖H1
k
(ΩV)

‖u− wh,I‖H1
k
(ΩI)

‖u− wh,P‖H1
k
(ΩP)

 , (1.9)
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where the inequality in (1.9) is understood component-wise.

Remark 1.4 From the estimate (1.9) and the interpretation of T as the propagation of Galerkin
errors, the matrix C(Hk)p should be viewed as mapping best approximation errors to Galerkin errors.
This appears more concretely in the proof of Theorem 1.3 and we discuss this interpretation in
§1.3.3.

To the best of the authors’ knowledge, Theorem 1.3 and its more sophisticated analogue
Theorem 3.11 are the first results concerning k-dependent, non-uniform finite-element meshes in the
context of the Helmholtz equation. For a uniform mesh (hK = hV = hI = hP = h ) (1.9) implies
the strongest previously-known bound (1.4). Indeed, for a uniform mesh with (hk)2pρ sufficiently
small, all the elements of the matrix T are bounded by a constant, and all the elements of C (Hk)p
are bounded by ρ(hk)p. However, Theorem 1.3 provides much more information than (1.4): it
describes how the best approximation errors and local meshwidth in each region affect the Galerkin
error in all other regions. Section 1.2 highlights some notable consequences of this description, with
Section 2 illustrating these numerically.

Theorem 1.3 is most interesting when ρ(k) � k, which is equivalent to the problem being
trapping, i.e., K 6= ∅ (see [BBR10], [DZ19, Theorem 7.1]). In particular, Theorem 1.3 shows
that in the trapping case there exist meshes with (hk)pρ� 1 whose finite-element solutions have
guaranteed k-uniform quasioptimality (see Corollary 1.11). Even when K = ∅, Theorem 1.3 gives
new information including that one needs only a fixed number of points per wavelength in the PML.

To compare with the estimate (1.5) on relative error, we state the following corollary of
Theorem 1.3 which follows from standard piecewise-polynomial approximation estimates.

Corollary 1.5 Let k0, N, γ0 > 0, p ∈ N \ {0}, J ⊂ R+ such that Assumption 1.2 holds, and let
Ω′? be compactly contained in Ω? with respect to the subspace topology of Ω, ? ∈ {K,V, I,P}.

There exist c, C > 0 such that for all families of meshes (Tk)k>0 that are wavelength-scale
quasiuniform with constant γ0 and satisfy (1.8) and all k ∈ (k0,∞) \ J , the Galerkin solution,
uh ∈ V pTk , to (1.2) exists, is unique, and satisfies, for 0 ≤ m ≤ p,
‖u− uh‖H1−m

k
(Ω′K)

‖u− uh‖H1−m
k

(Ω′V)

‖u− uh‖H1−m
k

(Ω′I)

‖u− uh‖H1−m
k

(Ω′P)

 ≤ C
[
(Hk)m + T C(Hk)p + k−N (hk)mF

]
(Hk)p


‖u‖Hp+1

k
(ΩK)

‖u‖Hp+1
k

(ΩV)

‖u‖Hp+1
k

(ΩI)

‖u‖Hp+1
k

(ΩP)

 . (1.10)

As with (1.5), when the data, f , is k-oscillatory, so is the solution u, and in this case, ‖u‖Hp+1
k

(U ′) ≤
C‖u‖H1

k
(U) for U ′ b U . Hence, one can use (1.10) to find meshes with (hk)2pρ� 1 that nevertheless

have guaranteed control on the relative error (see Corollary 1.12).

Remark 1.6 (Improvements in Theorem 3.11) Theorem 3.11 below is stronger than Theorem
1.3 in that it considers arbitrary covers of Ω, and bounds the high (� k) and low (. k) frequencies
of the Galerkin error separately. Two situations in which a more complicated cover is advantageous
are the following. 1) There are two or more cavities that are dynamically separated, i.e., for which
there is no billiard trajectory whose closure insects both cavities. 2) One has a priori information
about the data and/or solution and hence can obtain good control on the right-hand side of (1.9).
Even when K = ∅, such information combined with Theorem 1.3 allows one to define meshes with a
priori improved accuracy in some regions, without the need to choose a small meshwidth everywhere.

1.2 Special cases of Theorem 1.3
We now apply Theorem 1.3 in several special cases, and derive consequences regarding quasi-
optimality and bounded relative errors. For simplicity, we state these results for m = 0, i.e., we
bound the H1

k norm of the Galerkin error. The results of this section are summarised in Table 1.1.
Define

M := I + T C(Hk)p, MRE := M (Hk)p,
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and set MΩ := M
(
1 . . . 1

)T , MRE,Ω := MRE
(
1 . . . 1

)T . With these definitions, the terms
in square brackets on the right-hand sides of (1.9) and (1.10) become, respectively, [M + k−NF ]
and [MRE + k−NF (Hk)p] and, in particular, imply that

‖u− uh‖H1
k
(Ω′K)

‖u− uh‖H1
k
(Ω′V)

‖u− uh‖H1
k
(Ω′I)

‖u− uh‖H1
k
(Ω′P)

C ≤



[
MΩ + k−N

(
1 . . . 1

)T ]
inf

wh∈V pTk
‖u− wh‖H1

k
(Ω)

[
MRE,Ω + k−N (hk)p

(
1 . . . 1

)T ]
‖u‖Hp+1

k
(Ω) .

Bounds for the coarsest meshes allowed by Theorem 1.3.

Corollary 1.7 (Bound on the quasi-optimality constant) Under the same assumptions as
Thoerem 1.3,

M ≤ C


√
ρ
√
ρ
√
ρ 0√

k
√
k
√
k 0√

k
√
k
√
k 0

0 0 0 1

 , MΩ ≤ C


√
ρ√
k√
k

1

 .

Corollary 1.8 (Bound on the relative error) Under the same assumptions as in Theorem 1.3,
for all ε ≤ c, if (Tk)k>0 satisfies

(hKk)2pρ(k) + (hVk)2pk + (hIk)2pk + (hPk)2p ≤ ε,

then

MRE ≤ C
√
ε


1

√
ρ
k

√
ρ
k 0√

k
ρ 1 1 0√
k
ρ 1 1 0

0 0 0 1

 , MRE,Ω ≤ C
√
ε


√
ρ/k
1
1
1

 .

Estimates for uniform meshes. For quasi-uniform meshes hK = hV = hI = hP =: h, recall from
§1.1 that the known mesh conditions for ensuring k-uniform quasioptimality or a controllably-small
relative error of the Galerkin solution are, respectively

(hk)pρ(k) < c, (hk)2pρ(k) < c,

for c > 0 sufficiently small, with the former regime known as the asymptotic regime. Here we show
that these thresholds also ensure better error estimates for the Galerkin error away from trapping.

Corollary 1.9 (Asymptotic estimates) Under the same assumptions as Theorem 1.3, if Tk
satisfies hK = hV = hI = hP = h, with (hk)pρ < c, then

M ≤ C


1

√
k
ρ (kρ ) 3

2 1
ρ 0√

k
ρ 1 k

ρ 0
(kρ ) 3

2 1
ρ

k
ρ 1 0

0 0 0 1

 .

Corollary 1.10 (Preasymptotic estimates) Under the same assumptions as Theorem 1.3,
there exists C > 0 such that for all 0 < ε < c if (Tk)k>0 satisfies hK = hV = hI = hP = h,
with (hk)2pρ < ε, then

MRE ≤ C
√
ε


1

√
k
ρ

(
k
ρ

)3/2
0√

k
ρ

k
ρ + 1√

ρ
k
ρ 0(

k
ρ

)3/2 (
k
ρ

)2 k
ρ + 1√

ρ 0
0 0 0 1√

ρ

 . (1.11)
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Weakest conditions guaranteeing k-uniform quasi-optimality and controllably-small
relative error.

We proceed by identifying the minimal thresholds under which Theorem 1.3 guarantees that (i) the
Galerkin solution is quasi-optimal, uniformly in k, and (ii) the relative error is controllably small.

Corollary 1.11 (Threshold for k-uniform quasi-optimality) Under the same assumptions
as Theorem 1.3, if (Tk)k>0 satisfies

(hKk)pρ+ (hVk)p
√
kρ+ (hIk)pk + (hPk)p < c, (1.12)

then

M ≤ C


1 1 1√

kρ
0√

k
ρ 1 1 0

1
ρ

√
k
ρ

√
k
ρ 1 0

0 0 0 1

 . (1.13)

Corollary 1.12 (Threshold for bounded relative error) Under the same assumptions as
Theorem 1.3, there exists C > 0 such that for all 0 < ε < c if (Tk)k>0 satisfies

(hKk)2pρ+ (hVk)2p
√
ρk + (hIk)2pk + (hPk)2p < ε, (1.14)

then

MRE ≤ C
√
ε


1 1 1 0√
k
ρ

√
k
ρ + 1

(ρk)1/4 1 0
k
ρ

k
ρ 1 0

0 0 0 1

 . (1.15)

In particular, ‖u− uh‖H1
k
(Ω)/‖u‖Hp+1

k
(Ω) is bounded.

Remark 1.13 In Corollaries 1.8 and 1.10 one can track how the matrix entries depend on ε, but
we do not do this here for simplicity.

Condition guaranteeing quasi-optimality away from trapping. We finally give the weakest
condition under which Theorem 1.3 ensures that the quantities

‖u− uh‖H1
k
(Ω′V)

min
wh∈V pT

‖u− wh‖H1
k
(Ω)

,
‖u− uh‖H1

k
(Ω′I)

min
wh∈V pT

‖u− wh‖H1
k
(Ω)

(1.16)

remain k-uniformly bounded. We refer to these quantities as the quasi-optimality constants “away
from trapping”. These quantities should not be confused with “local quasi-optimality” constants
(which would be defined with ΩV and ΩI instead of Ω in the denominators of (1.16)).

Corollary 1.14 (Threshold for k-uniform “quasi-optimality away from trapping”)
Under the same assumptions as Theorem 1.3, if (Tk)k>0 satisfies

(hKk)p
√
kρ+ (hVk)pk + (hIk)pk + (hPk)p < c, (1.17)

then

M ≤ C


√

ρ
k

√
ρ
k

1
k2

√
ρ
k 0

1 1 1 0
1
k 1 1 0
0 0 0 1

 and MΩ ≤ C


√

ρ
k

1
1
1

 . (1.18)
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Remark 1.15 It is natural to look for the analogous weakest condition guaranteeing a controllably
small k-uniform bound on the “relative error away from trapping”, defined by

‖u− uh‖H1
k
(Ω′V)

‖u‖Hp+1
k

(Ω)
,
‖u− uh‖H1

k
(Ω′I)

‖u‖Hp+1
k

(Ω)
(1.19)

(again not to be confused with “local relative errors” which would involve ‖u‖H1
k
(ΩV∩Ω) and

‖u‖H1
k
(ΩI∩Ω) in the denominators). However, these quantities are already bounded under the

weakest possible condition in Theorem 1.3, see Corollary 1.8.

fe
w

er
D

oF
s

m
or

e
D

oF
s

xy

Mesh threshold Asymptotic DoFs Theoretical guarantee Name

(hKk)pρ+ (hVk)pρ+ (hIk)pρ = c vol(Ω)kdρ
d
p k-QO U1

(hKk)pρ+ (hVk)p√kρ+ (hIk)pk = c vol(ΩK)kdρ
d
p k-QO QO

(hKk)p√kρ+ (hVk)pk + (hIk)pk = c vol(ΩK)kd+ 1
2p ρ

d
2p k-QO away from trapping QO away

(hKk)2pρ+ (hVk)2pρ+ (hIk)2pρ = c vol(Ω)kdρ
d
2p CRE U2

(hKk)2pρ+ (hVk)2p√kρ+ (hIk)2pk = c vol(ΩK)kdρ
d
2p CRE RE

(hKk)2pρ+ (hVk)pk + (hIk)pk = c vol(ΩK)kdρ
d
2p CRE away from trapping RE away

Table 1.1: Summary of the special cases of Theorem 1.3 discussed in this section, with K 6= ∅.
Note that in all cases we require hP k = c which does not contribute to the asymptotic number of
degrees of freedom (DoFs). Here, k-QO stands for k-uniform quasioptimality, and CRE stands for
controllably-small relative error.

1.3 Discussion of the ideas behind Theorem 1.3 and a sketch of the proof
1.3.1 The ideas behind Theorem 1.3

The following two important phenomena motivate Theorem 1.3.

1. The solution operator P−1
k reflects the billiard dynamics in Ω. In particular, for χ1, χ2 ∈

C∞(Ω) the operator χ1P
−1
k χ2 behaves differently depending on the locations of suppχj ; e.g.,

‖P−1
k ‖ � k when ΩK 6= ∅, but if both χ1 and χ2 are away from ΩK then ‖χ1P

−1
k χ2‖L2→L2 . k.

2. The Galerkin error propagates. The best possible situation would be local quasioptimality
i.e., there exists C > 0 such that the Galerkin solution uh satisfies, for every U ⊂ Ω,

‖u− uh‖H1
k
(U) ≤ C inf

wh∈V pT
‖u− wh‖H1

k
(U). (1.20)

In this case, since approximation of oscillatory functions by piecewise polynomials is well
understood (see [Gal25] and the references therein), the properties of the data and behaviour
of P−1

k would dictate the meshwidth in each region. Unfortunately (1.20) cannot hold for
general meshes. Indeed, suppose that (1.20) holds and let φ, φ1, φ2 ∈ C∞(Ω) be such that
suppφ ⊂ {φ1 ≡ 1}, φ 6= 0, and φ1 + φ2 ≡ 1 on Ω. Then,

φ(u− uh) =
2∑
j=1

φP−1
k φjPk(u− uh). (1.21)

We now consider a situation where T has arbitrarily small elements on suppφ1 =: Ω1 so that,
by (1.20),

‖u− uh‖H1
k
(Ω1) ≤ C inf

wh∈V pT
‖u− wh‖H1

k
(Ω1) � 1.

8



In particular,
‖φ(u− uh)‖H1

k
+ ‖P−1

k φ1Pk(u− uh)‖H1
k
� 1

(by continuity of Pk and P−1
k and locality of Pk). Then, (1.21) implies that

‖φP−1
k φ2Pk(u− uh)‖H1

k
� 1,

which cannot be true unless the meshwidth is also sufficiently small on Ω2 or φP−1
k φ2 ≈ 0.

By Item 1, the latter is not the case whenever suppφ and suppφ2 are connected by a billiard
trajectory. (For a striking illustration of this propagation of error, see [AGS24, Figure 3].)
This argument indicates, not only that the Galerkin error propagates, but that the norm of
the operator φP−1

k φ2 determines the strength of propagation from suppφ2 to suppφ.

Item 1 motivates varying the meshwidth from one location to another, but Item 2 shows that, to
be effective, this strategy must take into account the global behaviour of billiard trajectories. In
particular, by Item 2, the error in the cavity is not just dictated by the meshwidth in the cavity –
the meshwidth also needs to be sufficiently small away from the cavity to control the propagating
error.

1.3.2 Sketch of the proof of Theorem 1.3

For simplicity, we consider here the bound (1.9) with m = p and ignore improvements that are
possible in the overlaps between subdomains, in the PML region, and by splitting the frequencies
of the Galerkin error into those � k and . k.

The proofs of Theorem 1.3 and Theorem 3.11 are, at heart, localised versions of the elliptic
projection-type argument introduced in [GS25]. We first recap this argument and prove (1.4) for
m = p. The key insight in [GS25] is the existence of a self-adjoint smoothing operator Sk so that
P ]k := Pk + Sk is coercive (uniformly in k) and for all N there exists C > 0 such that for k ≥ k0

‖Sk‖H−N
k
→HN

k
≤ C

(see (5.12) for the definition of the operator Sk). Since P ]k is coercive there is an elliptic projection
Π]
k : H1

k → V pTk such that 〈
P ]kwh, (I −Π]

k)u
〉

= 0 for all wh ∈ V pTk (1.22)

and there exists C > 0 such that for all k > k0

‖(I−Π]
k)v‖H1

k
≤ C inf

wh∈V pTk
‖v − wh‖H1

k
(1.23)

(i.e. Π]
k is the adjoint Galerkin projection associated to P ]k). Moreover, by an Aubin–Nitsche-type

duality argument
‖(I−Π]

k)v‖H−p+1
k

≤ C(hk)p inf
wh∈V pTk

‖v − wh‖H1
k
. (1.24)

It follows from (1.22) and Galerkin orthogonality (1.3) that for all wh ∈ V pTk , v ∈ Hp−1
k ,

〈u− uh, v〉 =
〈
Pk(u− uh), R∗kv

〉
=
〈
Pk(u− uh), (I −Π]

k)R∗kv
〉

=
〈
P ]k(u− uh), (I −Π]

k)R∗kv
〉
−
〈
S(u− uh), (I −Π]

k)R∗kv
〉

=
〈
P ]k(u− wh), (I −Π]

k)R∗kv
〉
−
〈
S(u− uh), (I −Π]

k)R∗kv
〉
.

(1.25)

By (1.23), (1.24), and the mapping properties Sk : H−p+1
k → Hp−1

k and P ]k : H1
k → H−1

k ,

|〈u− uh, v〉| ≤ Cηp
(

inf
wh∈V pTk

‖u− wh‖H1
k

+ (hk)p‖u− uh‖H−p+1
k

)
‖v‖Hp−1

k
,

where ηp := sup
0 6=v∈Hp−1

k

inf
wh∈V pTk

‖R∗kv − wh‖H1
k

‖v‖Hp−1
k

.

(1.26)
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By duality, (1.26) implies

‖u− uh‖H−p+1
k

≤ C
(
b inf
wh∈V pTk

‖u− wh‖H1
k

+ ω‖u− uh‖H−p+1
k

)
,

b := ηp, ω := (hk)pηp.
(1.27)

By a frequency splitting argument similar to that in Lemma 8.5 below and the fact that ρ ≥ ck,

ηp ≤ C(hk)p
(
1 + ‖Rk‖L2→L2

)
= C(hk)p(1 + ρ) ≤ C(hk)pρ.

Thus, from (1.27), when (hk)2pρ is sufficiently small, (1− Cω)−1 exists and is positive, and then

‖u− uh‖H−p+1
k

≤ C(1− Cω)−1b inf
wh∈V pTk

‖u− wh‖H1
k
≤ C(hk)pρ inf

wh∈V pTk
‖u− wh‖H1

k
, (1.28)

which is the preasymptotic estimate (1.4) for m = p.
We now sketch the localised version of the above argument, which is used to prove Theorems 1.3

and 3.11. In this sketch, we treat Π]
k and Sk as though they are local; i.e., for χ, ψ ∈ C∞(Ω) with

suppχ ∩ suppψ = ∅, we neglect the terms

χΠ]
kψ and χSkψ.

In general these terms are nonzero, but Sections 5 to 7, which contain the bulk of the technical
work of this paper, show that they are O(k−∞) and smoothing. Using these properties, Section 8
shows that these terms only contribute to the remainder term in Theorem 1.3.

To localise the elliptic-projection argument, we introduce an open cover of Ω, {Ωj}Mj=1 and
{φj}Mj=1 ⊂ C∞(Ω) a partition of unity subordinate to this cover. (In Theorem 1.3, M = 4 and
(Ω1,Ω2,Ω3,Ω4) := (ΩK,ΩV ,ΩI ,ΩP).) Next, let χj ∈ C∞(Ω), j = 1, . . . ,M such that

suppχj ⊂ Ωj ∪ ∂Ω, χj ≡ 1 in a neighbourhood of suppφj .

Arguing as in (1.25), for all wh,j ∈ Vk, j = 1, . . . ,M , and v ∈ Hp−1
k , we obtain

〈χi(u− uh), v〉
=
〈
Pk(u− uh), R∗kχiv

〉
=
〈
P ]k(u− uh), (I −Π]

k)R∗kχiv
〉
−
〈
Sk(u− uh), (I −Π]

k)R∗kχiv
〉

=
M∑
j=1

(〈
P ]k(u− wh,j), (I −Π]

k)φjR∗kχiv
〉
−
〈
Sk(u− uh), (I −Π]

k)φjR∗kχiv
〉)

(1.29)

=
M∑
j=1

(〈
P ]kχj(u− wh,j), χj(I −Π]

k)φjR∗kχiv
〉
−
〈
Skχj(u− uh), χj(I −Π]

k)φjR∗kχiv
〉)
,

where we have neglected the nonlocal parts of Π]
k, P ]k , and Sk in the last line. The local Aubin–

Nitsche–type argument in Lemma 8.2 shows that (modulo remainder terms)

‖χj(I−Π]
k)v‖H−p+1

k
≤ C(hjk)p inf

wh∈V pTk
‖v − wh‖H1

k
, where hj := max

K∈T
K∩Ωj 6=∅

hK (1.30)

(compare to (1.24)). By (1.23), (1.30) and the mapping properties Sk : H−p+1
k → Hp−1

k and
P ]k : H1

k → H−1
k ,

|〈χi(u− uh), v〉|

≤ C
∑
j

ηp(j → i)
(

inf
wh,j∈V pTk

‖χj(u− wh,j)‖H1
k

+ (hjk)p‖χj(u− uh)‖H−p+1
k

)
‖v‖Hp−1

k
,

where ηp(j → i) := sup
0 6=v∈Hp−1

k

inf
wh∈V pTk

‖χjR∗kχiv − wh‖H1
k

‖v‖Hp−1
k

(1.31)
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(compare to (1.26)). By duality, (1.31) implies

‖χi(u− uh)‖H−p+1
k

≤
∑
j

Cηp(j → i)
(

inf
wh,j∈V pTk

‖χj(u− wh,j)‖H1
k

+ (hjk)p‖χj(u− uh)‖H−p+1
k

)
.

We then use a frequency splitting argument (see Lemma 8.5) to obtain (neglecting remainder terms)

ηp(j → i) ≤ C(hjk)p‖χjR∗kχi‖L2→L2 + C1{Ωi∩Ωj 6=∅}(hijk)p, where hij := min(hi, hj).

In particular, this yields the system of inequalities(
‖χi(u− uh)‖H−p+1

k

)M
i=1 ≤ CB

(
inf

wh,j∈V pTk
‖χj(u− wh,j)‖H1

k

)M
j=1

+ CW
(
‖χj(u− uh)‖H−p+1

k

)M
j=1,

(1.32)
where

Bij := ηp(j → i) ≤ C(hjk)p‖χjR∗kχi‖L2→L2 + C1{Ωi∩Ωj 6=∅}(hijk)p

Wij := (hjk)pηp(j → i) ≤ C(hjk)2p‖χjR∗kχi‖L2→L2 + C(hjk)p1{Ωi∩Ωj 6=∅}(hijk)p

(compare to (1.27)). Under the condition that
∞∑
n=0

(CW )n <∞, (1.33)

(I − CW )−1 exists and has non-negative entries. Hence (1.32) implies that

‖u− uh‖H−p+1
k

≤ C(I − CW )−1B‖u− wh‖H1
k
.

(compare to (1.28)).
To understand when

∑
n(CW )n converges, consider W as the weighted adjacency matrix of a

directed graph with M nodes representing {Ω}Mj=1. Observe that the entry in the ith row and jth

column of (CW )` is given by C` times the sum of the weights over all paths of length ` from j to i
in this graph. Hence, the sum converges if for any i and j the sum of the weights of all paths from
j to i multiplied by Cpath length is finite. Using elementary graph analysis this condition can be
reduced to the requirement that all the sum of such weights for all non-self intersecting loops is less
than 1 (see Appendix B).

In the setting of Theorem 1.3, M = 4 and (Ω1,Ω2,Ω3,Ω4) := (ΩK,ΩV ,ΩI ,ΩP). For k /∈ J ,
Section 4 obtains the bounds of Table 1.2 on ψR∗kχ according to the support of ψ and χ.

suppψ
∖

suppχ ΩK ΩV ΩI ΩP

ΩK ρ
√
kρ O(k−∞) O(k−∞)

ΩV
√
kρ k k 1

ΩI O(k−∞) k k 1

ΩP O(k−∞) 1 1 1

Table 1.2: Bounds on ‖ψR∗kχ‖L2→L2 (up to k-independent constants) proved in Section 4 for k /∈ J .

As a result, the graph corresponding to W is the one in Figure 1.2, and the requirement that
the sum of weights on all non-self intersecting loops be less than 1 reduces to (1.8).

1.3.3 Interpretation as error propagation

To properly interpret the matrices appearing in (1.9), we return to (1.29), which is equivalent to

χi(u− uh) =
M∑
j=1

χiRkφj
(
(I −Π]

k)∗χjP ]kχj(u− wh,j)− (I −Π]
k)∗χjSkχj(u− uh)

)
. (1.34)
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ΩK ΩV ΩI ΩP

(hKk)2p√kρ

(hVk)2p√kρ

(hVk)2pk

(hIk)2pk

(hPk)2p

(hVk)2p

(hIk)2p

(hPk)2p

(hKk)2pρ (hVk)2pk (hIk)2pk (hPk)2p

Figure 1.2: The graph showing propagation of errors for the decomposition into ΩK, ΩV , ΩI , and
ΩP in the simplified setup of Section 1.3.2. Note that this can be improved using the analysis in
Section 8. The graph corresponding to Theorem 1.3 is shown in Figure 9.1 and that for Theorem 3.11
is shown in Figure 3.1.

We are interested in ‖χi(u − uh)‖H−p+1
k

, which we think of as the low frequencies of χi(u − uh);
these low frequencies are captured by Skχi(u− uh). For purposes of this discussion, we assume Sk
commutes with χiRkφj . This is not quite true, but (away from the PML), since

‖SkχiRkφj‖H−p+1
k

→L2 ≤ C‖χiRkφj‖L2→L2 ,

SkχiRkφj acts like χiRkφjL where L is a lowpass filter. We show in Theorem 4.2 that near the
PML there is no propagation and so we ignore the PML here.

With these caveats, (1.34) implies

Skχi(u− uh) =
M∑
j=1

χiRkφj

(
Skχj(I −Π]

k)∗χjP ]kχj(u−wh,j)− Skχj(I −Π]
k)∗χjS̃kSkχj(u− uh)

)
.

The operator χiRkφj has the effect of propagating between domains. The operator (I − Π]
k)∗

essentially takes the best approximation in H1
k norm and Sk then returns only the frequency . k

components. This process is represented in the graph in Figure 1.3.
To find Skχi(u−uh) in terms of the local best approximations to u, one inserts χjP ]χj(u−wh,j)

at node 1 in Figure 1.3 and follows the cycle to node 4, producing the first approximation to
Skχi(u−uh). One then continues around the cycle arbitrarily many times, adding χjP ]χj(u−wh,j)
in each cycle. This process converges under the condition (1.33) and the final result at node 4 is
(Skχi(u − uh))i. The W and B matrices in (1.32) are respectively one full cycle from node 4 to
node 4 and a path from node 1 to node 4 in Figure 1.3.

Acknowledgements: MA was supported by EPSRC grant EP/R005591/1, JG was supported by
EPSRC grants EP/V001760/1 and EP/V051636/1, Leverhulme Research Project Grant RPG-2023-
325, and ERC Synergy Grant PSINumScat - 101167139, and EAS was supported by EPSRC grant
EP/R005591/1 and ERC Synergy Grant PSINumScat - 101167139.

2 Numerical experiments illustrating the main result
We illustrate Theorem 1.3 with numerical results in a selection of asymptotic regimes and in two
different geometric settings, in which we solve the PDE (1.1) with constant coefficients A,n ≡ 1.
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Figure 1.3: The graph showing the process of error propagation when determining the low frequencies
of u− uh from the local best approximation errors. The arrows are labelled first with the type of
operation (low pass filter etc.) and then with the operator whose action gives this effect. These
operators are applied multiplicatively.

2.1 Experimental setup
2.1.1 Geometric setup

The first geometric setting involves a scatterer with two parallel “walls” obtained by placing two
rectangular obstacles next to each other. The second geometric setting is similar, but has one of
the two rectangles shifted slightly upwards to “make way” for the wave to come inside the cavity.

In the first setting (without shifting one of the two rectangles) the obstacle Ω− is the union
of two congruent rectangles of sides L1 = 0.7

√
2 and L2 = 1.3

√
2 with rounded corners so that

they have a C∞ boundary (this is done using the technique from [EO16]). The four vertices of the
first (respectively second) rectangle are located at the coordinates [−X1/2± L1

2 ,±
L2
2 ] (respectively,

[X1/2 ± L1
2 ,±

L2
2 ]) where X1 = 3

√
2

2 . Therefore, the two rectangles have parallel sides and are
separated by a gap in the x-axis equal to Lgap = X1 − L1 = 0.8

√
2.

For any δ > 0 small enough (e.g. smaller than, min(L1, L2/2)) the cavity K is contained in the
rectangle ΩK := Ω+ ∩

(
(−Lgap

2 − δ, Lgap
2 + δ)× (−L2

2 ,
L2
2 )
)

. A neighbourhood of V \ K is given by{
(x, y) ∈ Ω+ : |y| > L2

2 − δ
}

. Finally, ΩI :=
{

(x, y) ∈ Ω+ : |x| > Lgap
2 + δ

}
is a neighbourhood of

I. For these geometries, and since the wave speed is constant, we can identify the regions K,V, and
I “by eye”. For more complicated geometries and wave speeds, one would need to identify these
regions using ray tracing.

We use the radial PML with coefficients defined in (A.3), with the PML scaling function given
by fθ(r) = (r −RP)3/(3(Rtr −RP)2) for r > RP , with RP = 2 and Rtr = 2.5.

2.1.2 Discussion of ρ(k) in the experimental setup

For the wavenumbers
kn := nπ

Lgap
,

one can show that there exists c > 0 such that ρ(kn) ≥ ck2
n (e.g. by considering (1.1) with the right

hand side f obtained by applying the operator −k−2∆− 1 to u(x, y) := χ(x, y) sin
[
kn

(
x− Lgap

2

) ]
where χ is a smooth compactly supported function which is identically 1 in the set [−Lgap

2 ,
Lgap

2 ]×

13



[−ε, ε] for some sufficiently small ε > 0. The best known upper bound for all k ∈ R+ is ρ(k) ≤ Ck3

for all k ≥ k0 [CWSGS20], but it is conjectured that ρ(k) ≤ Ck2, and we assume this from now on.

2.1.3 Description of the sources

For these two geometries, we consider k-dependent right-hand sides (source terms) fin and fout
that are “Gaussian beams” (or “wave-packets”) of width k−1/2 both in the physical and frequency
space, and centered in physical space either at the origin (0, 0), i.e. inside the cavity K, propagating
in the x-direction, or outside the cavity, propagating in the direction of angle θ(k) = O(k−1/2) with
respect to the x-axis. For the outside beam, the physical position (x0, y0) is chosen so that the
central ray of the beam hits the bottom of the right-hand “wall” of the cavity (this ensures that the
beam can coherently stay in the cavity as long as possible, with O(

√
k) reflections on the cavity’s

boundaries), see Figure 2.1 (c). The beams are normalized so that ‖fin‖L2(R2), ‖fout‖L2(R2) = 1.
The obstacle, the right-hand sides fin and fout, and the corresponding solutions uin and uout are
represented in Figure 2.1.

(a) Data fin (b) Solution Re(uin)

(c) Data fout

(d) Solution Re(uout)

Figure 2.1: Top left: right-hand side fin. Top right: numerical approximation of the solution uin
with data fin. Bottom left: right-hand side fout. Bottom right: numerical approximation of the
solution uout with data fout. In these figures, k = 40 π

Lgap
≈ 111 and the functions f and u are

truncated to a domain BR ∩ Ω+ where R = 2.2.
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2.1.4 Reference solutions and their k-dependence

Numerical approximations of the exact solutions uin and uout are computed using the FEM with
piecewise polynomials of degree pref = 4. These numerical solutions are used as reference solutions
to analyze the error in the FEM with p = 2 throughout numerical experiments.

By Theorem 4.1, there exists a constant C > 0 and, for each N > 0, a constant CN > 0 such that
‖uin‖H1

k
(ΩV) ≤ C

√
kρ, ‖uin‖H1

k
(ΩI) ≤ CNk

−N , ‖uout‖H1
k
(ΩK) ≤ C

√
kρ and ‖uout‖H1

k
(ΩV∪ΩI) ≤ Ck

for all k ≥ k0. This is illustrated in Figure 2.2, where we observe the empirical rates ‖uin‖H1
k
(ΩK) ≈

Ck1.7 ≤ Ck2, ‖uin‖H1
k
(ΩV) ≈ Ck1.2 ≤ Ck3/2, and ‖uout‖H1

k
(ΩK) ≈ Ck1.4 ≤ Ck3/2, ‖uout‖H1

k
(ΩV) ≈

Ck0.75 ≤ Ck. The regimes that we consider are those of Table 1.1.

‖uin‖
H1
k

(K)

‖uin‖
H1
k

(V)

‖uin‖
H1
k

(I)

O(k1.7)
O(k1.2)

Wavenumber k

‖u
in
‖ H

1 k

Solution Growth
‖uout‖

H1
k

(K)

‖uout‖
H1
k

(V)

‖uout‖
H1
k

(I)

O(k1.4)
O(k0.75)

Wavenumber k

‖u
ou

t‖
H

1 k

Solution Growth

Figure 2.2: Left: growth of the solution uin. Right: growth of the solution uout. Solid red line (resp.
blue, yellow): growth in the cavity (resp. the visible set, the invisible set).

Region ‖uin‖H1
k
‖uout‖H1

k

ΩK ≈ k1.7 ≈ k1.4

ΩV ≈ k1.2 ≈ k0.75

Table 2.1: Bounds on the H1
k norms of uin and uout inferred from Figure 2.2.

2.1.5 Non-uniform meshing

The non-uniform meshes used in the experiments are created using a feature of FreeFem++ allowing
one to “adapt” a mesh according to a custom metric. For our purposes, we only require an isotropic
metric, which is described by a scalar function h : Ω→ R+ describing the local required mesh size.
This function h can be passed – along with an initial, uniform mesh – as an optional argument
to the FreeFem++ “adaptMesh” routine, which uses the BAMG algorithm [Hec98]. We define
h ∈ C∞(Ω) so that

max
x∈Ω?

h(x) ≤ h?,

where ? ∈ {K,V, I,P}, with h? the corresponding mesh threshold. In some parts of Ω?, the
function h can be significantly smaller than h?, for instance in intersections between two subdomains.
However, we enforce that h(x) ≡ h? for all x in a k-independent subset Ω′? ⊂ Ω?. Therefore, up to
smooth transitions across regions, the metric is sharply described by h?. In all the experiments, we
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take hPk to be constant. Since the solution in the PML region is not physically relevant, we do not
display the errors in this region.

2.2 Numerical results
In the numerical results, we compute a few important quantities under a variety of mesh conditions.
The local quasioptimality (QO) constants for uin/out are given by∥∥uin/out − uh

∥∥
H1
k
(Ω?)

/∥∥uin/out − wh
∥∥
H1
k
(Ω?), ? ∈ {K,V, I},

where uh is the Galerkin solution and wh is the best approximation of uin/out in the finite-element
space. The local-global relative error is the Galerkin error in the H1

k norm in these regions,
normalized by the global H1

k norm of the solution is given by∥∥uin/out − uh
∥∥
H1
k
(Ω?)

/∥∥uin/out
∥∥
H1
k
(Ω), ? ∈ {K,V},

2.2.1 Regime Uniform 1 (U1)

The first numerical experiment uses the uniform mesh guaranteeing k-uniform quasioptimality. We
choose

(hKk)pk2 = (hVk)pk2 = (hIk)pk2 =: (hk)pk2 = C

where C is independent of k. Figure 2.3 plots the local QO constants and Figure 2.4 plots the
local-global relative errors.
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Figure 2.3: QO constants for uin (left) and uout (right) in regime U1. Black squares: global QO
constant. Red diamonds: local QO constant in the cavity. Blue circles: local QO constant in the
visible set. Green crosses: local QO constant in the invisible set.
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Figure 2.4: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in regime U1. Red diamonds: Galerkin error in K. Blue circles: Galerkin error in
V. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines (away
from cavity).

It is well-known that in U1, the Galerkin solution is globally k-uniformly quasi-optimal (see
Table 1.1), and this also follows from Theorem 1.3 (see Corollary 1.9, using that all matrix entries are
. 1). This fact is illustrated by the solid black curves in Figure 2.5. By Corollary 1.9, the inferred
rates in Table 2.1, and the fact that ρ(k) ≥ Ck2 at the wavenumbers chosen in the experiments,
the following a priori bounds for uin and uout can be obtained:
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. (hk)p
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) 3
2 1
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‖uin − uh‖H1
k
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. (hk)p
√
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2 .

Figure 2.4 shows that, at least experimentally, these rates are sharp. Furthermore, since u is
k-oscillatory, the results of [Gal25] imply that the standard polynomial approximation bounds are
locally sharp, i.e. the local best approximation errors satisfy

‖u− wh,K‖H1
k
(ΩK) ≥ C(hk)p‖u‖H1

k
(ΩK), ‖u− wh,V‖H1

k
(ΩV) ≥ C(hk)p‖u‖H1

k
(ΩV).
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Corollary 1.9 then implies that the local quasi-optimality constants in each region are k-uniformly
bounded as well, i.e.,

‖u− uh‖H1
k
(ΩK)

‖u− wh,K‖H1
k
(ΩK)

. 1,
‖u− uh‖H1

k
(ΩV)

‖u− wh,V‖H1
k
(ΩV)

. 1.

This is consistent with the behavior observed in Figure 2.3.

2.2.2 Regime Quasioptimality (QO)

In QO, we choose
(hKk)pk2 + (hVk)pk 3

2 + (hIk)pk = C,

where C is independent of k. By Corollary 1.11, the Galerkin solution is again k-uniformly globally
quasi-optimal, see Table 1.1. Figure 2.5 shows the local quasi-optimality constants in each regions
for the problems involving uin and uout. Figure 2.6 plots local–global relative errors.
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Figure 2.5: Local QO constants for uin (left) and uout (right) in the regime QO. Black squares:
global QO constant. Red diamonds: local QO constant in the cavity. Blue circles: local QO
constant in the visible set. Green crosses: local QO constant in the invisible set.

