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Abstract

The h-version of the finite-element method (h-FEM) applied to the high-frequency Helmholtz
equation has been a classic topic in numerical analysis since the 1990s. It is now rigorously
understood that (using piecewise polynomials of degree p on a mesh of a maximal width h) the
conditions “(hk)?p sufficiently small” and “(hk)??p sufficiently small” guarantee, respectively,
k-uniform quasioptimality (QO) and bounded relative error (BRE), where p is the norm of
the solution operator with p ~ k for non-trapping problems. Empirically, these conditions are
observed to be optimal in the context of h-FEM with a uniform mesh. This paper demonstrates
that QO and BRE can be achieved using certain non-uniform meshes that violate the conditions
above on h and involve coarser meshes away from trapping and in the perfectly matched layer
(PML). The main theorem details how varying the meshwidth in one region affects errors both
in that region and elsewhere. One notable consequence is that, for any scattering problem
(trapping or nontrapping), in the PML one only needs hk to be sufficiently small; i.e. there is
no pollution in the PML.

The motivating idea for the analysis is that the Helmholtz data-to-solution map behaves
differently depending on the locations of both the measurement and data, in particular, on the
properties of billiards trajectories (i.e. rays) through these sets. Because of this, it is natural
that the approximation requirements for finite-element spaces in a subset should depend on
the properties of billiard rays through that set. Inserting this behaviour into the latest duality
arguments for the FEM applied to the high-frequency Helmholtz equation allows us to retain
detailed information about the influence of both the mesh structure and the behaviour of the
true solution on local errors in FEM.
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1 Introduction

1.1 The main result in its simplest form

The scattering problem and its finite-element approximation using a PML. We study
computing approximations to the solution of sound-soft or sound-hard scattering problems using
the finite-element method with non-uniform meshes. We consider scattering by an open obstacle
Q_ € R? with smooth boundary and connected complement, Q. := R4\ Q_: given f € L2 (Qy),

P comp
find u € HL (Q4) such that
—k2div(AVu) —nu = fin Qy,  (Bu)lag, =0, (k70 —i)u=o0,400(r' ), (L1)

where A is a smooth, symmetric, positive-definite matrix with real coefficients, n € C>°(Q;R,),
supp(A — I) Usupp(n — 1) € Q4, and Bu = u in the sound-soft case and Bu = d,u, with v the
normal to €24 in the sound-hard case.

We approximate the Sommerfeld radiation condition using a radial perfectly matched layer
(PML): let Q;, € R? be open and contain the closed convex hull of Q_ Usupp(A—1I)Usupp(n—1). We
truncate the problem (1.1) to the computational domain Q := Q4 Ny, and apply the finite-element
method to the problem: given f € L?(2), find u € H'(£2) such that

P = —k 2 div(AgVu) + k™ 2bg - Vu — ngu = f in Q, (Bu)|sa, =0, uloq,, =0, (1.2)

where Ay, by, and ny are defined in §A (and Ay, by, and ng are respectively A, 0, and n in the
non-PML region). Let ag(-,-) be the sesquilinear form associated with (1.2).

Definition 1.1 Given a subspace V. C HY(Q) N H}(Q4) (or HE(Q) in the sound-soft case), a
finite-element/Galerkin solution of (1.2) is an element up, € V' such that

a(up,wp) = {(f,wp)  for all w, € V. (1.3)

Let
p = p(k) :=sup {||u||L2(Q) s wsolves (1.2) with || f]|z2) = 1}.

Recall that, with the normalisation used in (1.1), for all kg > 0 there exists ¢ > 0 such that
p(k) > ck for k > ko. By [GLS23, Theorem 1.6], for a radial PML (defined in §A), there exist
C, k1 > 0 such that for & > k; and x = 1 on the convex hull of €,

p < CSUp{HXU||L2(Q+) : wsolves (1.1) with [[xfllr2+) = 1};

i.e. the PML solution operator is controlled by the scattering solution operator.

Assumption 1.2 The set J C Ry, Q_, Ay, by, and ng are such that there are C > 0, N > 0 such
that p(k) < CkN fork e Ry \ J.

By [LSW21] and [GLS23, Theorem 1.6], for any § > 0, Assumption 1.2 holds for a radial PML, any
(Q_, A,n), and some J5 with |Js5] < 6.



State-of-the-art analysis of the h-FEM. The h-version of the finite-element method (FEM)
considers the Galerkin solution to (1.2) with V' given by the space of piecewise polynomials of a
fixed degree, p, on a mesh with maximum width h. The accuracy of the solution is then increased
by decreasing h.

Many authors have studied k-explicit conditions on the meshwidth guaranteeing that the finite-
element solution exists and has controlled error. The best existing result is the following: if (hk)*p
is sufficiently small, then for m € {0,...,p — 1},

o=l < O+ (k) ind =y (1.4)

k
This estimate was proved for general Helmholtz problems and general p € Z* in [GS25] (with earlier
work in [FW09, MS10, FW11, MS11, Wul4, DW15, BCFG17, LW19, CFN20, Pem20, CFGT22,
LSW22a]) and is empirically sharp when the mesh considered has uniform width h. The bound (1.4)
implies that if p(hk)? is bounded then the FE solution is quasi-optimal (QO) in the sense that
|lu — uh||H;(Q) is, up to a constant, the best-approximation error. Since p 2 k, the requirement

p(hk)P < 1 implies that hk < p'/P < k~1/P— this fact that hk must decrease with k is the pollution
effect [BS00].
Using standard piecewise-polynomial approximation results in the right-hand side of (1.4), one
obtains that
o= unll -y < O ((BR)™ + p(BR)? ) ()P ] 1 . (1.5)

If the data is k-oscillatory, then so is the solution (by elliptic regularity; see [GS25, Page 9]), with
||u||H£+1(Q) < Cllull g1 (). In this case, (1.5) implies that the Galerkin solution has bounded relative

error (BRE) if (hk)?Pp is sufficiently small. We highlight that this threshold for BRE was famously
identified for 1-d problems in the work of Thlenburg and Babuska [IB95, IB97] (see [IB97, Page 350,
penultimate displayed equation], [Th198, Equation 4.7.41]).

To date, all k-explicit a priori analyses of the h-FEM consider uniform meshes. The goal of this
paper is to study non-uniform meshes, designed by considering the ray dynamics in Q2 , and give
local — as opposed to global — criteria on the meshwidths. In particular, we show that there exist
meshes that obtain QO/BRE while severely violating the mesh thresholds above, and thus involve
many fewer degrees of freedom (see Table 1.1 below).

Subsets of 2 defined by ray dynamics. We define billiard trajectories to be geodesics for
the metric g=! = A/n in Q, continued by reflection with respect to g at the boundary of Q21—
when A = I and n = 1, these are straight line paths continued using the Snell-Descartes law at the
boundary. Next, we define the cavity K C Q as the set of points z € Q0 such that there is a billiard
trajectory passing over x that remains in a compact set for all positive and negative times. We also
define the wvisible set V C 1 as those points = € € such that there is a billiard trajectory passing
over x that remains in a compact set for all positive times or all negative times. Finally, we define
the invisible set T := Q, \ (VUK) (the adjectives visible and invisible are relative to the cavity).
Let Qp C Q2 be an open neighbourhood of 9, that is strictly contained in the PML. Next, let Qx,
) and Q7 be open neighbourhoods of the intersections with Q of, respectively, I, V' \ (K U Qp),
and Z \ Qp in the subspace topology of Q such that Qx N O, = Dy NIV, = Q7 N O, = 0.

The finite-element space. Given a mesh, 7 of Q, we define hi, hy, hz, hp > 0, to be upper
bounds for the diameter of any mesh element that intersects Qx, 2y, Q7, and Qp respectively,
and let h := max{hg, hy, hz, hp}. Since Q is C>°, some elements of the mesh need to be curved;
however, our results can, in principle, be combined with those of [CFS25] to prove results about
simplicial meshes. Let v(7) denote the shape-regularity constant of the mesh T (see, e.g., [BS08,
Equation (4.4.16)]). We define the following measure of local uniformity of the mesh at scale € > 0:

diam(77)
U(T,¢) :=su su e
(Te) vet 7 moer diam(Th)
TyNB(z,e)#0
ToNB(z,e)=0

n fact, we use a somewhat more complicated notion, the generalised broken bicharacteristic [Hor85, Section
24.3].



Figure 1.1: The domains Qx, Qy,, Qz, and Qp, when Q_ consists of two (rounded) aligned rectangles

We say that a family of meshes (T;)r>o is wavelength-scale quasiuniform with constant vo > 0 if
the mesh is shape regular with y(7;.) > vo and U(T, (1 + k)~') < 45" for all k > 0.

For a mesh 7 and p € {1,2,...}, we denote by V¥ C Hj(Q) (or Hj(Qy) N H*(Q) in the
sound-hard case) the space of Lagrange piecewise polynomials of degree p on the mesh 7.

The main result in its simplest form. Define

p Vkp 0 0 he 0 0 0 1111
VR k kO o nmn o0 0 - 1111
C=1% &% kol =0 0o n ol 111 1]
0 0 01 0 0 0 hp 1111 16)
1 (hyk)>*Ep  (hyk)?*Ep(hzk)?k 0 '
7 (hick)?P/Ep 1 (hzk)?Pk 0
| (hek)2Ep(hyk)?PE (hyk)?PE 1 0
0 0 0 1

Conceptually, C is the norm of the localised data-to-solution map (with C standing for “communica-
tion”) and .7 controls the propagation of Galerkin errors between subdomains according to the
graph in Figure 9.1 (with a simplified version — Figure 1.2 — given in the sketch of the proof in

§1.3.2).
We work in k-weighted Sobolev spaces defined for U ¢ R? by
[ E20%u) 2y, mEN, (1.7)
k
le|<n

and let H, "(U) be the normed dual of H}}(U).
The following is a particular case of our main result (Theorem 3.11 below).

Theorem 1.3 Let ko, N,y >0, p € N\ {0}, J C Ry such that Assumption 1.2 holds, and let ',
be compactly contained in Q, with respect to the subspace topology of Q, x € {K,V, T, P}.

There exist ¢,C > 0 such that for all families of meshes (Tr)r>0 that are wavelength-scale
quasiuniform with constant vy and satisfy

(hick)? p(k) + (hyk)?k + (hzk)?Pk + (hpk)?P < c, (1.8)

all k € (ko,00) \ J, and all wy, € V., with x € {K,V,I,P}, the Galerkin solution, u, € V7,
to (1.2) exists, is unique, and satisfies, for 0 < m < p,

= w3 I = on el
||u—uh|| 1—m ’ uw—w

T < e nym 4 TR + kY (b)) e =wnvllmon | )
[ lu —wnzll g1 00

= wn | gra=m g, u—wnpllm(0p)



where the inequality in (1.9) is understood component-wise.

Remark 1.4 From the estimate (1.9) and the interpretation of 7 as the propagation of Galerkin
errors, the matriz C(Hk)P should be viewed as mapping best approzimation errors to Galerkin errors.
This appears more concretely in the proof of Theorem 1.3 and we discuss this interpretation in
§1.3.3.

To the best of the authors’ knowledge, Theorem 1.3 and its more sophisticated analogue
Theorem 3.11 are the first results concerning k-dependent, non-uniform finite-element meshes in the
context of the Helmholtz equation. For a uniform mesh (hx = hy = hz = hp = h) (1.9) implies
the strongest previously-known bound (1.4). Indeed, for a uniform mesh with (hk)??p sufficiently
small, all the elements of the matrix 7 are bounded by a constant, and all the elements of € (Hk)?
are bounded by p(hk)P. However, Theorem 1.3 provides much more information than (1.4): it
describes how the best approximation errors and local meshwidth in each region affect the Galerkin
error in all other regions. Section 1.2 highlights some notable consequences of this description, with
Section 2 illustrating these numerically.

Theorem 1.3 is most interesting when p(k) > k, which is equivalent to the problem being
trapping, i.e., K # 0 (see [BBR10], [DZ19, Theorem 7.1]). In particular, Theorem 1.3 shows
that in the trapping case there exist meshes with (hk)Pp > 1 whose finite-element solutions have
guaranteed k-uniform quasioptimality (see Corollary 1.11). Even when K = (), Theorem 1.3 gives
new information including that one needs only a fixed number of points per wavelength in the PML.

To compare with the estimate (1.5) on relative error, we state the following corollary of
Theorem 1.3 which follows from standard piecewise-polynomial approximation estimates.

Corollary 1.5 Let ko, N,y > 0, p € N\ {0}, J C Ry such that Assumption 1.2 holds, and let
Q. be compactly contained in €, with respect to the subspace topology of Q, x € {K,V,T,P}.

There exist ¢,C > 0 such that for all families of meshes (Ti)r>o0 that are wavelength-scale
quasiuniform with constant vo and satisfy (1.8) and all k € (kg,00) \ J, the Galerkin solution,
up, € Vpk, to (1.2) exists, is unique, and satisfies, for 0 < m < p,

l|u— uhHH;_m(Q;C) HU”H{:“(Q,C)

l[u— uhHH;-m(va) Hu||H£+1(QV)

< C|(HE)™ + FC(HE" + k‘N(hkz)mﬁ‘} (HE)P (1.10)

e = unll g2 e lell iz 0z

l[u— uhHH;*"L(Q'P) HUHH}:“(QP)

As with (1.5), when the data, f, is k-oscillatory, so is the solution u, and in this case, [[ul gr+1 gy <

k
Cllull gy vy for U" € U. Hence, one can use (1.10) to find meshes with (hk)?Pp > 1 that nevertheless
have guaranteed control on the relative error (see Corollary 1.12).

Remark 1.6 (Improvements in Theorem 3.11) Theorem 3.11 below is stronger than Theorem
1.3 in that it considers arbitrary covers of Q, and bounds the high (> k) and low (S k) frequencies
of the Galerkin error separately. Two situations in which a more complicated cover is advantageous
are the following. 1) There are two or more cavities that are dynamically separated, i.e., for which
there is no billiard trajectory whose closure insects both cavities. 2) One has a priori information
about the data and/or solution and hence can obtain good control on the right-hand side of (1.9).
Even when KK = 0, such information combined with Theorem 1.3 allows one to define meshes with a
priori improved accuracy in some regions, without the need to choose a small meshwidth everywhere.

1.2 Special cases of Theorem 1.3

We now apply Theorem 1.3 in several special cases, and derive consequences regarding quasi-
optimality and bounded relative errors. For simplicity, we state these results for m = 0, i.e., we
bound the H ,i norm of the Galerkin error. The results of this section are summarised in Table 1.1.
Define
M =1+ TC(HE)?P, MrE = M (HE)P,



and set Aq = A (1 1)T, MREQ = MRE (1 1)T. With these definitions, the terms
in square brackets on the right-hand sides of (1.9) and (1.10) become, respectively, [.#Z + k~V.Z]
and [Arg + k% (Hk)P] and, in particular, imply that

_ , T

= w2 [///Q FEN (1 1) ] inf | JJu = wi my(e)
Hu—uhHH;(Q/V) C< eV,

lu — Uh||H;(Q’I) y T

lw — wnll 2 o) {///RE,Q + k=N (hE)? (1 . 1) ] ||uHH£+1(Q) .

Bounds for the coarsest meshes allowed by Theorem 1.3.

Corollary 1.7 (Bound on the quasi-optimality constant) Under the same assumptions as

Thoerem 1.3,
VB VB VP VP
vk VE vk

vk VE vk
0 0 1

M <L C

0
0 ) %QSO
0
1

%%

Corollary 1.8 (Bound on the relative error) Under the same assumptions as in Theorem 1.3,
forall e < c, if (Ty)rk>0 satisfies

(hick)?? p(k) + (hyk) 2k + (hzk)®k + (hpk)? < e,

then . .
1 JZ JZ 0
k \/1; \/1; 0 oIk
MrE < Cy/e Z , MrEo < Cye }
G 1
0 0 0 1

Estimates for uniform meshes. For quasi-uniform meshes hx = hy = hz = hp =: h, recall from
§1.1 that the known mesh conditions for ensuring k-uniform quasioptimality or a controllably-small
relative error of the Galerkin solution are, respectively

(hk)Pp(k) < c, (hk)*p(k) < c,

for ¢ > 0 sufficiently small, with the former regime known as the asymptotic regime. Here we show
that these thresholds also ensure better error estimates for the Galerkin error away from trapping.

Corollary 1.9 (Asymptotic estimates) Under the same assumptions as Theorem 1.3, if Ty
satisfies hxe = hy = hz = hp = h, with (hk)Pp < ¢, then

k k\2 1
1 s (5)F5 0
k k
(Byzl 1 0
p’p P
0 0 0 1

Corollary 1.10 (Preasymptotic estimates) Under the same assumptions as Theorem 1.3,
there exists C > 0 such that for all 0 < e < ¢ if (Tx)r>0 satisfies hx = hy = hg = hp = h,
with (hk)*p < e, then

k A
1 b (;) 0
k k 1 k
M <OVE| Vo ;t? o 0. (1.11)
(%) () s+ 5 ?
0 0 0o =



Weakest conditions guaranteeing k-uniform quasi-optimality and controllably-small
relative error.

We proceed by identifying the minimal thresholds under which Theorem 1.3 guarantees that (i) the
Galerkin solution is quasi-optimal, uniformly in k, and (ii) the relative error is controllably small.

Corollary 1.11 (Threshold for k-uniform quasi-optimality) Under the same assumptions
as Theorem 1.3, if (Tk)k>o0 satisfies

(hck)Pp + (hvk)P\/kp + (hzk)PEk + (hpk)?P < c, (1.12)
then .
1 1 — 0
N

oo 1 0

M <C P (1.13)
1 [k k
WEE 0
0 0 0 1

Corollary 1.12 (Threshold for bounded relative error) Under the same assumptions as
Theorem 1.3, there exists C > 0 such that for all 0 < e < ¢ if (Tg)r>0 satisfies

(hick)?Pp + (hyk)?\/pk + (hzk)?k + (hpk)? < ¢, (1.14)
then
1 1 1 0
k k 1
Mg < Cy/e kp \/:+k(pk)l/4 LY (1.15)
0 0 0 1

In particular, ||u — uh”Hé(Q)/H“”Hﬁ“(Q) is bounded.

Remark 1.13 In Corollaries 1.8 and 1.10 one can track how the matriz entries depend on €, but
we do not do this here for simplicity.

Condition guaranteeing quasi-optimality away from trapping. We finally give the weakest
condition under which Theorem 1.3 ensures that the quantities

||U—uh||H;(Q§,) ||U—Uh”H;(Q'I) (1.16)
: ) . .
Ihneu\}; ||U*whHH;(Q) w?é%““*wh“%(m

remain k-uniformly bounded. We refer to these quantities as the quasi-optimality constants “away
from trapping”. These quantities should not be confused with “local quasi-optimality” constants
(which would be defined with Q) and Q7 instead of 2 in the denominators of (1.16)).

Corollary 1.14 (Threshold for k-uniform “quasi-optimality away from trapping”)
Under the same assumptions as Theorem 1.3, if (Tg)r>0 satisfies

(hick)P\/kp + (hwk)Pk + (hzk)Pk + (hpk)? < c, (1.17)
then . .
i e ey *
. < .
M < C 1 1 1 0 and Mo <C 1 (1.18)
0 0 0 1 1



more DoFs

fewer DoFs

Remark 1.15 [t is natural to look for the analogous weakest condition guaranteeing a controllably
small k-uniform bound on the “relative error away from trapping”, defined by

lw —wnllmyry e —unllg

, (1.19)
[l g1 ) [ull gr+1 ()
(again not to be confused with “local relative errors” which would involve ||“||H;(vaﬂ) and

”u”Hé(QIﬁQ) in the denominators). However, these quantities are already bounded under the
weakest possible condition in Theorem 1.3, see Corollary 1.8.

Mesh threshold Asymptotic DoFs | Theoretical guarantee Name
(hick)?p + (hvk)Pp + (hzk)Pp = c VOl(Q)kdp% k-QO U1l
(hick)Pp + (hvk)PEp + (hzk)Pk = ¢ vol(Qc )k p¥ k-QO QO

(hick)?VEkp + (hvk)Pk + (hzk)Pk = ¢ VO](QK)kd'*‘ﬁp% k-QO away from trapping | QO away

(hick)*Pp + (hvk)*Pp + (hzk)*Pp = ¢ vol(Q)kdps CRE U2
(hick)? p+ (hvk)VEp + (hzk)*k = ¢ | vol(Qx)kep?s CRE RE
(hick)? p + (hvk)Pk + (hzk)Pk = ¢ vol(Q;c)kdp% CRE away from trapping RE away

Table 1.1: Summary of the special cases of Theorem 1.3 discussed in this section, with K # 0.
Note that in all cases we require hpk = ¢ which does not contribute to the asymptotic number of
degrees of freedom (DoFs). Here, k-QO stands for k-uniform quasioptimality, and CRE stands for
controllably-small relative error.

1.3 Discussion of the ideas behind Theorem 1.3 and a sketch of the proof
1.3.1 The ideas behind Theorem 1.3

The following two important phenomena motivate Theorem 1.3.

1. The solution operator Pk_1 reflects the billiard dynamics in 2. In particular, for xi1,x2 €
C>°(€2) the operator x1 P, 1x2 behaves differently depending on the locations of supp Xj; €8
| P || > k when Qi # 0, but if both y; and 2 are away from Qg then ||x1 P, ' xall 222 S k-

2. The Galerkin error propagates. The best possible situation would be local quasioptimality
i.e., there exists C' > 0 such that the Galerkin solution uy satisfies, for every U C ,

lu = unllm ) < Cwigﬂ’ lu = wall g v)- (1.20)
£

In this case, since approximation of oscillatory functions by piecewise polynomials is well
understood (see [Gal25] and the references therein), the properties of the data and behaviour
of P, would dictate the meshwidth in each region. Unfortunately (1.20) cannot hold for
general meshes. Indeed, suppose that (1.20) holds and let ¢, ¢1,d2 € C°(€2) be such that
supp¢ C {¢1 =1}, ¢ # 0, and ¢1 + ¢2 =1 on Q. Then,

$u—upn) =Y P ¢;Pe(u — up). (1.21)

j=1

We now consider a situation where 7 has arbitrarily small elements on supp ¢; =: £ so that,
by (1.20),
v —unllg1(a,) < Cwilelf/ﬁ v = wal g0, < 1.