By Corollary 1.11, the inferred rates in Table 2.1, and the fact that ρ(k) ≥ Ck2, the a priori
bounds for uin and uout in each region are given by
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Figure 2.6: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in the regime QO. Red diamonds: error in the cavity. Blue circles: error away from
the cavity. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines
(away from cavity).
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Again, these rates are experimentally verified in Figure 2.6.

2.2.3 Regime Quasioptimality away (QO away)

In QO away, we choose

(hKk)pk3/2 = (hVk)pk = (hIk)pk =: (hk)pk2 = C,

where C is independent of k. Theorem 1.3 no longer guarantees k-uniform quasi-optimality, but
Corollary 1.14 and the conjecture that ρ(k) ≤ Ck2 imply the following bounds for the “QO
constants” (not to be confused with “local QO constants” – notice the global norm of the best
approximation error in the denominator instead of the local norm in the local QO constants)
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.
√
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. 1,
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k
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‖u− wh‖H1
k
(Ω)

. 1, (2.1)

hence, the Galerkin solution remains k-uniform quasioptimal away from the cavity in the regime
QO away (see also Table 1.1).

Figure 2.7 shows the QO constants in each regions for the problems involving uin and uout. The
QO constant in the invisible set is orders of magnitude smaller than the other quantities, so it is
not displayed. Figure 2.8 plots the local-global relative errors.
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Figure 2.7: QO constants for uin (left) and uout (right) in the regime QO away. Black squares:
global QO constant. Red diamonds: QO constant in K. Blue circles: QO constant in Γ. A priori
bounds represented as red dashed lines (for the cavity) and blue dotted lines (away from cavity).
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Figure 2.8: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in the regime QO away. Red diamonds: error in the cavity. Blue circles: error away
from the cavity. The a priori bounds derived from Corollary 1.11, the lower bound ρ(k) ≥ Ck2,
and the inferred rates in Table 2.1, are represented as red dashed lines (for the cavity) and blue
dotted lines (away from cavity).

The numerical results in Figure 2.7 illustrate that the bounds in (2.1) are, at least experimentally,
sharp. Furthermore, by Corollary 1.14, the inferred rates in Table 2.1, and the fact that ρ(k) ≥ Ck2,
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the a priori bounds for uin and uout in K and V are given by
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These rates are experimentally verified in Figure 2.8.

2.2.4 Regime Uniform 2 (U2)

In U2, we choose
(hKk)2pk2 = (hVk)2pk2 = (hIk)2pk2 =: (hk)pk2 = C,

where C is independent of k. Figure 2.9 shows the QO constants in each regions for the problems
involving uin and uout. Figure 2.10 plots local-global relative errors.
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Figure 2.9: QO constants for uin (left) and uout (right) in the regime U2. Black squares: global QO
constant. Red diamonds: QO constant in K. Blue circles: QO constant in the visible set. Green
crosses: QO constant in Γ. A priori bounds represented as red dashed lines (for the cavity) and
blue dotted lines (away from cavity).

The Galerkin solution is no longer k-uniformly quasi-optimal, but the relative error is bounded
in terms of C, see Table 1.1. The latter fact is illustrated by the black solid lines in Figure 2.10.
Furthermore, Corollary 1.10 and the conjecture that ρ(k) = O(k2) imply the a priori bound
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for u = uin or u = uout, as well as the following bounds on the QO constants
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These bounds are in line with the results shown in Figure 2.9. The inferred rates in Table 2.1
additionally give the following a priori bounds
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These rates are experimentally verified in Figure 2.10.
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Figure 2.10: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in the regime U2. Black squares: global relative error. Red diamonds: error in the
cavity. Blue circles: error away from the cavity. A priori bounds represented as red dashed lines
(for the cavity) and blue dotted lines (away from cavity).

2.2.5 Regime Relative error (RE)

In RE, we choose
(hKk)2pk2 = (hVk)2pk3/2 = (hIk)2pk = C,

where C is independent of k. Figure 2.11 shows the QO constants in each regions for the problems
involving uin and uout. Figure 2.12 plots local-global relative error.

By Corollary 1.12, the relative error is k-uniformly bounded, and this is illustrated by the black
solid lines in Figure 2.12. Furthermore,
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Similarly,
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These rates are verified in Figure 2.12.
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Figure 2.11: QO constants for uin (left) and uout (right) in the regime RE. Black squares: global
QO constant. Red diamonds: QO constant in K. Blue circles: QO constant in the visible set.
Green crosses: QO constant in Γ. A priori bounds represented as red dashed lines (for the cavity)
and blue dotted lines (away from cavity).
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Figure 2.12: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in the regime RE. Black squares: global relative error. Red diamonds: error in the
cavity. Blue circles: error away from the cavity. A priori bounds represented as red dashed lines
(for the cavity) and blue dotted lines (away from cavity).
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2.2.6 Regime Relative error away (RE away)

In RE away, we choose
(hKk)2pk2 = (hVk)2pk = (hIk)2pk = C,

where C is independent of k. Figure 2.13 shows the QO constants in each regions for the problems
involving uin and uout. Figure 2.14 plots the local-global relative error.

This is the coarsest regime for which Theorem 1.3 applies. By Corollary 1.7 and the conjecture
that ρ(k) ≤ Ck2, one has the following a priori bounds on the local QO factors:

‖u− uh‖H1
k
(ΩK) . k‖u− wh‖H1
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k
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These bounds are experimentally verified in Figure 2.13. By Corollary 1.8, we also have the following
a priori bounds on the local relative errors:
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These bounds are also verified in our numerical experiments, see Figure 2.14.
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Figure 2.13: QO constants for uin (left) and uout (right) in the regime RE away. Black squares:
global QO constant. Red diamonds: QO constant in K. Blue circles: QO constant in the visible
set. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines (away
from cavity).

24



‖uin−uh‖H1
k

(Ω)/‖uin‖H1
k

(Ω)
‖uin−uh‖H1

k
(K)/‖uin‖H1

k
(Ω)

‖uin−uh‖H1
k

(V)/‖uin‖H1
k

(Ω)
O(1)

O(k−0.5)

Wavenumber k

Galerkin H1
k errors in Ω, K, and V

‖uout−uh‖H1
k

(Ω)/‖uout‖H1
k

(Ω)
‖uout−uh‖H1

k
(K)/‖uout‖H1

k
(Ω)

‖uout−uh‖H1
k

(V)/‖uout‖H1
k

(Ω)
O(1)

O(k−0.5)

Wavenumber k

Galerkin H1
k errors in Ω, K, and V

Figure 2.14: Local Galerkin errors in the H1
k norm in K and V for the approximation of uin (left)

and uout (right) in the regime RE away. Black squares: global relative error. Red diamonds: error
in the cavity. Blue circles: error away from the cavity. A priori bounds represented as red dashed
lines (for the cavity) and blue dotted lines (away from cavity).

2.3 An adaptive mesh-refinement algorithm
The numerical experiments show that Theorem 1.3 accurately captures the effect of local best
approximation errors on the local Galerkin errors. It is therefore natural to use Theorem 1.3 to
inform an adaptive refinement algorithm. This will be investigated elsewhere, but we sketch the
main steps here. Given a set U ⊂ Ω on which one wants an accurate solution, implement the
following.

1. Use ray tracing to (a) identify the regions K,V, and I and (b) estimate ρ.

2. Compute a Galerkin solution, u0
h on a rough mesh and let j = 0.

3. Compute ‖ujh‖ΩK , ‖ujh‖ΩV , ‖ujh‖ΩI , and ‖ujh‖ΩP .

4. Assuming that ‖u‖Ωj ∝ ‖uh‖Ωj , use the standard approximation property ‖u − wh‖H1
k
≤

C(hk)p‖u‖Hp+1
k

and associated lower bounds [Gal25] to obtain bounds on the vector of best
approximation errors on the hand side of (1.9).

5. Put the bounds from Step 3 into Theorem 1.3 to give an estimator for the map

(hK, hV , hI , hP) 7→
(
‖u− uh‖H1

k
(Ω′K), ‖u− uh‖H1

k
(Ω′V), ‖u− uh‖H1

k
(Ω′I), ‖u− uh‖H1

k
(Ω′P)

)
.

Use this map (e.g., via a penalised optimisation process) to determine what mesh refinement
will be effective for reducing the error in U .

6. Solve the problem on the new mesh to obtain uj+1
h .

7. Set j = j + 1 and repeat Steps 3-6 until the desired accuracy is achieved.

The constants in Theorem 1.3 are not given explicitly. However, we believe that replacing all the
constants by one (or possibly adaptively tuning the constants) will produce an effective adaptive
refinement for a fixed k (large enough).

Remark 2.1 To accomplish Step 1 (a), one can use a set of sample points and directions xi ∈ Ω,
i = 1, . . . , N and ξj ∈ Sd−1, j = 1, . . . ,M at a fine scale, δ and fix a maximal time Tmax > 0 and
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then run a ray tracing algorithm from each sample point tij : min(Tmax, Tij,E), where Tij,E is the
time at which the ray from (xi, ξj) enters the PML region. Define IV := {i : maxj tij = Tmax}. We
set ΩK to be a neighbourhood of {xi : i ∈ IV}, and ΩV a neighbourhood of the complement of ΩK
intersected with the rays from {xi}i∈IK .

For Step 1(b) one can use the heuristic that

ρ . kV −1(k−1) , (2.2)

where V −1 is the inverse of t 7→ V (t), and V (t) is the volume of the set points in Ω× Sd−1 that do
not enter the PML in time t. To estimate V (t), we use the approximation

V (t) ∼ Ṽ (t) := δ2d−1#{(xi, ξj) : tij ≥ t}.

The heuristic (2.2) is valid at least for some special cases, including some cases of the weakest form
of trapping where trajectories escape exponentially fast, and certain geometries that are warped
products [CW13]. Furthermore, one place where V (t) rigorously appears is in fractal upper bounds
on the number of resonances near the real axis [DG17]. However, a precise characterisation of ρ
via billiard dynamics is a challenging open problem.

3 Assumptions and statement of the main result
We now gather some definitions and assumptions and state our main result, Theorem 3.11.

3.1 The Helmholtz PML operators
Throughout this paper, Ω− ⊂ Rd (the obstacle) denotes a bounded open set with C∞ boundary and
connected complement. Let Ωtr b Rd (the truncation domain) be a bounded open set with Ω− b Ωtr
and define Ω := Ωtr \ Ω− (the computational domain). Let Γtr = ∂Ωtr so that ∂Ω = ∂Ω− t Γtr.
For all k > 0 and n ≥ 0, and given U ⊂ Rd, let Hn

k (U) (abbreviated Hn
k when U = Ω) be the

completion of C∞(U) with respect to the norm (1.7), and let H−nk (U) be the normed dual of
Hn
k (U), with, as usual, L2(Ω) identified through the L2 pairing with a subspace of H−nk for all

n ≥ 0. 2

Let ak : H1
k ×H1

k → C be the sesquilinear form defined by

ak(u, v) :=
∫

Ω

(
k−2Aθ(x)∇u(x) · ∇v(x) + k−2〈bθ(x),∇u〉v(x)− nθ(x)u(x)v(x)

)
dx, (3.1)

where Aθ, bθ, and nθ are defined in §A.
To cover both Dirichlet (so-called “sound-soft”) and Neumann (“sound-hard”) obstacles, we

consider a subspace Zk ⊂ H1
k , which can be either given by Zk = Zk,d or Zk = Zk,n, where

Zk,d := H1
0,k(Ω), and Zk,n := {u ∈ C∞(Ω) : suppu ∩ Γtr = ∅}

H1
k

, (3.2)

and let Z∗k be the normed dual of Zk. The Helmholtz operator Pk : Zk → (Zk)∗ is then defined as
the linear operator associated to ak, i.e.

Pk : Zk → Z∗k , 〈Pku, v〉 := ak(u, v) for all u, v ∈ Zk.

If Pk is invertible, we denote by Rk := (Pk)−1 : Z∗k → Zk its inverse (also known as the resolvent),
and let

ρ(k) := ‖Rk‖L2→L2 = sup
f∈L2(Ω)\{0}

‖P−1
k f‖L2(Ω)

‖f‖L2(Ω)

Our main result holds for k ranging in a subset R+ \ J of the positive real numbers on which
ρ(k) is polynomially bounded; i.e., we make the following assumption on J .

2We highlight that this is not the standard notation, as H−n usually denotes the dual of Hn
0 = C∞c (Ω)

Hn
k .
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Assumption 3.1 (Polynomial bound on the resolvent) There exist C > 0, N > 0 such that,
for all k ∈ R+ \ J ,

ρ(k) ≤ CkN .

In this paper, we are then interested in the error in the finite-element approximation solution
(see next paragraph) of the variational problem, for k ∈ R+ \ J :

find u ∈ Zk such that, for all v ∈ Zk, ak(u, v) = F (v), (3.3)

where F : Zk → Z∗k is a continuous anti-linear form.

3.2 Finite-element approximation
We consider a Galerkin approximation of the variational problem (3.3). Following the practice in
the local FEM error analysis literature (see in particular [NS74, Assumptions A.1–A.3], and also
[Wah91, DGS11, Bre20]), and following closely [AGS24], we describe Vk through a set of standard
assumptions as follows. Throughout, a fixed positive integer p, modelling the polynomial degree of
the finite-element subspace, is chosen independently of k; hence this setting models a “h-version” of
the FEM.

If U ⊂ Ω is an open set, define

C∞< (U) :=
{
χ ∈ C∞(Ω) such that suppχ ⊂ U and ∂<(suppχ,U) > 0

}
Z1,<
k (U) :=

{
v ∈ Zk s.t. supp v ⊂ U and ∂<(supp v, U) > 0

}
,

where the closure is taken with respect to the Zjk norm, and for any subsets Ω0 ⊂ Ω1 ⊂ Ω,

∂<(Ω0,Ω1) := dist( ∂Ω0 \ ∂Ω , ∂Ω1 \ ∂Ω ). (3.4)

A triangulation T of Ω is a set of pairwise disjoint open subsets K ⊂ Ω such that⋃
K∈T

K = Ω.

We denote by hK the diameter of K ∈ T . For k > 0, a finite-element space Vk over a triangulation T
of Ω is a finite-dimensional subspace Vk ⊂ Zk such that for every u ∈ Vk and K ∈ T , u|K ∈ C∞(K).
If Vk is a finite-element space and U ⊂ Ω, define

V <k (U) := Z1,<
k (U) ∩ Vk.

In what follows, for each k > 0, Tk is a given triangulation and Vk is a finite-element space over Tk.
We denote

h = h(k) := max
K∈Tk

hK

the global meshwidth, and make the following standard assumptions.

Assumption 3.2 (Sub-wavelength grid) For all k0 > 0, there exists a positive constant C > 0
such that for all k ≥ k0

h ≤ Ck−1.

Assumption 3.3 (Wavelength-scale quasi-uniformity) For all R > 0 and all k0 > 0, there
exists C > 0 such that for all k ≥ k0 and any elements K,K ′ of Tk such that dist(K,K ′) ≤ Rk−1,

1
C
≤ hK
hK′

≤ C.

Assumption 3.4 (Approximation property) There exists κ > 0 such that for every k0 > 0,
there exists C > 0 such that for all j ∈ {1, . . . , p + 1}, all m ∈ {0, . . . , j}, all k ≥ k0 and all
u ∈ Z1

k ∩H
j
k, there exists uh ∈ Vk such that∑

K∈Tk

(hKk)2(m−j)‖u− uh‖2Hm
k

(K) ≤ C‖u‖
2
Hj
k

.
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Furthermore, given subsets U0 ⊂ U1 ⊂ Ω such that

∂<(U0, U1) ≥ κmax
{
hK | K ∈ Tk s.t. K ∩ U1 6= ∅

}
,

if suppu ⊂ U0 ∪ ∂Ω, then uh can be chosen such that suppuh ⊂ U1 ∪ ∂Ω.

Assumption 3.5 (Super-approximation property) There exists κ > 0 such that for all k0 > 0
and C† > 0, there exists C > 0 such that for all k ≥ k0 and any subsets U0 ⊂ U1 ⊂ Ω such that

d := ∂<(U0, U1) ≥ κmax
{
hK | K ∈ Tk s.t. K ∩ U1 6= ∅

}
,

if χ ∈ C∞< (U0) is such that,

max
|α|=n

‖∂αχ‖∞ ≤
C†
dn
, for n = 0, . . . , p,

then for any uh ∈ Vk, there exists vh ∈ V <k (U1) such that

‖χ2uh − vh‖H1
k
(K) ≤ C

hK
d

[(
1 + 1

kd

)
‖uh‖L2(K) + ‖χuh‖H1

k
(K)

]
for all K ∈ Tk.

Assumption 3.6 (Inverse inequality on elements) There exists C such that for all k > 0, all
K ∈ Tk, all uh ∈ Vk and all j ∈ {0, 1, . . . , p},

‖uh‖H1
k
(K) ≤

C

hKk
‖uh‖L2(K) and ‖uh‖L2(K) ≤

C

(hKk)j ‖uh‖H−jk (K),

where ‖uh‖H−j
k

(K) := supv∈C∞c (K)(
∣∣∫
K
uhv dx

∣∣/‖v‖Hj
k
(K)).

Definition 3.7 (Well-behaved finite-element of order p) We say that (Vk)k>0 is a well-
behaved finite-element of order p if it satisfies Assumptions 3.2-3.6 above.

Remark 3.8 Since Ω has a C∞ boundary, under the assumptions of the present section, the
elements K must be curved, ruling out from our settings the standard simplicial Lagrange finite-
element discretizations. However,

• this type of assumptions is common in the high-frequency error analysis for the finite-element
method for the Helmholtz equation, see e.g. [MS10, Appendix B], and

• the “geometric error” incurred by using simplicial elements instead of curved elements is
studied in [CFS25], and shown to be smaller than the pollution error.

For each k ∈ R+ \ J , the Galerkin solution uh = uh(k) ∈ Vk (where the subscript h emphasizes
the dependence of uh with respect to the meshwidth of the triangulation) is defined by

ak(u− uh, vh) = 0 for all vh ∈ Vk,

and our main result, Theorem 3.11, describes the (micro-)local behaviour of the error u− uh.

3.3 Frequency splitting of the error
We consider a splitting of the Galerkin error u− uh into “low-frequencies” and “high-frequencies”.
To define these notions, we introduce frequency cutoffs as follows.

The following G̊arding inequality holds (see §6.1 and §A): there exists ω ∈ R (with ω = 0 for the
most commonly-used PML) such that for all k0 > 0 there are cGa, CGa > 0 such that for all k ≥ k0,

<(eiωak(u, u)) ≥ cGa‖u‖2Zk − CGa‖u‖2L2 . (3.5)

We deduce from this (see §5) that σ(Pk) ⊂ [−CGa,+∞), and thus, for each k0, there exists a
function ψ] such that

ψ](x) ≥ −x+ CGa

2 for all x ∈ σ(Pk). (3.6)
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Let Pk : Zk → (Zk)∗ be defined by

Pk = 1
2

(
eiωPk + e−iωP ∗k

)
.

We show in Section 6 that Pk is self-adjoint on L2(Ω) with domain Z2
k = Z2

k,d in the Dirichlet case,
and Z2

k = Z2
k,n in the Neumann case, where

Z2
k,d = H1

0 (Ω) ∩H2(Ω), Z2
k,n = {u ∈ H2(Ω) : ∂ν,Aθu|∂Ω− = 0, u|Γtr = 0}. (3.7)

Thus, if f : R → R is a bounded, continuous function, we may consider f(Pk) : L2(Ω) → L2(Ω)
defined by the functional calculus.

Low-frequency cutoffs will then be defined as Ψ = ψ(Pk) where ψ ∈ C∞c (R) is such that ψ ≡ 1
on the support of ψ], and 1−Ψ will correspond to high-frequency cutoffs.

3.4 Spatial splitting of the error
In addition to considering the Galerkin error locally in frequency space, we also localize it spatially.
We fix a neighbourhood UP of Γtr in which Theorem 4.2 holds (that is, sufficiently “deep” in the
PML region so that the resolvent R∗k in this region behaves like a pseudolocal, uniformly bounded
operator with respect to k). Let

Ω =
M⋃
j=1

Ωj

be an open cover of Ω by M = MI + MP subdomains. We assume that the “interior”
domains Ω1, . . . ,ΩMI do not intersect the truncation boundary, while the “PML” domains
ΩMI+1, . . . ,ΩMI+MP all lie inside the deep PML region, i.e.

MI⋃
j=1

Ωj ∩ Γtr = ∅ ,
MI+MP⋃
j=MI+1

Ωj ⊂ UP. (3.8)

For i, j ∈ {1, . . . ,M}, define
hi := max

K∈Tk
{diam(K) | K ∩ Ωi 6= ∅} and hij := min(hi, hj), (3.9)

the local mesh sizes on Ωj and Ωi ∩ Ωj .

3.5 Matrix quantities
In Theorem 3.11, the description of the local error in subdomains is given in terms of matrices H,
Hmin, C, T and B that we define now.

For every natural number `, define the following M ×M matrices
H := diag(h1, . . . , hM ), Hmin(`) := 1{Ωi∩Ωj 6=∅}(h`ij)1≤i,j≤M . (3.10)

Furthermore, let C be the M ×M matrix defined by
Cij := ‖1ΩjR

∗
k1Ωi‖L2→L2 = ‖1ΩiRk1Ωj‖L2→L2 , i, j = 1, . . . ,M (3.11)

For an M ×M matrix A (either H or Hmin), we write

A =:
(
AI,I AI,P
AP,I AP,P

)
, Ai,j ∈M(Mi ×Mj).

where M1 := MI and M2 := MP. Let B ∈M((2MI +MP)×M) be defined by

B :=

CI,I(HI,Ik)p 0
(HI,Ik)p 0

0 (HP,Pk)p

 , (3.12)

and let W ∈M((2MI +MP)× (2MI +MP)) be defined by

W :=

CI,I(HI,Ik)2p CI,I(HI,Ik)2p Hmin
I,P (N)kN

Hmin
I,I (2p)k2p Hmin

I,I (N)kN Hmin
I,P (N)kN

Hmin
P,I (N)kN Hmin

P,I (N)kN Hmin
P,P(N)kN

 , (3.13)
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3.6 Simple-path matrix
To any square matrix W ∈ M(N ×N), one can associate a matrix V = V (W ) defined from the
coefficients W in terms of simple paths on a graph. To define this, let G = G(W ) be the (complete)
directed graph, with node set N := {1, . . . , N}, and with edge set E the set of ordered pairs
(i, j) ∈ {1, . . . , N}2. A path p in G is a finite (and possibly empty) sequence of edges

p = (i1, j1)(i2, j2) . . . (iL−1, jL−1)(iL, jL)

satisfying the conditions j` = i`+1 for 1 ≤ ` ≤ L − 1. Let 0 stand for the empty path. We
write |p| := L and denote by p(`) the `-th node visited by p, i.e., p(`) := i` if 1 ≤ ` ≤ |p| and
p(|p|+ 1) := jL. Let Pij be the set of paths from i to j, i.e., such that p(1) = i and p(|p|+ 1) = j.

A path p is non-intersecting if the map ` 7→ p(`) is injective. For i, j ∈ {1, . . . ,M}, let Vij be
the set of non-intersecting paths from i to j. Observe that Vii := {0}.

A non-empty path p is a loop if it starts and ends at the same node, i.e., if p(1) = p(|p|+ 1). It
is a simple loop if it is a loop but otherwise does not intersect itself, i.e.,

p(`) = p(m) =⇒
(
` = m or {`,m} = {1, |p|+ 1}

)
.

We denote by SL the set of simple loops.
To each edge e = (i, j) of G, we associated the weight We := Wij (the (i, j)-th coefficient of the

matrix W ). We also define the weight of the path p as the product of the weights of its edges, i.e.,
W0 := 1 and

We1e2...eL := We1We2 . . .WeL .

Definition 3.9 (Simple-path matrix) The simple-path matrix T ? = T ?(W ) ∈M(N ×N) of a
matrix W ∈M(N ×N) is defined by

T ?ij :=
∑
p∈Vij

Wp , 1 ≤ i, j ≤ N.

Observe that the diagonal entries of T ? are 1 since Vii = {0}.

Remark 3.10 We show in Theorem 8.13 that, provided the simple loops of of G carry weights
bounded by c < 1, then the I −W is invertible and (I −W )−1 ≤ T ? coefficientwise.

3.7 Statement of the main result
Theorem 3.11 (The main result) Let ak be defined by (3.1) and let J ⊂ R+ be such that
Assumption 3.1 holds. Let p be a positive integer and let (Vk)k>0 be a well-behaved Finite-Element
of order p in the sense of Definition 3.7. Let {Ωi}Mi=1 be an open cover of Ω such that the conditions
(3.8) hold. For every i ∈ {1, . . . ,M}, let χi ∈ C∞(Ω) be such that

supp(χi) ⊂ Ωi ∪ ∂Ω and Ω =
M⋃
i=1

int
({
χi ≡ 1

})
, (3.14)

where the interior is taken in the subspace topology of Ω. Let k0, N > 0, let ψ] satisfy (3.6) and let
ψ ∈ C∞c (R) be such that suppψ] ∩ supp(1− ψ) = ∅.

Then, there exist constants h0, C† > 0 and, for any 0 < c < 1, a constant C > 0 such that the
following holds. For any k ∈ (k0,∞) \ J , if Tk satisfies h(k) ≤ h0 and∑

L∈SL
C
|L|
† WL ≤ c, (3.15)

where W is defined by (3.13), then for all u ∈ H1
k , there exists a unique solution uh ∈ Vk to the

Galerkin problem
ak(u− uh, vh) = 0 for all vh ∈ Vk. (3.16)
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Moreover, for any wh,1, . . . , wh,M ∈ Vk, m ∈ {0, . . . , p}, and i ∈ {1 , . . . ,MI},
(∥∥χiΨ(u− uh)

∥∥
H1−m
k

)MI

i=1(∥∥χi(1−Ψ)(u− uh)
∥∥
H1−m
k

)MI

i=1(∥∥χi(u− uh)
∥∥
H1−m
k

)M
i=MI+1


≤

 0 0
(HI,Ik)m 0

0 (HP,Pk)m

+

 I 0 0
(HI,Ik)p+m (HI,Ik)N 0

0 0 (HP,Pk)N

T ?B

(‖u− wh,j‖H1
k
(Ωj)

)M
j=1

+ CR.
(3.17)

where H is defined by (3.10), B is defined by (3.12), T ? is the simple-path matrix of C†W in the
sense of Definition 3.9, and

R := k−N (hk)m
M∑
j=1
‖u− wh,j‖H1

k
.

In particular, the local Galerkin errors satisfy(∥∥χi(u− uh)
∥∥
H1−m
k

)M
i=1

≤
[(

(HI,Ik)m 0
0 (HP,Pk)m

)
+
(

I (HI,Ik)N 0
0 0 (HP,Pk)N

)
T ?B

](
‖u− wh,j‖H1

k
(Ωj)

)M
j=1

+ CR.

(3.18)

The proof of Theorem 3.11 is given in §8. Figure 3.1 shows the weighted graph associated to
the matrix W in the setting of §1; i.e., MI = 3 (with domains ΩK,ΩV , and ΩI) and MP = 1.

4 Local bounds on the Helmholtz solution operator
This section describes two results showing how the Helmholtz solution operator has improved k-
dependence based on the data and measurement locations. The first result (Theorem 4.1) considers
locations relative to the cavity or the ray dynamics, and the second (Theorem 4.2) considers
locations relative to the PML. Both results are proved in Appendix C with the first result a special
case of a more general result phrased in terms of semiclassical pseudodifferential operators.

Theorem 4.1 (Improved behaviour away from trapping) Let k0 > 0 and let J be such that
Assumption 1.2 holds.

(i) For all χ ∈ C∞(Ω) with suppχ∩K = ∅, there exists C > 0 such that for all k ∈ (k0,∞) \ J

‖χRk‖L2→L2 + ‖Rkχ‖L2→L2 ≤ C
√
kρ, ‖χRkχ‖L2→L2 ≤ Ck. (4.1)

(ii) For all χ, ψ ∈ C∞(Ω) with suppχ ⊂ I and suppψ ⊂ K, and all N > 0, there exists C > 0
such that for all k ∈ (k0,∞) \ J

‖χRkψ‖L2→L2 + ‖ψRkχ‖L2→L2 ≤ Ck−N . (4.2)

In the case of scattering without boundaries, the result analogous to (4.1) was proved in
[DV12a, DV12b].

Theorem 4.2 (Improved behaviour in the PML) Let k0 > 0 and let J be such that Assump-
tion 1.2 holds. Then there is U ⊂ Ω a neighbourhood of Γtr such that for all χ ∈ C∞(Ω) with
suppχ ⊂ U , there exists C > 0 such that, for all k ∈ (k0,∞) \ J ,

‖χRk‖L2→L2 + ‖Rkχ‖L2→L2 ≤ C. (4.3)
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Figure 3.1: The weighted graph associated to the matrix W in the case when MI = 3 (with domains
ΩK,ΩV , and ΩI), MP = 1, and with the k-dependence of C (3.11) given by the results of §4. Edges
with zero weight (between Ω±K and ΩP) or O(k−∞) weight (between Ω±K and Ω±I ) are not displayed.
Finally hVP := min{hV , hP} etc.

Moreover, if suppχ ⊂ U , and ψ ∈ C∞(Ω) with suppχ ∩ suppψ = ∅, then for any N there exists
C > 0 such that for all k > k0,

‖χRkψ‖L2→HN
k

+ ‖ψRkχ‖L2→HN
k
≤ Ck−N . (4.4)

Theorem 4.2 is based on ellipticity in the PML region.

5 Abstract pseudolocality results
As described in §1.3.2, the proof of the main result requires pseudolocaity of the operators Sk and
Π]
k (see (1.29)); furthermore, although not stated in §1.3.2, the proof also requires pseudolocality of

(P ]k)−1, where P ]k := Pk + Sk. This section proves pseudolocality of Sk and (P ]k)−1, and §7 proves
pseudolocality of Π]

k.
The operator Sk is defined as a function of the self-adjoint operator Pk := <Pk via the functional

calculus. This section therefore studies general Helmholtz operators (satisfying continuity, a G̊arding
inequality, and elliptic regularity), proves that Pk is self-adjoint, and then proves that both functions
of Pk and (P ]k)−1 are pseudolocal; i.e., when sandwiched by disjoint “spatial” or “frequency” cutoffs,
the result is O(k−∞) and infinitely smoothing.
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Abstract setting Model Dirichlet setting

Hnk Hn(Ω) with k-weighted norm
ak(u, v)

∫
Ω k
−2∇u · ∇v − uv

Zk H1
0 (Ω)

Z2
k H2(Ω) ∩H1

0 (Ω)
Znk Hn(Ω) ∩H1

0 (Ω)
D2n
k {u ∈ H2n(Ω) : γu, ..., γ∆n−1u = 0 on ∂Ω}

Abstract setting Model Neumann setting

Hnk Hn(Ω) with k-weighted norm
ak(u, v)

∫
Ω k
−2∇u · ∇v − uv

Zk H1(Ω)
Z2
k {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω}
Znk {u ∈ Hn(Ω) : ∂νu = 0 on ∂Ω}
D2n
k {u ∈ H2n(Ω) : ∂νu, ..., ∂ν∆n−1u = 0 on ∂Ω}

Table 5.1: Model examples for the spaces in Section 5

For the “spatial cutoffs”, we require some control over their repeated commutators with Pk in a
scale of Hilbert spaces (Hnk )n≥0 (which will be taken as Hn

k (Ω)). Checking these assumptions in
the concrete setting will require the construction of suitable cutoff functions with a special behavior
near the boundary

For the “frequency cutoffs”, we require that, in addition, the repeated commutators act in
domains Dn of powers of the self-adjoint operators Pk. This essentially asks that repeated
commutators preserve an arbitrary number of boundary conditions, which in practice, will be
achieved by requiring the frequency cutoffs to be constant near the boundary and 0 near the PML
truncation boundary.

5.1 Abstract formulation of Helmholtz operators with smooth coefficients
on smooth domains

In what follows, (H, ‖ · ‖H) is a Hilbert space and for every k ∈ R+, (Hnk , ‖ · ‖Hnk )n∈N is a decreasing
sequence of Hilbert spaces with continuous and dense inclusions Hnk ⊂ Hmk for all m ≤ n, with

‖u‖Hm
k
≤ ‖u‖Hn

k
for all u ∈ Hnk

and such that H0
k = H with equal norms.3 For all n ∈ N, H−nk denotes the anti-dual of Hnk , i.e.,

the set of continuous complex-valued anti-linear forms on Hnk . For any u ∈ H, one may define an
element Lnu ∈ H−nk by

Lnu(v) := 〈u, v〉 := (u, v)H for all v ∈ Hnk .

By density of the embeddings Hnk ⊂ Hmk ⊂ H for n ≥ m, the mapping u 7→ Lnu is injective
and Lnu coincides with Lmu on Hmk , so we may identify u with Lu. Under this identification, the
continuous embeddings Hnk ⊂ Hmk for n ≥ m extend to all m,n ∈ Z and 〈·, ·〉 extends to a continuous
sesquilinear (linear on the left, anti-linear on the right) pairing H−nk ×Hnk for all n.

Let (ak)k∈R+ be a family of sesquilinear forms

ak : H1
k ×H1

k → C for all k ≥ 0,
3Notice that the abstract setup is in many parts similar to [GS25], but here it is not assumed that the inclusions

Hn
k ⊂ H

m
k are compact for n > m.
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Assumption 5.1 (k-uniform Continuity) For every k0 ∈ R, there exists a positive constant
C0(k0) > 0 such that, for all k ≥ k0 and all u, v ∈ H1

k,

|ak(u, v)| ≤ C0(k0)‖u‖H1
k
‖v‖H1

k
.

Assumption 5.2 (G̊arding inequality) For every k0 ∈ R, there exist positive constants cGa(k0)
and CGa(k0) > 0 such that, for all k ≥ k0,

<(ak(u, u)) ≥ cGa(k0)‖u‖2H1
k
− CGa(k0)‖u‖2H for all u ∈ H1

k.

Let <ak denote the Hermitian part of ak, i.e.

(<ak)(u, v) := 1
2

(
ak(u, v) + ak(v, u)

)
.

We fix a closed subspace Zk ⊂ H1
k (possibly H1

k itself) which is dense in H with respect to the H
norm, and make the following assumption:

Assumption 5.3 (Domain symmetry) The spaces{
u ∈ Zk : sup

v∈Zk,‖v‖H=1
|ak(u, v)| < +∞

}
,

{
u ∈ Zk : sup

v∈Zk,‖v‖H=1
|ak(v, u)| < +∞

}
,

and
{
u ∈ Zk : sup

v∈Zk,‖v‖H=1

∣∣(<ak)(u, v)
∣∣ < +∞

}
are equal and contained in H2

k. We denote their common value by Z2
k .

Remark 5.4 (Boundary conditions) In practice, the space Z2
k will be a subset of H2(Ω) with

Dirichlet/Neumann conditions on (parts of) ∂Ω. Dirichlet conditions will be enforced “essentially”
by the choice of Zk, and Neumann conditions will appear “naturally” in Z2

k as a result of a lack of
Dirichlet condition.

Due to the density of Zk in H and the Riesz representation theorem, this allows to state the
following definition

Definition 5.5 (The operators Pk, P ∗k and Pk) For all u ∈ Z2
k , define Pku and P ∗k u as the

unique elements of H such that for all v ∈ Zk

〈Pku, v〉 = ak(u, v) and 〈P ∗k u, v〉 = ak(v, u). (5.1)

Furthermore, let
Pku := 1

2 (Pku+ P ∗k u) .

Proposition 5.6 The space Z2
k is dense in H and Zk for their respective norms, i.e.

Z2
k

‖·‖H = H and Z2
k

‖·‖Zk = Zk

Moreover, Pk : Z2
k → H is an unbounded self-adjoint operator. Its spectrum satisfies

σ(Pk) ⊂ [−CGa(k0),+∞).

Proof. The continuity and G̊arding inequality, and the fact that Zk is a closed subspace of H1
k that

is dense in H (for the ‖ · ‖H norm) imply that the restriction of <ak to Zk is a lower semi-bounded
closed Hermitian form in the sense of [Sch12, Chap. 10], and Pk is the operator associated to <ak
in the sense of [Sch12, Definition 10.4]. The density of Z2

k in H and the self-adjointness of Pk then
follows from [Sch12, Theorem 10.7]. The density of Z2

k in Zk is Proposition 10.5(iv) in the same
reference. The lower bound on the spectrum is by Proposition 10.4 in the same reference.

Proposition 5.7 Z2
k is a Hilbert space under the norm

‖u‖Z2
k

:= ‖
(
Pk + (CGa(k0) + 1) I

)
u‖H. (5.2)
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Proof. The operator A :=
(
Pk + (CGa(k0) + 1) I

)
u is self-adjoint, thus closed (since the adjoint

operator is closed by, e.g., [Sch12, Prop. 1.6]), so its graph norm makes Z2
k a Hilbert space.

Furthermore, its spectrum is contained in [1,+∞), so that

(Au, u)H ≥ ‖u‖2H =⇒ ‖Au‖H ≥ ‖u‖H.

Thus,
‖Au‖H ≤ ‖Au‖H + ‖u‖H ≤ 2‖Au‖H,

concluding the proof.
We denote the dual of Z2

k by Z−2
k , and identifyH and Zk as subspaces of Z−2

k – this identification
is possible by the density of Z2

k in H. There are then unique linear continuous extensions of the
operators Pk, P ∗k and Pk from H to Z−2

k by

〈Pku, v〉 := 〈u, P ∗k v〉, 〈P ∗k u, v〉 := 〈u, Pkv〉 , 〈Pku, v〉 := 〈u,Pkv〉,

for all u ∈ H and v ∈ Z2
k . With these definitions, the operator P ∗k is indeed the conjugate adjoint

of Pk, as the notation (5.1) suggests.

Remark 5.8 (Pk is not a differential operator) In the model settings of Table 5.1, Pk is not
a differential operator. For instance, in the case of the Neumann Laplacian, although Pk agrees
with the differential operator −k−2∆− I on Z2

k , its extension to L2(Ω) differs from it (even when ∆
is interpreted in the sense of distributions). Indeed, for u ∈ C∞(Ω) ⊂ L2(Ω), integration by parts
reveals that

Pku = −k−2∆u− u+ k−2γ′ · ∂νu

where γ : H`(Ω) → H`−1/2(∂Ω), ` > 1
2 , is the trace operator and γ′ is its adjoint. In particular,

even if u ∈ Hn(Ω) for a large n, Pku is only in (H1/2+ε(Ω))∗ for all ε > 0, instead of Hn−1(Ω),
unless ∂νu = 0.

Proposition 5.9 The operators Pk and P ∗k map Zk to Z∗k continuously, and they satisfy

〈Pku, v〉 = ak(u, v), 〈P ∗k u, v〉 = ak(v, u) for all u, v ∈ Zk,

max(‖Pku‖Z∗
k
, ‖P ∗k u‖Z∗k ) ≤ C0(k0)‖u‖Zk for all u ∈ Zk.

Proof. We observe that for u ∈ Zk and v ∈ Z2
k ,

〈Pku, v〉 = 〈u, P ∗k v〉 = (u, P ∗k v)H = (P ∗k v, u)H = 〈P ∗k v, u〉 = ak(u, v) = ak(u, v)

and thus
|〈Pku, v〉| ≤ C0(k0)‖u‖Zk‖v‖Zk .

The conclusion follows by density of Z2
k in Zk for the Zk norm. The reasoning for P ∗k is similar.

Definition 5.10 (The resolvent norm ρ(k)) Given k ≥ 0, if Pk : Zk → Z∗k is invertible, we
define

ρ(k) := sup
f∈H\{0}

‖P−1
k f‖H
‖f‖H

. (5.3)

Proposition 5.11 Suppose that Pk : Zk → Z∗k is invertible. Then P ∗k : Zk → Z∗k is also invertible
and for all k0 > 0, there exists C > 0 such that for all k ≥ k0,

‖P−1
k u‖Zk + ‖(P ∗k )−1u‖Zk ≤ C

(
1 + ρ(k)

)
‖u‖Z∗

k
.

Moreover, for all z ∈ C \ R, (Pk − z) : Zk → Z∗k is invertible and

‖(Pk − z)−1u‖Zk ≤ C
〈z〉
|=(z)| ‖u‖Z

∗
k

where 〈z〉 = (1 + |z|2)1/2.
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Proof. Let k0 > 0 be fixed and denote by C a generic constant depending only on k0. For u ∈ Z∗k ,
the G̊arding inequality gives

‖P−1
k u‖2Zk ≤ C

(
Re(ak(P−1

k u, P−1
k u)) + ‖P−1

k u‖2H
)

≤ C
(
Re(〈u, P−1

k u〉) + ‖P−1
k u‖2H

)
(5.4)

Now if, moreover, u ∈ H, then ‖P−1
k u‖2Zk ≤ C

(
‖u‖H‖P−1

k u‖H + ‖P−1
k u‖2H

)
Thus,

‖P−1
k u‖Zk ≤ C(‖u‖2H + ‖(P−1

k u)‖2H),

which implies
‖P−1

k ‖H→Zk ≤ C
(
1 + ρ(k)

)
.

By the same argument, using that ρ(k) = ‖P−1
k ‖H→H = ‖(P ∗k )−1‖H→H (since P−1

k : H ⊂ Z∗k →
Zk ⊂ H),

‖(P ∗k )−1‖H→Zk ≤ C
(
1 + ρ(k)

)
.

Thus by duality,
‖P−1

k ‖Z∗k→H ≤ C(1 + ρ(k)).

Using this in the right-hand side of (5.4) as well as the inequality

2ab ≤ εa2 + ε−1b2 for all a, b, ε > 0, (5.5)

we obtain for all ε ∈ (0, 1) sufficiently small,

‖P−1
k u‖Zk ≤ C

(
ε‖P−1

k u‖2Zk + (ε−1 + ρ(k))‖u‖2Z∗
k

)
and thus

‖P−1
k ‖Z∗k→Zk ≤ C(1 + ρ(k)).

We obtain the analogous bound for (P ∗k )−1 by duality. The proof of the bound ‖(Pk − z)−1‖Z∗
k
→Zk

is similar, first estimating ‖(Pk − z)−1‖H→Zk , using that

‖(Pk − z)−1u‖H ≤
1

|=(z)| ‖u‖H,

since Pk is self-adjoint on H.

Definition 5.12 (The spaces Znk ) Let

Znk :=


H if n = 0
Zk if n = 1
Z2
k ∩Hnk if n ≥ 2

(recalling for n = 2 that Z2
k ⊂ H2

k by Assumption 5.3). For n ≥ 2, the norm

‖u‖2Zn
k

:= ‖u‖2Z2
k

+ ‖u‖2Hn
k
,

makes Znk a Hilbert space. We denote the dual of Znk by Z−nk for all n ≥ 0.

Assumption 5.13 (Continuity of Pk and P ∗k ) For all n ∈ N, the operators Pk and P ∗k define
continuous maps

Pk, P
∗
k : Zn+2

k → Hnk .

For all k0 > 0 and n ∈ N, there exists C(k0) > 0 such that for all k ≥ k0,

‖Pku‖Hn
k

+ ‖P ∗k u‖Hnk ≤ C(k0)‖u‖2Zn+2
k

.
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Remark 5.14 The idea behind Assumption 5.13 is that Pk and P ∗k can only act on functions
satisfying the chosen boundary condition, and they remove this boundary condition as well as
decreasing the regularity index by 2. Thus, given ak(·, ·), Hk,H1

k,H2
k and Zk, Assumption 5.13 can

be considered as constraining the spaces Hnk for n ≥ 3.

Because of this, we can extend Pk and P ∗k uniquely into continuous linear maps from H−nk to
Z−n−2
k for n ≥ 0 by setting{

〈Pku, v〉 := 〈u, P ∗k v〉,
〈P ∗k u, v〉 := 〈u, Pkv〉,

for all v ∈ Zn+2
k .

To state more conveniently the mapping properties of Pk and P ∗k , we define the Hilbert spaces

Wn
k := Znk ∩Hnk , Ynk := Znk +Hnk . (5.6)

By the inclusion Znk ⊂ Hnk for n ≥ 0 and duality,

Wn
k =

{
Znk if n ≥ 0,
Hnk if n ≤ 0,

and Ynk =
{
Hnk if n ≥ 0,
Znk if n ≤ 0.

(5.7)

Thus, since Z−nk = (Znk )∗,
Y−nk = (Wn

k )∗, for all n ∈ Z.

One may think of Wn
k (respectively Ynk ) as the space “with” (respectively “without”) boundary

conditions, and the application of Pk “removes” the boundary conditions.

Proposition 5.15 (Pk, P ∗k and Pk map Wn+2
k to Ynk continuously) For all n ∈ Z and k0 > 0,

there exists C > 0 such that for all k ≥ k0 and all u ∈ Wn
k ,

‖Pku‖Yn
k

+ ‖P ∗k u‖Ynk + ‖Pku‖Yn
k
≤ C‖u‖Wn+2

k

Proof. This is Assumption 5.13 for n ≥ 0 and follows from it by duality for n ≤ −2. Finally,
Proposition 5.9 gives the result for n = −1

Assumption 5.16 (Elliptic regularity) Let Q equal either Pk, P ∗k or Pk and let n ∈ N. If

u ∈ H and Qu ∈ Hnk ,

then u ∈ Zn+2
k , and for all k0 > 0 and n ∈ N, there exists Cell(k0, n) > 0 such that for all k ≥ k0

and u ∈ Z2
k ,

‖u‖Zn+2
k
≤ Cell(k0, n)

(
‖u‖H + ‖Qu‖Hn

k

)
.

Proposition 5.17 (Norms of P−1
k and (P ∗k )−1 from Wn

k to Yn+2
k ) Suppose that Pk : Zk →

Z∗k is invertible. Then for all n ∈ Z, P−1
k : Ynk →W

n+2
k and (P ∗k )−1 : Ynk →W

n+2
k are continuous

and for all k0 > 0, there exists C > 0 such that for all k ≥ k0,

‖P−1
k u‖Wn+2

k
+ ‖(P ∗k )−1u‖Wn+2

k
≤ C

(
1 + ρ(k)

)
‖u‖Yn

k
(5.8)

where ρ(k) is defined by (5.3).

Proof. The case n = −1 is Proposition 5.9. Hence it remains to prove (5.8) for n ≥ 0, since the case
n ≤ −2 follows by duality. We proceed by induction. First, for n = 0, let u ∈ H. Then P−1

k u ∈ H
and thus by elliptic regularity, u ∈ Z2

k with

‖u‖Z2
k
≤ Cell(k0, 0)(‖P−1

k u‖H + ‖u‖H) ≤ Cell(k0, 0)(1 + ρ(k))‖u‖H ≤ Cρ(k)‖u‖H

by definition of ρ(k), where C depends only on k0. Next, let n ≥ 0 and suppose that there exists
C > 0 such that

‖P−1
k u‖Zn+2

k
≤ Cρ(k)‖u‖Hn

k
.
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Let u ∈ Hn+1
k . Then by elliptic regularity and using the continuous embeddings Zn+2

k ⊂ H and
Hn+1
k ⊂ Hnk ,

‖P−1
k u‖Zn+3

k
≤ C`(k0, n+ 1)(‖P−1

k u‖H + ‖u‖Hn+1
k

)

≤ C`(k0, n+ 1)(‖P−1
k u‖Zn+2

k
+ ‖u‖Hn+1

k
)

≤ C`(k0, n+ 1)(Cρ(k)‖u‖Hn
k

+ ‖u‖Hn+1
k

)

≤ C ′ρ(k)‖u‖Hn+1
k

where C ′ depends only on k0 and n.

Proposition 5.18 (Resolvent norm from Yn−1
k to Wn+1

k ) Let k0 > 0 and n ∈ Z. There exists
C(k0, n) > 0 such that for all k ≥ k0 and all z ∈ C \ R,

‖(Pk − z)−1‖Yn−1
k
→Wn+1

k
≤ C(k0, n) 〈z〉

1+b|n|/2c

|=(z)| .

Proof. The result for n = 0 is Proposition 5.11. For n = 1, we use that

‖(Pk − z)−1u‖H ≤
‖u‖H
|=(z)| .

and the elliptic regularity (Assumption 5.16) to write

‖(Pk − z)−1u‖Z2
k
≤ C(‖Pk(Pk − z)−1u‖H + ‖(Pk − z)−1u‖H)

≤ C
(
‖u‖H + |z| · ‖(Pk − z)−1u‖H + ‖(Pk − z)−1u‖H

)
≤ C 〈z〉
|=(z)| ‖u‖H.

Next let n ≥ 0 and suppose that

‖(Pk − z)−1u‖Zn+1
k
≤ C 〈z〉

m

|=(z)| ‖u‖Zn−1
k

for all u ∈ Zn−1
k . Then elliptic regularity gives

‖(Pk − z)−1u‖Zn+3
k
≤ C‖(Pk − z)−1u‖H + ‖Pk(Pk − z)−1u‖Zn+1

k

≤ C
(
|=(z)|−1‖u‖H + ‖u‖Zn+1

k
+ |z| · ‖(Pk − z)−1u‖Zn+1

k

)
≤ C

(
|=(z)|−1‖u‖H + ‖u‖Zn+1

k
+ 〈z〉

m+1

|=(z)| ‖u‖Zn−1
k

)
≤ C 〈z〉

m+1

|=(z)| ‖u‖Z
n+1
k

.

Thus by induction, for all n ≥ 0,

‖(Pk − z)−1‖Yn−1
k
→Wn+1

k
≤ 〈z〉

1+b|n|/2c

|=(z)| .

The result for n ≤ 0 follows by duality.

5.2 The spaces Ds
k

Since λ 7→ (λ+CGa(k0) + 1)s/2, s ≥ 0, is finite for λ ∈ σ(Pk), the functional calculus of unbounded
self-adjoint operators (see, e.g., [Sch12, Section 5.3]) allows us to define the self-adjoint operator

Xk,s := (Pk + (CGa(k0) + 1) I)s/2 (5.9)
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with domain
Dsk := D(Xk,s) ⊂ H

where the inclusion is dense in theH norm. Since the functional calculus is an algebra homomorphism,
Xk,s = X sk , where Xk := Xk,1. Since X sk is self-adjoint, it is, in particular, a closed operator, so the
space Dsk is a Hilbert space for the graph norm

‖u‖2X s
k

:= ‖u‖2H + ‖X sku‖2H.

Moreover, σ(X sk ) ⊂ [1,+∞), hence

‖u‖2H ≤ (u,X sku)H ≤ ‖u‖H‖X sku‖H,

so the graph norm associated of X sk is equivalent to the norm

‖u‖2Ds
k

:= ‖X sku‖2H. (5.10)

This way, the operator X tk induces an isometry from Dsk to Ds−tk for all s ≥ t ≥ 0.

Proposition 5.19 Z2
k = D2

k with equal norms. Furthermore Zk = D1
k with equivalent norms; more

precisely, for all k0 > 0, there exist constant C(k0) > 0 such that for all k ≥ 0 and for all u ∈ D2

1
C(k0)‖u‖Zk ≤ ‖u‖

2
D1
k
≤ C(k0)‖u‖Zk .

Proof. The first statement follows from the fact that X 2
k and Pk differ by a multiple of identity, and

by the definition of the norm of Z2
k (compare (5.2) with the combination of (5.9) and (5.10)). On

the other hand, X 2
k is the operator associated to the lower semi-bounded form a+

k : Zk ×Zk → C
defined by

a+
k (u, v) := <ak(u, v) + (CGa(k0) + 1)(u, v)H

in the sense of [Sch12, Definition 10.4]. In particular, by Theorem 10.7 and Proposition 10.5 in the
latter reference,

Zk = D(|X 2
k |1/2) = D(Xk) = D1

k.

The equivalence of the norms follows from the continuity of <ak and the G̊arding inequality.

Corollary 5.20 For all n ∈ N, Dnk ⊂ Znk and the embedding is continuous.

Proof. The result is immediate if n = 0 and is Proposition 5.19 above for n = 1, 2. Finally, if
u ∈ Dn+2

k , then
Pku = (X 2

k − CGa(k0) + 1)u ∈ Dnk
so the result follows by induction using elliptic regularity (Assumption 5.16).

We also define D−sk := (Dsk)∗. Since Dsk is dense in Hk for s ≥ 0, H can be identified as a
subspace of D−sk , so that Dtk ⊂ Dsk for all real s ≤ t. We can extend Xk uniquely into a linear map
from Dsk to Ds−1

k for all s ∈ [0, 1] by putting

〈Xku, v〉 := 〈X sku,X 1−s
k v〉 for all (u, v) ∈ Dsk ×D1−s

k .

This way, Xk : Dsk → D
s−1
k for all s ∈ [0,+∞) is an isometry and this is extended to s ≤ 0

by duality. In turn, this allows us to view Pk as a map Pk : Dsk → D
s−2
k for all s ∈ R by

Pk := X 2
k − (CGa(k0) + 1) I, with

‖Pku‖Ds
k
≤ (CGa(k0) + 1)‖u‖Ds+2

k
.

Proposition 5.21 (Resolvent estimates in the (Dsk) scale) Let k0 > 0 and s ∈ R. There
exists C > 0 such that for all k > 0 and all z ∈ C \ R,

‖(Pk − z)−1‖Ds
k
→Ds

k
≤ |=(z)|−1,

‖(Pk − z)−1‖Ds
k
→Ds+2

k
≤ C〈z〉|=(z)|−1,

where 〈z〉 := 1 + |z|.
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Proof. Using the fact that X sk : Dsk → H is an isometry, and functional calculus,

‖(Pk − z)−1‖Ds
k
→Ds

k
≤ ‖X sk (Pk − z)−1X−sk ‖H→H = ‖(Pk − z)−1‖H→H ≤ |=(z)|−1.

Similarly,

‖(Pk − z)−1‖Ds
k
→Ds+2

k
= ‖X s+2

k

(
X 2
k − (CGa + z)

)−1X−sk ‖H→H = ‖g(X 2
k )‖H→H ≤ sup

x∈R
|g(x)|

where g(x) := x
x−(z+CGa) . Since for all z ∈ C \ R,

sup
x∈R

∣∣∣∣ x

x− z

∣∣∣∣ = |z|
|=(z)| ,

we conclude that
sup
x∈R
|g(x)| ≤ (1 + CGa)〈z〉|=(z)|−1,

completing the proof.

Proposition 5.22 (Functions of Pk) Let k0 > 0 and s ≥ 0. There exists C > 0 such that, for
all k ≥ k0 and for any function f : R→ C satisfying

‖f‖∞,s := sup
x∈R

(1 + |x|s)|f(x)| <∞,

the operator f(Pk) : H → H defined by the functional calculus extends uniquely into a continuous
map from D−sk to Dsk, with

‖f(Pk)‖D−s
k
→Ds

k
≤ C‖f‖∞,s.

In particular (by Corollary 5.20 and the definitions of Ynk and Wn
k (5.6)) for any n ∈ N, f(Pk) :

Y−nk →Wn
k is continuous.

Proof. By functional calculus and using that X tk = (Pk + CGa(k0) + 1)t/2 : Dtk → H is an isometry
for all t ∈ R,

‖f(Pk)‖D−s
k
→Ds

k
≤ ‖(Pk + CGa(k0) + 1)s/2f(Pk)(Pk + CGa(k0) + 1)s/2‖H→H = ‖g(Pk)‖H→H

where g(x) = (CGa + 1 + x)sf(x) satisfies

|g(x)| ≤ 2s(CGa + 1)s(1 + |x|s)|f(x)|

for all x ∈ σ(Pk). Hence, ‖g(Pk)‖H→H ≤ C‖f‖∞,s and the claim follows.

5.3 Elliptic perturbation of Pk

By Proposition 5.6, for every k0 > 0, there exists a real-valued, compactly supported function
ψ] ∈ C∞c (R) such that

ψ](x) ≥ −x+ CGa

2 for all x ∈ σ(Pk). (5.11)

Following [GS25, Lemma 2.1], define
Sk := ψ](Pk) (5.12)

by the functional calculus. Since ψ] has compact support,

Sk : D−nk → Dnk

is continuous for all n ∈ N by Proposition 5.22. In what follows, the elliptic perturbation of Pk is
defined by

P ]k := Pk + Sk. (5.13)

The associated sesquilinear form, denoted by a]k : Zk ×Zk → C, is thus given by

a]k(u, v) := ak(u, v) + (Sku, v)H. (5.14)
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Proposition 5.23 (Properties of P ]k) For every k0 > 0 and any integer n, there exists a positive
constant C](k0, n) such that, for all k ≥ k0,

<(a]k(u, u)) ≥ C](k0, 1)‖u‖2Zk for all u ∈ Zk, (5.15)

the operator P ]k :Wn+2
k → Ynk is an isomorphism, and

‖(P ]k)−1u‖Wn+2
k
≤ C](k0, n)‖u‖Yn

k
for all u ∈ Ynk .

Proof. By (5.11),
x+ ψ](x) ≥ 1

2(x+ CGa) for all x ∈ σ(Pk).

Therefore, by the functional calculus, for all u ∈ Z1
k ,

<(a]k(u, u)) = <ak(u, u) + (ψ](Pk)u, u)H =
(
Pk + ψ](Pk)u, u

)
H ≥

1
2
(
(Pk + CGa I)u, u

)
H.

Hence, by the G̊arding inequality,

<(a]k(u, u)) ≥ cGa

2 ‖u‖
2
Zk for all u ∈ Z2

k ,

and the same inequality holds for all u ∈ Zk by the density of Z2
k in Zk and continuity of a]k. Thus,

a]k is coercive, and the Lax-Milgram lemma implies that P ]k : Zk → (Zk)∗ is boundedly invertible;
this is the required result for n = 1. With n ≥ 2, let u ∈ Hn−2

k and suppose that v ∈ Zk satisfies
P ]kv = u. Then Pkv = u− Skv ∈ Hn−2

k (by the smoothing property of Sk from Proposition 5.22),
so that v ∈ Znk by elliptic regularity (Assumption 5.16). Moreover, since ‖v‖H ≤ ‖v‖Zk ≤ ‖u‖Z∗k
(again by the Lax-Milgram lemma),

‖v‖Zn
k
≤ C

(
‖v‖H + ‖u− Skv‖Hn−2

k

)
≤ C

(
‖u‖(Zk)∗ + ‖u‖Hn−2

k

)
≤ C‖u‖Hn−2

k
,

which proves the result for n ≥ 2. The same reasoning applied to P ∗k + S∗k = P ∗k + Sk followed by a
duality argument (recalling that the dual of Ynk is W−nk ) gives the result for n ≤ 0.

5.4 Order notation
Let

W∞k :=
⋂
n∈Z
Wn
k , W−∞k :=

⋃
n∈Z
Wn
k ,

and define Y±∞k and D±∞k similarly.

Definition 5.24 (Order notation) Let (ηk)k>0 be a family of real numbers. Let m,n ∈ Z and
let L :W∞k → Y∞k be a linear operator. Then

L = Om(ηn;Wk → Yk)

if, for all k0 > 0 and for all j ∈ Z, there exists a real number C(k0, j) > 0 such that for all k ≥ k0
and all u ∈ Wj

k,
‖Lu‖Yj−m

k
≤ C(k0, j)ηnk ‖u‖Wj

k
. (5.16)

The notations L = Om(ηn;Yk → Yk), L = Om(ηn;Dk → Dk) are defined similarly.

Observe that these order relations can then be combined multiplicatively; e.g.,

L1 = Om(ηn;Wk → Yk) , L2 = Om′(ηn
′
;Yk →Wk) =⇒ L1L2 = Om+m′(ηn+n′ ;Yk → Yk).
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5.5 Spatial pseudolocality
The statement and proof of the main result use both frequency cut-offs in the form f(Pk) for
f ∈ S(R) and spatial cut-offs coming from smooth compactly-supported functions. The following
assumption encapsulates the properties of these spatial cut-offs that are required in this section.

Definition 5.25 (Abstract “spatial cutoffs”) Let (ηk)k>0 be a family of real numbers. We
say that a linear operator is a spatial cutoff of order m with parameter η if R = Om(1;Yk → Yk),

adNR Q = Om−N+2(η−N ;Wk → Yk), and adNR∗ Q = Om−N+2(η−N ;Wk → Yk),

where Q is any one of the operators Pk, P ∗k and Pk. The set of spatial cutoffs of order m and
parameter is denoted by Lmsc(η), and we write Lsc(η) := L0

sc(η). We omit the η from the notation
when it will not lead to confusion.

Remark 5.26 Recall from Remark 5.8 that in the model settings of Table 5.1, the operator Q
above is not a differential operator. Therefore the commutators adNR Q and adNR∗ Q a priori contain
boundary terms, hence some care must be taken to check the continuity properties above. In §6,
we show that if R is given by the multiplication with a smooth cut-off function χ with vanishing
normal derivative on ∂Ω−, then it satisfies the commutator estimates above.

Let A,B = O0(1,Wk → Wk) ∩ O0(1,Yk → Yk) , where the intersection notation is used to
denote that the equation holds with either term on the right-hand side, and and let R ∈ Lsc. We
say that A and B are separated by R if both

A(I−R) = O0(η−∞;Yk → Yk) ∩O0(η−∞;Wk →Wk) ,

RB = O0(η−∞;Yk → Yk) ∩O0(η−∞;Wk →Wk),

We say that A and B are separated if they are separated by R for some R ∈ Lsc.
The main result on spatial pseudolocality is as follows.

Theorem 5.27 (Pseudolocality of abstract Helmholtz operators) Let f ∈ S(R), let A,B
be separated, and let Q be one of the operators Pk, P ∗k or Pk. Then

Af(Pk)B = O−∞(η−∞;Yk →Wk), (5.17)
AQB = O2(η−∞;Wk → Yk) (5.18)

A(P ]k)−1B = O−2(η−∞;Yk →Wk). (5.19)

Remark 5.28 (The constants implicit in Theorem 5.27) Both the assumptions and the con-
clusions of Theorem 5.27 involve implicit constants coming from the order notation Definition
5.24 used to denote bounds of the form (5.16). It is clear from the proof of Theorem 5.27 (but
cumbersome to write precisely) that given f ∈ S(R) and a list of constants C , there is another list
of constants C ′ such that for all (ηk)k>0, A, B and R satisfying the assumptions of the theorem
with the constants C , the conclusions of Theorem 5.27 hold with the constants C ′. The same is
true of all results in the remainder of this section.

We first reduce the proof of Theorem 5.27 to the proof of various commutator estimates.

Proposition 5.29 Suppose that for all R ∈ Lsc, for all f ∈ S(R), and for every N ∈ N,

adNR f(Pk) = O−∞(η−N ;Yk →Wk), (5.20)
adNR (P ]k)−1 = O−2(η−N ;Yk →Wk). (5.21)

Then the results of Theorem 5.27 hold.

Proof. The structure of the argument is the same for all three results, albeit with different spaces.
We therefore omit the spaces from the notation for brevity.
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Since A and B are assumed to be separated, there exists R ∈ Lsc such that A(I−R) = O0(η−∞)
and RB = O0(η−∞). Hence, for any operator X such that X = Om(1), since A,B ∈ Lsc ⊂ L0,

AXB = ARXB +A(I−R)XB
= A(adRX)B +AXRB +A(I−R)XB
= A(adRX)B +Om(η−∞).

Repeating this argument N times gives

AXB = A(adNR X)B +Om(η−∞), (5.22)

since adiRX = Om(1) for any i ∈ N (as can be easily checked by induction). By (5.22) applied
with X = f(Pk) (and m = −∞ by Proposition 5.22), X = Q (and m = 2), and X = (P ]k)−1 (and
m = −2 by Proposition 5.23), for all N ∈ N,

Af(Pk)B = A(adNR f(Pk))B +O−∞(η−∞)

AQB = A(adNR Q)B +O2(η−∞)

A(P ]k)−1B = A(adNR (P ]k)−1)B +O−2(η−∞).
Hence (5.18) follows immediately from the middle equality and Definition 5.25, while the first and
third equality show that (5.17) and (5.19) follow from (5.20) and (5.21), respectively.

We now prove that the assumptions (5.20)-(5.21) of Proposition 5.29 hold true. In order to
do this, the main tool the Helffer-Sjöstrand formula, which allows to express f(Pk) in terms of
(Pk − z)−1. This formula is recalled below (for a proof, see, e.g., [Zwo12, Theorem 14.8]).

Proposition 5.30 (Helffer-Sjöstrand formula) For all f ∈ S(R), there exists a continuous
function w : C→ C such that if A is a self-adjoint operator on a Hilbert space, then

f(A) =
∫
C
w(z)(A− z)−1dmC(z)

where dmC(x+ iy) = dx dy and for every M ∈ N, there exists κM such that

|w(z)| ≤ κM 〈z〉−2M |=(z)|M for all z ∈ C. (5.23)

The function w in Proposition 5.30 is obtained (up to a constant factor) via a so-called “quasi-
analytic extension” of f ; see, e.g., [Zwo12, Theorem 3.6].

By the Helffer-Sjöstrand formula,

adNR f(Pk) =
∫
C
w(z) adNR (Pk − z)−1dmC(z)

Therefore, to prove (5.20), (5.21) we need to bound adNR Y −1 with Y = P ]k or Y = (Pk − z)−1, in
terms of adNR Y and Y −1.

The next result uses the notation that A = Om
(
f(η, n, z);Yk → Wk

)
if ‖Au‖Wn−m

k
≤

f(ηk, n, z)‖u‖Yn
k

.

Proposition 5.31 Let Ω a subset of C. Suppose that X = Om(1;Yk → Yk) ∩ Om(1;Wk → Wk)
and for every z ∈ Ω, let Yz, Y ∗z : Wn+2

k → Ynk be invertible. Furthermore, suppose that there are
Ln ≥ 0 such that

(a) for all z ∈ Ω,

Y −1
z = C1(z)O−2

(
〈z〉Ln ;Yk →Wk

)
, (Y ∗z )−1 = C1(z)O−2

(
〈z〉Ln ;Yk →Wk

)
(b) for all z ∈ Ω,

adNX Yz = C2(z)O2+N(m−1)
(
η−N ;Wk → Yk

)
, adNX∗ Y ∗z = C2(z)O2+N(m−1)

(
η−N ;Wk → Yk

)
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for some functions C1, C2 : Ω → R+. Then for all N ∈ N, n ∈ Z, there is Mn such that, for all
z ∈ Ω,

adNX Y −1
z = (1 + C1(z))N+1(1 + C2(z))NO−2+N(m−1)

(
η−N 〈z〉Mn ;Yk →Wk

)
.

Proof. The main idea is that adNX Y −1
z is equal to a linear combination of terms of the form

Y −1
z (adi1X Yz)Y −1

z (adi2X Yz)Y −1
z . . . Y −1

z (adiMX Yz)Y −1
z , and the next definitions formalize this more

precisely.4
We will prove the lemma by showing the estimate for adNX Y −1

z acting on elements of H and
then (using the second parts of assumptions (a) and (b)) argue by duality to act on H−nk .

An operator aN : H → H is called an (N, z)-atom if either

(i) N = 0 and aN = 1, or

(ii) aN = (adNX Yz)Y −1
z , or

(iii) aN = aiaj where ai is an (i, z)-atom and aj is an (j, z)-atom with i+j = N and 1 ≤ i, j ≤ N−1.

An operator tN is called an (N, z)-term if it is of the form

tN =
J∑
j=1

σjY
−1
z aN,j

where J ∈ N, σj are real coefficients and aN,j are (N, z)-atoms. For example,

t5 = Y −1
z (ad5

X Yz)Y −1
z − Y −1

z (ad2
X Yz)Y −1

z (ad3
X Yz)Y −1

z

is a (5, z)-term. Notice that if ti and tj are (i, z)- and (j, z)-terms, then tiYztj is an (i+ j, z)-term.
It follows immediately from assumptions (a) and (b), by induction on N , that if tN (z) is a

(N, z)-term for all z ∈ Ω, then

tN (z) = (1 + C1(z))N+1(1 + C2(z))NO−2+N(m−1)(η−N 〈z〉Mn ;Yk →Wk).

Thus it remains to show that for all z ∈ Ω, adNX Y −1
z : H → H is an (N, z)-term. For this, it suffices

to prove that, for all N ∈ N,

tN is an (N, z)-term =⇒ adX tN is an (N + 1, z)-term. (5.24)

By linearity, it is enough to prove (5.24) in the case where tN = Y −1
z aN for some (N, z)-atom aN .

We consider separately the three cases (i), (ii), (iii) above in the definition of an (N, z)-atom.
Case (i): If aN = 1, then

adX tN = adX Y −1
z = XY −1

z − Y −1
z X = Y −1

z YzXY
−1
z − Y −1

z XYzY
−1
z = −Y −1

z (adX Yz)Y −1
z

which is a (1, z)-term acting on u. This shows the implication (5.24) for N = 0, and in the following
cases, we fix N ≥ 1 and proceed by induction assuming that it holds for all i ≤ N − 1.

Case (ii): If aN = (adNX Yz)Y −1
z , then

adX tN = (adX Y −1
z )(adNX Yz)Y −1

z + Y −1
z (adN+1

X Yz)Y −1
z + Y −1

z (adNX Yz)(adX Y −1
z ).

The second term on the right-hand side is an (N + 1, z)-term. The first term on the right-hand side
can be rewritten as

−Y −1
z (adX Yz)Y −1

z︸ ︷︷ ︸
(1, z)-atom

(adNX Yz)Y −1
z︸ ︷︷ ︸

(N, z)-atom

.

4It is in fact possible to give a full closed-form expression for adN
X Y −1 involving sums of compositions of quantities

of the form (adi
X Y ) and Y −1. However, the fomula and its proof, involving sums over all possible ordered partitions

of {1, . . . , N}, are slightly cumbersome and for the present purposes, this would be more information than actually
needed.
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This is thus an (N + 1, z)-term. Similarly, the third term is an (N + 1, z)-term, and thus adX tN is
an (N + 1, z)-term.

Case (iii): If aN = aiaj then, since aj : H → H,

tN = Y −1
z aiaj = Y −1

z aiYzY
−1
z aj = tiYztj

where ti := Y −1
z ai and tj := Y −1

z aj are (i, z)- and (j, z)-terms, respectively, with i+ j = n. Thus

adX tN = (adX ti)Yztj + ti(adX Yz)tj + tiYz(adX tj).

The first term is an (N + 1, z)-term by the induction hypothesis. Similarly, the last term is an
(N + 1, z)-term. The middle term can be rewritten as

ti(adX Yz)tj =

(i+ (j + 1), z)-term︷ ︸︸ ︷
tiYz Y

−1
z (adX Yz)Y −1

z︸ ︷︷ ︸
(1, z)-term

Yztj

︸ ︷︷ ︸
(j + 1, z)-term

which is an (N + 1, z)-term. This concludes the proof.

We can now prove the estimate (5.20).

Proposition 5.32 For any N ∈ N, f ∈ S(R) and R ∈ Lmsc,

adNR f(Pk) = O−∞(η−N ;Yk →Wk).

Proof. By the Helffer–Sjöstrand formula,

adNR f(Pk) =
∫
C
w(z) adNR (Pk − z)−1 dmC(z).

By Proposition 5.31 with X = R, Ω = C \ R, Yz = (Pk − z), the first commutator property of
spatial cutoffs, and the resolvent estimate of Proposition 5.18,

adNR (Pk − z)−1 =
(

1 + 〈z〉
|=(z)|

)N
O−2+N(m−1)(η−N 〈z〉Mn ;Yk →Wk).

Therefore,

adNR f(Pk) = O−2+N(m−1)

(
η−N

∫
CN

w(z)〈z〉Mn

(
1 + 〈z〉
|=(z)|

)N
dmC(z);Yk →Wk

)
.

The bound (5.23) on w implies that the integral is finite, and thus, for all f ∈ S(R),

adNR f(Pk) = O−2+N(m−1)(η−N ;Yk →Wk). (5.25)

We now upgrade the regularity index from −2 +N(m− 1) to −∞ by induction on N . For N = 0,

ad0
R f(Pk) = f(Pk) = O−∞(1;Yk →Wk) (5.26)

by Proposition 5.22. Next fix an integer N ≥ 1 and suppose that for all i ≤ N − 1 and all g ∈ S(R),

adiR g(Pk) = O−∞(η−i;Yk →Wk).

By, e.g., [Voi84, Theorem 3.2], given a Schwartz function f , there exist two Schwartz functions f1
and f2 such that f = f1f2. Thus f(Pk) = f1(Pk)f2(Pk) with f1, f2 ∈ S(R). Furthermore, by the
Leibniz identity

adNX(Y Z) =
N∑
i=0

(
N

i

)
(adiX Y )(adN−iX Z).
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Thus,

adNR (f1(Pk)f2(Pk))

= f1(Pk)(adNR f2(Pk)) + (adNR f1(Pk))f2(Pk) +
N−1∑
i=1

(
N

i

)
adiR f1(Pk) adN−iR f2(Pk).

Bounding the first two terms on the right-hand side by (5.26) and (5.25), and bounding the third
term by the induction hypothesis, we obtain that

adNR (f1(Pk)f2(Pk)) = O−∞(1)O−2+N(m−1)(η−N ) +
N−1∑
i=1

O−∞(k−i)O−∞(η−N+i),

where all the operators are Yk → Wk. Since Wn
k ⊂ Ynk for all n, adNR (f1(Pk)f2(Pk)) =

O−∞(η−N ;Yk →Wk), and the proof is complete.

We now record a variant of the previous result.

Proposition 5.33 Let N ∈ N, f ∈ S(R) and let R = Om(1;Dk → Dk) be such that

adNR Pk = Om−N+2(η−N ;Dk → Dk).

Then
adNR f(Pk) = O−∞(η−N ;Dk → Dk)

The proof is the same as that of Proposition 5.32, using a variant of Proposition 5.31 in the scale
(Dsk)s∈R, and using the mapping properties of (Pk − z), (Pk − z)−1 and f(Pk) in this scale (with
the latter two mapping properties coming from Propositions 5.21 and 5.22).

Proposition 5.34 For all N ∈ N and R ∈ Lmsc,

adNR (P ]k)−1 = O−2+N(m−1)(η−N ;Yk →Wk).

Proof. This follows from Proposition 5.31 applied with X = R, Ω = {1} and Y1 = P ]k . Indeed, for
assumption (a), the required estimate is given by Proposition 5.23, while for assumption (b),

adNR P
]
k = adNR Pk + adNR ψ(Pk) = O2+N(m−1)(η−N ) +O−∞(η−N )

by the definition of spatial cutoffs (i.e., Definition 5.25) and by Proposition 5.32.

5.6 Boundary compatible operators and pseudolocality in frequency
In some cases, we will need to use pseudolocality in the frequency space in addition to the physical
space. To this end, we introduce the set of boundary compatible operators, Lmb .

Definition 5.35 (Boundary compatible operators) X = Om(1;Dk → Dk) is a boundary
compatible operator of order m, X ∈ Lmb , if, for all integers N ≥ 0,

adNPk X = ON+m(η−N ;Dk → Dk) and adNPk X
∗ = ON+m(η−N ;Dk → Dk).