In particular,
[ p(u —un)ll 3 + 1Py 1 Pr(u — up) |y < 1

(by continuity of Py, and P, ' and locality of P;). Then, (1.21) implies that
[Py o Py(u — up)| g1 < 1,

which cannot be true unless the meshwidth is also sufficiently small on Qs or ¢.P Lo ~ 0.
By Item 1, the latter is not the case whenever supp ¢ and supp ¢o are connected by a billiard
trajectory. (For a striking illustration of this propagation of error, see [AGS24, Figure 3].)

This argument indicates, not only that the Galerkin error propagates, but that the norm of
the operator ¢.P, L ¢, determines the strength of propagation from supp ¢o to supp ¢.

Item 1 motivates varying the meshwidth from one location to another, but Item 2 shows that, to
be effective, this strategy must take into account the global behaviour of billiard trajectories. In
particular, by Item 2, the error in the cavity is not just dictated by the meshwidth in the cavity —
the meshwidth also needs to be sufficiently small away from the cavity to control the propagating
error.

1.3.2 Sketch of the proof of Theorem 1.3

For simplicity, we consider here the bound (1.9) with m = p and ignore improvements that are
possible in the overlaps between subdomains, in the PML region, and by splitting the frequencies
of the Galerkin error into those > k and < k.

The proofs of Theorem 1.3 and Theorem 3.11 are, at heart, localised versions of the elliptic
projection-type argument introduced in [GS25]. We first recap this argument and prove (1.4) for
m = p. The key insight in [GS25] is the existence of a self-adjoint smoothing operator Sy so that
P,g := Py, + Sy, is coercive (uniformly in k) and for all N there exists C' > 0 such that for k > kg

HSkHH;NaH,ﬁ’ <cC

(see (5.12) for the definition of the operator Si). Since P,g is coercive there is an elliptic projection
IT} : H! — V2 such that

<P£wh, (I—- Huk)u> =0 forallw, € Vi (1.22)

and there exists C' > 0 such that for all k > kg
I-11¢ <C inf — 1.23
0T ol < ©inf, o= wnlg (1.23)

(i.e. Hi is the adjoint Galerkin projection associated to P,S) Moreover, by an Aubin—Nitsche-type
duality argument
_ 17t o < p s _
[Tl v < kY inf o= iy (1.24)

Tk

It follows from (1.22) and Galerkin orthogonality (1.3) that for all wy, € V2, v € H,ffl,

(u—up,v) = <Pk(u —up), R};v>
= (Pe(u—un), (I ~ I} Rjw) (125
= (PHu—up), (I — 1) Riv) — (S(u — ), (I — L) Riw) '
= (Pi(u—wy), (I — ) Rv) — (S(u —up), (I — IIL) Rjw).
By (1.23), (1.24), and the mapping properties Sy : H,;pﬂ — H!"" and P,g P
[ — up,v)] < Cnp(whigf% = wnllimg + (APl = wnll o Y 1ol -1,
||RZ’U —whHHl (126)
where 7, := sup inf ———*
O;ﬁvEH:_l u)hEV%C H/U”H];;‘—l



By duality, (1.26) implies

U — Up| y-» SC’(b inf ||u—wp| g +wl|lu—up|| ;—» )7
|| h”Hk i wh,":"/';z,C || h”Hk || h”H’“ o (127)
b =1y, w = (hk)Pn,.

By a frequency splitting argument similar to that in Lemma 8.5 below and the fact that p > ck,
Np < C’(hk)p(l + HRkHLzﬁLz) = C(hk)P(1+ p) < C(hk)Pp.
Thus, from (1.27), when (hk)??p is sufficiently small, (1 — Cw)~! exists and is positive, and then

_ — -1 ; _ . P ; _ )
[lu uh||H;p+1§C(1 Cw)™b 1é1‘t;p |u—wpllgr < C(RK)Pp 1é1‘t;p llw—wnllm1, (1.28)

wh€VE wh€VE

which is the preasymptotic estimate (1.4) for m = p.

We now sketch the localised version of the above argument, which is used to prove Theorems 1.3
and 3.11. In this sketch, we treat Hﬁk and Sy as though they are local; i.e., for x, 1 € C*°(Q) with
supp x Nsupp ¢ = 0, we neglect the terms

XHiw and xSk.

In general these terms are nonzero, but Sections 5 to 7, which contain the bulk of the technical
work of this paper, show that they are O(k~°°) and smoothing. Using these properties, Section 8
shows that these terms only contribute to the remainder term in Theorem 1.3.

To localise the elliptic-projection argument, we introduce an open cover of 2, {Q; }Jj\il and

{6,111, € C>(2) a partition of unity subordinate to this cover. (In Theorem 1.3, M = 4 and
(Ql, Qa, 03, 94) = (Q;c, Qy, Q7, Qp)) Next, let Xj € Coo(ﬁ)’ 7 =1,..., M such that

supp x; C £, U 99, X; = 1 in a neighbourhood of supp ¢;.
Arguing as in (1.25), for all wy, ; € Vi, j = 1,..., M, and v € H’™", we obtain

(xi(w — up), v)
= <Pk(u —up), R};Xﬂ)>
(PF(u—up), (I = TE) R xav) — (Sk(u—un), (I = TE) Ry xv)

M
=> (<P£<u —wp;), (I =TI Rixiv) — (Si(u — up), (I — Hi)aszzm) (1.29)

= 3 (b= ) = T Rixeo) = (S = un) s (1 = ) i) )

Jj=1

where we have neglected the nonlocal parts of Hi, P,57 and Sy in the last line. The local Aubin—
Nitsche—type argument in Lemma 8.2 shows that (modulo remainder terms)

lIx; (1 —Hi)U”H’:IH»l < C(h;k)? inf |lv—wallgr, where hj:= max hg (1.30)
' wreVT, Klrfgz;é(b

(compare to (1.24)). By (1.23), (1.30) and the mapping properties Sy : H,*™' — HY™' and
P! H] — HY,
|(xi (u = un), )|
<O nplG =) i = wng)llag + (k) = wn)ll e )l g,
X wh,; €V k k
J i (1.31)
X Rixiv — wnllm

where n,(j —i):= sup inf
0£veHP~t WhEVE H””Hg—l

10



(compare to (1.26)). By duality, (1.31) implies

it = un)ll v < 30 oG = ) inf = wn )l + (i) = un) o).
J

Wh,j Te
We then use a frequency splitting argument (see Lemma 8.5) to obtain (neglecting remainder terms)
Np(d — 1) < C(hik)Pl|x; RixillL2 2 + Clia,nqa, 20y (hijk)?,  where h;; := min(h;, hy).

In particular, this yields the system of inequalities

M ) M M
(”Xz(“ - Uh)HH,:P“)i:1 < CB( mfvp HXj(U - th)”H,i)j:l + CW(HXJ’(“ - “h)HH;P“)j:N

Wh,j The
(1.32)
where
Bij =np(j = i) < C(h;k)P|Ix; Rexill L2 12 + Clia.na, 20} (hijk)”
Wij = (hik)Pnp(j — i) < C(hik)*P|Ix; Rixill 212 + C(hik)PLiq,nq, 20y (hijk)
(compare to (1.27)). Under the condition that
oo
> (CW)" < o0, (1.33)
n=0

(I — CW)~! exists and has non-negative entries. Hence (1.32) implies that
[luw — uhHH;pﬂ <C(- C’W)_lBHu — wh||H;.

(compare to (1.28)).

To understand when ) (CW)™ converges, consider W as the weighted adjacency matrix of a
directed graph with M nodes representing {Q}Jle Observe that the entry in the i*" row and j*"
column of (CW)? is given by C* times the sum of the weights over all paths of length ¢ from j to i
in this graph. Hence, the sum converges if for any ¢ and j the sum of the weights of all paths from
4 to i multiplied by CP2thlength jg finite. Using elementary graph analysis this condition can be
reduced to the requirement that all the sum of such weights for all non-self intersecting loops is less
than 1 (see Appendix B).

In the setting of Theorem 1.3, M = 4 and (Qy,Q2,Q3,Qy) := (O, 2y, Qz,Qp). For k ¢ T,
Section 4 obtains the bounds of Table 1.2 on 1 R} x according to the support of ¥ and .

supp w\ supp x Qx Qp Qz Qp
Qx P VEp | O(k™) | O(k™)
Qy VEp k k 1
Qr O(k=>®) | k k 1
Qp Ok=>=) | 1 1 1

Table 1.2: Bounds on |[¢YRix||L2—r2 (up to k-independent constants) proved in Section 4 for k ¢ J.

As a result, the graph corresponding to W is the one in Figure 1.2, and the requirement that
the sum of weights on all non-self intersecting loops be less than 1 reduces to (1.8).

1.3.3 Interpretation as error propagation

To properly interpret the matrices appearing in (1.9), we return to (1.29), which is equivalent to

M
Xi(u—un) =Y xR (I = T)"x; Pix; (u — wn ;) — (1 = T)"x; Sexs (u — un)).  (1.34)

J=1

11



(hpk)?P

Figure 1.2: The graph showing propagation of errors for the decomposition into Qx, Qy, 2z, and
Qp in the simplified setup of Section 1.3.2. Note that this can be improved using the analysis in
Section 8. The graph corresponding to Theorem 1.3 is shown in Figure 9.1 and that for Theorem 3.11
is shown in Figure 3.1.

We are interested in ||x;(u — up)|| y—»+1, which we think of as the low frequencies of x;(u — up);
k

these low frequencies are captured by Sk x;(u — up). For purposes of this discussion, we assume Sk
commutes with x; Riy¢;. This is not quite true, but (away from the PML), since

||SkXiRk¢j||pr+1ﬁ\L2 < CHXiRk(ZstL?—w?a
k

SkxiRr¢; acts like x; Ri¢; L where L is a lowpass filter. We show in Theorem 4.2 that near the
PML there is no propagation and so we ignore the PML here.
With these caveats, (1.34) implies

M

Skxi(u—un) = > XiRio; (Ska(I — T05) "X PEx; (u = wh ) — Sk (T = T15) x5 Sk Sk (u — uh))~
j=1

The operator x;Ri¢; has the effect of propagating between domains. The operator (I — H’;)*
essentially takes the best approximation in H} norm and S then returns only the frequency < k
components. This process is represented in the graph in Figure 1.3.

To find Sy x;(u—wup) in terms of the local best approximations to u, one inserts x; Py, (v —wp ;)
at node 1 in Figure 1.3 and follows the cycle to node 4, producing the first approximation to
Skxi(u—mup). One then continues around the cycle arbitrarily many times, adding x; P*x; (u —wp, ;)
in each cycle. This process converges under the condition (1.33) and the final result at node 4 is
(Skxi(u —wup));. The W and B matrices in (1.32) are respectively one full cycle from node 4 to
node 4 and a path from node 1 to node 4 in Figure 1.3.

ACKNOWLEDGEMENTS: MA was supported by EPSRC grant EP/R005591/1, JG was supported by
EPSRC grants EP/V001760/1 and EP/V051636/1, Leverhulme Research Project Grant RPG-2023-
325, and ERC Synergy Grant PSINumScat - 101167139, and EAS was supported by EPSRC grant
EP/R005591/1 and ERC Synergy Grant PSINumScat - 101167139.

2 Numerical experiments illustrating the main result

We illustrate Theorem 1.3 with numerical results in a selection of asymptotic regimes and in two
different geometric settings, in which we solve the PDE (1.1) with constant coefficients A,n = 1.
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Skxi(u —up) «-----

Figure 1.3: The graph showing the process of error propagation when determining the low frequencies
of u — uy, from the local best approximation errors. The arrows are labelled first with the type of
operation (low pass filter etc.) and then with the operator whose action gives this effect. These
operators are applied multiplicatively.