We write Lb := L0
b.

Remark 5.36 We highlight that the requirement that an operator is boundary compatible is much
more stringent that the requirement that it is an abstract spatial cut-off, essentially because a
function u ∈ H must satisfy many “boundary conditions” to belong to the spaces Dnk for large n
(see Table 5.1). In the setting of the Helmholtz PML problem of §6.3 below, we show that if R is
given by the multiplication with a smooth cut-off function that is locally constant near the obstacle
boundary, and vanishes near in a neighbourhood of the truncation boundary, then it satisfies the
commutator estimates above.
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Theorem 5.37 (Frequency pseudolocality) Let X ∈ Lmb , f, g ∈ C∞(R) be polynomially
bounded, such that one of f and g is in S(R), and supp f ∩ supp g = ∅. Then

f(Pk)Xg(Pk) = O−∞(η−∞;Dk → Dk). (5.27)

As in the case of spatial pseudolocality, the proof of Theorem 5.37 can be reduced to certain
commutator estimates.
Proposition 5.38 Suppose that for all X ∈ Lmb ,

adNf(Pk)X = O−∞(η−N ;Dk → Dk). (5.28)

Then the results of Theorem 5.37 hold.
Proof. Without loss of generality, assume that f is Schwartz (the proof when g is Schwartz
is analogous). Since the sets supp f and supp g are disjoint, there exists f1 ∈ S(R) such that
supp f1 ∩ supp g = ∅ and supp(1− f1) ∩ supp f = 0. Therefore,

f(Pk)Xg(Pk) = f(Pk)(adNf1(Pk)X)g(Pk).

Therefore, (5.27), follows from (5.28) and the mapping properties of f(Pk) and g(Pk) from Propo-
sition 5.22.

Proposition 5.39 Given f ∈ S(R), m ∈ R, and X ∈ Lmb ,

adNf(Pk)X = O−∞(η−N ;Dk → Dk)

(i.e., the bound (5.28) holds).

Proof. Using the Helffer-Sjöstrand formula, commutators with f(Pk) can be expressed in terms of
commutators with (Pk − z)−1: for all fj ∈ S(R), j = 1, . . . , N , all X ∈ Lmb , and for every integer
N ∈ N,

adfN (Pk) adfN−1(Pk) . . . adf1(Pk)X

=
∫
CN

w1(z1) . . . wN (zN )(ad(Pk−zN )−1 . . . ad(Pk−z1)−1 X) dmCN (z1, . . . , zN ),
(5.29)

where wi is as in Proposition 5.30 with f = fi. Using the identities ad(Pk−z)−1 X = −(Pk −
z)−1 adPk X(Pk − z)−1, adX(Y Z) = (adX Y )Z + Y (adX Z), and the fact that ad(Pk−z)−1(Pk −
z′)−1 = 0, one obtains the formula

ad(Pk−zN )−1 . . . ad(Pk−z1)−1 X = (−1)N
N∏
i=1

(Pk − zi)−1(adNPk X)
N∏
i=1

(Pk − zi)−1.

Therefore, by the resolvent estimate in Proposition 5.21 and the commutator assumption for
frequency cutoffs (in Definition 5.35),

ad(Pk−zN )−1 . . . ad(Pk−z1)−1 X =
N∏
j=1
〈zj〉2|=(zj)|−2O−3N+m(η−N ;Dk → Dk).

Using this in (5.29) and recalling the decay properties of the wj (5.23), we obtain that, for any
f1, . . . , fN ∈ S(R),

adfN (Pk) . . . adf1(Pk)X = O−3N+m(η−N ;Dk → Dk).

In particular, if fj = f , then adNf(Pk)X = O−3N+m(η−N ;Dk → Dk).
To upgrade the regularity index from −3N +m to −∞, we use again that, given a Schwartz

f , there exist two Schwartz functions f1 and f2 such that f = f1f2. By the functional calculus,
f(Pk) = f1(Pk)f2(Pk). Furthermore, adWY Z = (adW Z)Y +W (adY Z). Thus,

adNf(Pk)X = adf1(Pk)f2(Pk) adN−1
f(Pk)X = (adf1(Pk) adN−1

f(Pk)X)︸ ︷︷ ︸
O−3N (η−N )

f2(Pk)︸ ︷︷ ︸
O−∞(1)

+ f1(Pk)︸ ︷︷ ︸
O−∞(1)

(adf2(Pk) adN−1
f(Pk)X)︸ ︷︷ ︸

O−3N (η−N )

= O−∞(η−N ;Dk → Dk)
which completes the proof.
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6 Pseudolocality results applied to the Helmholtz problem
In this section, we specialise the results of the previous section to the Helmholtz PML operator,
that is, to the case where Hnk = Hn

k , ak is defined by (3.1) and Zk is defined by (3.2). With these
definitions fixed, we keep the rest of the notation from Section 5 (indeed, once we check that
Assumptions 5.1, 5.2, 5.3, 5.13 and 5.16 hold, all other objects appearing in this section are then
defined in terms of Hnk , Zk and ak). Observe that Zk is a subspace of H1

k with Dirichlet conditions
on either ∂Ω (Dirichlet setting) or just Γtr (Neumann setting), and for all j ≥ 0, Yjk = Hj

k and the
inclusion H−jk ⊂ Y−jk is continuous. In particular, if R = O−∞(ηn;Yk → Yk), then

‖Ru‖HN
k
≤ Cηn‖u‖H−N

k
for all N ∈ N.

In this particular setting, we give sufficient conditions for smooth cut-off functions χ ∈ C∞(Ω) to
fulfil the conditions of Definition 5.25 or Definition 5.35. We also identify some boundary-compatible
operators in the sense of Definition 5.35 that are used for the proof of Theorem 3.11.

In the remainder of this paper, we adopt the following notation.

Definition 6.1 Given two cutoff functions ϕ, ϕ̃, ψ ∈ C∞(Ω) and a real number d > 0, we write

ϕ ⊥d ψ ⇐⇒ dist(suppϕ, suppψ) > d

ϕ ≺d ϕ̃ ⇐⇒ ϕ ⊥d (1− ϕ̃).

We abbreviate ⊥0 and ≺0 by ⊥ and ≺.

6.1 Verifying the assumptions
We start by showing that the assumptions of Section 5 hold for the PML problem.

With the PDE coefficients in Aθ, bθ, and nθ defined in §A, that section shows that there exists
ω ∈ R such that eiωa(·, ·) satisfies Assumption 5.1 and 5.2 (with ω = 0 for the most commonly-used
radial PML construction). Since

ak(u− uh, vh) = 0 if and only if eiωak(u− uh, vh) = 0,

without loss of generality we can assume that ω = 0.
It is standard that Assumption 5.3 holds with Z2

k defined in (3.7). Moreover, for all u ∈ Z2
k ,

Pku = −k−2 div(Aθ∇u) + k−2〈bθ(x),∇u〉 − nθu.

Thus, Pk : Znk → H
n−2
k is continuous for n ≥ 2, thus Assumption 5.13 holds. The smoothness of

∂Ω, Aθ, bθ, and nθ ensure Assumption 5.16 (elliptic regularity) holds
Since D0

k = H, D1
k = Zk, and X−2

k := (Pk + (CGa(k0) + 1) I)−1 is an isomorphism from Dnk to
Dn+2
k , it follows by induction that

Dnk,d =
{
u ∈ Hn(Ω) : u,Pku, . . . ,Pdn/2e−1

k u ∈ H1
0 (Ω)

}
and

Dnk,n =
{
u ∈ Hn(Ω) :u = Pku = . . . = Pdn/2e−1

k u = 0 on Γtr

and ∂ν,Aθu = ∂ν,Aθ (Pku) = . . . = ∂ν,Aθ (P
dn/2e−1
k u) = 0 on ∂Ω−

}
.

Now

‖u‖Dn
k

=
{
‖X 2m

k u‖H
k
, n = 2m,

‖X 2m
k u‖Z

k
, n = 2m+ 1,

Since X 2
k = Pk + (CGa(k0) + 1) I so that, by induction, for m ∈ N, X 2m

k coincides on D2m
k (and

thus on D2m+1
k ) with a differential operator of order 2m. Thus

‖u‖Dn
k
≤ C‖u‖Hn

k
for u ∈ Dnk . (6.1)
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6.2 Pseudolocality results with smooth cut-off functions
The main result of this section is the following.

Theorem 6.2 Suppose that χ1, χ2 ∈ C∞(Ω) with suppχ1 ∩ suppχ2 = ∅. Then, for all f ∈ S(R),

χ1f(Pk)χ2 = O−∞(k−∞;Yk → Yk), χ1R
]
kχ2 = O−2(k−∞;Yk → Yk).

This result is proved by using Theorem 5.27 and showing, first, that if χ ∈ C∞(Ω) and
∂νχ|∂Ω− = 0 then χ ∈ Lsc (see Lemma 6.3 below) and, second, that given χ1, χ2 ∈ C∞(Ω), there
exist χ̃j ∈ C∞(Ω) with ∂ν χ̃j |∂Ω− = 0, j = 1, 2, such that χj ≺ χ̃j , and χ̃1 ⊥ χ̃2 (see Lemma 6.6).

Lemma 6.3 Given {CN}N>0 ⊂ R+, there exist {C ′N,n}N,n ⊂ R+ such that the following is true.
For all ε > 0, if χ ∈ C∞(Ω) satisfies ∂νχ|∂Ω− = 0 and

max
|α|≤N

ε|α||∂αχ| ≤ CN for all N ∈ N,

then
‖ adNχ Q‖Wn

k
→Yn+2−N

k
≤ C ′N,n(εk)−N , (6.2)

where Q is any one of the operators Pk, P ∗k or Pk. In particular χ ∈ Lsc.

Proof. We start by considering adχ Pk acting in Z1
k . Indeed, suppose that u, v ∈ Z1

k . Then,
χu, χ̄v ∈ Z1

k and hence

〈adχ Pku, v〉 = ak(u, χ̄v)− ak(χu, v)

= k−2
(
〈Aθ∇u,∇(χ̄v)〉 − 〈Aθ(∇χu),∇v〉

)
+ k−2〈χbθ · ∇u− bθ · ∇(χu), v

〉
= k−2

(
〈Aθ∇u, v∇χ̄〉 − 〈uAθ∇χ,∇v〉

)
− k−2〈(bθ · ∇χ)u, v〉

= k−2〈(Aθ∇u) · ∇χ+∇ · (uAθ∇χ), v
〉
− k−2〈(bθ · ∇χ)u, v〉, (6.3)

where in the last line we use that ∂νχ|∂Ω− = 0 and u|Γtr = 0. In particular, for n ≥ 1,
‖ adχ Pku‖Hn−1

k
≤ C(εk)−1‖u‖Zn

k
. Next, since

〈ad2
χ Pku, v〉 = 〈adχ Pku, χv〉 − 〈adχ Pk(χu), v〉,

a short calculation using (6.3) implies that, for u, v ∈ Z1
k ,

〈ad2
χ Pku, v〉 = −k−2〈2u(Aθ∇χ) · ∇χ, v

〉
. (6.4)

Thus, for n ≥ 0, ‖ ad2
χ Pku‖Hnk ≤ C(εk)−2‖u‖Zn

k
. Since there are no derivatives of u on the

right-hand side of (6.4), a similar calculation shows that u ∈ Z1
k , (adNχ Pk)u = 0 for N ≥ 3. Thus

‖ adNχ Pk‖Zn
k
→Hn−2+N

k
= ‖ adNχ Pk‖Wn

k
→Yn−2+N

k
≤ C(εk)−N for n ≥ 0, (6.5)

and, by identical arguments,

‖ adNχ P ∗k ‖Zn
k
→Hn−2+N

k
= ‖ adNχ P ∗k ‖Wn

k
→Yn−2+N

k
≤ C(εk)−N for n ≥ 0. (6.6)

Now, for ` ≥ 0, u ∈ H−`k and v ∈ Z`+2
k , by the fact that (adNA B)∗ = (−1)N adNA∗ B∗ (which one

can prove by induction),∣∣〈(adNχ Pk)u, v
〉∣∣ =

∣∣〈u, (−1)N (adNχ̄ P ∗k )v
〉∣∣ ≤ ‖u‖H−`

k
‖(adNχ̄ P ∗k )v‖H`

k

If N ≥ 3, then the right-hand side of the last inequality is zero. Otherwise, (6.6) with n =
`+ 2−N ≥ 0 implies that∣∣〈(adNχ Pk)u, v

〉∣∣ ≤ C(εk)−N‖u‖H−`
k
‖v‖Z`+2−N

k
.
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Since Z`+2
k is dense in Z`+2−N

k , the previous inequality and similar arguments for P ∗k imply that

‖ adNχ P ∗k ‖H−`
k
→Z−`−2+N

k
+ ‖ adNχ Pk‖H−`

k
→Z−`−2+N

k
≤ C(εk)−N , ` ≥ 0. (6.7)

The combination of (6.5), (6.6), and (6.7) are then (6.2).

We first prove the existence of a cut-off in Lsc between Ω1 and Ω2, under the assumption that
Ω1 is sufficiently small – this assumption allows us to use Fermi normal coordinates defined by ∂Ω
on Ω1.

Lemma 6.4 There exists ε0 > 0 such that for all N > 0, there exists CN > 0 such that for all
0 < ε < ε0 the following is true. If Ω1,Ω2 ⊂ Ω are such that d(Ω1,Ω2) > ε and if there exists y ∈ Ω
such that Ω1 ⊂ B(y, ε0), then there exists χ ∈ C∞(Ω; [0, 1]) satisfying

Ω1 ∩ supp(1− χ) = ∅, suppχ ∩ Ω2 = ∅,
|∂αχ| ≤ CN ε−|α| for |α| ≤ N, and ∂νχ|∂Ω = 0.

Proof. Let UFermi be a tubular neighbourhood of ∂Ω in which there exists a Fermi normal coordinate
chart; we denote these coordinates below by (x1, x

′)F (where the subscript F emphasises that
these are not Euclidean coordinates). Let δ0 > 0 be such that UFermi ⊃ B(∂Ω, 20δ0) := {x ∈ Ω :
dist(x, ∂Ω) < 20δ0} and let ε0 = 9δ0. If Ω1 6⊂ UFermi then dist(Ω1, ∂Ω) ≥ 2δ0 = (2/9)ε0, and the
existence of χ follows immediately (e.g., by mollification of the indicator function of Ω1). We
therefore assume that Ω1 ⊂ UFermi. Now, there exists cF > 0 (depending only on Ω) such that, for
all r > 0 and for all (0, x′) ∈ ∂Ω,{

(0, y′)F : |y′ − x′| ≤ cF r
}
⊂ B

(
(0, x′)F , r

)
∩ ∂Ω. (6.8)

We now define some mollifiers and cut-off functions. Fix ψm ∈ C∞c (BRm(0, 1)) such that∫
ψm = 1, m = d− 1, d. Fix also ψ̃1 ∈ C∞c (−2, 2) with (−1, 1)∩ supp(1− ψ̃1) = ∅. Then, for δ > 0,

set ψm,δ(x) := δ−mψm(δ−1x), and ψ̃1,δ(x) := ψ̃1(δ−1x).
Let δ = ε/10 and Ω̃1 := B(Ω1, 4δ); note that d(Ω̃1,Ω2) > 6ε/10. Let Ω̃∂1 := Ω̃1 ∩ ∂Ω; note that

this set may be empty.
Now let

χ(x1, x
′) :=

(
1Ω̃∂1
∗ ψd−1,cF δ

)
(x′)ψ̃1,δ(x1) +

(
1Ω̃1
∗ ψd,δ

)
(x)
(
1− ψ̃1,δ(x1)

)
=: χnear + χfar, (6.9)

We now check that χ has the required properties. First,

‖∂α(u ∗ v)‖L∞ = ‖(∂αu) ∗ v‖L∞ ≤ ‖∂αu‖L1‖v‖L∞ ,

so that
‖
(
∂α(u ∗ v)

)
w‖L∞ ≤ ‖w‖L∞ ‖(∂

αu) ∗ v‖L∞ ≤ ‖w‖L∞ ‖∂
αu‖L1‖v‖L∞ .

Combining this with the product rule and

‖∂αψ̃1,δ‖L∞ ≤ Cαδ−α1 and ‖∂αψm,δ‖L1 ≤ Cαδ−|α
′|, m = d− 1, d,

implies the required derivative estimates on χ. Next, since χfar ≡ 0 near ∂Ω and ∂αx1
χnear|x1=0 = 0

for any α, it follows that ∂νχ|∂Ω = 0.
We now show that Ω1 ∩ supp(1− χ) = ∅; we do this by showing that

χ(x) = 1 when x = (x1, x
′) ∈ B(Ω1, δ) ∩ Ω. (6.10)

First observe that, for such x,
(
1Ω̃1
∗ ψd,δ

)
(x) = 1. Then, since ψ̃1,δ(x1) = 0 when x1 ≥ 2δ, (6.10)

then follows from (6.9) if we can show that(
1Ω̃∂1
∗ ψd−1,cF δ

)
(x′) = 1 when x1 ≤ 2δ (6.11)
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(i.e., on the support of ψ̃1,δ). To prove (6.11), observe that, by the triangle inequality,

d((0, x′)F ,Ω1) ≤ x1 + d(x,Ω1) < 2δ + d(x,Ω1) < 3δ.

Since Ω̃1 := B(Ω1, 4δ), B((0, x′)F , δ) ⊂ Ω̃1. Thus B((0, x′)F , δ) ∩ ∂Ω ⊂ Ω̃1 ∩ ∂Ω = Ω̃∂1 . and (6.11)
follows by (6.8).

Finally, we show that Ω2 ∩ suppχ = ∅, again by showing that

χ(x) = 0 when x = (x1, x
′)F ∈ B(Ω2, δ) ∩ Ω.

Then, d(x, Ω̃1) > ε − 5δ = 5δ; thus (1Ω̃1
∗ ψd,δ)(x) = 0 and χfar = 0. If |x1| > 2δ, χnear = 0.

Otherwise, we claim that
d((0, x′)F , Ω̃∂1 ) ≥ ε− 7δ = 3δ; (6.12)

then, by (6.8), {
(0, y′)F : |y′ − x′| ≤ cF δ

}
∩ Ω̃∂1 ⊂ B((0, x′)F , δ) ∩ Ω̃∂1 = ∅

so that (1Ω̃∂1
∗ψd−1,cF δ)(x) = 0 (and hence χnear = 0). The inequality (6.12) follows by the triangle

inequality:

ε ≤ d(Ω1,Ω2) ≤ d(Ω1, Ω̃∂1 ) + d((0, x′)F , Ω̃∂1 ) + d((0, x′)F , x) + d(x,Ω2),
≤ 4δ + d((0, x′)F , Ω̃∂1 ) + 2δ + δ,

concluding the proof.

Lemma 6.5 (Partition of unity satisfying Neumann boundary conditions) Let Ωi ⊂ Ω,
i = 1, . . . , N be open with Ω ⊂ ∪iΩi. Then there exist ϕi ∈ C∞(Ω) satisfying

suppϕi ⊂ Ωi ∪ ∂Ω, ∂νϕi = 0 on ∂Ω, and
N∑
i=1

ϕi ≡ 1.

Proof. Let Ui b Ωi be open sets such that Ω ⊂ ∪iUi. Then, for ε > 0 small enough, and
y ∈ U i, B(y, 2ε) ⊂ Ωi. In addition, since U i is compact, there are {yij}Nij=1 ⊂ U i such that
Ui ⊂ ∪Nij=1B(yij , ε).

By Lemma 6.4 (applied with Ω1 = B(yij , ε) and Ω2 = Ω \Ωi), for ε > 0 small enough, there are
ϕ̃ij ∈ C∞(Ω; [0, 1]) such that supp(1− ϕ̃ij) ∩B(yij , ε) = ∅, supp ϕ̃ij ⊂ Ωi ∪ ∂Ω, and ∂νϕ̃ij = 0 on
∂Ω. Noting that

∑N
i=1
∑Ni
j=1 ϕ̃ij ≥ 1, we define

ϕi :=
∑Ni
j=1 ϕ̃ij∑N

i=1
∑Ni
j=1 ϕ̃ij

,

which has the required properties.

We now remove the assumption from Lemma 6.4 that Ω1 is sufficiently small.

Lemma 6.6 There exists ε0 > 0 such that for all N > 0, there exists CN > 0 such that for all
0 < ε < ε0 and Ω1,Ω2 ⊂ Ω and d(Ω1,Ω2) > ε, there exists χ ∈ C∞(Ω) satisfying

Ω1 ∩ supp(1− χ) = ∅, suppχ ∩ Ω2 = ∅,
|∂αχ| ≤ CN ε−|α|, |α| ≤ N, ∂νχ|∂Ω = 0,

(6.13)

Proof. Let ε0 be as in Lemma 6.4. Since Ω is compact, there exist {xi}Mi=1 such that Ω ⊂
∪Mi=1B(xi, ε0). Then, by Lemma 6.5, there exist {ϕi}Mi=1 a partition of unity subordinate to
{B(xi, ε0)}Mi=1 satisfying ∂νϕi = 0 on ∂Ω. Then, let Ω1,i := Ω1 ∩B(xi, ε0). By Lemma 6.4, there
exists χi such that the conditions in (6.13) hold with Ω1 replaced by Ω1,i. Define χ :=

∑M
i=1 χiϕi.

The derivative estimates in (6.13) then follow from the product rule and the fact that the derivatives
of ϕi are independent of ε (but depend on ε0). The condition that ∂νχ|∂Ω = 0 follows since both
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∂νχi = 0 and ∂νϕi = 0. Next, since suppχi ∩ Ω2 = ∅, suppχ ∩ Ω2 ⊂ ∪i supp(χiϕi) ∩ Ω2 = ∅.
Finally, since χi ≡ 1 on Ω1 ∩B(xi, ε0) and suppϕi ⊂ B(xi, ε0), (1− χi)ϕi = 0 on Ω1, and thus

supp(1− χ) ∩ Ω1 = supp
( N∑
i=1

(1− χi)ϕi
)
∩ Ω1 = ∅.

Proof of Theorem 6.2. Since suppχ1 ∩ suppχ2 = ∅, there exist Ωi neighbourhoods of suppχi
with d(Ω1,Ω2) > 0. Therefore, by Lemma 6.6 there are χ̃i with suppχi ∩ supp(1 − χ̃i) = ∅,
suppχi∩ supp χ̃j = ∅, i 6= j, and ∂ν χ̃i = 0. Hence by Lemma 6.3, χ̃i ∈ Lsc and using Theorem 5.27,
we have

χ1f(Pk)χ2 = χ1χ̃1f(Pk)χ̃2χ2 = χ1O−∞(k−∞;Yk →Wk)χ2 = O−∞(k−∞;Yk → Yk),

since χj = O0(1;Yk → Yk). The proof for R]k is identical.

6.3 Some boundary compatible operators
Lemma 6.7 If ϕ ∈ C∞(Ω), supp∇ϕ∩ ∂Ω = ∅, and suppϕ∩ Γtr = ∅, then ϕ ∈ Lb in the sense of
Definition 5.35.

Proof. By Definition 5.35, we need to show that adNPk ϕ = ON (k−N ;Dk → Dk). Let ϕ̃ ∈ C∞c (Ω)
be such that ϕ̃ ≡ 1 on supp∇ϕ. We first show that adNPk ϕ = (adNLk ϕ)ϕ̃ on C∞(Ω) where Lk is a
second-order differential operator. By (6.3), for u, v ∈ Zk,

〈(adPk ϕ)u, v〉 = −k−2〈(<Aθ∇u) · ∇ϕ+∇ · (u(<Aθ)∇ϕ), v
〉
. (6.14)

By (6.14),
adPk ϕ = ϕ̃(adPk ϕ)ϕ̃ = ϕ̃(adLk ϕ)ϕ̃.

Thus
ad2
Pk ϕ = Pkϕ̃(adLk ϕ)ϕ̃− ϕ̃(adLk ϕ)ϕ̃Pk.

Since Pkϕ̃ = Lkϕ̃ and ϕ̃Pk = ϕ̃Lk,

ad2
Pk ϕ = Lkϕ̃(adLk ϕ)ϕ̃− ϕ̃(adLk ϕ)ϕ̃Lk = ad2

Lk
ϕ = (ad2

Lk
ϕ)ϕ̃;

the fact that adNPk ϕ = (adNLk ϕ)ϕ̃ can be proved similarly by induction. Therefore, given u ∈ Dn+N
k ,

adNPk ϕu = (adNLk ϕ)ϕ̃u ∈ Hnk with compact support in Ω, and thus, when n ∈ N, (adNPk ϕ)u ∈ Dnk .
Thus, by (6.1), commutator results for differential operators, and Corollary 5.20, for n ∈ N,

‖(adNPk ϕ)u‖Dn
k
≤ ‖(adNPk ϕ)u‖Hn

k
= ‖(adNLk ϕ)u‖Hn

k
≤ Ck−N‖u‖Hn+N

k
≤ C ′k−N‖u‖Dn+N

k
.

By the spectral theorem, (Dsk)s is an interpolation scale, and the result for general n follows by
duality and interpolation.

Lemma 6.8 (ϕPkϕ ∈ L2
b for suitable ϕ) Suppose that ϕ ∈ C∞(Ω), supp∇ϕ ∩ ∂Ω = ∅, and

suppϕ ∩ Γtr = ∅. Then,

adNϕPkϕ Pk = ON+2(k−N ;Dk → Dk), adNϕP∗
k
ϕ Pk = ON+2(k−N ;Dk → Dk), (6.15)

and

adNPk ϕPkϕ = ON+2(k−N ;Dk → Dk), adNP∗
k
ϕPkϕ = ON+2(k−N ;Dk → Dk) ; (6.16)

in particular, ϕPkϕ ∈ L2
b in the sense of Definition 5.35.
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Proof of Lemma 6.8. We prove (6.15); the proof of (6.16) is very similar. We write

adNϕPkϕ Pk = ψ0 adNϕPkϕ Pk + (1− ψ0) adNϕPkϕ Pk,

where ψ0 is supported in a region close to ∂Ω where ϕ is constant. More precisely, let ψi ∈ C∞(Ω),
i = −1, 0, 1 with supp(1−ψi)∩ ∂Ω− = ∅, suppψi ∩ supp(c−ϕ) = ∅, supp(1−ψi)∩ suppψi−1 = ∅,
and ψ2Pk = ψ2P

∗
k (note that such functions exist since supp∇ϕ ∩ ∂Ω− = ∅).

By locality of Pk and Pk and the fact that Pk = Pk on suppψ2 ⊃ suppψ0,

ψ0 adNϕPkϕ Pk = ψ0 adNcPkc Pk = 0.

Now, let ϕ̃ ∈ C∞(Ω) with supp ϕ̃ ∩ Γtr = ∅ and suppϕ ∩ supp(1− ϕ̃) = ∅. Then

(1− ψ0) adNϕPkϕ Pk = (1− ψ0) adNϕ(1−ψ−1)Pkϕ(1−ψ−1)
[
(1− ψ−1)ϕ̃Pk(1− ψ−1)ϕ̃

]
.

Since supp ϕ̃∩ supp(1−ψ−1)∩∂Ω = ∅, integration by parts (with all the boundary terms vanishing)
shows that ϕ(1−ψ−1)Pkϕ(1−ψ−1) and (1−ψ−1)ϕ̃Pk(1−ψ−1)ϕ̃ coincide with differential operators
on C∞(Ω). The result

‖ adNϕPkϕ Pk‖Dnk→Dn−N−2
k

≤ Ck−N

then follows by direct differentiation (using the product rule) and then density of C∞(Ω) in Dnk .
The proof of the analogous bound for P ∗k is identical.

Lemma 6.9 (ϕ(P ]k)−1ϕ,ϕ(P ],∗k )−1ϕ ∈ L−2
b ) Suppose that ϕ ∈ C∞(Ω) and supp∇ϕ∩∂Ω = ∅, and

suppϕ ∩ Γtr = ∅. Then,

adNPk ϕ(P ]k)−1ϕ = ON−2(k−N ;Dk → Dk), adNPk ϕ(P ],∗k )−1ϕ = ON−2(k−N ;Dk → Dk)

and thus ϕ(P ]k)−1ϕ,ϕ(P ],∗k )−1ϕ ∈ L−2
b in the sense of Definition 5.35.

Proof of Lemma 6.9. We prove the statement for P ]k . The proof for (P ]k)∗ is identical. Let
ϕ̃ ∈ C∞(Ω) with supp∇ϕ̃ ∩ ∂Ω = ∅ and supp(1− ϕ̃) ∩ suppϕ = ∅. Then, by locality of Pk,

adNPk ϕ(P ]k)−1ϕ = adNϕ̃Pkϕ̃ ϕ(P ]k)−1ϕ, (6.17)

By Lemma 6.7, adNPk ϕ = ON (k−N ;Dk → Dk), so that, by repeated use of the identity adAB C =
A(adB C) + (adA C)B,

adNϕ̃Pkϕ̃ ϕ = ON (k−N ;Dk → Dk). (6.18)
Therefore, by the combination of (6.18), (6.17), and repeated use of the identity adABC =
(adAB)C +B(adA C), it is enough to show that

adNϕ̃Pkϕ̃(P ]k)−1 = ON−2(k−N ;Dk → Dk). (6.19)

To prove (6.19) we use Proposition 5.31. For this, observe that

adNϕ̃Pkϕ̃ P
]
k = adNϕ̃Pkϕ̃(Pk + ψ(Pk)).

By Lemma 6.8,

adNϕ̃Pkϕ̃ Pk = O2+N (k−N ;Dk → Dk) and adNϕ̃Pkϕ̃ P
∗
k = O2+N (k−N ;Dk → Dk).

By induction, adNA (B + C) = adNA B + adNA C, and so

adNϕ̃Pkϕ̃ Pk = O2+N (k−N ;Dk → Dk). (6.20)

Therefore, by Proposition 5.33,

adNϕ̃Pkϕ̃ ψ(Pk) = O2+N (k−N ;Dk → Dk).

We deduce that
adNϕ̃Pkϕ̃ P

]
k = O2+N (k−N ;Dk → Dk)

and (6.19) – and hence also the result – then follows from Proposition 5.31.
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7 Pseudolocality of the elliptic projection
In Sections 4, 5, and 6, we studied pseudolocality properties at the continuous level. Another key
tool required for the proof of Theorem 3.11 is of a discrete nature, namely, we need to establish the
spatial pseudolocality of the Galerkin projection Π]

k associated to (the adjoint of) the sesquilinear
form a]k defined in Definition 5.13, see Theorem 7.2 below.

We keep the notation of Section 6. The operator Π]
k is defined as follows.

Definition 7.1 (Elliptic projection) Given k > 0 and a linear subspace Vk ⊂ Zk, the elliptic
projection onto Vk is the linear operator Π]

k : Zk → Vk defined by

a]k(v,Π]
ku) = a]k(v, u) for all v ∈ Vk,

where we recall that Zk is defined by (3.2), a]k(u, v) = ak(u, v) + (Sku, v)H and Sk is defined by
(5.12).

The operator Π]
k is well-defined for all k > 0 by the Lax-Milgram theorem, since a]k is coercive (by

Proposition 5.23).

Theorem 7.2 (Pseudolocality of I−Π]
k) Let (Vk)k>0 be a well-behaved finite-element of order

p in the sense of Definition 3.7, let k0 > 0 and let c > 0. There exists h0 > 0 such that for all
N > 0, χ, ψ ∈ C∞(Ω) satisfying χ ⊥c ψ, there exists C > 0 such that for all k ≥ k0, h ≤ h0, and
u ∈ Zk

‖χ(I−Π]
k)ψu‖H1

k
≤ Ck−N‖(I−Π]

k)ψu‖H−p
k
,

where Π]
k is the elliptic projection onto Vk.

Remark 7.3 Through the constants c and h0, the assumptions of Theorem 7.2 require a sufficient
number of “layers” of elements separating the supports of χ and ψ.

Theorem 7.2 is an immediate consequence of the following two lemmas.

Lemma 7.4 Let (Vk)k>0 be a well-behaved finite-element of order p in the sense of Definition 3.7,
and let c > 0. Then, there exists h0 > 0 such that the following holds. For any k0 > 0, N > 0, and
any χ−, χ+, ψ ∈ C∞(Ω) satisfying

χ− ≺c χ+ and χ+ ⊥ ψ,

there exists C > 0 such that, for all k ≥ k0, h ≤ h0, and u ∈ Zk,

‖χ−(I−Π]
k)ψu‖H1

k
≤ Ck−N

(
‖χ+(I−Π]

k)ψu‖L2 + ‖(I−Π]
k)ψu‖H−N

k

)
.

Lemma 7.5 Let (Vk)k>0 be a well-behaved finite-element of order p in the sense of Definition 3.7,
let k0 > 0 and c > 0. Then, there exists h0 > 0 such that for all N > 0 and every χ, ψ ∈ C∞(Ω)
satisfying χ ⊥c ψ, there exists C > 0 such that, for all k ≥ k0, h ≤ h0, and u ∈ Zk,

‖χ(I−Π]
k)ψu‖L2 ≤ C‖(I−Π]

k)ψu‖H−p
k
. (7.1)

If Sk is (formally) set to zero, then Lemmas 7.4 and 7.5 are analogous to [AGS24, Lemmas 5.1
and 5.5], respectively.

Proof of Lemma 7.4. Let c > 0 be given and let h0 > 0 be a sufficiently small constant depending
only on c. Fix k0 > 0, N > 0 and χ−, χ+ and ψ as in the statement. In what follows, we denote
by C a generic constant depending only on the previous quantities.

We first claim that, without loss of generality, we can assume that ∂νχ− = 0 and thus

adχ− Pk = O1(k−1;Wk → Yk) (7.2)
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by Lemma 6.3 and Definition 5.25 and

adχ− Sk = O−∞(k−1;Yk →Wk) (7.3)

by Proposition 5.32. Indeed, if ∂νχ− 6= 0 we apply Lemma 6.6 with Ω1 = suppχ− and Ω2 equal
to supp(1− χ+) enlarged by distance c/2. We then relabel the resulting cut-off function χ− and
replace c by c/2.

Let k ≥ k0, u ∈ Zk and suppose that h ≤ h0. It is sufficient to prove that

‖χ−Π]
kψu‖H1

k
≤ Ck−1/2‖χ+Π]

kψu‖L2 + Ck−N‖(I−Π]
k)ψu‖H−N

k
(7.4)

since by iterating (7.4) 2N times, (changing the cutoffs χ− and χ+), one arrives at

‖χ−Π]
kψu‖H1

k
≤ Ck−N‖χ+Π]

kψu‖L2 + Ck−N‖(I−Π]
k)ψu‖H−N

k

= Ck−N‖χ+(I−Π]
k)ψu‖L2 + Ck−N‖(I−Π]

k)ψu‖H−N
k

using the fact that χ+ψ = 0.
Let χ0 ∈ C∞(Ω) be such that χ− ≺c/4 χ0 ≺c/4 χ+. By the coercivity of P ]k (cf. (5.15)), the

definition of Π]
k (Definition 7.1), locality of Pk and the fact that χ−ψ = χ0ψ = 0,

‖χ−Π]
kψu‖

2
H1
k
≤ C

∣∣∣〈P ]kχ−Π]
kψu, χ−Π]

kψu
〉∣∣∣

= C
∣∣∣〈P ]kχ−Π]

kψu, χ−(I−Π]
k)ψu

〉∣∣∣
= C

(∣∣∣〈P ]kχ2
−Π]

kψu, (I−Π]
k)ψu〉

∣∣∣+ 〈[P ]k , χ−]χ−Π]
kψu, (I−Π]

k)ψu〉
)

= C
(∣∣∣〈P ]k(χ2

−Π]
kψu− wh), (I−Π]

k)ψu〉
∣∣∣+
∣∣∣〈[Pk + Sk, χ−]χ−Π]

kψu, (I−Π]
k)ψu〉

∣∣∣)
= C

(∣∣〈Pk(χ2
−Π]

kψu− wh), (I−Π]
k)ψu〉

∣∣+
∣∣〈[Pk, χ−]χ−Π]

kψu, χ0(I−Π]
k)ψu

〉∣∣)+ r,

for all wh ∈ Vk, where

r :=
∣∣〈Sk(χ2

−Π]
kψu− wh), (I−Π]

k)ψu
〉∣∣+

∣∣〈[Sk, χ−]χ−Π]
kψu, (I−Π]

k)ψu
〉∣∣ (7.5)

is the “non-local” part. By (7.2) combined with the fact that χ0ψ = 0,

‖χ−Π]
kψu‖

2
H1
k
≤ C

∣∣〈Pk(χ2
−Π]

kψu− wh), (I−Π]
k)ψu〉

∣∣+ Ck−1‖χ−Π]
kψu‖H1

k
‖χ0Π]

kψu‖L2 + r

which implies

‖χ−Π]
kψu‖

2
H1
k
≤ C

∣∣〈P ]k(χ2
−Π]

kψu− wh), (I−Π]
k)ψu〉

∣∣+ Ck−2‖χ0Π]
kψu‖

2
L2 + r. (7.6)

Let U0 be a neighbourhood of suppχ−, and U1 a set contained in {χ0 ≡ 1}. Since χ− ≺c/4 χ0 ≺c/4

χ+, we can arrange that
d := ∂<(U0, U1) ≥ c/8.

Hence, taking h0 <
c

8κ , where κ is as in Assumption 3.5, we ensure that d ≥ κh0. Thus, we can
find a super-approximation wh to χ2

−Π]
kψu with suppwh ⊂ U1. Now, for all ε < 1,∣∣〈Pk(χ2

−Π]
kψu− wh), (I−Π]

k)ψu
〉∣∣ =

∣∣〈Pk(χ2
−Π]

kψu− wh),Π]
kψu

〉∣∣ (by locality of Pk)

≤
∑

K∈Tk:K∩suppχ0 6=∅

‖χ2
−Π]

kψu− wh‖H1
k
(K)‖Π]

kψu‖H1
k
(K) (by the definition of ak(·, ·))

≤
∑

K∈Tk:K∩suppχ0 6=∅

‖Π]
kψu‖H1

k
(K)

hK
d

(
‖Π]

kψu‖L2(K) + ‖χ−Π]
kψu‖H1

k
(K)

)
(by the super-approximation property, Assumption 3.5)

≤ C
∑

K∈T :K∩suppχ0 6=∅

‖Π]
kψu‖L2(K)

1
kd

(
‖Π]

kψu‖L2(K) + ‖χ−Π]
kψu‖H1

k
(K)

)
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(by the inverse inequality, Assumption 3.6)

≤ C
∑

K∈Tk:K∩supp(χ0)6=∅

(1 + ε−1)
(kd)2 ‖Π]

kψu‖
2
L2(K) + ε‖χ−Π]

kψu‖
2
H1
k
(K)

≤ C(1 + ε−1)
(kd)2 ‖χ+Π]

kψu‖
2
L2(Ω) + ε‖χ−Π]

kψu‖
2
Zk . (7.7)

Inputting (7.7) into (7.6) and recalling that d ≥ c/8 and k ≥ k0, we find that

‖χ−Π]
kψu‖

2
Z
k
≤ Ck−2‖χ+Π]

kψu‖
2
L2(Ω) + r, (7.8)

To estimate r, since dist(supp(wh, supp(1− χ0))) > 0, pseudolocality of Sk (Theorem 6.2) implies
that ∣∣〈Sk(χ2

−Π]
kψu− wh), (1− χ0)(I−Π]

k)ψu〉
∣∣ ≤ Ck−N∥∥χ2

−Π]
kψu− wh

∥∥
Z
k

∥∥(I−Π]
k)ψu

∥∥
H−N
k

.

Arguing as in (7.7), but now using Assumption 3.2 where before we used Assumption 3.6, and also
recalling that d ≥ c/8, we find that

‖χ2
−Π]

kψu− wh‖
2
Zk ≤

C

k2

(
‖χ−Π]

kψu‖
2
Zk + ‖χ+Π]

kψu‖
2
L2(Ω)

)
.

Therefore, for all ε < 1,∣∣〈Sk(χ2
−Π]

kψu− wh), (1− χ0)(I−Π]
k)ψu〉

∣∣
= Ck−N

(
ε‖χ−Π]

kψu‖
2
Z
k

+ ε‖χ+Π]
kψu‖

2
L2(Ω) + ε−1∥∥(I−Π]

k)ψu
∥∥2
H−N
k

)
.

(7.9)

Reasoning similarly and using the mapping properties of Sk, we find that∣∣〈Sk(χ2
−Π]

kψu− wh), χ0(I−Π]
k)ψu〉

∣∣ ≤ Ck−1
(
ε‖χ−Π]

kψu‖
2
Z
k

+ ε‖χ+Π]
kψu‖

2
H + ε−1∥∥χ0Π]

kψu
∥∥2
H−N
k

)
≤ Ck−1

(
ε‖χ−Π]

kψu‖
2
Z
k

+ (ε+ ε−1)‖χ+Π]
kψu‖

2
L2(Ω)

)
.

Arguing similarly, we obtain∣∣〈[Sk, χ−]χ−Π]
kψu, (I−Π]

k)ψu
〉∣∣

≤ C
(
εk−2‖χ−Π]

kψu‖
2
Z
k

+ k−2(ε+ ε−1)‖χ+Π]
kψu‖

2
L2(Ω) + ε−1k−N‖(I−Π]

k)ψu‖2
H−N
k

)
;

(7.10)

indeed, [χ−, Sk] = χ0[χ−, Sk] + (1− χ0)[χ−, Sk] and

χ0[χ−, Sk] = O−∞(k−1;Yk →Wk) and (1−χ0)[χ−, Sk] = −(1−χ0)Skχ− = O−∞(k−∞;Yk → Yk)

by, respectively, (7.3) and Theorem 6.2.
Combining (7.9)-(7.10) thus leads to

r ≤ Cε‖χ−Π]
kψu‖

2
Zk + C(1 + ε−1)k−1‖χ+Π]

kψu‖
2
L2(Ω) + Cε−1k−N‖(I−Π]

k)ψu‖2
H−N
k

.

for all ε < 1. Inserting this estimate in (7.8) and taking ε sufficiently small, we obtain (7.4) and
hence the result.

In the proof of Lemma 7.5, we need a variant of Lemma 7.4 where, roughly speaking, the
contributions at distance k−12n from suppχ are multiplied by a weight decaying exponentially in
n. The main tool is the following lemma:

Lemma 7.6 (Dyadic decomposition for Sk) Let φ0 ∈ C∞c (Rd) with φ0(x) = 1 for |x| ≤ 1
2 ,

φ0(x) = 0 for |x| ≥ 1, and let φn(x) := φ0(x/2n)− φ0(x/2n−1) for n ≥ 1. Let x0 ∈ Ω, and R > 0,
and let ϕn,k ∈ C∞(Ω) be defined by

ϕn,k(x) := φn((x− x0)/(Rk−1)).

Then, for any k0 > 0 and N ∈ N, there exists C(N, k0, R) > 0 such that for all k ≥ k0 and n ∈ N,

‖ϕn,kSkϕ0,k‖L2→HN
k
≤ C(N, k0, R)2−nN .
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Proof. We start by observing that suppφ0 ⊂ B(0, 1), while for n ≥ 1,

supp(φn) ⊂ B(0, 2n) \B(0, 2n−2),

and in particular, φn ⊥ φ0 for n ≥ 2. Let χn be given by Lemma 6.6 applied with Ω1 := suppϕk,n
and Ω2 := suppϕk,0 and ε = O(k−12n). Then ϕn,k and ϕ0,k are separated by χn, and the result of
the Lemma follows by the combination of Lemma 6.3, Theorem 5.27 and Remark 5.28.

Lemma 7.7 Let (Vk)k>0 be a well-behaved finite-element of order k, let k0 > 0, C† > 0, let
ψ ∈ C∞(Ω) and let N > 0. Then there exists C > 0 and µ > 0 such that the following is true. If
k ≥ k0, x0 ∈ Ω, R > 0 and χ−, χ+ ∈ C∞(Ω) satisfy

1. suppχ− ⊂ suppχ+ ⊂ B(x0, Rk
−1/4)

2. d := dist(suppχ−, supp(1− χ+)) > µk−1

3. max|α|=n ‖∂αχ−‖L∞ ≤ C†kn, n = 0, . . . , p,

4. suppχ+ ∩ suppψ = ∅, ,

then for all u ∈ Zk,

‖χ−Π]
kψu‖Zk ≤ C‖χ+Π]

kψu‖L2(Ω) + C
∞∑
n=0

2−Nn‖ϕn,k(I−Π]
k)ψu‖H−N

k

where ϕn,k is as in Lemma 7.6.

Proof of Lemma 7.7. Let k0 > 0 be given and let µ := Cκ where C is as in Assumption 3.3 and κ
is as in Assumption 3.5. Let C† > 0, ψ ∈ C∞(Ω), N > 0 and denote by C > 0 any generic constant
depending only on the previous quantities. Let k ≥ k0, suppose that h ≤ h0 and let x0, R and χ−,
χ+ as in the statement. The choice of r implies that

d ≥ κh.

Therefore, one can proceed as in the proof of Lemma 7.4 using the super-approximation property
(Assumption 3.5), but taking into account that, now, d scales as k−1 instead of 1, so that the
analogue of (7.2) is

‖ adχ− Pk‖Wn
k
→Yn−1

k
≤ C.

This leads to
‖χ−Π]

kψu‖
2
Zk ≤ C‖χ+Π]

kψu‖
2
L2(Ω) + r, (7.11)

where, as in (7.5),

r :=
∣∣〈Sk(χ2

−Π]
kψu− wh), (I−Π]

k)ψu
〉∣∣+

∣∣〈[Sk, χ−]χ−Π]
kψu, (I−Π]

k)ψu
〉∣∣. (7.12)

We now use the property that for all x ∈ Rd,∑
n∈N

ϕ2
n,k(x) ≥ 1/2

(see e.g. [AG07, Lemma 1.1.1]) to write, for any f, g ∈ Zk,

|〈Skf, g〉| ≤ 2
∞∑
n=0
|〈ϕn,kSkf, ϕn,kg〉|.
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Taking f = χ2
−Π]

kψu− wh and g = (I−Π]
k)ψu, and using the fact that f = ϕ0,kf , the first term of

(7.12) is estimated by∣∣∣〈Sk(χ2
−Π]

kψu− wh), (I−Π]
k)ψu

〉∣∣∣
≤ 2

∞∑
n=0

∣∣〈ϕn,kSkϕ0,k(χ2
−Π]

kψu− wh), ϕn,k(I−Π]
k)ψu

〉∣∣
≤ C‖χ2

−Π]
kψu− wh‖Zk

∞∑
n=0
‖ϕn,kSkϕ0,k‖Zk→HNk ‖ϕn,k(I−Π]

k)ψu‖H−N
k

≤ C(‖χ−Π]
ku‖Zk + ‖χ+Π]

ku‖L2(Ω))
∞∑
n=0
‖ϕn,kSkϕ0,k‖Zk→HNk ‖ϕn,k(I−Π]

k)ψu‖H−N
k
,

where we have used that

‖χ2
−Π]

kψu− wh‖Zk ≤ C
1

(kd)2 ‖χ−Π]
ku‖Zk + ‖χ+Π]

ku‖L2(Ω)

(obtained by reasoning as in (7.7)), and taken into account that (kd)−1 ≤M−1 ≤ C. By Lemma
7.6,

‖ϕn,kSkϕ0,k‖Zk→HNk ≤ C2−Nn for all n ∈ N.

Hence, for all ε < 1,∣∣∣〈Sk(χ2
−Π]

kψu− wh), (I−Π]
k)ψu

〉∣∣∣
≤ Cε‖χ−Π]

kψu‖
2
Zk + Cε‖χ+Π]

kψu‖
2
L2(Ω) + Cε−1

( ∞∑
n=0

2−Nn‖ϕn,k(I−Π]
k)ψu‖H−N

k

)2

(7.13)

Similarly, using that ϕn,kχ− = 0 for n ≥ 1, we deduce that for all ε < 1,∣∣∣〈[χ−, Sk]χ−Π]
kψu, (I−Π]

k)ψu
〉∣∣∣

≤ 2
∣∣∣〈ϕ0,k[Sk, χ−]χ−Π]

kψu, ϕ0,k(I−Π]
k)ψu〉

∣∣∣+
∞∑
n=1

∣∣∣〈ϕn,kSkχ2
−Π]

kψu, ϕn,k(I−Π]
k)ψu

〉∣∣∣
≤ C

∥∥χ−Π]
kψu

∥∥
Zk

∥∥ϕ0,k[Sk, χ−]
∥∥
Zk→HNk

∥∥ϕ0,k(I−Π]
k)ψu

∥∥
H−N
k

+ C‖χ−Π]
kψu‖Zk

∞∑
n=1
‖ϕn,kSkϕ0,k‖Zk→HNk ‖ϕn,k(I−Π]

k)ψu‖H−N
k

≤ Cε‖χ−Π]
kψu‖

2
Zk + Cε−1

( ∞∑
n=0

2−Nn‖ϕn,k(I−Π]
k)ψu‖H−N

k

)2

. (7.14)

Adding (7.13) and (7.14), inserting the result in (7.12) and then in (7.11), and letting ε be small
enough, we obtain the result.

Proof of Lemma 7.5. We claim that, given c > 0, there exists h0 > 0 such that for all k0 > 0 and
χ−, χ+, ψ ∈ C∞(Ω) satisfying

χ− ≺c χ+ and χ− ⊥ ψ (7.15)
there exists C > 0 such that for all k ≥ k0, h ≤ h0, u ∈ Zk and 0 ≤ j ≤ p− 1,

‖χ−Π]
kψu‖H−j

k
≤ C

(
‖χ+Π]

kψu‖H−(j+1)
k

+
∥∥(I−Π]

k)ψu
∥∥
H−p
k

)
. (7.16)

If this is true, the lemma follows easily. Indeed, given c > 0, let c′ = c
2p , and given χ, ψ as in the

statement, let χ1, . . . , χp be a sequence of nested cutoffs, i.e. such that

χi ≺c′ χi+1 for all i ∈ {1, . . . , p− 1} and χp ⊥ ψ.
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One then applies (7.16) p times with χ− = χi and χ+ = χi+1, using at the end that χpΠ]
kψu =

χp(I−Π]
k)ψu to obtain (7.1).

It therefore remains to prove (7.16). Let c > 0 be given and let h0 > 0 be a sufficiently small
constant. Let k0 > 0, χ−, χ+, ψ ∈ C∞(Ω) such that (7.15) holds and let C > 0 denote a generic
constant depending only on the previous quantities. Let k ≥ k0, suppose that h ≤ h0, let u ∈ Zk
and let 0 ≤ j ≤ p− 1.

By arguing exactly as at the start of the proof of Lemma 7.4, without loss of generality, we can
assume that ∂νχ− = 0 and thus the commutator estimates (7.2) and (7.3) hold (the first one by
Lemma 6.3 and Definition 5.25, and the second one by Proposition 5.32).

Let χ0, χ1 ∈ C∞(Ω) be such that

χ− ≺(c/3) χ0 ≺(c/3) χ1 ≺(c/3) χ+.

To prove (7.16), it is sufficient to show that, for all v ∈ Hj
k,∣∣〈v, χ−Π]

kψu
〉∣∣ ≤ C(‖χ+Π]

kψu‖H−(j+1)
k

+
∥∥(I−Π]

k)ψu
∥∥
H−p
k

)
‖v‖Hj

k
. (7.17)

By the relation P ]kR
]
k = I, the definition of Π]

k (Definition 7.1), and the fact that χ−ψ = 0, for all
wh ∈ Vk,

〈v, χ−Π]
kψu〉 =

〈
P ]kR

]
kv, χ−(I−Π]

k)ψu
〉

=
〈
χ−P

]
kR

]
kv, (I−Π]

k)ψu
〉

=
〈
P ]kχ−R

]
kv, (I−Π]

k)ψu
〉

+
〈
[χ−, P ]k ]R]kv, (I−Π]

k)ψu
〉

=
〈
P ]k
(
χ−R

]
kv − wh

)
, (I−Π]

k)ψu
〉

+
〈
[χ−, P ]k ]R]kv, (I−Π]

k)ψu
〉
. (7.18)

For the second term on the right-hand side of (7.18), since χ− = χ−χ+, by locality of Pk, and by
the mapping properties of R]k (Proposition 5.23), [χ−, Pk] (from (7.2)), and [χ−, Sk] (from (7.3)),∣∣∣〈[χ−, P ]k ]R]kv, (I−Π]

k)ψu
〉∣∣∣ ≤ ∣∣∣〈χ+[χ−, Pk]R]kv, (I−Π]

k)ψu
〉∣∣∣+

∣∣∣〈[χ−, Sk]R]kv, (I−Π]
k)ψu

〉∣∣∣
≤ Ck−1‖v‖Hj

k

(
‖χ+(I−Π]

k)ψu‖H−j−1
k

+
∥∥(I−Π]

k)ψu
∥∥
H−p
k

)
.

Furthermore, by the mapping properties of Sk (Proposition 5.22),∣∣∣〈Sk(χ−R]kv − wh), (I−Π]
k)ψu

〉∣∣∣ ≤ C∥∥χ−R]kv − wh∥∥Z1
k

∥∥(I−Π]
k)ψu

∥∥
H−p
k

.

Using the approximation property of Vk (Assumption 3.4) with m = 1, and using that j+ 2 ≤ p+ 1,
we can choose wh supported in suppχ0 such that∑

K∈Tk

(hKk)−2(j+1)‖χ−R]kv − wh‖
2
H1
k
(K) ≤ C‖χ−R

]
kv‖

2
Hj+2
k

≤ C‖v‖2
Hj
k

. (7.19)

In particular,∥∥χ−R]kv − wh∥∥2
Z1
k

=
∑
K∈Tk

‖χ−R]kv − wh‖H1
k
(K) ≤ (hk)2j

∑
K∈Tk

h−2j
K ‖χ−R]kv − wh‖H1

k
(K)

≤ C(hk)2j ‖v‖2Hj
k
,

where we recall that h := maxK∈Tk hK . Hence, with this choice of wh, since Vk satisfies hk ≤ C,∣∣∣〈Sk(χ−R]kv − wh), (I−Π]
k)ψu

〉∣∣∣ ≤ C‖v‖Hj
k

∥∥(I−Π]
k)ψu

∥∥
H−p
k

.

Therefore, to prove (7.17), it remains to prove that for this choice of wh ∈ Vk,∣∣〈Pk(χ−R]kv − wh), (I−Π]
k)ψu

〉∣∣ ≤ C(‖χ+Π]
kψu‖H−(j+1)

k

+
∥∥(I−Π]

k)ψu
∥∥
H−p
k

)
‖v‖Hj

k
. (7.20)
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By (in this order) the locality of Pk and the fact that χ0 ≡ 1 on the support of χ−R]kv − wh,
continuity of Pk, and (7.19),

|〈Pk(χ−R]kv − wh), (I−Π]
k)ψu〉|

= |〈Pk(χ−R]kv − wh), χ0(I−Π]
k)ψu〉|

≤
∑
K∈Tk

‖χ0(I−Π]
k)ψu‖H1

k
(K)‖χ−RP ]

k
v − wh‖H1

k
(K)

≤
( ∑
K∈Tk

(hKk)2(j+1)‖χ0Π]
kψu‖

2
H1
k
(K)

) 1
2
( ∑
K∈Tk

(hKk)−2(j+1)‖χ−RP ]
k
v − wh‖2H1

k
(K)

) 1
2

≤ C
( ∑
K∈Tk

(hKk)2(j+1)‖χ0Π]
kψu‖

2
H1
k
(K)

) 1
2 ‖v‖Hj

k
. (7.21)

To apply the arguments from [AGS24, Lemma 5.5], and especially the wavelength-scale quasi-
uniformity (Assumption 3.3), we now need to group the elements K ∈ Tk into sets lying within
balls of radius ≈ k−1.

To this end, we choose a sufficiently large constant µ > 0 depending only on h0 and k0 and let
{x`}L`=1 ⊂ Ω be a “maximal µk−1 separated set”, constructed inductively by choosing an initial
point x1 ∈ Ω, and if x1, . . . , x` are constructed, choosing x`+1 ∈ Ω \ ∪`m=1B(x`, µk−1) if this set is
not empty, or finishing the construction with ` = L otherwise. By construction,

Ω ⊂
L⋃
`=1

B(x`, µk−1),

and one can check that for all M > 0, there exists DM > 0 depending solely on M and the space
dimension d, and there exists a partition of {1, . . . ,L} into DM sets JM1 ,JM2 , . . . ,JMDM

, such that

(`1, `2 ∈ JMm and `1 6= `2) ⇒ B(x`1 ,Mµk−1) ∩B(x`2 ,Mµk−1) = ∅,

i.e., the maximal number of overlaps between balls of radius Mµk−1 with centers in {x`}L`=1 is DM .
Define

h` := max
{
hK : K ∩B(x`, k−1) 6= ∅

}
≤ CM inf

{
hK : K ∩B(x`,Mµk−1) 6= ∅

}
,

where the second inequality follows from Assumption 3.3. For all 1 ≤ ` ≤ L and for m ≥ 1, let
χ`,m ∈ C∞(Ω) be such that

suppχ`,m ⊂ B(x`, (m+ 1)µk−1) ∩ Ω, supp(1− χ`,m) ∩B(x`,mµk−1) ∩ Ω = ∅. (7.22)

Using a construction via scaling, one can arrange that there exists a universal constant C† such that

‖∂αχ`,m‖∞ ≤ C†(µk−1)−|α| for all |α| ≤ p. (7.23)

By choosing µ large enough, one ensures that µk−1 ≥ 2h, which implies that K ∩B(x`, µk−1) 6=
∅ =⇒ K ⊂ B(x`, 2µk−1). Therefore,

∑
K∈Tk

(hKk)2(j+1)‖χ0Π]
kψu‖

2
H1
k
(K) ≤ C

L∑
`=1

(h`k)2(j+1)
∑

K∩B(x`,µk−1)6=∅

‖χ0Π]
kψu‖

2
H1
k
(K)

≤ C
L∑
`=1

(h`k)2(j+1)
∑

K⊂B(x`,2µk−1)

‖χ0Π]
kψu‖

2
H1
k
(K)

≤ C
L∑
`=1

(h`k)2(j+1)‖χ0χ`,2Π]
kψu‖

2
Zk . (7.24)

Next we apply Lemma 7.7 to estimate the norms ‖χ0χ`,2Π]
kψu‖Zk . Choosing R = 20µ, one gets

that for every ` = 1, . . . ,L,

supp(χ0χ`,2) ⊂ supp(χ1χ`,4) ⊂ B(x`, Rk−1/4),
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so that assumption (1) is satisfied. Moreover, by definition of χ`,m (see (7.22)),

d := dist(supp(χ0χ`,2), supp(1− χ1χ`4)) ≥ dist(B(x`, 3µk−1), B(x`, 4µk−1)c) ≥ µk−1,

showing that assumption (2) is also satisfied by taking µ sufficiently large. Assumption (3) follows
from this and the control on the derivatives of χ`,m in (7.23). Finally, we have supp(χ1χ`,4) ⊂
suppχ1 ⊂ (suppψ)c so that assumption (4) holds. Therefore, by Lemma 7.7, for N ≥ p,

‖χ0χ`,2Π]
kψu‖

2
Zk ≤ C‖χ1χ`,4Π]

kψu‖
2
L2(Ω) + C

∞∑
n=0

2−Nn‖ϕn,`(I−Π]
k)ψu‖2H−p

k

(7.25)

where
ϕn,` = φn

(
(x− x`)/(Rk−1)

)
for n ≥ 0, (7.26)

with φn as in Lemma 7.6. (note that here it is crucial that C in Lemma 7.7 does not depend on χ−
and χ+).

By (7.20), (7.21), (7.24), and (7.25), to prove (7.17), it is sufficient to prove that
L∑
`=1

(h`k)2(j+1)‖χ1χ`,4Π]
kψu‖

2
L2(Ω) ≤ C‖χ+Π]

kψu‖
2
H
−(j+1)
k

. (7.27)

and
L∑
`=1

(h`k)2(j+1)
∞∑
n=0

2−Nn‖ϕn,`(I−Π]
k)ψu‖2

H−p
k

≤ C‖(I−Π]
k)ψu‖2

H−p
k

. (7.28)

By the wavelength-scale quasi-uniformity (Assumption 3.3) and the inverse inequality (Assump-
tion 3.6),

L∑
`=1

(h`k)2j+2‖χ1χ`,4Π]
kψu‖

2
L2(Ω) ≤ C

L∑
`=1

∑
K∩suppχ1χ`,4 6=∅

(hKk)2j+2‖Π]
kψu‖

2
L2(K)

≤ C
L∑
`=1

∑
K∩suppχ1χ`,4 6=∅

‖Π]
kψu‖

2
H−(j+1)(K).

Applying [AGS24, Lemma 5.2] (a simple bound on sums of negative Sobolev norms on elements by
a global dual norm) and Lemma 7.8 below, there exists M > 0 large enough such that
L∑
l=1

∑
K∩suppχ1χ`,4 6=∅

‖Π]
kψu‖

2
H−(j+1)(K) ≤ C

L∑
l=1

∥∥χ+χ`,MΠ]
kψu

∥∥2
H
−(j+1)
k

≤ CDM‖χ+Π]
kψu‖

2
H
−(j+1)
k

,

and the combination of these last two displayed equations is (7.27).
On the other hand, by the definition of ϕn,` (7.26), there exists Cp,R > 0 such that for every

x ∈ Rd,
L∑
`=1

∞∑
n=0

2−Nn
(

max
1≤α≤p

k−|α||ϕn,`(x)|
)2
≤ Cp,R

∞∑
n=0

2−Nnκn(x) (7.29)

where
κn(x) = Card

({
1 ≤ ` ≤ L : dist(x, x`) ≤ 2n+1Rk−1}).

To estimate κn(x), we write

κn(x) =
D1∑
m=1

Card(Km(x)), where Km(x) :=
{
` ∈ J 1

m : dist(x, x`) ≤ 2n+1Rk−1}
and since the µk−1 balls centered at x` for ` ∈ J 1

m are pairwise disjoint,∑
`∈Km(x)

µ(B(x`, kµ−1)) ≤ µ(B(x, 2n+1Rk−1)) ⇐⇒ Card(Km(x)) ≤ 2d(n+1)R
d

µd
.
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This proves that κn(x) ≤ C2nd. Inserting this bound into (7.29) and choosing N large enough, we
find that

L∑
`=1

∞∑
n=0

2−Nn
(

max
1≤α≤p

k−|α||ϕn,`(x)|
)2
≤ CCp,R.

We now use Lemma 7.8 with {χn}n = {2−nN/2ϕn,`, : ` = 1, . . . ,L, n = 0, . . . ,∞} to obtain that

L∑
`=1

∞∑
n=0

2−Nn‖ϕn,`(I−Π]
k)ψu‖2

H−p
k

≤ CCp,R‖(I−Π]
k)ψu‖2

H−p
k

,

which is (7.28), and the proof is complete.

Finally, we prove the following technical lemma used in the proof of Lemma 7.5.

Lemma 7.8 Given N > 0 there exists CN > 0 such that the following is true. Suppose that (χn)n
is such that there exists Cover > 0 such that for all x ∈ Rd,

∞∑
n=0

(
max
|α|≤N

k−|α||∂αχn(x)|
)2
≤ Cover.

Then, for all v ∈ H−Nk , ∑
n

‖χnv‖2H−N
k

≤ CNCover ‖v‖2H−N
k

. (7.30)

Proof. For every n, let θn := ‖χnv‖H−N
k

, let ϕn ∈ HN
k with unit norm, and let

ϕ :=
∑
n

χnθnϕn.

Then by assumption,
‖ϕ‖2HN

k
≤ CNCover

∑
n

θ2
n.

Therefore,

‖v‖H−N
k
≥ |(v, ϕ)|2
‖ϕ‖2

HN
k

≥
∣∣∑

n(v, θnχnϕn)
∣∣2

CNCover
∑
n θ

2
n

=
∣∣∑

n θn(χnv, ϕn)
∣∣2

CNCover
∑
n θ

2
n

.

By taking the supremum over each ϕn,

‖v‖H−N
k
≥ 1
CNCover

∣∣∣∑n θ
2
n

∣∣∣2∑
n θ

2
n

= 1
CNCover

∑
n

θ2
n,

and the result (7.30) follows.

8 Proof of the main result (Theorem 3.11)
We fix ak : H1

k ×H1
k → R, J ⊂ R+, p, (Vk)k>0 as in the statement of Theorem 3.11, and keep the

definitions and notations from Sections 3, 5, and 7. We denote by h = h(k) := maxK∈Tk hK .

8.1 Outline of the proof
Let X−(`), X+(`) ∈ RMI , XP ∈ RMP be the column vectors defined by

X−i (`) := ‖χiΨ(u− uh)‖H`
k
, X+

i (`) := ‖χi(1−Ψ)(u− uh)‖H`
k
, 1 ≤ i ≤MI,

and XP
i (`) := ‖χi+MI(u− uh)‖H`

k
1 ≤ i ≤MP

62



and let Z ∈ RM be the column vector of local best approximation errors, i.e.,

Zi = ‖u− wh‖H1
k
(Ωi)

where wh is an arbitrary, fixed element of Vk. The heart of the proof of Theorem 3.11 consists of

forming a matrix system of inequalities for the vector X(`) =

X−(`)
X+(`)
XP(`)

. We start by obtaining

this system in the lowest possible norm, which is dictated by the polynomial order p, i.e., with
` = −p+ 1. In Lemma 8.10, we show that

X(−p+ 1) ≤ C†WX(−p+ 1) + CBZ +R (8.1)

where R is a superalgebraically small remainder term, where W and B are the matrices defined in
(3.13) and (3.12), and where C†, C are positive constants. Therefore, if (I − C†W )−1 exists, then

X(−p+ 1) ≤ C(I − C†W )−1BZ +R .

Each line of the inequality (8.1) is obtained by applying a localised version of the elliptic-projection
argument, Lemma 8.1, and exploiting both the local behaviour of the mesh size and the microlocal
behaviour of the solution operator of the continuous problem from §4 (and in particular, its improved
behaviour on high-frequencies or in the PML region, leading to Lemmas 8.7 and 8.8).

We then use Theorem 8.13 to bound (I − C†W )−1 in terms of the simple-path matrix T ? of
C†W (Definition 3.9), giving

X(−p+ 1) ≤ CT ?BZ +R . (8.2)

Next, we upgrade (8.2) to higher norms, i.e., we estimate X(`) for 1− p ≤ ` ≤ 1. For this, we
notice that, on the one hand, since Ψ is smoothing and pseudo-local,

X−(`) ≤ CX−(−p+ 1) +R (8.3)

for all 1− p ≤ ` ≤ 1. (In fact, (8.3) should actually have an X̃− on the right-hand side involving χ̃i
such that χi ≺ χ̃i, but we have neglected this in this outline for brevity.)

On the other hand, by the “improved” local duality arguments of Lemmas 8.7 and 8.8,

X+(`) . (Hk)`+1Z + (Hk)p+`+1X−(−p+ 1) + (Hmin(N)kN )X+(−p+ 1) +R (8.4)

XP(`) . (Hk)`+1Z + (Hmin(N)kN )
(
X+(−p+ 1) +X−(−p+ 1)

)
+R (8.5)

for all 1 − p ≤ ` ≤ 0. Combined with (8.2), this gives the bounds in the second and third block
rows of (3.17), up to the L2 norm. Finally, to obtain (8.4) and (8.5) in the H1

k norm, i.e., for ` = 1,
we use Lemmas 8.15 and 8.17 which give

X+(1) . Z +X+(0) + (HI,Ik)pX−(−p+ 1) +R, (8.6)

XP(1) . Z +XP(0) +R. (8.7)

The estimates in the H1
k norm are then obtained by inserting (8.2), (8.4), (8.5) into (8.6) and (8.7).

8.2 Localised duality argument
The next result relates the Galerkin error in some region A of phase-space to (i) the set of local
best-approximation errors in subdomains covering Ω and (ii) the set of local Galerkin errors in
these subdomains, modulo a small global term. The subdomain contributions are weighted by
“transfer coefficients” ηj→A that describe the corresponding local behavior of the Helmholtz solution
operator. This result is applied several times later in the proof of Theorem 3.11, for special choices
of the partition of unity {φj} and operators A.
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Lemma 8.1 (Localised duality argument) Given c, k0 > 0, there exists h0 such that the fol-
lowing holds. Let N > 0 and let {φj}Jj=1 and {φ̃j}Jj=1 be such that

φj , φ̃j ∈ C∞c (Rd, [0, 1]), φj ≺c φ̃j , j = 1, . . . , J, (8.8)

and
∑J
j=1 φj = 1 on Ω. For any k > 0, define

hj := max
{
hK : K ∈ Tk s.t. K ∩ supp φ̃j 6= ∅

}
.

Then there exists C > 0 such that for each ` ∈ {0, . . . , p− 1}, for all k ≥ k0, k /∈ J , with h ≤ h0,
for all A : H−`k → L2(Ω), for all u− uh satisfying (3.16), and for all wh,j ∈ Vk, j = 1, . . . , J ,

‖A(u− uh)‖L2 ≤ C
J∑
j=1

ηj→A(hjk)p
(

(hjk)−p‖φ̃j(u− wh,j)‖H1
k

+ ‖φ̃j(u− uh)‖H−N
k

)

+ Ck−N (hk)p+`+1‖A‖H−`
k
→L2

 J∑
j=1

(hk)−p‖u− wh,j‖H1
k

+ ‖u− uh‖H−N
k


where for all j ∈ {1, . . . , J},

ηj→A := (hjk)p‖φ̃jR∗kA∗‖L2→L2 + (hjk)`+1‖φ̃j(R]k)∗A∗‖L2→H`+2
k

. (8.9)

To prove Lemma 8.1 we use the following two lemmas; the first is a localised version of the classic
Aubin-Nitsche duality argument applied to the operator P ]k defined in (5.14), and the second is a
localised version of the bound on the adjoint-approximability constant from [GS25, Theorem 1.7]
(with similar bounds appearing in [MS10, MS11, CFN20, LSW22b, GLSW23, GLSW24, BCFM25]).
Recall the definition of Π]

k from Definition 7.1, and let

Πk : H1
k → Vk

be the H1
k -orthogonal projection onto Vk.

Lemma 8.2 (Localised Aubin-Nitsche argument for P ]k) For any c > 0, there exists h0 > 0
such that the following holds. Let k0 > 0, N > 0, χ ∈ C∞(Ω) and U ⊂ Ω be such that

suppχ ⊂ U, ∂<(suppχ,U) ≥ c,

where the notation ∂< is defined by (3.4). For any k > 0, let

hU := max
{
hK : K ∈ Tk, K ∩ U 6= ∅

}
.

Then, there exists C > 0 such that for all ` = 0 . . . , p− 1, k ≥ k0, h ≤ h0, and u ∈ H1
k ,

‖χ(I−Π]
k)u‖H−`

k
≤ C

(
(hUk)`+1 + k−N (hk)`+1) ‖(I−Πk)u‖H1

k
.

Proof. Fix c > 0, and let h0 be such that c ≥ 2κh0 where κ is as in Assumption 3.4. Let N , χ
and U as in the statement, and let C denote a generic constant depending only on the previous
quantities. Let χ̃ ∈ C∞(Ω) be such that χ ≺c/2 χ̃, supp χ̃ ⊂ U , and

∂<(supp χ̃, U) ≥ c/2.

Let ` ∈ {0, . . . , p− 1}, and let v ∈ H`
k be such that ‖v‖H`

k
= 1.

By the Definition of Π]
k (Definition 7.1), for all wh,1, wh,2 ∈ Vk, letting wh := wh,1 + wh,2,∣∣〈v, χ(I−Π]

k)u〉
∣∣ =

∣∣〈χv, (I−Π]
k)u〉

∣∣
=
∣∣〈P ]k(R]kχv − wh), (I−Π]

k)u〉
∣∣
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≤ C‖R]kχv − wh‖H1
k
‖(I−Π]

k)u‖H1
k

≤ C
(
‖χ̃R]kχv − wh,1‖H1

k
+ ‖(1− χ̃)R]kχv − wh,2‖H1

k

)
inf

wh∈Vk
‖u− wh‖H1

k
, (8.10)

where we used Céa’s lemma for the coercive operator P ]k in the last step. By the approximation
property of Vk (Assumption 3.4), wh,1, wh,2 ∈ Vk can be chosen such that∑

K∈Tk

(hKk)2−2(`+2)‖χ̃R]kχv − wh,1‖
2
H1
k
(K) ≤ C‖χ̃R

]
kχv‖

2
H`+2
k

,

∑
K∈Tk

(hKk)2−2(`+2)‖(1− χ̃)R]kχv − wh,2‖
2
H1
k
(K) ≤ C‖(1− χ̃)R]kχv‖

2
H`+2
k

,

with in addition suppwh,1 ⊂ U . In this case, by the definition of hU and h,

‖χ̃R]kχv − wh,1‖H1
k
≤ C(hUk)`+1‖χ̃R]kχv‖H`+2

k
, and (8.11)

‖(1− χ̃)R]kχv − wh,1‖H1
k
≤ C(hk)`+1‖(1− χ̃)R]kχv‖H`+2

k
. (8.12)

Using (8.11) and (8.12) in (8.10) and the estimates

‖χ̃R]kχv‖H`+2
k
≤ C‖R]kv‖H`+2

k
≤ C‖v‖H`

k
,

(by the mapping properties of R]k, Proposition 5.23) and

‖(1− χ̃)R]kχv‖H`+2
k
≤ C‖R]kv‖H`+2

k
≤ Ck−N‖v‖H`

k
,

(by pseudo-locality of R]k, Theorem 6.2), we obtain∣∣〈v, χ(I−Π]
k)u〉

∣∣ ≤ C((hUk)`+1 + k−N (hk)`+1) inf
wh∈Vk

‖u− wh‖H1
k

and the conclusion follows by taking the supremum over v.

Lemma 8.2 has the following special case when χ ≡ 1 on Ω:

Corollary 8.3 Given k0 > 0, there exists C > 0 such that for all ` ∈ {0, . . . , p− 1}, and for all
u ∈ H`

k ∩ Zk,
‖(I−Π]

k)u‖H−`
k
≤ C(hk)`−1‖(I−Πk)u‖H1

k
.

Definition 8.4 (Localised adjoint-approximability constant) For A : H−`k → L2 and φ ∈
C∞(Ω), define the localised adjoint-approximability constant associated to φ and A as

η(φ→ A) := ‖(I−Πk)φR∗kA∗‖L2→H1
k
.

Lemma 8.5 (Bound on η(φ→ A)) For all k0 > 0 and c > 0, there exists h0 > 0 such that, for
all N > 0, φ, φ̃ ∈ C∞(Ω) with φj ≺c φ̃, there exists C > 0 such that for all h ≤ h0, for all k ≥ k0,
and for all A : H−`k → L2,

η(φ→ A) ≤ C
(

(hφ̃k)p‖φ̃R∗kA∗‖L2→L2 + (hφ̃k)`+1‖φ(R]k)∗A∗‖L2→H`+2
k

+ (hk)pk−N
)
,

where hφ̃ := max
{
hK : K ∈ Tk s.t. K ∩ supp φ̃ 6= ∅

}
.