2.1 Experimental setup
2.1.1 Geometric setup

The first geometric setting involves a scatterer with two parallel “walls” obtained by placing two
rectangular obstacles next to each other. The second geometric setting is similar, but has one of
the two rectangles shifted slightly upwards to “make way” for the wave to come inside the cavity.

In the first setting (without shifting one of the two rectangles) the obstacle £2_ is the union
of two congruent rectangles of sides Ly = 0.7v/2 and Ly = 1.3v/2 with rounded corners so that
they have a C* boundary (this is done using the technique from [EO16]). The four vertices of the

first (respectively second) rectangle are located at the coordinates [—X7/2 + %, i%] (respectively,

[X1/2 £ £, £ L2]) where X; = 3?. Therefore, the two rectangles have parallel sides and are
separated by a gap in the x-axis equal to Lgap = X1 — L1 = 0.8v/2.
For any ¢ > 0 small enough (e.g. smaller than, min(Lq, Ly/2)) the cavity K is contained in the

rectangle Qx := Q4 N ((—% -0, % +0) x (—%, %)) A neighbourhood of V' \ K is given by

{(x,y) €y |yl > % — } Finally, Q7 := {(x,y) €Qy : |z > % +5} is a neighbourhood of
Z. For these geometries, and since the wave speed is constant, we can identify the regions I, V), and
Z “by eye”. For more complicated geometries and wave speeds, one would need to identify these
regions using ray tracing.

We use the radial PML with coefficients defined in (A.3), with the PML scaling function given
by fo(r) = (r — Rp)®/(3(Riy — Rp)?) for r > Rp, with Rp = 2 and Ry, = 2.5.

2.1.2 Discussion of p(k) in the experimental setup

For the wavenumbers

~

gap

one can show that there exists ¢ > 0 such that p(k,) > ck2 (e.g. by considering (1.1) with the right
. . . 92 L . Lgap

hand side f obtained by applying the operator —k~2A — 1 to u(x,y) := x(z,y) sin [kn (ac — gT) }

where y is a smooth compactly supported function which is identically 1 in the set [—%, %] X
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[—€, €] for some sufficiently small ¢ > 0. The best known upper bound for all k € R, is p(k) < Ck3
for all k > ko [CWSGS20], but it is conjectured that p(k) < Ck?, and we assume this from now on.

2.1.3 Description of the sources

For these two geometries, we consider k-dependent right-hand sides (source terms) fi, and fous
that are “Gaussian beams” (or “wave-packets”) of width k~1/2 both in the physical and frequency
space, and centered in physical space either at the origin (0,0), i.e. inside the cavity K, propagating
in the 2-direction, or outside the cavity, propagating in the direction of angle 8(k) = O(k~/?) with
respect to the z-axis. For the outside beam, the physical position (zg,yo) is chosen so that the
central ray of the beam hits the bottom of the right-hand “wall” of the cavity (this ensures that the
beam can coherently stay in the cavity as long as possible, with O(v/k) reflections on the cavity’s
boundaries), see Figure 2.1 (c). The beams are normalized so that || fin[|p2(ge), | foutll12Re) = 1.
The obstacle, the right-hand sides fi, and fou, and the corresponding solutions uj, and ugy,; are
represented in Figure 2.1.

i

.

(a) Data fin (b) Solution Re(uin)

1)
AL
1))

|
|

1

il
(At
(i
lll'x

!

il

(LA

LY

(c) Data fous

(d) Solution Re(uout)

Figure 2.1: Top left: right-hand side fi,. Top right: numerical approximation of the solution wu;,

with data fi,. Bottom left: right-hand side fo,;. Bottom right: numerical approximation of the

solution ug,e with data fout. In these figures, k = 40% ~ 111 and the functions f and u are
ap

truncated to a domain Br N Q4 where R = 2.2.
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2.1.4 Reference solutions and their k-dependence

Numerical approximations of the exact solutions uj, and Uy, are computed using the FEM with
piecewise polynomials of degree p,of = 4. These numerical solutions are used as reference solutions
to analyze the error in the FEM with p = 2 throughout numerical experiments.

By Theorem 4.1, there exists a constant C' > 0 and, for each N > 0, a constant Cy > 0 such that
lallirs @y < OV, usalls ey < Ok Jttoutll s ey < CvEp and ltout lrs sy < CF
for all k& > ko. This is illustrated in Figure 2.2, where we observe the empirical rates |[uin|| 1 (q,) &

k
CkYT < Ck2, ||uinHH;(Qv) ~ Ck12 < Ok3/2, and HuoutHHé(Q,c) ~ Ck'4 < OK3/2, HUOUt”H;(QV) ~
CKk%™ < Ck. The regimes that we consider are those of Table 1.1.

Solution Growth Solution Growth
gy < ltoutl 1,
ol i 2 ol
L0t ”ui“HHi(z) ”uOutllHi(z)
"'O(k1'7) 5
. é& ,,,,,,,,,
E
= =
100 ‘:, 100 _.f(
20 30 50 80 20 30 50 75 100
Wavenumber k Wavenumber k

Figure 2.2: Left: growth of the solution w;,. Right: growth of the solution ueyt. Solid red line (resp.
blue, yellow): growth in the cavity (resp. the visible set, the invisible set).

Region ||uinHH; HuoutHH;
Q]C %kl.'? %k1~4

Qp ~ k12 ~~ k075

Table 2.1: Bounds on the H ,i norms of uy, and uqy inferred from Figure 2.2.

2.1.5 Non-uniform meshing

The non-uniform meshes used in the experiments are created using a feature of FreeFem++ allowing
one to “adapt” a mesh according to a custom metric. For our purposes, we only require an isotropic
metric, which is described by a scalar function A : 2 — R, describing the local required mesh size.
This function h can be passed — along with an initial, uniform mesh — as an optional argument
to the FreeFem++ “adaptMesh” routine, which uses the BAMG algorithm [Hec98]. We define
h € C*(9) so that

max h(x) < hy,

e,
where x € {K,V,Z,P}, with h, the corresponding mesh threshold. In some parts of €, the
function h can be significantly smaller than h,, for instance in intersections between two subdomains.
However, we enforce that h(z) = h, for all x in a k-independent subset 0, C Q. Therefore, up to
smooth transitions across regions, the metric is sharply described by hs. In all the experiments, we
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take hpk to be constant. Since the solution in the PML region is not physically relevant, we do not
display the errors in this region.

2.2 Numerical results

In the numerical results, we compute a few important quantities under a variety of mesh conditions.
The local quasioptimality (QO) constants for wi, ou are given by

Huin/out - uhHH%(Q*)/Huin/out - whHHli(Q*)v * € {K:7V7I}a

where uj, is the Galerkin solution and wy, is the best approximation of u, /oy in the finite-element
space. The local-global relative error is the Galerkin error in the H} norm in these regions,
normalized by the global H} norm of the solution is given by

Huin/out - uhHHé(Q*)/Huin/OUtHHé(Q)’ * € {IC7 V}7

2.2.1 Regime Uniform 1 (U1)

The first numerical experiment uses the uniform mesh guaranteeing k-uniform quasioptimality. We
choose

(hick)Pk? = (hyk)Pk? = (hzk)Pk? =: (hk)PE* = C
where C' is independent of k. Figure 2.3 plots the local QO constants and Figure 2.4 plots the
local-global relative errors.

Local QO Constants Local QO Constants
9 - 14 -
o lin =l g1 ey Moin = wnll 1 ) “rlhont =l 1 (ot = wnll 1
& lin —wpll g1 () /in = wall g1y erlwout —wnll g1 1,y /ot *wh,HHi(V)
8q bt =l g1 7/ lsin = whll T () 12 e tout =unll 51 /Mot —whll T 7

Brluin —upll g1 g/ in —whall g1 Fluout —upll g1 o)/ out —whll 1
HL(®) HL(@) HL(9) HL(®)

20 30 40 50 60
Wavenumber £ Wavenumber k

Figure 2.3: QO constants for ui, (left) and uey (right) in regime Ul. Black squares: global QO
constant. Red diamonds: local QO constant in the cavity. Blue circles: local QO constant in the
visible set. Green crosses: local QO constant in the invisible set.
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Galerkin H ,i errors in K and V . Galerkin H ,1 errors in /C and V
< 10

107!

1072

“Hlout —unll g1 ey/loutl 1 o

rllein —upll 1 ()C)/Huin”H,i(Q 1
“lheout _“‘h”Hi(V)/Huout”Hi ©)

103 | ©luin _uhHHi (V)/H“inHHi ()

---O(k™2) 1073 }---0(™2)

,,,,,,,, O(k—2:5) o O (K~ 2-5)

15 30 60 20 40 80
Wavenumber & Wavenumber k

Figure 2.4: Local Galerkin errors in the H} norm in K and V for the approximation of i, (left)
and Uey (right) in regime Ul. Red diamonds: Galerkin error in K. Blue circles: Galerkin error in
V. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines (away
from cavity).

It is well-known that in Ul, the Galerkin solution is globally k-uniformly quasi-optimal (see
Table 1.1), and this also follows from Theorem 1.3 (see Corollary 1.9, using that all matrix entries are
< 1). This fact is illustrated by the solid black curves in Figure 2.5. By Corollary 1.9, the inferred
rates in Table 2.1, and the fact that p(k) > Ck? at the wavenumbers chosen in the experiments,
the following a priori bounds for u;, and ue,t can be obtained:

3
Uin — U 1 Uin 1 k Uin 1 kN2 1 Uin 1
[ h||Hk(Q,C)§(hk)p|| ||Hk(9,c)+\[(hk)p| ||Hk(QV)+(> —(hk)p” 2 (22)
p

[winll 22 (@) [winll 22 () [[win 22 () p) p l[win |l 22 ()
k k k k
Sk2
3
l[win — unll 2y < (hky? k l[win [l 2 ) by [winll 2 (@) N (k) 3 l(hk)p”uinHH;(ﬂz)
Huinﬂfflui) p Hihnufflaz) HihnH11{(Q) P P H1“n”1¥1(9)
k k k k
k=05 k—0.5
Sk,
3
[tout — unllm1 () < (hk)pﬂuoutllH;(QK) N &(hk)pnuout”H]i(Qv) . (k:) 5 l(hk)pnuoutHHé(Qz)
HuoutHH;(Q) HuoutHH;(Q) P HuoutHH;(Q) P, P HuoutHH;(Q)
Sk2
3
||Uout - UhHH;(QV) 5 (hk)p ﬁ ||uout||H;(Q;c) i (hk)p ||uout||Hé(Q\;) n (kj) 2 l(hk)p ||u0ut||Hi(QI)
Huout”H;(Q) p ||Uout||H,1(Q) ”uoutHH;(Q) p p ”uout”H,i(Q)
k—O.S k70.65
<k

Figure 2.4 shows that, at least experimentally, these rates are sharp. Furthermore, since u is
k-oscillatory, the results of [Gal25] imply that the standard polynomial approximation bounds are
locally sharp, i.e. the local best approximation errors satisfy

lu = wh il @e) = C(RE)P[lull g1y lw = wnyllm @y = ChE)P|[ullg (-
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Corollary 1.9 then implies that the local quasi-optimality constants in each region are k-uniformly

bounded as well, i.e.,

||u—uh||H1(Q ) ||U—Uh\|H1(Q )
A 51’ v

lu — wh k|| 2 (20 lu—wh vl ~

This is consistent with the behavior observed in Figure 2.3.

2.2.2 Regime Quasioptimality (QO)

In QO, we choose ,
(hick)PE? + (hyk)Pk2 4 (hzk)Pk = C,

< 1.

where C' is independent of k. By Corollary 1.11, the Galerkin solution is again k-uniformly globally
quasi-optimal, see Table 1.1. Figure 2.5 shows the local quasi-optimality constants in each regions
for the problems involving uy, and uqy;. Figure 2.6 plots local—-global relative errors.

Local QO Constants Local QO Constants
10
& Iluin 7“’1”H1 (xcy/Iuin 7wh”H1(IC) 14 - luout — '“'hHHi()C)/Huout thIH1 )
9 & lluin —uhHHl (vy/lwin —whHHl ) & lout — “}LHHi vy lrout = whll H1 o)
e HulnfuhHH}E(I)/Hu‘n - wh”H;f(I) o = lheout — uhHH1<I)/Huout whHHl (1)
8 : ;

& lluin —upll 1 oy/Itin —whll 1
, ml(o) (@)

Flluout —upll 1 /out —wpll 1
HE(®) HE®)

Wavenumber k Wavenumber k

Figure 2.5: Local QO constants for u, (left) and ueyt (right) in the regime QO. Black squares:
global QO constant. Red diamonds: local QO constant in the cavity. Blue circles: local QO
constant in the visible set. Green crosses: local QO constant in the invisible set.

By Corollary 1.11, the inferred rates in Table 2.1, and the fact that p(k) > Ck?, the a priori

bounds for uj, and uqy; in each region are given by

Uin — Up 1 Uin 1 Uin 1 Uin 1
[ a2 () < (hek)? [tinl| 12 () (k) l[winll 12 (020) (k)b (k) l[winll 2 (22
l[winll 1 () —— luinla@ =~ lunllz (o l[winll 2 ()
k-2 5=3/2 e s
K%
Sk
uin—uhH 1 U,inH 1 Uin 1 uin| 1
| CHOD I [winll 2 (26 (k) l[win [l 22 (0) +(hzk)pH a2 r) <L,
l[winll 7 () —— [uinll 17 () —— [uinll 17 () [uinll 17 (@)
k—0.5
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Galerkin H ,i errors in K and V Galerkin H ,1 errors in /C and V

107!

1072

107%

lain = wll g1 oy linl

ol menlag ooy Mm@ - lout = unl g1 ey outl 71 (0

& i = unll g o) Meinll () © luout = unll 51 (ypy/lwoutl 1 (g
k k

- O(k—2) 107° c-O(k—2)
ol O(k—2) —--O(K—2-15)
20 40 60 80 20 40 80
Wavenumber & Wavenumber k

Figure 2.6: Local Galerkin errors in the H} norm in K and V for the approximation of ui, (left)
and Ugyt (right) in the regime QO. Red diamonds: error in the cavity. Blue circles: error away from
the cavity. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines
(away from cavity).

ltous — wn |l (o Uout || 11 (2 Uout || HL (02 Uout || 11 (2
o i) o gy Mottt |y Mot oy g ltenliion
||Uout|\H;(Q) H/Q—/ HuoutHH;(Q) WS—/ HuoutHH;(Q) HuoutHH;(Q)
[ I N A
ko2 k—0.65
SkE?
Uout — Uh||HL(Q k lUout || H1(0 Uout || H1(Q Uout || H1(Q
o = wlyy oy o Ponligoe | Mooy | o g
[tout | 1) ~——\ P ltoutll (0 - [Uout || mr1 (02) [wout | 2.
k=2 N~ -5 S~
k=05 ko2 k—0.65
5 k_2‘15.

Again, these rates are experimentally verified in Figure 2.6.

2.2.3 Regime Quasioptimality away (QO away)

In QO away, we choose
(hick)Pk3/? = (hypk)Pk = (hzk)Pk =: (hk)PE? = C,

where C' is independent of k. Theorem 1.3 no longer guarantees k-uniform quasi-optimality, but
Corollary 1.14 and the conjecture that p(k) < Ck? imply the following bounds for the “QO
constants” (not to be confused with “local QO constants” — notice the global norm of the best
approximation error in the denominator instead of the local norm in the local QO constants)
||u*UhHH,1(Q;<) < \/E HU*UhHHé(QV) HU*UhHH;(QI)
)

<1, (2.1)
||U—wh\|H;(Q)

~ ~

lu —wallgr ) ~ lu = wh| 1 ()

hence, the Galerkin solution remains k-uniform quasioptimal away from the cavity in the regime
QO away (see also Table 1.1).

Figure 2.7 shows the QO constants in each regions for the problems involving wu;, and wugyt. The
QO constant in the invisible set is orders of magnitude smaller than the other quantities, so it is
not displayed. Figure 2.8 plots the local-global relative errors.
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QO Constants QO Constants
10

X/
Hlluout —unll 1 qy/lvout —whll 1 o
() )

& lluin 7uhHH}i (0y/luin ﬂuhHHi @ “-lluout — "hHHi 1)/ Iout *whHHi @)
L0 - lltin =l g1 goy/Iin =l g1 () %"“o%f;“h“H;(v>/"“out ~wnllyl o

- luin —upll 41 (yy/llein —wnll g1 o) 0 TTrO®TR)

om0y k 10 = 0(1)

Wavenumber & Wavenumber k

Figure 2.7: QO constants for ui, (left) and ey (right) in the regime QO away. Black squares:
global QO constant. Red diamonds: QO constant in /. Blue circles: QO constant in I". A priori
bounds represented as red dashed lines (for the cavity) and blue dotted lines (away from cavity).

Galerkin H ,% errors in K and V Galerkin H ,1 errors in /C and V

1071

1072

6 lout —upll g1 ()C)/”uoutHHlil:(ﬂ)

- llwin — wpll inl out — ou
h H;(\;)/H“ HH;(Q) N\ - lluout “h“Hi(v)/H“ t”H;(Q)
--- 0k —e- Ok 115
---o(k™19) e O(k—1-65)
20 40 80 20 40 80
Wavenumber k Wavenumber k

Figure 2.8: Local Galerkin errors in the H} norm in K and V for the approximation of i, (left)
and uoys (right) in the regime QO away. Red diamonds: error in the cavity. Blue circles: error away
from the cavity. The a priori bounds derived from Corollary 1.11, the lower bound p(k) > Ck?,
and the inferred rates in Table 2.1, are represented as red dashed lines (for the cavity) and blue
dotted lines (away from cavity).

The numerical results in Figure 2.7 illustrate that the bounds in (2.1) are, at least experimentally,
sharp. Furthermore, by Corollary 1.14, the inferred rates in Table 2.1, and the fact that p(k) > Ck2,
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the a priori bounds for ui, and ueyt in K and V are given by
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and similarly,
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These rates are experimentally verified in Figure 2.8.

2.2.4 Regime Uniform 2 (U2)

In U2, we choose
(k) K =

(hvk)k? =

(hzk)*Pk* =: (hk)Pk* = C,

where C is independent of k. Figure 2.9 shows the QO constants in each regions for the problems
involving i, and uey. Figure 2.10 plots local-global relative errors.
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Figure 2.9: QO constants for w;, (left) and wueyt (right) in the regime U2. Black squares: global QO
constant. Red diamonds: QO constant in K. Blue circles: QO constant in the visible set. Green
crosses: QO constant in I'. A priori bounds represented as red dashed lines (for the cavity) and
blue dotted lines (away from cavity).

The Galerkin solution is no longer k-uniformly quasi-optimal, but the relative error is bounded
in terms of C, see Table 1.1. The latter fact is illustrated by the black solid lines in Figure 2.10.
Furthermore, Corollary 1.10 and the conjecture that p(k) = O(k?) imply the a priori bound

lu—unllm: () < kllu — wil m1 ),
for u = uj, or U = Ueyt, as well as the following bounds on the QO constants

llu — UhHH;(Q,C) S kflu— wh||H;(Q)a llu — UhHH;(QV) < \/EHU - whHH;(Q)»
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lu = unllm ) S VE|u— Wh || 1)

These bounds are in line with the results shown in Figure 2.9. The inferred rates in Table 2.1
additionally give the following a priori bounds
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These rates are experimentally verified in Figure 2.10.
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Figure 2.10: Local Galerkin errors in the H} norm in K and V for the approximation of u;, (left)
and eyt (right) in the regime U2. Black squares: global relative error. Red diamonds: error in the
cavity. Blue circles: error away from the cavity. A priori bounds represented as red dashed lines
(for the cavity) and blue dotted lines (away from cavity).

2.2.5 Regime Relative error (RE)

In RE, we choose
(hick)?k? = (hyk)?k3/? = (hek)?Pk = C,
where C' is independent of k. Figure 2.11 shows the QO constants in each regions for the problems
involving uj, and uyy. Figure 2.12 plots local-global relative error.
By Corollary 1.12, the relative error is k-uniformly bounded, and this is illustrated by the black
solid lines in Figure 2.12. Furthermore,
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Similarly,
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These rates are verified in Figure 2.12.
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2.2.6 Regime Relative error away (RE away)

In RE away, we choose
(hick)?Pk? = (hyk)?k = (hzk)*’k = C,

where C' is independent of k. Figure 2.13 shows the QO constants in each regions for the problems
involving i, and ugy. Figure 2.14 plots the local-global relative error.

This is the coarsest regime for which Theorem 1.3 applies. By Corollary 1.7 and the conjecture
that p(k) < Ck?, one has the following a priori bounds on the local QO factors:

f|u — UhHH;(Q,C) S kllu — wh||H,1(sz)> flu — uhHH;(QV) S \/];HU - whHH;(sz),
l|u — Uh||H;(QI) S \/EHU - wh||H;(Q)-

These bounds are experimentally verified in Figure 2.13. By Corollary 1.8, we also have the following
a priori bounds on the local relative errors:
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These bounds are also verified in our numerical experiments, see Figure 2.14.
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Figure 2.13: QO constants for uy, (left) and wueyt (right) in the regime RE away. Black squares:
global QO constant. Red diamonds: QO constant in K. Blue circles: QO constant in the visible
set. A priori bounds represented as red dashed lines (for the cavity) and blue dotted lines (away
from cavity).
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2.3 An adaptive mesh-refinement algorithm

The numerical experiments show that Theorem 1.3 accurately captures the effect of local best
approximation errors on the local Galerkin errors. It is therefore natural to use Theorem 1.3 to
inform an adaptive refinement algorithm. This will be investigated elsewhere, but we sketch the
main steps here. Given a set U C 2 on which one wants an accurate solution, implement the
following.

1. Use ray tracing to (a) identify the regions K, V), and Z and (b) estimate p.

2. Compute a Galerkin solution, u on a rough mesh and let j = 0.

3. Compute [|u} oy, [[uf oy, 4} loz, and [|uj[le,.

4. Assuming that [lullo, o [[usllq,, use the standard approximation property |u — wp |z <
C(hk)P||lu|| ;p+1 and associated lower bounds [Gal25] to obtain bounds on the vector of best
k
approximation errors on the hand side of (1.9).

5. Put the bounds from Step 3 into Theorem 1.3 to give an estimator for the map

(hic, by, hz, hp) — <||u —unllm ) lw —wnllaz ) lu — wnll a2y, llu — Uh||H,§(Q;,)>-

Use this map (e.g., via a penalised optimisation process) to determine what mesh refinement
will be effective for reducing the error in U.