Proof. Let k0, c > 0 and let h0 > 0 be such that c ≥ κh0 where κ is as in Assumption 3.4. Let
N > 0, φ, φ̃ be as in the statement. Let φ̌ ∈ C∞(Ω) be such that φ ≺ φ̌ ≺ φ̃. Let C denote a generic
positive constant depending only on the previous quantities. Since (P ]k)∗ = P ∗k + Sk, applying
(R]k)∗ to the left, and then R∗k to the right, we obtain that

R∗k = (R]k)∗ + (R]k)∗SkR∗k. (8.13)
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Thus

η(φ→ A) ≤ ‖(I−Πk)φ(R]k)∗A∗‖L2→H1
k

+ ‖(I−Πk)φ(R]k)∗SkR∗kA∗‖L2→H1
k

≤ C(hφ̃k)`+1‖φ(R]k)∗A∗‖L2→H`+2
k

+ C(hφ̃k)p‖φ(R]k)∗SkR∗kA∗‖L2→Hp+1
k

(8.14)

by the approximation property of Vk (Assumption 3.4), which can be applied since φR]k maps L2

into Zk (i.e., φR]k satisfies a zero Dirichlet boundary condition on Γtr and, if necessary, also on
∂Ω−). Finally, one can use pseudolocality of (R]k)∗ and Sk (Theorem 6.2) to “move φ to the right
of Sk” in the second term, as follows

φ(R]k)∗Sk = φ(R]k)∗Skφ̃+ φ(R]k)∗Sk(1− φ̃)
= φ(R]k)∗Skφ̃+ φ(R]k)∗[φ̌Sk(1− φ̃)] + φ[(R]k)∗(1− φ̌)]Sk(1− φ̃)
= φ(R]k)∗Skφ̃+ φ(R]k)∗O−∞(k−∞;Yk → Yk) +O−∞(k−∞;Yk → Yk)Sk(1− φ̃)
= φ(R]k)∗Skφ̃+O−∞(k−∞;Yk → Yk), (8.15)

using the mapping properties of Sk (Proposition 5.22) and of R]k (Proposition 5.23). Inserting
(8.15) into (8.14) and using the continuity of R]k from Hp−1

k to Hp+1
k (Proposition 5.23) and of Sk

from L2 → Hp−1
k (Proposition 5.22), the result follows.

Proof of Lemma 8.1. Let c, k0 > 0, and let h0 > 0 be small enough to apply Theorem 7.2, Lemma
8.2 and Lemma 8.5. Fix {φj}Jj=1, {φ̃j}Jj=1 as in the statement, and let N > 0. Let C denote
a generic constant (whose value may change from line to line) depending only on the previous
quantities. Let k ≥ k0 with k /∈ J . By Assumption 3.1, there exists N ′ > 0 such that

k−N
′
ρ(k) ≤ Ck−N . (8.16)

Let v ∈ L2 with ‖v‖L2 = 1. Arguing as in (1.29), we obtain that, for all wh,j ∈ Vk, j = 1, . . . , J ,

〈
A(u− uh), v

〉
=

J∑
j=1

〈
u− wh,j , (P ]k)∗(I−Π]

k)φjR∗kA∗v
〉
−

J∑
j=1

〈
u− uh, Sk(I−Π]

k)φjR∗kA∗v
〉
.

(8.17)

The plan is to use the pseudo-locality properties of (P ]k), Sk and (I−Π]
k) shown in Sections 5-7, to

show that, up to small remainders,

P ]k(I−Π]
k)φj ≈ φ̃jP ]kφ̌j(I−Π]

k)φj and Sk(I−Π]
k)φj ≈ φ̃jSkφ̌j(I−Π]

k)φj ,

where φ̌j ∈ C∞c (R2, [0, 1]) is such that

φj ≺c/4 φ̌j ≺c/4 φ̃j for all j ∈ {1, . . . , J}.

To achieve this, we rewrite the difference as

X(I−Π]
k)φj − φ̃jXφ̌j(I−Π]

k)φjv = X(1− φ̌j)(I−Π]
k)φj + (1− φ̃j)Xφ̌j(I−Π]

k)φj , (8.18)

where X is either (P ]k)∗ or Sk. First, when X = Sk, (8.18) gives, for all w ∈ H`+2
k ∩ Zk,

‖Sk(I−Π]
k)φjw − φ̃jSkφ̌j(I−Π]

k)φjw‖HN
k

≤ ‖Sk‖H1
k
→HN

k
‖(1− φ̌j)(I−Π]

k)φjw‖H1
k

+ ‖(1− φ̃j)Skφ̌j‖H−p
k
→HN

k
‖(I−Π]

k)φjw‖H−p
k

≤ Ck−N
′
‖(I−Π]

k)φjw‖H−p
k

(by Theorem 7.2 and (5.17) of Theorem 5.27)

≤ Ck−N
′
‖(I−Π]

k)φjw‖H−p+1
k

≤ Ck−N
′
(hk)p+`+1‖w‖H`+2

k
(by Corollary 8.3), (8.19)
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where the condition that w ∈ Zk is need to apply Corollary 8.3. In particular, taking w = R∗kA
∗v,

(8.19) gives∥∥∥(Sk(I−Π]
k)φj − φ̃jSkφ̌j(I−Π]

k)φj
)
R∗kA

∗v
∥∥∥
HN
k

≤ Ck−N
′
(hk)p+`+1(1 + ρ(k)

)
‖A∗‖L2→H`

k
‖v‖L2

≤ Ck−N (hk)p+`+1‖A∗‖L2→H`
k

(8.20)

using the mapping properties of R∗k from Proposition 5.17 and the definition of N ′ in (8.16).
Similarly, when X = P ]k , (8.18) gives

‖(P ]k)∗(I−Π]
k)φjw − φ̃j(P ]k)∗φ̌j(I−Π]

k)φjw‖H−1
k

≤ ‖P ]k‖H1
k
→H−1

k
‖(1− φ̌j)(I−Π]

k)φjw‖H1
k

+ ‖(1− φ̃j)(P ]k)∗φ̌j‖H1
k
→H−1

k
‖(I−Π]

k)φjw‖H1
k

≤ Ck−N
′
‖(I−Π]

k)φjw‖H−p
k

+ Ck−N (hk)`+1‖w‖H`+2
k

(by Theorem 7.2, (5.17) of Theorem 5.37, and Assumption 3.4)
≤ Ck−N

′(
(hk)p+`+1 + (hk)`+1)‖w‖H`+2

k
, (by Corollary 8.3). (8.21)

Choosing again w = R∗kA
∗v in (8.21),∥∥∥((P ]k)∗(I−Π]

k)φj − φ̃j(P ]k)∗φ̌j(I−Π]
k)φj

)
R∗kA

∗v
∥∥∥
H−1
k

≤ Ck−N (hk)`+1‖A∗‖L2→H`
k
‖v‖L2 . (8.22)

Therefore, by the combination of (8.17), (8.20) and (8.22),∣∣∣〈A(u− uh), v
〉∣∣∣

≤ C

(
J∑
j=1

∣∣∣〈u− wh,j , φ̃j(P ]k)∗φ̌j(I−Π]
k)φjR∗kA∗v

〉∣∣∣+
J∑
j=1

∣∣∣〈u− uh, φ̃jSkφ̌j(I−Π]
k)φjR∗kA∗v

〉∣∣∣+R

)
,

= C

(
J∑
j=1

∣∣∣〈P ]kφ̃j(u− wh,j), φ̌j(I−Π]
k)φjR∗kA∗v

〉∣∣∣+
J∑
j=1

∣∣∣〈Skφ̃j(u− uh), φ̌j(I−Π]
k)φjR∗kA∗v

〉∣∣∣+R

)
,

(8.23)

where

R := k−N (hk)`+1‖A∗‖L2→H`
k

( J∑
j=1
‖u− wh,j‖H1

k
+ (hk)p‖u− uh‖H−N

k

)
(where we have used that ‖v‖L2 = 1). Since a]k is coercive, Céa’s lemma implies that

‖(I−Π]
k)v‖H1

k
≤ C‖(I−Πk)v‖H1

k
.

Therefore, for each j ∈ {1, . . . , J},

‖(I−Π]
k)φjR∗kA∗v‖H1

k
≤ Cη(φj → A)‖v‖L2 = Cη(φj → A), (8.24)

where η(φj → A) is the localised adjoint-approximability constant defined in Definition 8.4. Similarly,
by Lemma 8.2 with ` = p− 1,

‖φ̌j(I−Π]
k)φjR∗kA∗v‖H−p+1

k
≤ C

(
(hjk)p + k−N

′
(hk)p

)
η(φj → A), (8.25)

By (8.24), (8.25) and the mapping properties of Sk (Proposition 5.22) in (8.23),

∣∣∣〈A(u− uh), v
〉∣∣∣ ≤ C J∑

j=1
η(φj → A)

(
‖φ̃j(u− wh,j)‖H1

k
+ (hjk)p‖φ̃j(u− uh)‖H−N

k

)
+ C(R+R′)
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where R′ = k−N (hk)p(
∑J
j=1 ‖u− wh,j‖H1

k
+ (hk)p‖u− uh‖H−N

k
), using the fact that R∗k, and thus

η(φj → A), are polynomially bounded on R+ \ J , thanks to Assumption 3.1 and Proposition 5.17
(while R]k is bounded by Proposition 5.23). The result then follows by using Lemma 8.5 to estimate
the constants η(φj → A), and taking the supremum over v.

8.3 Improvements at high frequency and in the PML region
We now use the improved behavior of the resolvent on (i) high-frequency functions and (ii) functions
localised in the PML region to improve Lemma 8.1.

Lemma 8.6 (Improvement of R∗k on high-frequencies) Let ψ ∈ C∞c (R) satisfy ψ] ≺ ψ and
let Ψ := ψ(Pk) and let ϕ ∈ C∞(Ω) be such that suppϕ ∩ Γtr = ∅. Then

R∗k(1−Ψ)ϕ = (R]k)∗(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk).

Proof. We use again the resolvent identity (8.13) to write

R∗k(1−Ψ) = (R]k)∗(1−Ψ) +R∗kSk(R]k)∗(1−Ψ).

The idea is to now use pseudolocality of (R]k)∗ to move (1−Ψ) next to Sk, with this product then
zero since ψ](1 − ψ) = 0. The issue is that we have only shown that (R]k)∗ is pseudolocal with
respect to frequency cut-offs when sandwiched by appropriate spatial cut offs – see Lemma 6.9 and
Theorem 5.37.

To this end, let ϕP,1, ϕP,2 ∈ C∞(Ω) be such that ϕ ≺ ϕP,1 ≺ ϕP,2, and

supp(ϕP,2) ∩ Γtr = ∅ and supp(1− ϕP,1) ∩ ∂Ω− = ∅. (8.26)

By Lemma 6.2 applied to both (1−Ψ) and (R]k)∗,

R∗kSk(R]k)∗(1−Ψ)ϕ = R∗kSk(R]k)∗ϕP,1(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk)
= R∗kSkϕP,2(R]k)∗ϕP,1(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk),
= R∗kSkϕP,2(R]k)∗ϕP,2ϕP,1(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk),
= R∗kSk

(
ϕP,2(R]k)∗ϕP,2

)
(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk).

By Lemma 6.9 (with ϕ = ϕP,2) ϕP,2(R]k)∗ϕP,2 ∈ Lf
−2. Thus by Theorem 5.37, with ψ] ≺ ψ̃ ≺ ψ,

R∗kS(R]k)∗(1−Ψ)ϕ = R∗kSϕP,2(R]k)∗ϕP,2(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk)
= R∗kS(1− Ψ̃)ϕP,2(R]k)∗ϕP,2(1−Ψ)ϕ+O−∞(k−∞;Yk → Yk)
= O−∞(k−∞;Yk → Yk),

where we have used that

O−∞(k−∞;Dk → Dk) = O−∞(k−∞;Yk → Yk),

since, for any n ∈ Z, D|n|k ⊂ Ynk ⊂ D
−|n|
k with continuous inclusions (by Corollary 5.20).

Lemma 8.7 (High-frequency upgrade) For any c, k0, there exists h0 such that the following
is true. Let N > 0, let ψ ∈ C∞c (R) satisfy ψ] ≺ ψ and let Ψ := ψ(Pk). Let φ, φ̃ ∈ C∞(Ω) be such
that φ ≺c φ̃ and supp φ̃ ∩ Γtr = ∅. Then there exists C > 0 such that for all ` ∈ {0, . . . , p− 1}, for
all k ≥ k0, k /∈ J , h ≤ h0 and wh ∈ Vk,

‖φ(1−Ψ)(u− uh)‖H−`
k

≤ C(hφ̃k)p+`+1
(

(hφ̃k)−p‖φ̃(u− wh)‖H1
k

+ ‖φ̃Ψ(u− uh)‖H−N
k

+ (hφ̃k)N‖φ̃(1−Ψ)(u− uh)‖H−N
k

)
+ Ck−N (hk)p+`+1

(
(hk)−p‖u− wh‖H1

k
+ ‖u− uh‖H−N

k

)
, (8.27)

where hφ̃ := max
{

diam(K) : K ∈ Tk s.t. K ∩ supp φ̃ 6= ∅
}
.
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We highlight that the advantage of (8.27) over the bound in Lemma 8.1 is the arbitrary power
N in the term (hφ̃k)N‖φ̃(1−Ψ)(u− uh)‖H−N

k
.

Proof of Lemma 8.7. Let c > 0, k0 > 0. Let c ∈ (0, c) be arbitrary and let h0 be small enough
to apply Lemma 8.1 with c = c. Let N , ψ, φ and φ̃ as in the statement, and let χ, χ̃ ∈ C∞(Ω)
be any cutoff functions chosen such that χ ≺c χ̃ and supp χ̃ ∩ Γtr = ∅. Denote by C any positive
constant whose value depends only on the previous quantities. Then, given k ≥ k0, k /∈ J , h ≤ h0
and wh ∈ Vk, it is enough to show that

‖χ(1−Ψ)(u− uh)‖H−`
k

≤ C(hχ̃k)`+1
(
‖χ̃(u− wh)‖H1

k
+ (hχ̃k)p‖χ̃Ψ(u− uh)‖H−N

k
+ (hχ̃k)p‖χ̃(1−Ψ)(u− uh)‖H−N

k

)
+ Ck−N (hk)`+1

(
‖u− wh‖H1

k
+ (hk)p‖u− uh‖H−N

k

)
. (8.28)

where hχ̃ is defined analogously to hφ̃. Indeed, one can then apply (8.28) iteratively with a sequence
of cut-offs appropriately nested between φ and φ̃.

Let χ̌, χ̂ be such that χ ≺c/4 χ̌ ≺c/4 χ̂ ≺c/4 χ̃. We apply Lemma 8.1 with A = E`χ(1 − Ψ),
where E` : H−`k → L2 an isomorphism, with {φj}2j=1 := {χ̂, 1− χ̂} (i.e., only two functions in the
partition of unity) and {φ̃j}2j=1 = {χ̃, 1− χ̌}. Then, by Lemma 8.6 (since suppχ ∩ Γtr = ∅),

‖χ̃R∗kA∗‖L2→L2 ≤ ‖χ̃(R]k)∗A∗‖L2→L2 + Ck−N

and
‖(1− χ̌)R∗kA∗‖L2→L2 ≤ ‖(1− χ̌)(R]k)∗A∗‖L2→L2 + Ck−N .

Moreover, by Theorem 6.2,

‖(1− χ̌)(R]k)∗A∗‖L2→H`+2
k
≤ Ck−N

and by Proposition 5.23
‖χ̃(R]k)∗A∗‖L2→H`+2

k
≤ C.

Therefore, with ηj→A defined by (8.9),

η1→A ≤ C
(

(hχ̃k)p‖χ̃R∗kA∗‖L2→L2 + (hχ̃k)`+1‖χ̃(R]k)∗A∗‖L2→H`+2
k

)
≤ C(hχ̃k)`+1,

and η2→A ≤ Ck−N (hk)`+1. Lemma 8.1 thus gives

‖χ(1−Ψ)(u− uh)‖H−`
k
≤ (hχ̃k)`+1C

(
‖χ̃(u− wh)‖H1

k
+ (hχ̃k)p‖χ̃(u− uh)‖H−N

k

)
+ Ck−N (hk)`+1

(
‖u− wh‖H1

k
+ (hk)p‖u− uh‖H−N

k

)
,

and (8.28) follows using ‖χ̃(u− uh)‖H−N
k
≤ ‖χ̃Ψ(u− uh)‖H−N

k
+ ‖χ̃(1−Ψ)(u− uh)‖H−N

k
.

Recall from §3 that UP is a neighbourhood of Γtr such that Theorem 4.2 holds on UP.

Lemma 8.8 (PML upgrade) For any c, k0, there exists h0 > 0 such that the following is true.
Let N > 0, let ψ ∈ C∞c (R), let Ψ := ψ(Pk), and let φ, φ̃ ∈ C∞(Ω) be such that φ ≺c φ̃ and
supp φ̃ ⊂ UP. Then there exists C > 0 such that, for all ` ∈ {0, . . . , p− 1}, k ≥ k0, k /∈ J , h ≤ h0
and wh ∈ Vk,

‖φΨ(u− uh)‖H−`
k

+ ‖φ(1−Ψ)(u− uh)‖H−`
k

≤ C(hφ̃k)p+`+1
(

(hφ̃k)−p‖φ̃(u− wh)‖H1
k

+ (hφ̃k)N‖φ̃(u− uh)‖H−N
k

)
+ Ck−N (hk)p+`+1

(
(hk)−p‖u− wh‖H1

k
+ ‖u− uh‖H−N

k

)
,

where hφ̃ := max
{

diam(K) : K ∈ Tk s.t. K ∩ supp φ̃ 6= ∅
}

.
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Proof. We proceed as in the proof of Lemma 8.7, with A = E`χΨ or A = E`χ(1−Ψ), but this time,
the terms ηj→A in Lemma 8.1 are bounded by first using pseudolocality of Ψ (or 1−Ψ) to write

R∗kΨχ = R∗kχΨχ+O−∞(k−∞;Yk → Yk),

where χ ≺ χ ≺ χ̌. The conclusion is then obtained from

‖(1− χ̌)R∗kχ‖L2→L2 ≤ Ck−N and ‖χ̃R∗kχ‖L2→L2 ≤ C,

with these bounds following from Theorem 4.2, since 1− χ̌ ⊥ χ and supp χ̃ ⊂ UP.

Remark 8.9 The iteration in the proofs of Lemmas 8.7 and 8.8 is possible because the ηj→A are
small, precisely because of the “good” behaviour of the solution operator on high frequencies/in the
PML, respectively.

8.4 Estimates in lowest regularity
In the remainder of this section, we fix a cover {Ωj}1≤j≤M satisfying (3.8).

Lemma 8.10 (The system of inequalities involving X) Let {χi}Mi=1 be such that (3.14)
holds, let ψ ∈ C∞c (R) with ψ] ≺ ψ, let Ψ = ψ(Pk), and let k0, N > 0. Then, there exists
h0, C†, C > 0 such that the following holds for all k ≥ k0, k /∈ J , h ≤ h0, u− uh satisfying (3.16)
and wh,i ∈ Vk, i ∈ {1, . . . ,M}. Letting X−, X+, XP be the column vectors of local Galerkin errors
defined by

X−i = ‖χiΨ(u− uh)‖H−p+1
k

, X+
i = ‖χi(1−Ψ)(u− uh)‖H−p+1

k
, i = 1, . . . ,MI,

XP
i := ‖χMI+i(u− uh)‖H−p+1

k
, i = 1, . . . ,MP X :=

X−X+

XP

 (8.29)

(with ± standing for high and low frequency), Z the column vector of local best approximation errors
defined by

Zi = ‖u− wh,i‖H1
k
(Ωi),

and B, W the matrices defined by (3.12) and (3.13), the following system of inequalities(
I − C†W

)
X ≤ C

(
BZ +R 1

)
(8.30)

holds in the component-wise sense, with 1 :=
(
1 · · · 1

)T and R := R1 +R2, where

R1 := k−N (hk)p
M∑
i=1
‖u− wh,i‖H1

k
, R2 := k−N (hk)2p‖u− uh‖H−N

k
.

Let πI,± ∈M((2MI +MP)×M) and πP ∈M(MP × (2MI +MP)) be defined by

πI,− :=
(
IMI 0MI 0MI×MP

)
, πI,+ :=

(
0MI IMI 0MI×MP

)
, (8.31)

πP =
(
0MP×MI 0MP×MI IMP

)
. (8.32)

Lemma 8.10 has the following corollary.

Corollary 8.11 Let {χi}Mi=1, ψ be as in the statement of Lemma 8.10 and let k0, N > 0. Then
there exist C†, h0 > 0 such that for every M > 0 and CM > 0 there exists C > 0 such that the
following holds. For all k ≥ k0, k /∈ J , h ≤ h0, if

∞∑
n=0

(C†W )n ≤ CMkM ,
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and if u− uh satisfies (3.16), then

X ≤ C(I − C†W )−1BZ + CR11

for all wh ∈ Vk, with X, Z, R1, and 1 defined as in Lemma 8.10.
That is, for 1 ≤ i ≤MI,

‖χiΨ(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[
πI,−(I − C†W )−1B

]
i,j
‖u− wh,j‖H1

k
(Ωj) + CR1,

‖χi(1−Ψ)(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[
πI,+(I − C†W )−1B

]
i,j
‖u− wh,j‖H1

k
(Ωj) + CR1,

and for 1 ≤ i ≤MP,

‖χMI+i(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[
πP(I − C†W )−1B

]
i,j
‖u− wh‖H1

k
(Ωj) + CR1,

where πI,± and πP are defined by (8.31) and (8.32).

Corollary 8.11 follows from Lemma 8.10 using the following lemma.

Lemma 8.12 For all k0 > 0, there exist constants C, h0, N
′ > 0 such that for all k ≥ k0, k /∈ J ,

h ≤ h0, u− uh satisfying (3.16) and wh ∈ Vk,

‖u− uh‖H−p+1
k

≤ CkN
′
(hk)p‖u− wh‖H1

k
.

Proof. We apply Lemma 8.10 with any cover {χi}Mi=1 satisfying (3.14) and with N = 2p. By the
definition of X (8.29) and the fact that for k /∈ J , all the elements of B (3.12) are bounded by
CkN

′(hk)p for some N ′ > 0 (by Assumption 3.1)

‖u− uh‖H−p+1
k

≤
2MI+MP∑
i=1

Xi ≤ CkN
′
(hk)p‖u− wh‖H1

k
+ Ck−2p(hk)2p‖u− uh‖H−p+1

k

= CkN
′
(hk)p‖u− wh‖H1

k
+ Chp‖u− uh‖H−p+1

k
;

the result then follows by choosing h0 small enough.

Outline of the proof of Lemma 8.10 The main idea of this proof – and, indeed, the heart of
the paper – is that one can use the localised duality argument (Lemma 8.1) to obtain a system
of inequalities (as in (8.30)) relating local Galerkin errors and local best approximation errors.
By choosing A = χiΨ or χi(1−Ψ) in Lemma 8.1, this allows to obtain bounds for X− and X+.
However, it turns out that this idea is not quite sufficient to fully exploit the fact that the solution
operator on either the PML or high frequencies is pseudolocal (via Theorem 4.2 and Lemma 8.6
below). Our method is to split the domains {Ωi} more finely, use Lemma 8.1 on this finer cover and
then gather back the errors on the original domains. The improvements over the straightforward
application of Lemma 8.1 are that, thanks to pseudolocality, we obtain instances of hij instead of
hj , and we exploit the situations where the resolvent on Ωi ∩ Ωj behaves better than on Ωj .

Proof of Lemma 8.10. Throughout this proof, let χi, ψ, Ψ, k0 and N be as in the statement.
Without loss in generality, we can assume N ≥ p − 1. Denote by C any positive constant, and
by h0 > 0 a small enough constant (to be specified in the proof), whose values only depends on
the previous quantities. Now let k ≥ k0, k /∈ J , such that h ≤ h0, u − uh satisfying (3.16), and
wh,j ∈ Vk, j ∈ {1, . . . ,M}.
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Definition of an expanded set of domains. We first define an expanded set of domains
{Ω̂i}1≤i≤M̂ . These appear only in the proof, and allow us to exploit the fact that the intersection of
an “interior domain” (i.e., an Ωi for 1 ≤ i ≤MI) and a “PML domain” (i.e., an Ωi for MI+1 ≤ i ≤M)
occurs only in the PML.

Let

ΩP :=
M⋃

j=MI+1

Ωj

be the union of all domains lying in the PML region. Recall that ΩP b UP by assumption (3.8).
Thus, for each i ∈ {1, . . . ,MI}, we may find two open sets Vi,Wi such that

Ωi ∩ ΩP b Vi bWi b UP.

Let
Ω◦i := Ωi \Wi , and Ω×i := Ωi ∩ Vi

(where Ω×i may be empty) and observe that

Ωi = Ω◦i ∪ Ω×i , Ω◦i ∩ ΩP = ∅ , and Ω×i b UP

(the notation × is chosen because these domains “cross” the PML). Let ϕ◦i , ϕ̃◦i , ϕ×i ∈ C∞(Ω) be
such that

ϕ◦i ≺ ϕ̃◦i , (8.33)
χi ≺ ϕ◦i + ϕ×i , supp(ϕ̃◦i ) ⊂ Ω◦i ∪ ∂Ω. (8.34)

Let
χ◦i := χiϕ̃

◦
i and χ×i := χiϕ

×
i ,

so that, in particular, {
χi ≡ 1

}
⊂
{
χ×i ≡ 1

}
∪
{
χ◦i ≡ 1

}
, i = 1, . . . ,MI. (8.35)

To see (8.35), observe that if χi(x) = 1 and ϕ×i (x) 6= 1, then ϕ◦i (x) 6= 0 (since ϕ◦i = 1 − ϕ×i on
supp χ̃i ⊃ suppχ by (8.34)), and thus ϕ̃◦i (x) = 1 by (8.33).

We now renumber

χ◦1, . . . , χ
◦
MI
, χ×1 , . . . , χ

×
MI
, χMI+1 , . . . , χM as {ϕi,1}1≤i≤M̂ ,

with M̂ = 2MI +MP, and

Ω◦1, . . . ,Ω◦MI
,Ω×1 , . . . ,Ω×MI

,ΩMI+1 , . . . ,ΩM as {Ω̂i}1≤i≤M̂ .

The key properties of these domains and cutoffs that we use in the rest of the proof are that the
condition (3.14) still holds, i.e.

Ω ⊂
M̂⋃
i=1

int
(
{ϕi,1 ≡ 1}

)
(8.36)

(by (8.35)) and, for i = 1, . . . ,MI,

max
{
ϕi,1, ϕi+MI,1

}
≤ χi ≤ ϕi,1 + ϕi+MI,1 and Ωi = Ω̂i ∪ Ω̂i+MI (8.37)

(by (8.34)). Let ĥj be upper bounds for the local meshwidth on Ω̂j and define ĥij analogously to
(3.9).

Definition of suitable cut-off functions. Let {ϕi,0}M̂i=1 be a partition of unity subordinate to
the cover (8.36) of Ω, and thus such that ϕi,0 ≺ ϕi,1.

Given {ϕi,0}M̂i=1 and {ϕi,1}M̂i=1, there exists c > 0 and sequences {ϕi,ν}, ν = 2, 3, 4, of elements of
C∞c (Rd) supported in Ωi such that ϕi,ν ≺c ϕi,ν+1, for i = 1, . . . , M̂ and ν = 0, . . . , 3 (the conditions
involving ≺c are used below to apply Lemma 8.1). Let

ϕ◦i,ν := ϕi,ν , ϕ×i,ν := ϕi+MI,ν , ϕP
i,ν := ϕi+2MI . (8.38)
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Bound on X−. We first show that

X− ≤ C
(
C(HI,Ik)2p C(HI,Ik)2p Hmin

I,P (N)kN
)
X

+ C
(
C(HI,Ik)p 0

)
Z + CR, (8.39)

which gives the first block row of (8.30) (where here, and in the rest of the proof, we use the
convention that a vector plus a scalar is the vector obtained by adding the scalar to every entry).
To do this, we estimate X− (defined by (8.29))

X− ≤ X◦,− +X×,−

where X−,◦ := ‖χ◦iΨ(u− uh)‖H−p+1
k

and X−,× := ‖χ×i Ψ(u− uh)‖H−p+1
k

.5 We estimate X−,◦ and
X−,× separately.

Bound on X◦,−. The main work is to bound X◦,−. To this end, we fix i ∈ {1, . . . ,MI} and
apply Lemma 8.1 with A = Ai := χ◦iΨ (observe that the smoothing property of Ψ, Proposition
5.22, implies that Ai : H−p+1

k → L2) and the functions {φj}1≤j≤2M̂ , {φ̃j}1≤j≤2M̂ defined by

φj :=
{
ϕ◦i,3ϕj,0, j = 1, . . . , M̂ ,

(1− ϕ◦i,3)ϕ
j−M̂,0, j = M̂ + 1, . . . , 2M̂,

and

φ̃j :=
{
ϕ◦i,4ϕj,1, j = 1, . . . , M̂ ,

(1− ϕ◦i,2)ϕ
j−M̂,1, j = M̂ + 1, . . . , 2M̂.

With these definitions,
{
φj
}

1≤j≤2M̂ is indeed a partition of unity on Ω and
{
φ̃j
}

1≤j≤2M̂ satisfies
the condition (8.8) by the definition of ϕj,ν . Therefore, choosing h0 small enough, Lemma 8.1
ensures that

X◦,−i ≤ C
M̂∑
j=1

[
(ĥijk)2pαj→i + (ĥjk)2pα′j→i

]
X̂j +

[
(ĥijk)pαj→i + (ĥjk)pα′j→i

]
Ẑj + CR, (8.40)

where R = k−N
(

(hk)2p‖u− uh‖H−N
k

+ (hk)p
∑M
j=1 ‖u− wh,j‖H1

k

)
,

X̂j := ‖ϕj,1(u− uh)‖H−N
k

, Ẑj := ‖ϕj,1(u− wh,j)‖H1
k
, j = 1, . . . , M̂ , (8.41)

and
αj→i := ‖ϕ◦i,4ϕj,1R∗kΨχ◦i ‖L2→L2 + ‖ϕ◦i,4ϕj,1(R]k)∗Ψχ◦i ‖L2→Hp+1

k
,

α′j→i := ‖(1− ϕ◦i,2)ϕj,1R∗kΨχ◦i ‖L2→L2 + ‖(1− ϕ◦i,2)ϕj,1(R]k)∗Ψχ◦i ‖L2→Hp+1
k

.

Since N ≥ p− 1, by (8.41), (8.37), and (8.29),

X̂j ≤ ‖ϕ◦j,1Ψ(u− uh)‖H−p+1
k

+ ‖ϕ◦j,1(1−Ψ)(u− uh)‖H−p+1
k

≤ X−j +X+
j , 1 ≤ j ≤MI,

(8.42)
X̂j+MI ≤ ‖ϕ×j,1Ψ(u− uh)‖H−p+1

k
+ ‖ϕ×j,1(1−Ψ)(u− uh)‖H−p+1

k
≤ X−j +X+

j , 1 ≤ j ≤MI,

(8.43)
X̂j+2MI ≤ ‖ϕP

j,1(u− uh)‖H−p+1
k

= XP
j , 1 ≤ j ≤MP, (8.44)

and similarly,

Ẑj ≤


Zj 1 ≤ j ≤MI,

Zj−MI MI + 1 ≤ j ≤ 2MI,

Zj−MI 2MI + 1 ≤ j ≤ M̂.

(8.45)

5Without this splitting, one only gets Hmin
I,P (2p)k2p instead Hmin

I,P (N)kN in the third block of the first matrix in
the right-hand side of (8.39).
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Let
ωj→i := (ĥijk)2pαj→i + (ĥjk)2pα′j→i , βj→i := (ĥijk)pαj→i + (ĥjk)pα′j→i

and
ω◦j→i := ωj→i , ω×j→i := ωj+MI→i, j = 1, . . . ,MI,

ωP
j→i := ωj+2MI→i, j = 1, . . . ,MP,

and define β◦j→i, β×j→i and βP
j→i analogously. Then (8.40) can be written as

X◦,− ≤ C
(
A B C

)
X +

(
D E

)
Z +R (8.46)

where, for 1 ≤ i ≤MI,

Aij = Bij = ω◦j→i + ω×j→i , 1 ≤ j ≤MI, Cij = ωP
j→i , 1 ≤ j ≤MP, (8.47)

and
Dij = β◦j→i + β×j→i , 1 ≤ j ≤MI, Eij = βP

j→i , 1 ≤ j ≤MP. (8.48)

To proceed, we now bound the following four terms appearing in the definitions of αj→i and α′j→i:

‖ϕi,4ϕj,1R∗kΨϕ◦i,1‖L2→L2 , ‖ϕi,4ϕj,1(R]k)∗Ψϕ◦i,1‖L2→Hp+1
k

,

‖(1− ϕi,2)ϕj,1R∗kΨϕ◦i,1‖L2→L2 , and ‖(1− ϕi,2)ϕj,1(R]k)∗Ψϕ◦i,1‖L2→Hp+1
k

,

where we have used that χ◦i = ϕi,1 = ϕ◦i,1 for i = 1, . . . ,MI by (8.38).
First, by pseudolocality of Ψ (Lemma 6.2), polynomial boundedness of R∗k (Assumption 3.1)

and boundedness of R∗k in UP (estimate (4.3) in Theorem 4.2),

‖ϕi,4ϕj,1R∗kΨϕ◦i,1‖L2→L2 ≤ C1{Ω̂j∩Ω◦
i
6=∅}


k−N + ‖1Ω◦

j
R∗k1Ω◦

i
‖L2→L2 , 1 ≤ j ≤MI

1, MI + 1 ≤ j ≤ 2MI

0, 2MI + 1 ≤ j ≤ M̂,

(8.49)

since by definition, for j ∈ {MI + 1, . . . , 2MI}, Ω̂j ⊂ UP, and for j ∈ {2MI + 1, . . . , M̂}, Ω̂j ⊂ ΩP,
while Ω◦j ∩ ΩP = ∅.

Second, by the mapping properties of R]k (Proposition 5.23), boundedness of Ψ : L2 → Hp−1
k

(Proposition 5.22), and similar arguments,

‖ϕi,4ϕj,1(R]k)∗Ψϕ◦i,1‖L2→L2 ≤ C1{Ω̂j∩Ω◦
i
6=∅}


1, 1 ≤ j ≤MI

1, MI + 1 ≤ j ≤ 2MI

0, 2MI + 1 ≤ j ≤ M̂.

Third, by pseudolocality of Ψ again, and of Rk in UP (estimate (4.4) of Theorem 4.2), and since
ϕ◦i,2 ≺ ϕi,3,

‖(1− ϕ◦i,2)ϕj,1R∗kΨϕ◦i,1‖L2→L2 ≤ Ck−N + C

{
‖1Ω◦

j
R∗k1Ω◦

i
‖L2→L2 , 1 ≤ j ≤MI

0, MI + 1 ≤ j ≤ M̂.

Finally, by pseudolocality of (R]k)∗ and Ψ (Lemma 6.2), since ϕ◦i,2 ≺c ϕ◦i,3,

‖(1− ϕ◦i,2)ϕj,1(R]k)∗Ψϕ◦i,1‖L2→Hp+1
k
≤ Ck−N . (8.50)

From the estimates (8.49)-(8.50), we deduce that

ω◦j→i ≤ C
(

(ĥijk)2p1{Ω̂j∩Ω◦
i
6=∅}+(ĥjk)2p

)(
k−N+‖1Ω◦

j
R∗k1Ω◦

i
‖L2→L2

)
≤ C(hjk)2pCij+C(hk)2pk−N ,
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using the inclusions Ω◦j ⊂ Ωj , the fact that if A′ ⊂ A, B′ ⊂ B, then

‖1A′R∗k1B′‖ = ‖1A′1AR∗k1B1B′‖ ≤ ‖1A′‖‖1AR∗k1B‖‖1B′‖ ≤ ‖1AR∗k1B‖,

and the fact that 1 ≤ Cij when Ω◦i ∩ Ω◦j 6= ∅. Similarly,

ω×j→i ≤ 1{Ω×
j
∩Ω◦

i
6=∅}(ĥijk)2p + C(ĥjk)2pk−N ≤ C(Hmin(2p))ijk2p + C(hk)2pk−N .

Therefore, by (8.47), the following inequalities hold componentwise

A ≤ CC(Hk)2p + C(hk)2pk−N , B ≤ CC(Hk)2p + C(hk)2pk−N .

One can check in a similar way that, by (8.48),

D ≤ CC(Hk)p + C(hk)pk−N .

Finally, the estimates (8.49)-(8.50) also imply that, for j ∈ {1, . . . ,MP},

ωP
j→i ≤ C(hk)2pk−N , βP

j→i ≤ C(hk)pk−N ,

and thus, componentwise, by (8.47) and (8.48),

C ≤ C(hk)2pk−N , E ≤ C(hk)pk−N .

Taking into account the definition of R, (8.46) thus yields

X◦,− ≤ C
(
C(HI,Ik)2p C(HI,Ik)2p 0

)
X + C

(
C(HI,Ik)p 0

)
Z + CR (8.51)

Bound on X×,−. To bound X×,−i for i ∈ {1, . . . ,MI}, we write

X×,−i = ‖ϕ×i,1Ψ(u− uh)‖H−p+1
k

≤
M̂∑
j=1
‖ϕ×i,1ϕj,0Ψ(u− uh)‖H−p+1

k

since {ϕj,0}1≤j≤M̂ is a partition of unity. Applying Lemma 8.8 with ` = p− 1 to each term with
ϕ = ϕ×i,1ϕj,0, ϕ̃ = ϕ×i,2ϕj,1, we deduce that

X×,−i ≤ C
M̂∑
j=1

1{Ω×
i
∩Ω̂j 6=∅}

(
(ĥijk)N X̂j + (ĥijk)p min(Ẑj , Zi)

)
+ CR, (8.52)

with Ẑj and X̂j given by (8.41) and Zi given by (8.29). Estimating {X̂j}1≤j≤M̂ and {Ẑj}1≤j≤M̂
in terms of {Zj}1≤j≤M and {X±j }1≤j≤M as in (8.42)-(8.45), we obtain

X×,− ≤ C
(
Hmin

I,I (N)kN Hmin
I,I (N)kN Hmin

I,P (N)kN
)
X

+ C
(
(HI,Ik)p 0

)
Z + CR, (8.53)

where, in the minimum in (8.52), we always choose the Zi. Summing the estimates (8.51) and
(8.53) gives the claimed estimate (8.39) for X−.