6. Solve the problem on the new mesh to obtain u{LH.
7. Set j = j+ 1 and repeat Steps 3-6 until the desired accuracy is achieved.

The constants in Theorem 1.3 are not given explicitly. However, we believe that replacing all the
constants by one (or possibly adaptively tuning the constants) will produce an effective adaptive
refinement for a fixed k (large enough).

Remark 2.1 To accomplish Step 1 (a), one can use a set of sample points and directions x; € €,
i=1,...,Nand§; € S4=1 i =1,...,M at a fine scale, § and fix a mazimal time Tyax > 0 and
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then run a ray tracing algorithm from each sample point t;; : min(Tmax, Tije), where Ty, ¢ is the
time at which the ray from (z;,&;) enters the PML region. Define Iy, := {i : max; t;; = Tmax}. We
set Qi to be a neighbourhood of {x; : i € Iy}, and 0y a neighbourhood of the complement of Qi
intersected with the rays from {x;}icry .

For Step 1(b) one can use the heuristic that

pSKVTHETY), (2.2)

where V=1 is the inverse of t v V (t), and V (t) is the volume of the set points in Q x S9=1 that do
not enter the PML in time t. To estimate V (t), we use the approzimation

V() ~ V() = 2 4 { (w0, &) + 1y > 8

The heuristic (2.2) is valid at least for some special cases, including some cases of the weakest form
of trapping where trajectories escape exponentially fast, and certain geometries that are warped
products [CW13]. Furthermore, one place where V(t) rigorously appears is in fractal upper bounds
on the number of resonances near the real axis [DG17]. However, a precise characterisation of p
via billiard dynamics is a challenging open problem.

3 Assumptions and statement of the main result

We now gather some definitions and assumptions and state our main result, Theorem 3.11.

3.1 The Helmholtz PML operators

Throughout this paper, Q_ C R (the obstacle) denotes a bounded open set with C>° boundary and
connected complement. Let ¢, € R4 (the truncation domain) be a bounded open set with Q_ & ),
and define  := Q, \ Q_ (the computational domain). Let Iy, = 9, so that 9Q = 9Q_ U T,.
For all k > 0 and n > 0, and given U C R?, let H'(U) (abbreviated H when U = ) be the
completion of C*°(U) with respect to the norm (1.7), and let H, " (U) be the normed dual of
H(U), with, as usual, L?(€2) identified through the L? pairing with a subspace of H, " for all
n>0. 2
Let ay, : HE x Hf — C be the sesquilinear form defined by

ag(u,v) = /Q (k_QAg(x)Vu(x) -Vo(x) + k2 {bg(z), Vu)o(z) — ng(m)u(x)@) dx, (3.1)

where Ay, by, and ngy are defined in §A.
To cover both Dirichlet (so-called “sound-soft”) and Neumann (“sound-hard”) obstacles, we
consider a subspace Z, C H}, which can be either given by Z, = Zy 4 0r 2y = Z,; ,, where

— H,
2.4 = Hj (), and Zpni={ue C>(Q) : suppunTly =0} " (3.2)

and let Z; be the normed dual of Zj. The Helmholtz operator Py : Z, — (Z,)* is then defined as
the linear operator associated to ag, i.e.

Py:Z,— 27, (Pyu,v) :=ag(u,v) forall u,v € Zj.

If Py is invertible, we denote by Ry := (Py)~! : Z; — Zj, its inverse (also known as the resolvent),

and let )
1P fllzzo
p(k) = IRl pomsre =  sup -l AREE
rerz@noy  Ifllzz@)
Our main result holds for k ranging in a subset Ry \ J of the positive real numbers on which
p(k) is polynomially bounded; i.e., we make the following assumption on J.

n
2We highlight that this is not the standard notation, as H~" usually denotes the dual of H} = C(Q) k.
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Assumption 3.1 (Polynomial bound on the resolvent) There exist C > 0, N > 0 such that,
forallk e R\ J,
p(k) < CEN.

In this paper, we are then interested in the error in the finite-element approximation solution
(see next paragraph) of the variational problem, for k € Ry \ J:
find v € Zj, such that, for all v € Zj, ax(u,v) = F(v), (3.3)

where F': Z;, — Z; is a continuous anti-linear form.

3.2 Finite-element approximation

We consider a Galerkin approximation of the variational problem (3.3). Following the practice in
the local FEM error analysis literature (see in particular [NS74, Assumptions A.1-A.3], and also
[Wah91, DGS11, Bre20]), and following closely [AGS24], we describe V}, through a set of standard
assumptions as follows. Throughout, a fixed positive integer p, modelling the polynomial degree of
the finite-element subspace, is chosen independently of k; hence this setting models a “h-version” of
the FEM.

If U C Q is an open set, define

czU) = {X € C*°(Q) such that suppx € U and 0 (supp x,U) > 0}

Z,i’<(U) = {v € Z, s.t. suppv C U and O (suppv,U) > 0},
where the closure is taken with respect to the Zi norm, and for any subsets Qg C Q1 C €,
0< (0, Q1) := dist(0Qp \ 02, 90 \ 0Q). (3.4)

A triangulation T of  is a set of pairwise disjoint open subsets K C () such that

Uxr-2

KeT

We denote by hy the diameter of K € T. For k > 0, a finite-element space Vj; over a triangulation 7°
of {1 is a finite-dimensional subspace Vi, C 2} such that for every u € Vy and K € T, ujx € C*(K).
If V}, is a finite-element space and U C 2, define

VS(U) == Z205(U) N V.

In what follows, for each k > 0, 7 is a given triangulation and V}, is a finite-element space over 7.
We denote
h=h(k):= max h
( ) KeTy K

the global meshwidth, and make the following standard assumptions.

Assumption 3.2 (Sub-wavelength grid) For all kg > 0, there exists a positive constant C' > 0
such that for all k > kg
h<Ck™.

Assumption 3.3 (Wavelength-scale quasi-uniformity) For all R > 0 and all ko > 0, there
exists C > 0 such that for all k > ko and any elements K, K’ of Ty such that dist(K, K') < Rk,
1 hg

—< <C.
C_hK/_O

Assumption 3.4 (Approximation property) There exists £ > 0 such that for every ko > 0,
there exists C > 0 such that for all j € {1,...,p+ 1}, all m € {0,...,j}, all k > ko and all
u € Z,% N 'ch, there exists up, € Vi, such that

> (hack)" D llu = wnlfp ey < Cllul,-
KeTy
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Furthermore, given subsets Uy C Uy C 2 such that
0<(Uo,Uh) > kmax {hi | K € Ty st. KNU; # 0},
if suppu C Ug U OS2, then uy can be chosen such that suppuy C Uy U 0S.

Assumption 3.5 (Super-approximation property) There exists k > 0 such that for all kg > 0
and Cy > 0, there exists C' > 0 such that for all k > ko and any subsets Uy C Uy C Q such that

d:=0.(Up,Ur) > kmax {hg | K € Ty st. KNUy # 0},

if x € C=(Uy) is such that,

C
max [|0%x||eo < =t forn=0,...,p,
la|=n dar

then for any uj, € Vi, there exists v, € V,~(Ur) such that

h 1
I 2up, — vl gy < CTK Kl + kd) lun |2y + Ixunll ar (x) for all K € Tg.

Assumption 3.6 (Inverse inequality on elements) There exists C such that for all k > 0, all
K €T, allup € Vi, and all j € {0,1,...,p},

C C
lunll a2 () < g nllzaoand - unliago < WHWHH;J‘(Ky

where ||uh||H]:j(K) = supece (i) (| [5 uhvda:|/||v|\Hi(K)).

Definition 3.7 (Well-behaved finite-element of order p) We say that (Vi)kso is a well-
behaved finite-element of order p if it satisfies Assumptions 3.2-3.6 above.

Remark 3.8 Since Q2 has a C°° boundary, under the assumptions of the present section, the
elements K must be curved, ruling out from our settings the standard simplicial Lagrange finite-
element discretizations. Howewver,

o this type of assumptions is common in the high-frequency error analysis for the finite-element
method for the Helmholtz equation, see e.g. [MS10, Appendiz B], and

e the “geometric error” incurred by using simplicial elements instead of curved elements is
studied in [CFS25], and shown to be smaller than the pollution error.

For each k € Ry \ J, the Galerkin solution up, = up (k) € Vi, (where the subscript h emphasizes
the dependence of uj, with respect to the meshwidth of the triangulation) is defined by

ar(u—up,vp) =0 for all v, € Vj,

and our main result, Theorem 3.11, describes the (micro-)local behaviour of the error u — uy,.

3.3 Frequency splitting of the error

We consider a splitting of the Galerkin error u — uj, into “low-frequencies” and “high-frequencies”.
To define these notions, we introduce frequency cutoffs as follows.

The following Garding inequality holds (see §6.1 and §A): there exists w € R (with w = 0 for the
most commonly-used PML) such that for all kg > 0 there are cga, Cga > 0 such that for all k > ko,

R(e“ak(u, v) > ceallullZ, — CeallullZ:- (3.5)

We deduce from this (see §5) that o(Px) C [-Cga,+00), and thus, for each ko, there exists a
function ¢* such that
—x+ Cga

V() > 5 for all z € o(Py). (3.6)
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Let Py : 2, — (Z,)* be defined by
1 i —iw px*
Pk:§(elwpk+e Pk)'

We show in Section 6 that P, is self-adjoint on L?(£2) with domain ZZ = Z,?) 4 in the Dirichlet case,
and Z,f = Z,f’n in the Neumann case, where

ZP .= Hy(Q) N H*(Q), Z7, ={ue H*(Q) : 8y a,ulo0_ =0, ulr,, = 0}. (3.7)

Thus, if f : R — R is a bounded, continuous function, we may consider f(Py) : L*(Q2) — L*(Q2)
defined by the functional calculus.

Low-frequency cutoffs will then be defined as ¥ = ¢)(Py) where ¢ € C°(R) is such that ¢ =1
on the support of !, and 1 — ¥ will correspond to high-frequency cutoffs.

3.4 Spatial splitting of the error

In addition to considering the Galerkin error locally in frequency space, we also localize it spatially.
We fix a neighbourhood Up of Ty, in which Theorem 4.2 holds (that is, sufficiently “deep” in the
PML region so that the resolvent R} in this region behaves like a pseudolocal, uniformly bounded
operator with respect to k). Let

M
0=[Jo
j=1
be an open cover of Q@ by M = M; + Mp subdomains. We assume that the “interior”
domains Qi,...,Q, do not intersect the truncation boundary, while the “PML” domains
Qar+1, - - Qa4 0, all lie inside the deep PML region, i.e.
My Mi+Mp
Jonr. =0, U @ cus. (3.8)
j=1 j=M+1
For ¢,j5 € {1,..., M}, define
hi == max {diam(K) | KNQ; #0} and  h;j := min(h;, h;), (3.9)
€Tk

the local mesh sizes on €2; and Q; N Q;.

3.5 Matrix quantities

In Theorem 3.11, the description of the local error in subdomains is given in terms of matrices H,
H™n ¢ T and B that we define now.
For every natural number ¢, define the following M x M matrices

H = diag(hy, ..., har),  H™(0) = Lqauna, 20y (P)1<ij<ar- (3.10)
Furthermore, let C be the M x M matrix defined by

Cij = 1o, Rila,|lre—z2 = Mo, Rela, 2522, 6,j=1,...,M (3.11)
For an M x M matrix A (either H or H™") we write

_ (A A - , ,
A= (AP,I Ap,p) . Aij € M(M; x M;).

where My := My and My := Mp. Let B € M((2M1 + Mp) x M) be defined by

Cri(Hi k)P 0
Bi=| (Hik) o |, (3.12)
0 (Hp pk)?

and let W € M((2M1 + Mp) x (2M1 + Mp)) be defined by

Cri(Hiik)?  Cra(Hith)™  Hip (N)EY
W= | HPREpRP HEN(NEY HER(NEY | (3.13)
BF(NEY  HEF(N)EY  HEB(N)EY
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3.6 Simple-path matrix

To any square matrix W € M(N x N), one can associate a matrix V = V(W) defined from the
coefficients W in terms of simple paths on a graph. To define this, let G = G(W) be the (complete)
directed graph, with node set N := {1,..., N}, and with edge set £ the set of ordered pairs
(i,7) € {1,...,N}2. A path p in G is a finite (and possibly empty) sequence of edges

p = (i1,71)(i2,J2) - - - (iL-1,70-1)(iL, jr)

satisfying the conditions j, = ip41 for 1 < ¢ < L — 1. Let 0 stand for the empty path. We
write |p| := L and denote by p(¢) the ¢-th node visited by p, i.e., p(¢) := iy if 1 < £ < |p| and
p(|lp| + 1) := jr. Let P;; be the set of paths from i to j, i.e., such that p(1) =i and p(|p| + 1) = j.
A path p is non-intersecting if the map ¢ — p(¢) is injective. For ¢,5 € {1,..., M}, let V;; be
the set of non-intersecting paths from i to j. Observe that V;; := {0}.
A non-empty path p is a loop if it starts and ends at the same node, i.e., if p(1) = p(|p| + 1). Tt
is a simple loop if it is a loop but otherwise does not intersect itself, i.e.,

p(l) =p(m) = (L=m or {¢{,m} ={1,|p| +1}).

We denote by SIL the set of simple loops.

To each edge e = (i, j) of G, we associated the weight W, := W;; (the (4, j)-th coefficient of the
matrix W). We also define the weight of the path p as the product of the weights of its edges, i.e.,
Wo := 1 and

Weies.on, . =We,We, ... We, .

Definition 3.9 (Simple-path matrix) The simple-path matrix T* = T*(W) € M(N x N) of a
matric W € M(N x N) is defined by

Th= Y W,, 1<ij<N.
pEV,;

Observe that the diagonal entries of T* are 1 since V;; = {0}.

Remark 3.10 We show in Theorem 8.13 that, provided the simple loops of of G carry weights
bounded by ¢ < 1, then the I — W is invertible and (I — W)~! < T* coefficientwise.

3.7 Statement of the main result

Theorem 3.11 (The main result) Let ay be defined by (3.1) and let J C Ry be such that
Assumption 3.1 holds. Let p be a positive integer and let (Vi)g>o be a well-behaved Finite-Element
of order p in the sense of Definition 3.7. Let {Q;}M, be an open cover of Q) such that the conditions
(3.8) hold. For everyi € {1,...,M}, let x; € C®(Q) be such that

M
supp(x:) C QL UIN  and Q= U int ({Xi = 1}), (3.14)

i=1

where the interior is taken in the subspace topology of ). Let ko, N > 0, let 1* satisfy (3.6) and let
Y € CX(R) be such that supp ¥ Nsupp(1 — ) = 0.

Then, there exist constants hg, C+ > 0 and, for any 0 < c <1, a constant C > 0 such that the
following holds. For any k € (ko,00) \ J, if Tr satisfies h(k) < hy and

S oflwy <o, (3.15)
LeSL

where W is defined by (3.13), then for all u € H}, there exists a unique solution up € Vy to the

Galerkin problem
arp(u—up,vp) =0 for all vy, € Vj. (3.16)
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Moreover, for any wp1,...,wpm € Vi, m€{0,...,p}, andi e {1,..., M},

(I @ = un)| oo )2,

(a1 = ) = un) | ) 2

M

(HXi(U - uh)HH;*m )i:MI—H
< || Fe)™ 0 + | (Hagk)P ™™ (Hek)™ 0 B (”” - wh’jHHi(Qj)) =
0 (Hp k) 0 0 (Hppk)™ "~
+ CR.
(3.17)

where H is defined by (3.10), B is defined by (3.12), T is the simple-path matriz of CyW in the
sense of Definition 3.9, and

M
R:= kN (hk)™ Y llu —wngllm;
Jj=1

In particular, the local Galerkin errors satisfy

(HXi(u - uh)HH;*m )j\il

(Hiik)™ 0 I(Heik)Y 0 . o M 3.18
< K 0 (Hepkym) T\0 0 Hppr)¥)T B (I wh»ﬂ”Hﬂﬂﬂ)jzl (3.18)
+ CR.

The proof of Theorem 3.11 is given in §8. Figure 3.1 shows the weighted graph associated to
the matrix W in the setting of §1; i.e., M1 = 3 (with domains Qx,Qy, and Q7) and Mp = 1.

4 Local bounds on the Helmholtz solution operator

This section describes two results showing how the Helmholtz solution operator has improved k-
dependence based on the data and measurement locations. The first result (Theorem 4.1) considers
locations relative to the cavity or the ray dynamics, and the second (Theorem 4.2) considers
locations relative to the PML. Both results are proved in Appendix C with the first result a special
case of a more general result phrased in terms of semiclassical pseudodifferential operators.

Theorem 4.1 (Improved behaviour away from trapping) Let kg > 0 and let J be such that
Assumption 1.2 holds.
(i) For all x € C°°(Q) with supp x N K = 0, there exists C > 0 such that for all k € (ko,00)\ J

IXRi|lL2sr2 + | Rex|l2—12 < Cy/Ekp, IxRix|lL2—r2 < Ck. (4.1)

(ii) For all x,v € C*(Q) with supp x C T and suppv C K, and all N > 0, there exists C > 0
such that for all k € (kog,00) \ J

IXBxtll 22 + ¥ Rex| L2 2 < CE™Y. (4.2)

In the case of scattering without boundaries, the result analogous to (4.1) was proved in
[DV12a, DV12b).

Theorem 4.2 (Improved behaviour in the PML) Let ko > 0 and let J be such that Assump-
tion 1.2 holds. Then there is U C Q a neighbourhood of Ty, such that for all x € C*°(£2) with
supp x C U, there exists C > 0 such that, for all k € (ko,0) \ T,

IXBkllL2— L2 + | Rixll2— L2 < C. (4.3)
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Figure 3.1: The weighted graph associated to the matrix W in the case when M = 3 (with domains
Qic, Yy, and Q7), Mp = 1, and with the k-dependence of C (3.11) given by the results of §4. Edges
with zero weight (between Q3 and Qp) or O(k~>°) weight (between Q% and QF) are not displayed.
Finally hyp := min{hy, hp} etc.

Moreover, if suppx C U, and 1) € C*(Q) with supp x Nsuppy = (), then for any N there erists
C > 0 such that for all k > ko,

”XRszZ)”L?%H,i\’ + ”@Z)RkX”L?aH}CV <ckN. (4.4)

Theorem 4.2 is based on ellipticity in the PML region.

5 Abstract pseudolocality results

As described in §1.3.2, the proof of the main result requires pseudolocaity of the operators Sy and
Hi (see (1.29)); furthermore, although not stated in §1.3.2, the proof also requires pseudolocality of
(P,g)’l, where P,g := P} + Sk. This section proves pseudolocality of Si and (P,g)’l, and §7 proves
pseudolocality of Hi.

The operator Sy is defined as a function of the self-adjoint operator Py, := R P via the functional
calculus. This section therefore studies general Helmholtz operators (satisfying continuity, a Garding
inequality, and elliptic regularity), proves that Py is self-adjoint, and then proves that both functions
of Py, and (P,fy)’1 are pseudolocal; i.e., when sandwiched by disjoint “spatial” or “frequency” cutoffs,
the result is O(k~°°) and infinitely smoothing.
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Abstract setting

Model Dirichlet setting

Hiy H™(Q) with k-weighted norm
ag(u,v) Jo k72Vu - Vo —uv

Zy HY(Q)

22 H2(Q) N HL(Q)

2Zp H™(Q)N H(Q)

Din {u e H*™(Q) : yu, ..., yA" 1y = 0 on 9Q}

Abstract setting Model Neumann setting

Hy H"(Q) with k-weighted norm
ar(u,v) Jo k72Vu - Vo —uv

2, H(Q)

zZ2 {ue H*(Q) : d,u =0 on 90N}

2P {ue H*(?) : dyu = 0 on 0N}

Din {ue H>™(Q) : dyu,...,0,A" 1y = 0 on 90N}

Table 5.1: Model examples for the spaces in Section 5

For the “spatial cutoffs”, we require some control over their repeated commutators with Py, in a
scale of Hilbert spaces (H})n>o (which will be taken as Hj}(€2)). Checking these assumptions in
the concrete setting will require the construction of suitable cutoff functions with a special behavior
near the boundary

For the “frequency cutoffs”, we require that, in addition, the repeated commutators act in
domains D™ of powers of the self-adjoint operators P;. This essentially asks that repeated
commutators preserve an arbitrary number of boundary conditions, which in practice, will be
achieved by requiring the frequency cutoffs to be constant near the boundary and 0 near the PML
truncation boundary.

5.1 Abstract formulation of Helmholtz operators with smooth coefficients
on smooth domains

In what follows, (H, || - [|#) is a Hilbert space and for every k € Ry, (HJ, || - [[#7 )nen is a decreasing
sequence of Hilbert spaces with continuous and dense inclusions H} C H}" for all m < n, with

n
HUHH? < ||u||HZ for all u € Hy,
and such that H? = H with equal norms.? For all n € N, H, " denotes the anti-dual of H}, i.e.,
the set of continuous complex-valued anti-linear forms on H}}. For any u € H, one may define an
element L} € H, " by

L (v) := (u,v) := (u,v)y

By density of the embeddings H; C H* C H for n > m, the mapping v — L} is injective
and L7} coincides with L' on H}*, so we may identify v with L,. Under this identification, the
continuous embeddings H} C H}" for n > m extend to all m,n € Z and (-, -) extends to a continuous
sesquilinear (linear on the left, anti-linear on the right) pairing H, ™ x H} for all n.

Let (ax)rer, be a family of sesquilinear forms

for all v € H.

ap : Hp x Hj, — C  for all k >0,

3Notice that the abstract setup is in many parts similar to [GS25], but here it is not assumed that the inclusions
Hj C Hp* are compact for n > m.
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Assumption 5.1 (k-uniform Continuity) For every ko € R, there exists a positive constant
Co(ko) > 0 such that, for all k > ko and all u,v € H},

|ak (u, 0)| < Co(ko)llullaez V]l -

Assumption 5.2 (Garding inequality) For every ko € R, there exist positive constants cga(ko)
and Cga(ko) > 0 such that, for all k > ko,

R(ak(u, v)) = ccalko)llullzy — Caalko)llullz, — for all u € H;.

Let Ray denote the Hermitian part of ay, i.e.
1 -
(Rag)(u,v) := 3 (ak(u,v) + ak(v,u)) .