Bound on X+. We now show that

X+ ≤ C
(
(Hmin

I,I (2p)k2p Hmin
I,I (N)kN Hmin

I,P (N)kN
)
X

+ C
(
(HI,Ik)p 0

)
Z + CR (8.54)

which gives the second block row of (8.30). As before, we write

X+ ≤ X◦,+ +X×,+
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where X◦,+ := ‖χ◦i (1−Ψ)(u− uh)‖H−p+1
k

and X×,+ := ‖χ×i (1−Ψ)(u− uh)‖H−p+1
k

. Using exactly
the same method as above for the bound on X×,−, we obtain

X×,+ ≤ C
(
Hmin

I,I (N)kN Hmin
I,I (N)kN Hmin

I,P (N)kN
)
X

+ C
(
(HI,Ik)p 0

)
Z + CR. (8.55)

Using the same arguments, but applying Lemma 8.7 instead of Lemma 8.8, we obtain

X◦,+ ≤ C
(
Hmin

I,I (2p)k2p Hmin
I,I (N)kN 0

)
X

+ C
(
(HI,Ik)p 0

)
Z + CR. (8.56)

The bound (8.54) then follows by adding (8.55) and (8.56).

Bound on XP. Following the same method as for X×,−, we obtain

XP ≤ C
(
Hmin

P,I (N)kN Hmin
P,I (N)kN Hmin

P,P(N)kN
)
X

+ C
(
0 (HP,Pk)p

)
Z + CR. (8.57)

Gathering the estimates (8.39), (8.54) and (8.57) and taking into account the definitions of B
and W in (3.12) and (3.13), we obtain (8.30), which concludes the proof of the lemma.

8.5 A bound on (I − C†W )−1 via graph arguments
We now state the result that allows to bound the matrix (I − C†W )−1 coefficientwise by the
simple-path matrix (see Definition 3.9) of C†W in Corollary 8.11. The proof is deferred to Appendix
B. Recall the graph notation from §3.6.

Theorem 8.13 (A bound on (I −W )−1 by the simple-path matrix) Let M ∈ N, let W ∈
M(M ×M) be a matrix with non-negative coefficients.

If c :=
∑
L∈SL

WL < 1, then
∞∑
n=0

Wn <∞, (8.58)

and
T ? ≤

∞∑
n=0

Wn ≤ 1
1− cT

? (8.59)

in the componentwise sense, where T ? is the simple-path matrix of W .

8.6 Estimates in higher norms and completion of the proof of Theorem
3.11

In this section, we complete the proof of Theorem 3.11. In view of Corollary 8.11 and Theorem
8.13, the main task is to obtain higher norm estimates for the Galerkin error.

We now fix {χ}Mi=1, k0, N and ψ as in the statement of Theorem 3.11. For i = 1, . . . ,M , let
χi,ν ∈ C∞(Ω), ν = 0, 1, 2, 3, be such that

χi,0 ≺ χi,1 ≺ χi,2 ≺ χi,3

with χi,0 = χi and supp(χi,ν) ⊂ Ωi ∩ ∂Ω. Let C† > 0 be as in Corollary 8.11 applied with {χi,2}Mi=1.
Let h0 be sufficiently small, depending on k0 and the cutoff functions (this restriction that h0 is
sufficiently small comes from the applications below of Corollary 8.11 and Lemmas 8.7, 8.8, 8.12,
8.15, and 8.17). Let c ∈ (0, 1) and suppose that the simple loop condition (3.15) holds. Let C
denote any positive constant whose value only depends on the previous quantities. Let k ≥ k0,
k /∈ J , u ∈ H1

k and wh ∈ Vk. To show that there exists a unique uh ∈ Vk such that (3.16) holds,
by linearity and the fact that Vk is finite-dimensional, it suffices to show that when u = 0, the
unique solution to (3.16) is uh = 0. But since the latter is a consequence of (3.18), without loss of
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generality, we may assume that there exists uh ∈ Vk satisfying (3.16) and it remains to prove the
bound (3.17).

By Theorem 8.13,
∞∑
n=0

(C†W )n ≤ 1
1− cT

?,

where T ? is the simple-path matrix of C†W . Since ρ(k) is polynomially bounded on R+ \ J ,
T ? ≤ CkM coefficient-wise (since by definition, the coefficients of T ? are finite linear combination
of finite products of coefficients of C†W ). Thus, we can apply Corollary 8.11 to deduce that for
i = 1, . . . ,MI,

‖χi,2Ψ(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[πI,−T
?B]i,j ‖u− wh,j‖H1

k
(Ωj) + CR, (8.60)

‖χi,2(1−Ψ)(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[πI,+T
?B]i,j ‖u− wh,j‖H1

k
(Ωj) + CR (8.61)

and for 1 ≤ i ≤MP,

‖χMI+i,2(u− uh)‖H−p+1
k

≤ C
M∑
j=1

[πPT
?B]i,j ‖u− wh,j‖H1

k
(Ωj) + CR, (8.62)

with R = k−N (hk)p
∑M
j=1 ‖u− wh,j‖H1

k
.

Low-frequency bound in arbitrary norms

The first block row of (3.17), i.e., the low-frequency bound, follows from (8.60) by applying Lemma
8.14 below for each i = 1, . . . ,MI, with φ = χi,0 = χi, φ̃ := χi,2, v = u − uh and N = N ′ large
enough, and then using Lemma 8.12 (with wh = (

∑J
j=1 wh,j)/J) to estimate k−N ′‖u− uh‖H−N′

k

by R.

Lemma 8.14 (Low-frequency shift) Let φ, φ̃,∈ C∞(Ω) be such that φ ≺ φ̃ and supp φ̃∩Γtr = ∅.
Let ψ ∈ C∞c (R) and let Ψ := ψ(Pk). Then, for all k0 > 0 and N ∈ N, there exists C > 0 such that

‖φΨv‖HN
k
≤ C‖φ̃Ψv‖H−N

k
+ Ck−N‖v‖H−N

k
for all k ≥ k0 and v ∈ H−Nk .

Proof. As in the proof of Lemma 8.6, the assumptions let us define ϕP ∈ C∞(Ω) such that (i)
ϕP ≡ 1 near ∂Ω−, (ii) ϕP ≡ 0 near Γtr and (iii) φ̃ ≺ ϕP. By Lemma 6.7, ϕP is a boundary
compatible operator in the sense of Definition 5.35, and thus by Theorem 5.37,

φΨ = φϕPΨ = φΨ̃ϕPΨ + φO−∞(k−∞;Dk → Dk) = φΨ̃ϕPΨ +O−∞(k−∞;Yk → Yk)

where ψ̃ ∈ S(R) is such that ψ ≺ ψ̃ and Ψ̃ := ψ̃(Pk), and where the last step uses the fact that
for n ≥ 0, Y−nk ⊂ D−nk , Dnk ⊂ Ynk are continuous inclusions and φ ∈ O0(1,Yk → Yk). Hence, since
φΨ̃ = φΨ̃φ̃+O−∞(k−∞;Yk → Yk) by Theorem 6.2,

φΨ = φΨ̃φ̃Ψ +O−∞(k−∞;Yk → Yk),

using that ϕPφ̃ = φ̃. Thus,

‖φΨu‖HN
k
≤ ‖φ‖HN

k
→HN

k
‖Ψ̃‖H−N

k
→HN

k
‖φ̃Ψu‖H−N

k
+ Ck−N‖u‖H−N

k

and the conclusion follows using the mapping properties of Ψ̃ from Proposition 5.22.
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High-frequency and PML bounds up to the L2 norm.

The second and third block rows of (3.17) when m ∈ {1, . . . , p} (i.e., up to the L2 norm) are obtained
by using Lemma 8.7 and 8.8, and then using Lemma 8.12 (again with wh = (

∑J
j=1 wh,j)/J) to

estimate ‖u− uh‖H−N
k

in the remainder term.
Indeed, to prove the second block row of (3.17) for m ∈ {1, . . . , p}, observe that from Lemma 8.7

(with ` = m− 1) combined with Lemma 8.12 (with wh = wh,i), with 1 ≤ i ≤MI,

‖χi,1(1−Ψ)(u− uh)‖H1−m
k
≤ C(hik)m

(
‖u− wh,i‖H1

k
(Ωi) + (hik)p‖χi,2Ψ(u− uh)‖H−p+1

k

+ (hik)N‖χi,2(1−Ψ)(u− uh)‖H−p+1
k

)
+ Ck−N (hk)m‖u− wh,i‖H1

k
;

(8.63)

the second block row of (3.17) then follows from (8.63) and (8.61), using that χi,0 ≺ χi,1 (this extra
“layer” is used in the proof for m = 0 below).

The third block row of (3.17), i.e., the bound on the PML error, is proved in a similar way
to the high-frequency bound, using Lemma 8.8 instead of Lemma 8.7. Indeed, Lemma 8.8 (with
` = m− 1 and N sufficiently large) combined with Lemma 8.12 (with wh = wh,i) implies that, with
MI + 1 ≤ i ≤M ,

‖χi,1(u− uh)‖H1−m
k
≤ C(hik)m

(
‖u− wh,i‖H1

k
(Ωi) + (hik)N‖χi,2(u− uh)‖H−p+1

k

)
+ Ck−N (hk)m‖u− wh,i‖H1

k
. (8.64)

The third block row of (3.17) then follows from (8.64) and (8.62), using again that χi,0 ≺ χi,1.

High-frequency and PML bound in the energy norm.

The second block row of (3.17) for m = 0 (i.e., in the H1
k norm) follows from (8.61), (8.63) with

m = 1, and the following lemma applied with φ = χi,0, φ̃ := χi,1, N := N ′ large enough and using
Lemma 8.12 (with wh = wh,i) to estimate k−N ′‖u− uh‖H−N′

k

by R.

Lemma 8.15 For any k0 > 0 and c > 0, there exists h0 > 0 such that the following holds. Let
φ, φ̃ ∈ C∞(Ω) be such that

φ ≺c φ̃ and supp(φ̃) ∩ Γtr = ∅.
Furthermore, let ψ,ψ0 ∈ C∞c (R) be such that ψ0 ≺ ψ, let Ψ := ψ(Pk), Ψ0 := ψ0(Pk) and

A := φ(1−Ψ) and Ã := φ̃(1−Ψ0).

Then, for all N > 0, there exists C > 0 such that for all k ≥ k0, h ≤ h0, u− uh satisfying (3.16)
and for all wh ∈ Vk,

‖A(u− uh)‖H1
k
≤ C

(
‖φ̃(u− wh)‖H1

k
+ ‖Ã(u− uh)‖L2 + (hφ̃k)p‖φ̃(u− uh)‖H−N

k

)
+ Ck−N (‖u− wh‖H1

k
+ ‖u− uh‖H−N

k
).

where hφ̃ := max
{
hK : K ∈ Tk s.t. K ∩ supp(φ̃) 6= ∅

}
.

The heart of the proof of Lemma 8.15 is that, by the G̊arding inequality, Galerkin orthogonality,
and the definition of Π]

k,

‖A(u− uh)‖2H1
k
≤ <

〈
PkA(u− uh), A(u− uh)

〉
+ C‖A(u− uh)‖2L2

≤
∣∣〈Pk(u− uh), (I −Π]

k)A∗A(u− uh)
〉∣∣+

∣∣〈[Pk, A](u− uh), A(u− uh)
〉∣∣+ C‖A(u− uh)‖2L2 .

(8.65)
The first term on the right-hand side of (8.65) is dealt with in a similar way to the proof of Lemma
8.1 (compare the first term on the right-hand side of (8.65) to the right-hand side of (8.17)). The
following lemma deals with the second term on the right-hand side of (8.65) (i.e., the commutator
term).
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Lemma 8.16 Let φ, φ̃ ∈ C∞(Ω) be such that ∂νφ|∂Ω− = 0, φ ≺ φ̃ and supp(φ̃) ∩ Γtr = ∅, let
ψ,ψ0 ∈ C∞c (R) be such that ψ0 ≺ ψ, let Ψ := ψ(Pk) and Ψ0 := ψ0(Pk) and let

A := φ(1−Ψ) and Ã := φ̃(1−Ψ0)

Then
A = AÃ+O−∞(k−∞;Yk → Yk)

[Pk, A] = [Pk, A]Ã+O−∞(k−∞;Yk → Yk) (8.66)
and for all k0 > 0, there exists C > 0 such that for all k ≥ k0,

‖[Pk, A]‖L2→(Zk)∗ ≤ Ck−1. (8.67)

Proof. Similar to in the proof of Lemma 8.6, let ϕP ∈ C∞(Ω), be such that φ̃ ≺ ϕP and that

supp(ϕP) ∩ Γtr = ∅ and supp(1− ϕP) ∩ ∂Ω− = ∅

(compare to (8.26)). We claim that

[Pk, A] = [ϕPPkϕP, A] +O−∞(k−∞;Yk → Yk) (8.68)
A = AÃ+O−∞(k−∞;Yk → Yk), (8.69)

A(ϕPPkϕP) = A(ϕPPkϕP)Ã+O−∞(k−∞;Yk → Yk). (8.70)

Once these three properties are shown, we obtain (8.66) and (8.67) as follows. First,

[Pk, A] = [ϕPPkϕP, A] +O−∞(k−∞;Yk → Yk) (by (8.68))
= [ϕPPkϕP, A]Ã+O−∞(k−∞;Yk → Yk) (by (8.69) and (8.70))
= [Pk, A]Ã+O−∞(k−∞;Yk → Yk) (by (8.68))

which is (8.66). Second,

[Pk, A] = [ϕPPkϕP, A] +O−∞(k−∞;Yk → Yk) (by (8.68)
= [ϕPPkϕP, φ](1−Ψ) + φ[ϕPPkϕP, (1−Ψ)] +O−∞(k−∞;Yk → Yk)

(by definition of A)
= ϕP[Pk, φ]ϕP(1−Ψ) + φ[ϕPPkϕP, (1−Ψ)] (since [ϕP, φ] = 0) (8.71)

By Lemma 6.3, φ ∈ Lsc, and by Lemma 6.8, ϕPPkϕP ∈ Lb. Thus, by the Definition of these spaces
(Definitions 5.25 and 5.35), (8.71) gives (8.67).

We now prove (8.68)-(8.70). First, by locality of Pk,

PkA = Pkφ(1−Ψ) = ϕPPkϕPφ(1−Ψ) = ϕPPkϕPA. (8.72)

Moreover, by Theorem 6.2, the locality of Pk, the fact that φ̃ = φ̃ϕP, and then Theorem 6.2 again,

APk = φ(1−Ψ)Pk = φ(1−Ψ)φ̃Pk +O−∞(k−∞;Yk → Yk)
= φ(1−Ψ)φ̃PkϕP +O−∞(k−∞;Yk → Yk)
= φ(1−Ψ)φ̃ϕPPkϕP +O−∞(k−∞;Yk → Yk)
= φ(1−Ψ)ϕPPkϕP +O−∞(k−∞;Yk → Yk),
= AϕPPkϕP +O−∞(k−∞;Yk → Yk). (8.73)

Combining (8.72) and (8.73) gives (8.68). Second, by the fact that (1− ψ) = (1− ψ)(1− ψ0) and
by Theorem 6.2,

A = φ(1−Ψ) = φ(1−Ψ)(1−Ψ0) = φ(1−Ψ)φ̃(1−Ψ0) +O−∞(k−∞;Yk → Yk),
= AÃ+O−∞(k−∞;Yk → Yk).
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which is (8.69). Finally, using again that ϕPPkϕP ∈ Lb, we obtain

(1−Ψ)(ϕPPkϕP) = (1−Ψ)(ϕPPkϕP)(1−Ψ0) +O−∞(k−∞,Yk → Yk)

by Theorem 5.37. Left-multiplying by φ thus gives

A(ϕPPkϕP) = φ(1−Ψ)(ϕPPkϕP)(1−Ψ0) +O−∞(k−∞,Yk → Yk)
= φ(1−Ψ)(ϕPPkϕP)φ̃(1−Ψ0)

+ φ(1−Ψ)(ϕPPkϕP)(1− φ̃)(1−Ψ0) +O−∞(k−∞,Yk → Yk)
= A(ϕPPkϕP)Ã

+ φ(1−Ψ)(ϕPPkϕP)(1− φ̃)(1−Ψ0) +O−∞(k−∞,Yk → Yk),

and (8.70) then follows from locality of ϕPPkϕP and pseudolocality of Ψ (Theorem 6.2), since

φ(1−Ψ)(ϕPPkϕP)(1− φ̃)
= [φ(1−Ψ)(1− φ̌)](ϕPPkϕP)(1− φ̃) + φ(1−Ψ)[φ̌(ϕPPkϕP)(1− φ̃)]
= O−∞(k−∞;Yk → Yk)(ϕPPkϕP)(1− φ̃) + 0
= O−∞(k−∞;Yk → Yk)

where φ̌ ∈ C∞(Ω) is such that φ ≺ φ̌ ≺ φ̃.

Proof of Lemma 8.15. Let k0 > 0 and c > 0, and let h0 be small enough to apply Theorem 7.2 and
Lemma 8.2. Let φ, φ̃, ψ, ψ0 and N be as in the statement, and denote by C any positive constant
depending only on the previous quantities. Let k ≥ k0, suppose that h ≤ h0 let u − uh be such
that (3.16) holds. Let φ1, φ2, φ3 ∈ C∞(Ω) be such that

φ ≺c/4 φ1 ≺c/4 φ2 ≺c/4 φ3 ≺c/4 φ̃

with, additionally, ∂ν(φ1)|∂Ω− = 0; such a φ1 exists by Lemma 6.6. Since

‖φ(1−Ψ)u‖H1
k
≤ ‖φ1(1−Ψ)u‖H1

k
,

it is enough to estimate the latter. Let A = φ̌(1 −Ψ). By the G̊arding inequality and Galerkin
orthogonality (3.16),

‖A(u− uh)‖2H1
k
≤ <

〈
PkA(u− uh), A(u− uh)

〉
+ C‖A(u− uh)‖2L2

≤
∣∣〈Pk(u− uh), (I−Π]

k)A∗A(u− uh)
〉∣∣

+
∣∣〈[Pk, A](u− uh), A(u− uh)

〉∣∣+ C‖A(u− uh)‖2L2 .

(8.74)

With Ã as in the statement, Lemma 8.16 gives∣∣〈[Pk, A](u− uh), A(u− uh)
〉∣∣

≤
∣∣〈[Pk, A]Ã(u− uh), A(u− uh)

〉∣∣+ Ck−N‖u− uh‖H−N
k
‖A(u− uh)‖H1

k

≤ C
(
k−1‖Ã(u− uh)‖L2 + Ck−N‖u− uh‖H−N

k

)
‖A(u− uh)‖H1

k
, (8.75)

and

‖A(u− uh)‖2L2 ≤ ‖A(u− uh)‖L2‖A(u− uh)‖H1
k

≤ C
(
‖Ã(u− uh)‖L2 + Ck−N‖u− uh‖H−N

k

)
‖A(u− uh)‖H1

k
. (8.76)

Combining (8.74), (8.75) and (8.76), we deduce that

‖A(u− uh)‖2H1
k
≤
∣∣〈Pk(u− uh), (I−Π]

k)A∗A(u− uh)
〉∣∣+ C‖Ã(u− uh)‖2L2 + Ck−2N‖u− uh‖2H−N

k

,
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and to conclude the proof, it remains to show that∣∣〈Pk(u− uh), (I−Π]
k)A∗A(u− uh)

〉∣∣
≤ (‖φ̃(u− wh)‖H1

k
+ (hφ̃k)p‖φ̃(u− uh)‖H−N

k
+ CR)‖A(u− uh)‖H1

k
(8.77)

where R := k−N (‖u− uh‖H−N
k

+ ‖u− wh‖H1
k
).

To establish (8.77), we use the identity〈
Pk(u− uh), (I−Π]

k)A∗A(u− uh)
〉

=
〈
u− wh, (P ]k)∗(I−Π]

k)A∗A(u− uh)
〉
− 〈u− uh, Sk(I−Π]

k)A∗A(u− uh)
〉

(shown in the same manner as (8.17) in the proof of the localised duality argument, Lemma 8.1).
Next, by pseudo-locality of 1−Ψ, A∗ = φ2A

∗ +O−∞(k−∞;Yk → Yk), so that∣∣∣〈Pk(u− uh), (I−Π]
k)A∗A(u− uh)

〉∣∣∣
≤
∣∣∣〈u− wh, (P ]k)∗(I−Π]

k)φ2A
∗A(u− uh)

〉∣∣∣+
∣∣∣〈(u− uh), Sk(I−Π]

k)φ2A
∗A(u− uh)

〉∣∣∣
+ CR‖A(u− uh)‖H1

k
.

Now, adapting the arguments in the proof of Lemma 8.1 (from (8.17) to (8.23)), we obtain∣∣∣〈Pk(u− uh), (I−Π]
k)A∗A(u− uh)

〉∣∣∣
≤
∣∣∣〈P ]kφ̃(u− wh), φ3(I−Π]

k)w
〉∣∣∣+

∣∣∣〈Skφ̃(u− uh), S̃kφ3(I−Π]
k)w

〉∣∣∣+ CR‖A(u− uh)‖H1
k
,

(8.78)

where w = φ2A
∗A(u − uh) and S̃k := ψ̃(Pk) where ψ̃ ∈ C∞c (R) is such that ψ ≺ ψ̃. Namely, we

follow exactly the same steps as in (8.19) and (8.21) but with ` = −1, and in (8.20) and (8.22),
choosing v = A∗A(u − uh), we use the estimate ‖v‖H1

k
≤ ‖A∗‖H1

k
→H1

k
‖A(u − uh)‖H1 , and the

fact that ‖A∗‖H1
k
→H1

k
≤ C. Finally, by the quasi-optimality of Π]

k and the previous bound on
‖A∗‖H1

k
→H1

k
,

‖(I−Π]
k)w‖H1

k
≤ C‖A(u− uh)‖H1

k
,

and in turn, by Lemma 8.2,

‖S̃kφ3(I−Π]
k)w‖L2 ≤ C

(
(hφ̃k)p + k−N (hk)p

)
‖A(u− uh)‖H1

k
.

Using these bounds in (8.78),∣∣∣〈Pk(u− uh), (I−Π]
k)A∗A(u− uh)

〉∣∣∣
≤ C

(
‖φ̃(u− wh)‖H1

k
+
(
(h̃φk)p + k−N (hk)p

)
‖Skφ̃(u− uh)‖L2 + CR

)
‖A(u− uh)‖H1

k

and (8.77) follows by using the mapping properties of Sk.

The proof of the third block row of (3.17) in the H1
k norm (i.e., m = 0), is similar to that of the

second block row, using Lemma 8.17 below instead of Lemma 8.15.

Lemma 8.17 For any k0 > 0 and c > 0, there exists h0 > 0 such that the following holds. Let
φ, φ̃ ∈ C∞(Ω) be such that φ ≺c φ̃. Then, for all N > 0, there exists C > 0 such that for all k ≥ k0,
h ≤ h0, u− uh satisfying (3.16) and for all wh ∈ Vk,

‖φ(u− uh)‖H1
k
≤ C

(
‖φ̃(u− wh)‖H1

k
+ ‖φ̃(u− uh)‖L2

)
+ Ck−N

(
‖u− wh‖H1

k
+ ‖u− uh‖H−N

k

)
.

where hφ̃ := max
{
hK : K ∈ Tk s.t. K ∩ supp(φ̃) 6= ∅

}
.
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Proof. Let φ1, φ2 ∈ C∞(Ω) be such that

φ ≺ φ1 ≺ φ2 ≺ φ̃,

with in addition, ∂ν(φ1)|∂Ω− = 0. Then, observe that

‖φ(u− uh)‖H1
k
≤ C‖φ1(u− uh)‖H1

k
.

The proof is now identical to that of Lemma 8.15, with the following replacement for Lemma 8.16:
(i) [Pk, φ1] = [Pk, φ1]φ2, which follows from locality of Pk and (ii), ‖[Pk, φ1]‖L2→Z∗

k
≤ Ck−1 is

continuous, which follows from Lemma 6.3 and Definition 5.25.

9 Proof of Theorem 1.3
Under the assumptions on (Tk)k>0 in Theorem 1.3, the family (V pTk)k>0 is a well-behaved finite
element of order p in the sense of Definition 3.7; we can therefore apply Theorem 3.11 (in particular,
(3.18)). By (8.59), T ? ≤

∑∞
n=0(C†W )n. To prove Theorem 1.3, it is therefore sufficient to show

that, provided the mesh conditions (1.8) holds, the loop condition (3.15) holds and(
I (HI,Ik)N 0
0 0 (hPk)N

) ∞∑
n=0

(C†W )nB ≤ C(T B + R) (9.1)

where B,W are defined by (3.12), (3.13), while HI,I, T and B and R are defined by (1.6). In
fact, by Theorem 8.13, the loop condition (3.15) holds if and only if the sum

∑∞
n=0W

n converges,
and from the way the simple-path matrix T ? was used in the proof of Theorem 3.11 to bound
(I −C†W )−1, it suffices to show (9.1) with T ? replaced by

∑∞
n=0W

n. In addition, since, under the
mesh conditions (1.8), (HI,Ik)2pN ′ ≤ k−N ′ I and (hPk) ≤ c, it suffices to show that(

I 0 0
0 0 I

) ∞∑
n=0

(C†W )nB ≤ CT B. (9.2)

We obtain (9.2) by “forgetting” about the improvements on the high-frequency components of
the Galerkin error. That is, we consider the directed graph G in Figure 9.1 – which describes the
error propagation without any frequency splitting (where we have used the bounds on the solution
operator from §4) – and let

W :=
(
CI,I(HI,Ik)p hmin(N)kN
hmin(N)T kN (hPk)N

)
be the associated weighted adjacency matrix. Here,

hmin(N) =
(
0 hNV,P hNI,P hNP

)T
.

The point is that T is, up to a constant, the simple-path matrix of W . More precisely, the following
result holds.

Lemma 9.1 For all C† > 0, there exists c, C > 0 such that if (1.8) holds with c, then
∞∑
n=0

Cn† W n ≤ CT .

Proof. Observe that under (1.8), only one edge in this graph can possibly have a weight > c, namely,

W1,2 =
√
kρ(k)(hVk)2p.

Moreover, any simple loop in this graph containing the edge W1,2 must also contain the edge

W2,1 = (hKk)2p
√
kρ(k),
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ΩK ΩV ΩI ΩP

(hKk)2p√kρ

(hVk)2p√kρ

(hVk)2pk

(hIk)2pk

(hV,Pk)N

(hV,Pk)N

(hI,Pk)N

(hI,Pk)N

(hKk)2pρ (hVk)2pk (hIk)2pk (hPk)N

Figure 9.1: The graph showing propagation of errors for the decomposition into ΩK, ΩV , ΩI . Recall
that hV,P = min(hV , hP) and hI,P = min(hI , hP).

and the product of these two weights is

W1,2W2,1 = (hKk)2pρ(k)︸ ︷︷ ︸
<c

(hVk)2pk︸ ︷︷ ︸
<c

≤ c2.

Therefore, provided that c is sufficiently small, the sum of the weights of all simple loops in G can
be made < 1. The conclusion follows by remarking that, under the mesh conditions (1.8),∑

p∈Vij

C
|p|
† Wp ≤ CTij ,

as can be checked by direct calculation.
By Lemma 9.1, it suffices to show that for all C† > 0, there exists C ′† > 0 and C > 0 such that(

I 0 0
0 0 I

)
(C†W )nB ≤ CC ′n† W nB. (9.3)

To prove this, we first observe that, with ` = p or 2p,

Hmin
I,I (`)k` ≤ CI,I(HI,Ik)`.

Indeed, (CI,I)ij ≥ 1 for all i, j such that (Hmin
I (`))ij 6= 0 (since when the domains overlap, the norm

of the solution operator is ≥ 1). Since H is diagonal, it follows that for such pairs i, j and all ` ≥ 0,

(Hmin
I,I (`))ij = min(hi, hj)` ≤ (CI,I)ijh`j = (CI,I(H)`)ij .

Therefore, the matrix W associated to the full graph (Figure 3.1) and the matrix B can be
estimated by blocks as

W ≤ C

CI,I(HI,Ik)2p CI,I(HI,Ik)2p hmin(N)kN
CI,I(HI,Ik)2p CI,I(HI,Ik)2p hmin(N)kN
hTmin(N)kN hTmin(N)kN (hPk)N

 = C

(diag(A(2p))J Kb(N)
b(N)TKT (hPk)N

)

B ≤ C

CI,I(HI,Ik)p 0
CI,I(HI,Ik)p 0

0 (hPk)p

 = C

(
diag(A(p))K 0

0 (hPk)p
)

where

A(`) = CI,I(HI,Ik)` , diag(A) :=
(
A 0
0 A

)
, b(`) = hmin(`)k` , J =

(
I3 I3
I3 I3

)
K =

(
I3
I3

)
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with I3 denoting the 3× 3 identity matrix. With these definitions, observe that

W =
(
A(2p) b(N)
b(N)T (hPk)N

)
, B =

(
A(p) 0

0 (hPk)p
)

;

thus the estimate (9.3) immediately follows from the next lemma.

Lemma 9.2 Let A,B be M ×M matrices with positive coefficients, b, b′ ∈ RM+ , c ∈ R+. Then, for
all n, (

IM 0 0
0 0 IM

)
()
(

diag(A)J Kb
bTKT c

)n(diag(A′)K 0
0 c′

)
≤ 2n+1

(
A b
bT c

)n(
A′ 0
0 c′

)
.

Proof. Let (
An bn
bTn cn

)
:=
(
A b
bT c

)n
.

Using that J2 = 2J , JK = 2K and KTK = 2, one can check by an easy induction that(
diag(A)J Kb
bTKT c

)n
≤ 2n

(
diag(An)J Kbn
bTnK

T cn.

)
The result then follows using that

(
IM 0 0
0 0 IM

)(
diag(An)J Kbn
bTnK

T cn

)(
diag(A′)K Kb′

b′T c′

)
=
(
An An b
b b c

)A′ 0
A′ 0
0 c′


≤ 2

(
An bn
bTn cn

)(
A′ 0
0 c′

)
.

A Definition of radial perfectly matched layers
Let Rscat be such that

supp(A− I) ∪ supp(n− 1) ∪ Ω b BRscat . (A.1)

Let RPML,− > Rscat be such that BRPML,− b Ωtr.
As in §1.1 and §3.1, let Ω := Ω+ ∩ Ωtr and Γtr := ∂Ωtr. For 0 ≤ θ < π/2, let the PML scaling

function fθ ∈ C∞([0,∞);R) be defined by fθ(r) := f(r) tan θ for some f satisfying{
f(r) = 0

}
=
{
f ′(r) = 0

}
=
{
r ≤ RPML,−

}
, f ′(r) ≥ 0; (A.2)

i.e., the scaling “turns on” at r = RPML,−. Given fθ(r), let

α(r) := 1 + if ′θ(r) and β(r) := 1 + ifθ(r)/r.

We now define two possible PML problems (1.2); both are formed by first replacing ∆ in (1.1) by

∆θ =
( 1

1 + if ′θ(r)
∂

∂r

)2
+ d− 1

(r + ifθ(r))(1 + if ′θ(r))
∂

∂r
+ 1

(r + ifθ(r))2 ∆ω,

= 1
(1 + if ′θ(r))(r + ifθ(r))d−1

∂

∂r

(
(r + ifθ(r))d−1

1 + if ′θ(r)
∂

∂r

)
+ 1

(r + ifθ(r))2 ∆ω

(with ∆ω the surface Laplacian on Sd−1) and then either multiplying by αβd−1 or not – the
coefficients Aθ, bθ, and nθ for both options are defined below.
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Comparison of the two different formulations. The multiplication by αβd−1 has the ad-
vantage that the resulting operator is in divergence form; however, for Pk to satisfy (3.5), one
requires additional assumptions. In particular, [GLSW24, Lemma 2.3] shows that (3.5) holds for
any fθ(r) satisfying the above assumptions in d = 2 and holds in d = 3 when fθ(r)/r is, in addition,
non-decreasing and [GLSW24, Remark 2.1] shows that such an additional assumption is needed.

If one instead integrates by parts the complex-scaled PDE directly (i.e., avoids the above multi-
plication), then the resulting sesquilinear form satisfies the G̊arding inequality after multiplication
by eiω, for some suitable constant ω [GLS24, Lemma A.6].

We highlight that, in other papers on PMLs, the scaled variable, which in our case is r + ifθ(r),
is often written as r(1 + iσ̃(r)) with σ̃(r) = σ0 for r sufficiently large; see, e.g., [HSZ03, §4], [BP07,
§2]. Therefore, to convert from our notation, set σ̃(r) = fθ(r)/r and σ0 = tan θ. In this alternative
notation, the assumption that fθ(r)/r is nondecreasing is therefore that σ̃ is nondecreasing – see
[BP07, §2].

The sesquilinear form after multiplication by αβd−1. Define bθ := 0,

Aθ :=
{
A in Ω,
HDHT in (BRPML,−)c

and nθ :=
{
n in Ω ∩BRPML,− ,

α(r)β(r)d−1 in (BRPML,−)c,
(A.3)

where, in polar coordinates (r, ϕ),

D =
(
β(r)α(r)−1 0

0 α(r)β(r)−1

)
and H =

(
cosϕ − sinϕ
sinϕ cosϕ

)
for d = 2,

and, in spherical polar coordinates (r, ϕ, φ),

D =

 β(r)2α(r)−1 0 0
0 α(r) 0
0 0 α(r)

 and H =

 sinϕ cosφ cosϕ cosφ − sinφ
sinϕ sinφ cosϕ sinφ cosφ

cosϕ − sinϕ 0


for d = 3. (observe that then A = I and n = 1 when r = RPML,− and thus Aθ and nθ are continuous
at r = RPML,−).

Lemma A.1 ([GLSW24, Lemma 2.3]) Let fθ satisfy (A.2) and the additional assumption when
d = 3 that fθ(r)/r is nondecreasing, given ε > 0 there exists c > 0 such that, for all ε ≤ θ ≤ π/2− ε,
Aθ defined by (A.3) satisfies

<
(
Aθ(x)ξ, ξ

)
2 ≥ c‖ξ‖

2
2 for all ξ ∈ Cd and x ∈ Ω;

thus the G̊arding inequality (3.5) holds.

The sesquilinear form without multiplication by αβd−1. Define

Aθ :=
{
A in Ω,
HDHT in (BRPML,−)c

and nθ :=
{
n in Ω ∩BRPML,− ,

1 in (BRPML,−)c,
(A.4)

where, in polar coordinates (r, ϕ),

D =
(
α(r)−2 0

0 β(r)−2

)
and H =

(
cosϕ − sinϕ
sinϕ cosϕ

)
for d = 2,

and, in spherical polar coordinates (r, ϕ, φ),

D =

 α(r)−2 0 0
0 β(r)−2 0
0 0 β(r)−2

 and H =

 sinϕ cosφ cosϕ cosφ − sinφ
sinϕ sinφ cosϕ sinφ cosφ

cosϕ − sinϕ 0


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for d = 3 (observe that then Aθ = I and nθ = 1 when r = RPML,− and thus A and n are continuous
at r = RPML,−). In addition, for d = 2,

bθ(r) =


0 Ω ∩BRPML,−

H

(
α−2( log(αβ)

)′
0

)
(BRPML,−)c,

and for d = 3

bθ(r) =


0 Ω ∩BRPML,−

H

α−2( log(αβ2)
)′

0
0

 (BRPML,−)c.

Lemma A.2 ([GLS24, Lemma A.6]) Let fθ satisfy (A.2). Given ε > 0 there exists ω ∈ R, c > 0
such that, for all ε ≤ θ ≤ π/2− ε, Aθ defined by (A.4) satisfies

<
(
eiωAθ(x)ξ, ξ

)
2 ≥ c‖ξ‖

2
2 for all ξ ∈ Cd and x ∈ Ω;

thus the G̊arding inequality (3.5) holds for the sesquilinear form eiωak(·, ·).

B Loop decompositions in directed graphs (Theorem 8.13)
Fix a matrix W ∈M(M ×M), let G be the graph associated to W as defined in §3.6 and T ? the
simple-path matrix of W . Denote by Pij the set of paths from i to j. Recalling the classical identity

(Wn)ij =
∑

p∈Pij s.t. |p|=n

Wp

and summing over n, one obtains that[∑
n∈N

Wn

]
ij

=
∑
p∈Pij

Wp,

provided that the right-hand side converges. The first inequality in (8.59) then follows immediately.
To prove the implication in (8.58) and the second inequality in (8.59), it is sufficient to show

that ∑
p∈Pij

Wp ≤
1

1− cT
?
ij (B.1)

B.1 Outline
We show (B.1) by constructing an injective map

Dec : Pij → Vij × SL(N)

where for any set A, A(N) denotes the set of finite ordered sequences of elements of A (possibly of
size 0). The map Dec is defined in Definition B.4 below, and its properties are stated in Lemma B.5.
It corresponds to a decomposition of every path p ∈ Pij into a non-intersecting segment v ∈ Vij
and a tuple of simple loops (L1, . . . , LQ) ∈ SL(N). The idea is that one obtains the decomposition
by recursively removing loops from p until the remainder is non-intersecting. If one defines

W(v,(L1,...,LQ)) := WvWL1 . . .WLQ , (B.2)

then it will be seen that Wp = WDec(p) for all p ∈ Pij . The proof of Lemma 8.13 is then obtained
as follows: ∑

p∈Pij

Wp =
∑
p∈Pij

WDec(p) =
∑

q∈Dec(Pij)

Wq ≤
∑

q∈Vij×SL(N)

Wq
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since Dec is injective. The last term can be rewritten as

∑
q∈Vij×SL(N)

Wq =
∑
v∈Vij

∞∑
Q=0

∑
L1,...,LQ∈SL

WvWL1 . . .WLQ =
∑
v∈Vij

Wv

∞∑
Q=0

(∑
L∈SL

WL

)Q
.

Therefore if
(∑

L∈SLWL

)
≤ c < 1, then∑

p∈Pij

Wp ≤
1

1− c
∑
v∈Vij

Wv = T ?ij .

B.2 Construction of the map Dec
For 1 ≤ ` ≤ m ≤ |p|+ 1, the splice of p between ` and m, denoted by p[`,m), is the path obtained
from p by only keeping the edges from ` to m− 1, that is

p[`,m) := e`e`+1 . . . em−1,

with the convention that p[`, `) = 0. Given two paths p = e1e2 . . . e|p| and q = f1f2 . . . f|q| such
that p(|p|+ 1) = q(1), the concatenation of p and q is defined by

p · q = e1e2 . . . e|p|f1f2 . . . f|q|,

with the convention that for all paths p, p · 0 = 0 · p = p. In particular, for all p, q ∈ P,

|p · q| = |p|+ |q|.

Furthermore, when m > `, p[`,m) is a path from p(`) to p(m), and for all 1 ≤ ` ≤ |p|+ 1,

p = p[1, `) · p[`, |p|+ 1).

If p(`) = i0 and Li0 is either 0 or a loop through i0, one can then define the insertion of Li0 in p at
index ` by

p
`
↼ Li0 := p[1, `) · Li0 · p[`, |p|+ 1).

To extract the first loop of a self-intersecting path, one can “follow” the path until some vertex
i× occurs for the second time. One then backtracks to the first occurence of that vertex, and the
splice in between those two occurences defines a simple loop that can be extracted from p. More
precisely, let

`×(p) := inf
{
` ∈ {1, . . . , |p|+ 1} : p(`) ∈ {p(1), . . . , p(`− 1)}

}
,

the index of first crossing. Note that `×(p) =∞ if, and only if, p is non-intersecting. If `×(p) <∞,
define i×(p) := p(`×(p)) the first crossing point of p, and

`0(p) := inf
{
` ∈ {0, . . . , |p|+ 1} : p(`) = i×(p)

}
the first index at which p visits i×(p). These definitions are illustrated in Figure B.1. Define the
maps L : P→ P and E : P→ P by
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• L(p) :=

p[`0(p), `×(p)) if `×(p) <∞,

0 if `×(p) =∞.

the first loop in p, and

• E(p) :=

p[1, `0(p)) · p[`×(p), |p|+ 1) if `×(p) <∞,

p if `×(p) =∞,

the remainder after extracting the loop L(p).

p(1) p(2)

p(10)

p(3) p(4)

p(5)

p(8)

p(9)

p(11)

p(6)
p(7)

Figure B.1: Example of a
self-intersecting path. Here,
`0(p) = 5 and `×(p) = 8.
The vertices of L(p) are high-
lighted in red.

The properties of L and E are summarized in the following lemma. The proof is immediate from
the definitions.

Lemma B.1 For all paths p,
p = E(p) `0(p)

↼ L(p),

|p| = |E(p)|+ |L(p)| and Wp = WL(p)WE(p).

The path p is non-intersecting if, and only if, L(p) = 0, in which case, p = E(p). Otherwise,
L(p) ∈ SL, |L(p)| ≥ 1 and

`0(p) = inf
{
` ∈ {0, . . . , |E(p)|+ 1} :

(
E(p)

)
(`) =

(
L(p)

)
(1)
}
.

If p ∈ Pij, then either

1. E(p) ∈ Pij, or

2. E(p) = 0, and this can only occur if i = j.

Define En(p) := E(En−1(p)), with E0(p) := p.

Corollary B.2 Let p ∈ P. Then there exists a unique number n0 ∈ N, the number of loops in p,
such that the following properties hold:

• either n0 = 0 or En0−1(p) 6= En0(p),

• for all n ≥ n0, En(p) = En0(p).

Proof. If En+1(p) 6= En(p), then by Lemma B.1, |En+1(p)| ≤ |En(p)| − 1. Since infinite sequences
of natural numbers cannot be strictly decreasing, the sequence (En(p))n must eventually stagnate.

Corollary B.3 The map

Dec : P× P(N) → P× P(N)

p, (L1, . . . , LQ) 7→ E(p), (L1, . . . , LQ, L(p))

is injective. If X ∈ P× P(N) and if WX is defined as in (B.2), then

WDec(X) = WX . (B.3)
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Proof. Suppose that

(E(p), (L1, . . . , LQ, L(p))) = (E(p′), (L′1, . . . , L′Q, L(p′)))

and let E = E(p) = E(p′) and L = L(p) = L(p′). To conclude, it suffices to show that p = p′ (since
it is obvious that Li = L′i for 1 ≤ i ≤ Q). There are two cases: either |L| = 0 or |L| ≥ 1. By
Lemma B.1, in the first case, E = p = p′. In the second case, since E(p) = E(p′) and L(p) = L(p′),

`0(p) = `0(p′) = inf
{
` ∈ {0, . . . , |E|+ 1} : E(`) = L(1)

}
=: `0

and p = p′ = E
`0↼ L. Thus in both cases, p = p′. The proof of (B.3) is immediate.

Definition B.4 (Loop decomposition of a path) Given p ∈ P, the loop-decomposition of p,
denoted by Dec(p) ∈ P× P(N), is defined by

Dec(p) := Decn0(p,∅)

where ∅ is the empty sequence of paths, and n0 is the number of loops in p.

Lemma B.5 For all p ∈ Pij, Dec(p) ∈ Vij × SL(N), and

WDec(p) = Wp. (B.4)

Furthermore, the map Dec : P→ V× SL(N) is injective.

Proof. Write Decn0(p,∅) = (v, (L1, . . . , Ln0)), and observe that v = En0(p). If v were self-
intersecting, then it would follow that En0+1(p) 6= En0(p), contradicting Corollary B.2. Thus,
v ∈ V. If p ∈ Pij then either i 6= j, in which case it follows by B.1 that v ∈ Vij , or i = j in which
case v = 0 (otherwise we would have an non-intersecting path in Pii, which is impossible). On the
other hand, one can check easily by induction that

L1 = L(p), L2 = L(E(p)), . . . Ln0 = L(En0−1(p)),

and thus, by Lemma B.1, for 1 ≤ i ≤ n0, Li is either 0 or a simple loop. But Li cannot be 0, since
this would imply that Ei−1(p) = Ei(p), contradicting again Corollary B.2. Thus L1, . . . , Ln0 ∈ SL.

The relation (B.4) follows immediately from (B.3).
Finally, suppose that Dec(p) = Dec(p′). Then p and p′ have the same number of loops

n0 (otherwise, the list of loops in their loop-decomposition could not be the same) and thus
Dec(p) = Decn0(p,∅), Dec(p′) = Decn0(p′,∅) and therefore

Decn0(p,∅) = Decn0(p′,∅)

But since Dec is injective (by Corollary B.3), Decn0 is injective, and thus it must be that p = p′.

C Proofs of the local bounds on the solution operator (The-
orems 4.1 and 4.2)

In this section we prove Theorems 4.1 and 4.2. In fact, we prove a stronger analogue of Theorem
4.1 phrased using semiclassical pseudodifferential operators – i.e., pseudodifferential operators in a
calculus where each derivative is weighted by k−1. Furthermore, because we work on a bounded
domain, we need a special class of pseudodifferential operators adapted to the boundary.

C.1 Pseudodifferential operators and b-pseudodifferential operators
C.1.1 Semiclassical pseudodifferential operators.

Semiclassical pseudodifferential operators are generalisations of Fourier multipliers acting as

Op(a)u(x) := 1
(2πh)d

∫
e
i
h 〈x−y,ξ〉a(x, ξ)u(y)dydξ,
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where, for some m ∈ R, a satisfies
|∂αx ∂

β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|α|.

In this case we write a ∈ Sm(T ∗Rd) and Op(a) ∈ Ψm(Rd). When m = 0 we write S(T ∗Rd) and
Ψ(Rd) respectively. This class of pseudodifferential operators is the natural class of operators
generalising quantization of b(x)(hD)α for some b ∈ C∞(Rd) and α ∈ Nd. For more details and
information about the calculus of such operators see e.g. [DZ19, Appendix E] and [Zwo12].

The class of b-pseudodifferential operators that we work with is, instead, the natural class of
operators quantizing differential operators that are tangential to the boundary of Ω+. Away from
∂Ω+ they are pseudodifferential operators in the sense above, but near ∂Ω+ they have a different
form. In particular, in coordinates (x1, x

′) with ∂Ω+ = {x1 = 0}, their symbols are functions on
the b-cotangent bundle, bT ∗Ω+, whose sections are of the form

σ
dx1

x1
+ ξ′dx′.

Notice that bT ∗Ω+ is the dual to sections of T ∗Ω+ that are tangent to ∂Ω+. We also write bT ∗Ω+
for the fiber radially compactified b-contangent bundle; i.e., bT ∗Ω+ with the sphere at infinity in
(σ, ξ′) attached.

In coordinates, b-pseudodifferential operators are of the form

Opb(a)(u)(x) = 1
(2πh)d

∫
e
i
h ((x1−y1)ξ1+(x′−y′),ξ′)φ(x1/y1)a(x1, x

′, x1ξ1, ξ
′)u(y)dydξ,

where φ ∈ C∞c (1/2, 2) with φ ≡ 1 near 1 and for some m

|Dα
xD

j
σD

β
ξ′a(x1, x

′, σ, ξ′)| ≤ Cjαβ〈(σ, ξ′)〉m−j−|β|.

In this case, we write Opb(a) ∈ Ψm
b (Ω+) and a ∈ Sm(bT ∗Ω+). When m = 0 we write S(bT ∗Ω+)

and Ψb(Ω+) respectively. We also write Ψ−∞b = ∩mΨm
b .

The class comes equipped with principal symbol map bσ : bΨm(Ω+) →
Sm(bT ∗Ω+)/hbSm−1(T ∗Ω+) such that if A ∈ Ψb(Ω+) and σ(A) = 0 then A ∈ hΨm−1

b (Ω+). We
now introduce two important sets for b-pseudodifferential operators. For A ∈ Ψm

b (Ω+) and
q ∈ bT ∗Ω+, we say q ∈ b Ell(A) if there is a neighbourhood, U of q such that

|σ(A)(q′)|〈(σ, ξ′)〉−m > c > 0, q′ ∈ U ∩ bT ∗Ω+.

Next, we say q /∈ b WF(A) if there is E ∈ bΨ(Ω+) with q ∈ b Ell(E) such that
EA ∈ h∞Ψ−∞b .

For a more complete treatment of these operators, we refer the reader to [HV18, Appendix A] and
the references therein.

C.1.2 The generalised bicharacteristic flow on bT ∗Ω+.

Let pθ ∈ S2(T ∗Ω) denote the semiclassical principal symbol of Pk and observe that on B(0, Rscat),
pθ =

∑
ij g

ij(x)ξiξj − 1, where g−1(x) = A(x)/n(x). We then let ϕt : πb{<pθ = 0} → πb{<pθ = 0}
be the generalised bicharacteristic flow for <pθ in the sense of [Vas08, Definition 1.1].

We are now in a position to define the forward and backward trapped sets Γ− and Γ+, respectively,

Γ± :=
{
q ∈ πb({<pθ = 0}) : sup{t > 0 : ϕ∓t(q) ∈ bT ∗Ω} =∞

}
,

as well as the trapped set,
K := Γ+ ∩ Γ−.

One can show that Γ± and hence K are closed (see e.g. [DZ19, Proposition 6.3]).
Remark C.1 For this flow to exist, we assume that ∂Ω has no infinite order tangency with the
Hamiltonian bicharacteristics of <pθ. By [Hör85, Theorem 24.3.9] this suffices for the flow to be
unique and by [Hör85, Example 24.3.11] uniqueness may fail in the opposite case.

We highlight that the definitions of K and Γ±, and the statements of Theorems C.3 and C.4
below can all be rewritten without the need for uniqueness of the flow (with the results of the theorems
still true); however, for simplicity we do not do this.
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C.2 Improved resolvent estimates
We can now state our improved estimates on the solution operator. Below, we use the notation
bΨ(Ω) for elements of bΨ(Ω+) whose kernels are supported away from Γtr.

Theorem C.2 Let k0 > 0, and let J be such that Assumption 1.2 holds. Then for all A ∈ bΨ(Ω)
with b WF(A) ∩K = ∅, there exists C > 0 such that, for all k ∈ (k0,∞) \ J ,

‖ARk‖L2→L2 + ‖RkA‖L2→L2 ≤ C
√
‖Rk‖k, ‖ARkA‖L2→L2 ≤ Ck.

Theorem C.3 Let k0 > 0 and let J be such that Assumption 1.2 holds. Then for all A,B ∈ bΨ(Ω)
with

b WF(A) ∪
⋃
t≥0

ϕ−t(b WF(A) ∩ πb({<pθ = 0})) ∩ b WF(B) = ∅, b WF(A) ∩ Γ+ = ∅

and all N > 0 there exists C > 0 such that, for all k ∈ (k0,∞) \ J ,

‖ARkB‖L2→L2 ≤ Ck−N .

Theorem C.4 Let k0 > 0 and let J be such that Assumption 1.2 holds. Then for all A,B ∈ bΨ(Ω)
with

b WF(A) ∪
⋃
t≥0

ϕt(b WF(A) ∩ πb({<pθ = 0})) ∩ b WF(B) = ∅, b WF(A) ∩ Γ− = ∅

and all N > 0 there exists C > 0 such that, for all k ∈ (k0,∞) \ J ,

‖AR∗kB‖L2→L2 ≤ Ck−N .

Proof of Theorem 4.1 using Theorems C.2-C.3. Part (i) of Theorem 4.1 follows immediately from
Theorem C.2. Part (ii) of Theorem 4.1 follows from Theorems C.3 and C.3 by choosing B = ψ
(i.e., the cutoff in K) and then noting that the choice A = χ (i.e., the cutoff in I) satisfies the
assumptions in Theorems C.3 and C.3.

C.3 Estimates away from the scatterer
We start by proving an estimate ‘deep’ in the PML region; i.e. near the truncation boundary.

Lemma C.5 There exists U ⊂ Ω such that U is a neighbourhood of Γtr and for all k0 > 0,
ψ, ψ̃ ∈ C∞(Ω) with suppψ, supp ψ̃ ⊂ U , ψ ≺ ψ̃, and supp(1−ψ)∩ ∂Ω = ∅, there exists C > 0 such
that for k > k0,

‖ψu‖H1
k
≤ C

(
‖ψ̃Pku‖L2 + Ck−N‖u‖H−N

k

)
. (C.1)

Proof. By [GLS23, Lemma 4.4], there is U with U a neighbourhood of ∂Ωtr such that for v ∈ H1
k(Ω)

with v|Γtr = 0 and supp v ⊂ U ,
‖v‖H1

k
≤ C‖Pkv‖L2 . (C.2)

Let ψj ∈ C∞c (U) be such that ψ1 ≺ ψ2 ≺ ψ̃ and supp(1− ψ1) ∩ supp ∂ψ = ∅. Applying (C.2) with
v = ψu, we obtain

‖ψu‖H1
k
≤ C‖Pkψu‖L2 ≤ C

(
‖ψPku‖L2 +

∥∥[Pk, ψ]u
∥∥
L2

)
≤ C

(
‖ψPku‖L2 + Ck−1‖ψ1u‖H1

k

)
(C.3)

Now, shrinking U if necessary so that

{x ∈ U : there exists ξ such that pθ(x, ξ) = 0} = ∅,

the elliptic parametrix construction [DZ19, Proposition E.32] implies that

‖ψ1u‖H1
k
≤ C‖ψ2Pku‖L2 + Ck−N‖u‖H−N

k
, (C.4)
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and the result follows by combining (C.3) and (C.4).

We now prove Theorem 4.2.

Proof of Theorem 4.2. The bound ‖χRk‖L2→L2 ≤ C follows immediately from (C.1), with the
bound ‖Rkχ‖L2→L2 ≤ C then following by applying the previous bound with Pk replaced by P ∗k .

The bound ‖χRkψ‖L2→H1
k
≤ Ck−N also follows immediately from (C.1), with then the bound

‖χRkψ‖L2→HN
k
≤ Ck−N following by elliptic regularity up to the boundary.

Finally, the bound ‖ψRkχ‖L2→L2 ≤ Ck−N follows by applying the bound ‖χRkψ‖L2→L2 ≤
Ck−N with Pk replaced by P ∗k , and then the bound ‖ψRkχ‖L2→HN

k
≤ Ck−N follows by elliptic

regularity up to the boundary.

Next, we prove an estimate near incoming points away from the truncation boundary.

Lemma C.6 Let m ≥ 2, χ ∈ C∞c (Ω \B(0, Rscat)) (where Rscat is defined by (A.1)). Then there
is ε > 0 such that for A,B ∈ Ψ0 with

WF(A) ∩
{〈

x
|x| , ξ

〉
≥ ε, pθ(x, ξ) = 0

}
= ∅,

WF(A) ∪
⋂
t≥0

{
(x− tξ, ξ) : (x, ξ) ∈WF(A) ∩ {pθ = 0}

}
∩ {pθ = 0} ⊂ Ell(B)

and N > 0, given k0 > 0 there exists C > 0 such that for all k ≥ k0

‖Aχu‖Hm
k
≤ Ck‖BPku‖Hm−2

k
+ Ck−N‖u‖H−N

k
.

Proof. Since
WF(A) ∩

{
〈 x|x| , ξ〉 ≥ ε, pθ(x, ξ) = 0

}
,

there is a neighbourhood, V of {pθ = 0} such that

WF(Aχ) ∩ V ⊂ {〈 x|x| , ξ〉 < 2ε}.

In particular, for (x, ξ) ∈WF(Aχ) ∩ V , and t ≥ 0,

|x− tξ|2 = |x|2 − 2t|x|〈 x|x| , ξ〉+ t|ξ|2 ≥ |x|2 − 4t|x|ε+ t2 ≥ |x|2(1− 2ε) + t2(1− 2ε).

Therefore, there is T > 0 such that for all (x, ξ) ∈ WF(Aχ) ∩ V , there is 0 ≤ t ≤ T such that
(x− tξ, ξ) /∈ {pθ = 0}. Using a microlocal partition of unity on WF(Aχ) ∩ V , {Xj}Nj=1, there are
0 < Tj ≤ T and Ej ∈ Ψcomp with WF(Ej) ⊂ {pθ 6= 0} ∩ Ωtr ∩ Ell(B) such that

{(x− tξ, ξ) : (x, ξ) ∈WF(AXjχ) ∩ V, 0 ≤ t ≤ Tj} ⊂ Ell(B)

and
{(x− Tjξ, ξ) : (x, ξ) ∈WF(AXjχ) ∩ V } ⊂ Ell(Ej).

Now, let X ∈ Ψcomp with WF(X) ⊂ V and WF(I −X) ∩ {pθ = 0} = ∅. Then, by the elliptic
parametrix construction [DZ19, Proposition E.32]

‖(I −X)Aχu‖Hm
k
≤ C‖BPku‖Hm−2

k
+ Ck−N‖u‖H−N

k
. (C.5)

On the other hand, using that X ∈ Ψcomp and then that =pθ ≤ 0 near pθ = 0, by [DZ19, Theorem
E.47] we have

‖XAXjχu‖Hm
k
≤ C‖XAXjχu‖H−N

k
+Ck−N‖u‖H−N

k
≤ Ck‖BPku‖L2 + ‖Eju‖L2 +Ck−N‖u‖H−N

k
.

(C.6)
Finally, since WF(Ej) ⊂ {pθ 6= 0} ∩ Ell(B), we have

‖Eju‖L2 ≤ C‖BPku‖L2 + Ck−N‖u‖H−N
k
. (C.7)
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Combining (C.5), (C.6), and (C.7), and summing in j,

‖Aχu‖Hm
k
≤ Ck‖BPku‖Hm−2

k
+ Ck−N‖u‖H−N

k
.

We now prove the key propagation lemma that allows us to improve resolvent estimates away
from trapping. In particular, we estimate u in an annulus away from Ω− but inside B(0, RPML−)

Lemma C.7 Let RPML+ > RPML− with B(0, RPML+) b Ωtr, a ∈ C∞c ((Rscat, RPML−)) and b ∈
C∞c (Rscat, RPML+) with

b ≡ 1 on {x ∈ (Rscat, RPML−) : x ≥ inf supp a}.

and define A = a(|x|), B = B(|x|). Then, for X ∈ bΨ0 with b WF(I −X) ∩ b WF(Pku) = ∅, given
k0 > 0 there exists C > 0 such that for all k ≥ k0

‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖BPku‖2L2 + CNk
−N‖u‖2L2 .

Proof. Let a, b1 ∈ C∞c ((Rscat, RPML−)) with a ≺ b1, supp b1 ∩ {b < 1
2} = ∅. Let b2 ∈

C∞c (Rscat, RPML+) with supp b2 ∩ {b < 1
2} = ∅ and

b2 ≡ 1 on
{
x ∈ (Rscat, RPML−) : x ≥ inf supp b1

}
.

Let A = a(|x|) and Bj = bj(|x|), j = 1, 2. We claim that

c‖Au‖2Hs
k
≤ Ck‖Pku‖L2‖Xu‖L2 + k2‖B2Pku‖2L2 + Ck−1‖B1u‖2L2 + Ck−N‖u‖2L2 . (C.8)

To establish (C.8), first let g ∈ C∞c (R) with supp g ⊂ [0, RPML−), g ≥ 0, g′ ≤ 0, supp g′ ⊂
(Rscat, RPML−) g′ ≤ −1 on supp a, and supp(1 − b1) ∩ supp g′ = ∅. Next, let E ∈ Ψ0 with
0 ≤ σ(E) ≤ 1, and

WF(E) ⊂
{

(x, ξ) : 〈 x|x| , ξ〉 < 2ε〈ξ〉
}
, WF(I − E) ∩

{
(x, ξ) : 〈 x|x| , ξ〉 < ε〈ξ〉

}
= ∅.

Finally, let b0 ∈ C∞c ((Rscat, RPML−) with g′ ≺ b0 ≺ b1.
Put G = g(|x|), B0 = b0(|x|) and consider

k=
〈
Pku,G

2u
〉

= k

2i
〈
[Pk, G2]u, u

〉
= k

2i
〈
B0[Pk, G2]B0B1u,B1u

〉
.

Now, define Z := k
2iB0[Pk, G2]B0 ∈ Ψ1 and observe that

σ(Z) = b20g(|x|)〈ξ, ∂xg(|x|)〉 = b20g(|x|)〈ξ, x|x| 〉g
′(|x|)

= b20

(
g(|x|)〈ξ, x|x| 〉g

′(|x|)(1− σ(E2)) + g(|x|)〈ξ, x|x| 〉g
′(|x|)σ(E2)

)
≤ b20

(
− cεa2〈ξ〉(1− σ(E2)) + g(|x|)〈ξ, x|x| 〉g

′(|x|)σ(E2)
)

≤ b20
(
− cεa2〈ξ〉+ Cσ(E2)|ξ|

)
≤ b20

(
− cεa2〈ξ〉+ Cσ(E2)〈ξ〉+ Cp2

θ

)
Therefore, by the microlocal G̊arding inequality [DZ19, Proposition E.34],

k

2i 〈[Pk, G
2]B1u,B1u〉 ≤ −cε‖B0AB1u‖2H1

k
+ C‖B0EB1u‖2H1

k
+ C‖B0PkB1u‖2L2 + Ck−1‖B1u‖2L2

Thus, since a ≺ b0 ≺ b1 and b WF(I −X) ∩ b WF(Pku) = ∅,

cε‖Au‖2L2 ≤ Ck‖Pku‖L2‖GXu‖L2 +C‖EB1u‖2H1
k

+C‖B1Pku‖2L2 +Ck−1‖B1u‖2L2 +Ck−N‖u‖2
H−N
k
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Then, by Lemma C.6,

cε‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖B2Pku‖2L2 + Ck−1‖B1u‖2L2 + Ck−N‖u‖2
H−N
k

as claimed in (C.8).
Now, suppose by induction that for a, b1 ∈ C∞c ((Rscat, RPML−)) with a ≺ b1 and b2 ∈

C∞c (Rscat, RPML+) with supp b2 ∩ {b < 1
2} = ∅ and

b2 ≡ 1 on
{
x ∈ (Rscat, RPML−) : x ≥ inf supp b1

}
,

we have, with A = a(|x|) and B1 = b1(|x|), B2 = b2(|x|),

c‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖B2Pku‖2L2 + Ck−L‖B1u‖2L2 + Ck−N‖u‖2
H−N
k

. (C.9)

Now, fix a, b1 ∈ C∞c ((Rscat, RPML−)) with a ≺ b1, and b2 ∈ C∞c (Rscat, RPML+) with supp b2 ∩
{b < 1

2} = ∅ and
b2 ≡ 1 on

{
x ∈ (Rscat, RPML−) : x ≥ inf supp b1

}
.

Then, by (C.9), letting b̃1 ∈ C∞c ((Rscat, RPML−)) with a ≺ b̃1 ≺ b1 and b̃2 ∈ C∞c (Rscat, RPML+)
with supp b̃2 ∩ {b2 < 1

2} = ∅ and

b̃2 ≡ 1 on {x ∈ (Rscat, RPML−) : x ≥ inf supp b̃1},

by (C.9) with A = a(|x|) and B̃1 = b1(|x|), B̃2 = b2(|x|),

c‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖B̃2Pku‖2L2 + Ck−L‖B̃1u‖2L2 + Ck−N‖u‖2
H−N
k

.

Now, by (C.8) with A replaced by B̃1,

c‖B̃1u‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck−1‖B1u‖2L2 + Ck−N‖u‖2
H−N
k

.

Hence,

c‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖B̃2Pku‖2L2 + Ck−L−1‖B1u‖2L2 + Ck−N‖u‖2
H−N
k

≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖B2Pku‖2L2 + Ck−L−1‖B1u‖2L2 + Ck−N‖u‖2
H−N
k

;

we have therefore obtained (C.9) with L replaced by L+ 1, and the result then follows by induction.

C.4 Estimates near the scatterer and away from trapping
Before proceeding, we record the following consequences of [Vas08, Proposition 4.6, Theorems 8.1
and 8.5].

Theorem C.8 Let A,E ∈ bΨ(Ω) with b WF(A) ∪ b WF(E) ⊂ Ωtr with b WF(A) ⊂ b Ell(E) and
b WF(A) ∩ bπ({pθ = 0}) = ∅. Then, for all k0 > 0 there exists C > 0 such that

‖Au‖L2 ≤ C‖EPku‖L2 + CNk
−N‖u‖L2

Proof. The estimate follows from [Vas08, Proposition 4.6] when b WF(A) ⊂ B(0, Rscat) and from the
standard elliptic parametrix construction [DZ19, Proposition E.32], when b WF(A) ∩ T ∗∂Ω− = ∅.

Theorem C.9 Let A,B,E ∈ bΨ(Ω) such that

b WF(A) ∪
T⋃
t=0

ϕ−t(b WF(A) ∩ πb({<pθ = 0}) ⊂ b Ell(E),
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and for all q ∈ b WF(A) ∩ πb({<pθ = 0}),
T⋃
t=0

ϕ−t(q) ∩ b Ell(B) 6= ∅.

Then, for all k0 > 0 there exists C > 0 such that

‖Au‖L2 ≤ Ck‖EPku‖L2 + ‖Bu‖L2 + CNk
−N‖u‖L2

Proof. The estimates follow from the combination of the propagation results in [Vas08, Theorem
8.1] (for Dirichlet boundary conditions on ∂Ω−) and [Vas08, Theorem 8.5] (for Neumann boundary
conditions on ∂Ω−) applied near the ∂Ω and [DZ19, Theorem E.47] applied away from ∂Ω−.

Our next lemma shows that, to measure u away from trapping, we need only have an estimate
for u in an annulus.

Lemma C.10 Suppose that A ∈ bΨ(Ω) and b WF(A)∩K = ∅. Then, for any Rscat < R1 < RPML−
and B ∈ C∞c (Ω) with supp(1−B) ∩ {|x| = R1} = ∅, given k0 > 0 there exists C > 0 such that for
all k ≥ k0

‖Au‖L2 ≤ Ck‖Pku‖L2 + ‖Bu‖L2 + CNk
−N‖u‖2L2 . (C.10)

Proof. First, by Lemma C.5 we may assume that
b WF(A) ⊂ Ωtr.

Next observe that if b WF(A) ∩ bπ({pθ = 0}) = ∅, then by the ellipticity results in Theorem C.8

‖Au‖L2 ≤ C‖Pku‖L2 + CNk
−N‖u‖L2 .

Therefore, we may assume that b WF(A) is contained in a small neighbourhood of bπ({pθ = 0}).
If b WF(A) ⊂ {B ≡ 1} then, by the elliptic parametrix [DZ19, Proposition E.32],

‖Au‖L2 ≤ C‖Bu‖L2 + Ck−N‖u‖L2 .

Therefore, using a partition of unity, we need only consider two cases: b WF(A) ⊂ {|x| > R1} and
b WF(A) ⊂ {|x| < R1}.

First, suppose that b WF(A) ⊂ {|x| > R1}. Let U be as in Lemma C.5. Then, there exists
T > 0 such that for all (x, ξ) ∈ b WF(A), there is t ∈ [0, T ] such that

ϕ−t(x, ξ) ∈ {B ≡ 1} ∪ {(x, ξ) : x ∈ U}

(i.e., flowing backwards, one either hits B ≡ 1 or the PML). In particular, by the propagation
results [DZ19, Theorem E.47] there is ψ ∈ C∞(U) with ψ ≡ 1 near Γtr such that

‖Au‖L2 ≤ Ck‖Pku‖L2 + ‖Bu‖L2 + ‖ψu‖L2 + Ck−N‖u‖L2 .

By Lemma C.5, we then obtain

‖Au‖L2 ≤ Ck‖Pku‖L2 + ‖Bu‖L2 + Ck−N‖u‖L2

as required.
Next, suppose b WF(A) ⊂ {|x| < R1}. Then, since b WF(A) ∩K = ∅, applying a partition of

unity again, we may assume there exists T > 0 such that for all (x, ξ) ∈ b WF(A), either there is
t ∈ [0, T ] such that

ϕt(x, ξ) ∈
{

(x, ξ) : B(x) > 1
2

}
,

⋃
s∈[0,t]

ϕs(x, ξ) ∈ B(0, RPML−),

(informally, one flows forwards from A, staying away from the PML region, and reaches where
B > 1/2 at time t) or there is t ∈ [0, T ] such that

ϕ−t(x, ξ) ∈
{

(x, ξ) : B(x) > 1
2

}
,

⋃
s∈[−t,0]

ϕs(x, ξ) ∈ B(0, RPML−).
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(informally, one flows backwards from A, staying away from the PML region, and reaches where
B > 1/2 at time t). The result (C.10) then follows by the propagation results of Theorem C.9.

Finally, we combine the above lemmas to show that we may estimate u away from trapping by
u near the wavefront set of Pku. In particular, this will improve the resolvent estimate when the
measurement is away from trapping.

Lemma C.11 Suppose that A ∈ bΨ(Ω) and b WF(A) ∩ K = ∅. Then, for any X ∈ bΨ0 with
b WF(I −X) ∩ b WF(Pku) = ∅, given k0 > 0 there exists C > 0 such that for all k ≥ k0

‖Au‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖Pku‖2L2 + CNk
−N‖u‖2L2 .

Proof. Let Rscat < R1 < RPML− and b ∈ C∞c (Rscat, RPML−) with supp(1 − b) ∩ {|x| = R1} = ∅.
Then, by Lemma C.10

‖Au‖2L2 ≤ Ck2‖Pku‖2L2 + C‖Bu‖2L2 + CNk
−N‖u‖2L2 ,

and, by Lemma C.7,

‖Bu‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖Pku‖2L2 + CNk
−N‖u‖2L2 ,

which completes the proof.

When the both the data and measurement are away from trapping, we can use the previous
lemma to improve our estimates further– all the way to a non-trapping type bound.

Lemma C.12 Suppose that b WF(Pku) ∩K = ∅, then for any A ∈ bΨ(Ω) with b WF(A) ∩K = ∅
given k0 > 0 there exists C > 0 such that for all k ≥ k0

‖Au‖L2 ≤ Ck‖Pku‖L2 + Ck−N‖u‖L2 .

Proof. Let Ã,X ∈ bΨ(Ω) with b WF(I −X) ∩ b WF(Pku) = ∅, b WF(Ã) ∩K = ∅, and b WF(I −
Ã) ∩ (b WF(A) ∪ b WF(X)) = ∅. By Lemma C.11,

‖Ãu‖2L2 ≤ Ck‖Pku‖L2‖Xu‖L2 + Ck2‖Pku‖2L2 + Ck−N‖u‖L2 .

Then, by the elliptic parametrix construction in the b-calculus [GW23, Equation 3.11] (see also
[HV18, Appendix A]),

‖Xu‖L2 ≤ C‖Ãu‖L2 + Ck−N‖u‖L2

Combining the last two inequalities and using the inequality (5.5), we obtain that

‖Ãu‖2L2 ≤ Ck2‖Pku‖2L2 + Ck−N‖u‖2L2 .

Finally, since Ã is elliptic on WF(A),

‖Au‖L2 ≤ C‖Ãu‖L2 + Ck−N‖u‖L2 ,

which completes the proof

C.5 Proof of Theorem C.2
To prove the first bound in Theorem C.2, let u = Rkf . Then, by Lemma C.11 with X = I,

‖Au‖2L2 ≤ Ck‖Pku‖L2‖u‖L2 + Ck2‖Pku‖2L2 + CNk
−N‖u‖2L2

≤ Ck‖Rk‖L2→L2‖f‖2L2 + Ck2‖f‖2L2 + CNk
−N‖Rk‖2L2→L2‖f‖2

≤ C(k‖Rk‖L2→L2 + k2)‖f‖2L2 .

In particular,
‖ARk‖L2→L2 ≤ C(

√
k‖Rk‖L2→L2 + k) ≤ C

√
k‖Rk‖L2→L2 ,
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where the last inequality follows since ‖Rk‖L2→L2 ≥ ck.
Reversing the direction of the flow in all of the above lemmas (or, equivalently, applying the

above results to −P ∗k ), the proof of Lemma C.11 also yields

‖A∗u‖2L2 ≤ Ck‖P ∗k u‖L2‖u‖L2 + Ck2‖P ∗k u‖2L2 + CNk
−N‖u‖2L2 .

Therefore, putting u = R∗kf , and arguing in the same way as above, we obtain

‖RkA‖L2→L2 = ‖A∗R∗k‖L2→L2 ≤ C
√
k‖Rk‖L2→L2 .

To prove the second bound in Theorem C.2, let u = RkAf . Then, by Lemma C.12, since
Pku = Af , and b WF(A) ∩K = ∅,

‖Au‖L2 ≤ Ck‖Af‖L2 + Ck−N‖u‖L2 ≤ Ck‖f‖L2 + Ck−N‖Rk‖L2→L2‖f‖L2 .

C.6 Proof of Theorems C.3 and C.4
Proof of Theorem C.3. Since b WF(A) ∩ Γ+ = ∅ there exists T > 0 and B1 ∈ Ψ(Ω) such that
WF(B1) ⊂ ((T ∗Ω \ T ∗B(0, Rscat))∩ {pθ 6= 0}) \ b WF(B) and for all q ∈ b WF(A)∩ πb({<pθ = 0}),

T⋃
t=0

ϕ−t(q) ∩ Ell(B1) 6= ∅

(informally, B1 is supported in the PML region away from B, and flowing backwards from A one
hits B1). In addition, since

b WF(A) ∪
T⋃
t=0

ϕ−t
(
b WF(A) ∩ πb({<pθ = 0})

)
∩ b WF(B) = ∅,

there exists E ∈ bΨ(Ω) such that

b WF(A) ∪
T⋃
t=0

ϕ−t
(
b WF(A) ∩ πb({<pθ = 0})

)
⊂ b Ell(E), b WF(E) ∩ b WF(B) = ∅.

Therefore, applying Theorem C.9 with u = RkBf , and then using both b WF(E) ∩ b WF(B) = ∅
and Assumption 1.2, we obtain

‖Au‖L2 ≤ Ck‖EBf‖L2 + C‖B1u‖L2 + CNk
−N‖u‖L2 ≤ ‖B1u‖L2 + CNk

−N‖f‖L2 . (C.11)

The elliptic parametrix construction [DZ19, Proposition E.32] then implies that

‖B1u‖L2 ≤ C‖B1Bf‖L2 + CNk
−N‖u‖L2 ≤ CNk−N‖f‖L2 . (C.12)

Combining (C.11) and (C.12), we obtain that

‖Au‖L2 ≤ CNk−N‖f‖L2

and the result ‖ARkB‖L2→L2 ≤ CNk−N follows.

The proof of Theorem C.4 is nearly identical with Pk replaced by −P ∗k .
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[Sch12] K. Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265. Springer Science &
Business Media, 2012.

[Vas08] A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Annals of
Mathematics, 168:749–812, 2008.
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