We fix a closed subspace Z, C H} (possibly H; itself) which is dense in H with respect to the H
norm, and make the following assumption:

Assumption 5.3 (Domain symmetry) The spaces

{uez,: sup |ag(u,v)| < +o0}, {uez, sup lag(v,u)| < +o0},
Uezk?“”“ﬂzl UEZkv”UH’Hzl
and {u€ Z : sup |(Rar) (u,v)| < 400}

VEZ, [|v|ln=1

are equal and contained in ’Hz We denote their common value by Z,%

Remark 5.4 (Boundary conditions) In practice, the space Z7 will be a subset of H?(2) with
Dirichlet/Neumann conditions on (parts of) 0. Dirichlet conditions will be enforced “essentially”
by the choice of Zy, and Neumann conditions will appear “naturally” in Z3 as a result of a lack of
Dirichlet condition.

Due to the density of Z; in H and the Riesz representation theorem, this allows to state the
following definition

Definition 5.5 (The operators Py, P; and Py) For all u € Z?, define Pyu and Pfu as the
unique elements of H such that for allv € Zy,

(Pru,v) = ag(u,v) and (Pyu,v) = ag(v,u). (5.1)
Furthermore, let
1
Pru = 3 (Pyu + Plu).
Proposition 5.6 The space Z,f is dense in ‘H and Zj for their respective norms, i.e.

= LNIEN 3l =,

Z2 =H and 2Z; = Z
Moreover, Py, : Z% — H is an unbounded self-adjoint operator. Its spectrum satisfies
o(Pr) C [=Caalko), +0).

Proof. The continuity and Garding inequality, and the fact that Zj is a closed subspace of ;. that
is dense in H (for the || - || norm) imply that the restriction of Ray to Z is a lower semi-bounded
closed Hermitian form in the sense of [Sch12, Chap. 10], and Py is the operator associated to Fay
in the sense of [Sch12, Definition 10.4]. The density of ZZ in H and the self-adjointness of Py then
follows from [Sch12, Theorem 10.7]. The density of Z7 in Zj, is Proposition 10.5(iv) in the same
reference. The lower bound on the spectrum is by Proposition 10.4 in the same reference. ]

Proposition 5.7 Z% is a Hilbert space under the norm

lull z2 == | (P + (Ccalko) + 1) T)ull5 (5:2)
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Proof. The operator A := (P + (Cga(ko) + 1) I)u is self-adjoint, thus closed (since the adjoint
operator is closed by, e.g., [Sch12, Prop. 1.6]), so its graph norm makes Z,f a Hilbert space.
Furthermore, its spectrum is contained in [1, +00), so that

(Au,w)gy > [Jullf, = [[Aullse > [Julls-

Thus,
[ Aully < [|Aullag + [Jully < 2[|Aull,

concluding the proof. n

We denote the dual of Z2 by Z;~ 2 and identify H and Zj, as subspaces of Z, 2 _ this identification
is possible by the density of Z? in H. There are then unique linear continuous extensions of the
operators Py, P} and Py from H to Z;~ 2 by

(Pru,v) == (u, P{v), (Pru,v):= (u, Pyv), (Pru,v):= (u, Pxv),

for all uw € H and v € Z2. With these definitions, the operator P} is indeed the conjugate adjoint
of Py, as the notation (5.1) suggests.

Remark 5.8 (P is not a differential operator) In the model settings of Table 5.1, Py is not
a differential operator. For instance, in the case of the Neumann Laplacian, although Py agrees
with the differential operator —k=2A —1 on Z%, its extension to L*(Q) differs from it (even when A
is interpreted in the sense of distributions). Indeed, for u € C*(Q2) C L?(Q), integration by parts
reveals that

Pou=—-k2Au—u+k"2y-0,u

where v : HY(Q) — H1/2(0Q), ¢ > 1, is the trace operator and ' is its adjoint. In particular,

even if u € H™(Q) for a large n, Pyu is only in (H'/?T5(Q))* for all e > 0, instead of H* *(Q),
unless d,u = 0.
Proposition 5.9 The operators P, and P;; map Zj, to Z; continuously, and they satisfy

<Pku,U> :ak(uav)v <PI:U7U> :ak(v7u) fO’f’ all u,v € Zg,

max (|| Pyul

| Py ul

25 Z;) < Co(ko)Hu”Zk fOT allu € Zk.

Proof. We observe that for u € Zj, and v € 22,

<Pku7v> = <ua PI:U> = (U,P]:U)H = (P]:’Uvu)’H = <P]:<1},U> = ak(uav) = ak(ua U)
and thus
|[(Preu,v)| < Co(ko)llullz, ||v]| 2, -

The conclusion follows by density of ZZ in Zj, for the Zj norm. The reasoning for P} is similar. m

Definition 5.10 (The resolvent norm p(k)) Given k > 0, if Py : 25, — Z is invertible, we
define

P—l
p(k) = sup || k fH'H

_— 5.3
fernior  Ifllx (5:3)

Proposition 5.11 Suppose that Py, : Z;, — Z} is invertible. Then P} : Z, — Z} s also invertible
and for all kg > 0, there exists C > 0 such that for all k > ko,

1P 2, + 1P ullz, < C(1+ p(k)) [l 2

Moreover, for all z € C\R, (Py — 2) : Z;, — Z} is invertible and

(z)

(P = 2) " ullz, < €5 llullz;

8
where (z) = (1 + |2]?)Y/2.
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Proof. Let ko > 0 be fixed and denote by C' a generic constant depending only on kg. For u € Z,
the Garding inequality gives
1P ull%, < C (Re(ak (P tu, P tu)) + (1P ull,)
< C (Re((u, Py 'w) + | P ull3) (54)

Now if, moreover, u € H, then || P, ul|%, < C (|Jullp|| Py ulls + || Py " ull3,) Thus,
1P ull 2, < Cllull3 + (P )13,
which implies
1P 3420 < C(1+ p(k)).-

By the same argument, using that p(k) = ”Pk_lHH—m = I(P¥) s (since Pk_l M CZE o
Zk - H)a
1(P) oz, < C(1+ p(k)).

Thus by duality,
1P

z;-n < C(1+ p(k)).
Using this in the right-hand side of (5.4) as well as the inequality

2ab < ea? + ¢ 'b* for all a,b,e > 0, (5.5)

we obtain for all € € (0,1) sufficiently small,

1P ullz, < C (P ulg, + (7 + p(k)lul

2 )
2
and thus

[F2 1”2;azk < C(1+ p(k)).

We obtain the analogous bound for (P;)~! by duality. The proof of the bound [[(Py — 2)7!| z: -z,
is similar, first estimating ||(Pyx — z) ~!|/%— z, , using that

_ 1
1(Pe = 2) " ullae < i yllulla

S(2)]
since Py, is self-adjoint on H. [
Definition 5.12 (The spaces Z}') Let
H ifn=0
zn =1z, if =1

ZENHY ifn>2

(recalling for n = 2 that Z2 C H} by Assumption 5.3). For n > 2, the norm
lullZy = [lullZs + llull3,

makes Z;} a Hilbert space. We denote the dual of Z}} by Z,/™ for alln > 0.

Assumption 5.13 (Continuity of P, and P}) For all n € N, the operators P, and P; define
continuous maps
Py, Py 2072 5 H

For all kg > 0 and n € N, there exists C(kg) > 0 such that for all k > ko,

[1Peullag + (|1 Prullag < C(ko)llul

n+2.
Z}
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Remark 5.14 The idea behind Assumption 5.13 is that P, and P} can only act on functions
satisfying the chosen boundary condition, and they remove this boundary condition as well as
decreasing the regularity index by 2. Thus, given ak(-,-), ’HM’H}C,’Hi and Z,,, Assumption 5.13 can
be considered as constraining the spaces Hj for n > 3.

Because of this, we can extend P, and P} uniquely into continuous linear maps from #H;" to
Zk_”_2 for n > 0 by setting

P = (u, P?
(P, v) := {u, o), for all v € Z]'F2.
(Piu,v) := (u, Pyv),

To state more conveniently the mapping properties of P and P}, we define the Hilbert spaces
Wi = Zp NHE, Vi = Zp+H;. (5.6)

By the inclusion Z;' C H}} for n > 0 and duality,

Zr if n> moif n>
wp= 2 20 g gp o R T 20 (5.7)
Hy ifn <0, Zp ifn<0.

Thus, since Z, " = (Z)*,
Y. " =Wy, forallnelZ.

One may think of W} (respectively Vj') as the space “with” (respectively “without”) boundary
conditions, and the application of P “removes” the boundary conditions.

Proposition 5.15 (Pg, P} and P, map W£+2 to V' continuously) For alln € Z and ko > 0,
there exists C' > 0 such that for all k > ko and all u € W},

IPeullyy + 1 Pfullyp + 1Prullyp < Cllullyyn+e

Proof. This is Assumption 5.13 for n > 0 and follows from it by duality for n < —2. Finally,
Proposition 5.9 gives the result for n = —1 ]

Assumption 5.16 (Elliptic regularity) Let Q) equal either Py, P} or Py and let n € N. If
ueH and QueHE,

then u € Z,ZH'Q, and for all kg > 0 and n € N, there exists Con(ko,n) > 0 such that for all k > kg
and u € Z,f,

el g2 < Conlho, m)(Ilully, + [ Qullygy ).

Proposition 5.17 (Norms of P, ' and (P;)~! from W} to Vi?) Suppose that Py : Zj, —
2 is invertible. Then for allm € Z, Pt - VP — Wit? and (Py)~' : Y — W2 are continuous
and for all kg > 0, there exists C > 0 such that for all k > ko,

1P ullyy2 + 1(P)  ullyynre < C(1+ p(k)) [Jullyy (5.8)
where p(k) is defined by (5.3).

Proof. The case n = —1 is Proposition 5.9. Hence it remains to prove (5.8) for n > 0, since the case
n < —2 follows by duality. We proceed by induction. First, for n = 0, let v € H. Then P, ueH
and thus by elliptic regularity, u € Z,% with

lull z2 < Cenlko, ) (1P uulle + llullze) < Cenko, 0)(1+ p(k))llullae < Cp(k)lulln

by definition of p(k), where C' depends only on kg. Next, let n > 0 and suppose that there exists
C > 0 such that
1Pl

2ni2 < Cp(R)[ullz.
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Let u € ”HZ'H. Then by elliptic regularity and using the continuous embeddings Z£+2 C ‘H and
HPH CHE,
1Pl g < Colko, o+ 1)(1P M ullae + llullygr)
< Ce(ko,n + 1)(“Pk_1u||z;+2 + llullygp+r)
< Cuko,n+ 1)(Cp(k)|[ullagg + llullyp+)
< Cp(B)ljullyg

where C’ depends only on kg and n. [

Proposition 5.18 (Resolvent norm from Y;~' to W;'™') Let ko > 0 andn € Z. There exists
C(ko,n) > 0 such that for all k > ko and all z € C\ R,

<z>1+\_|n|/2j
S(2)

Proof. The result for n = 0 is Proposition 5.11. For n = 1, we use that

1Pk = 2) "l yp-1yyps < Clho,m)

u
1(Pe — 2) Ml < Ll

IS
and the elliptic regularity (Assumption 5.16) to write
[Py — 2) " ullzz < CIPL(Pr — 2) " ulla + [(Pr — 2) ™ ull2)
< O(lullr 412l - 0Pk — ) ullg + /(P — 2)ulle)
(2)

= WHUH%

Next let n > 0 and suppose that

_ z m
[P = 2) Ml < Ol

13(2)]

Z;}L*l
for all u € Z,?_l. Then elliptic regularity gives
1(Pr = 2) " ull govs < Cl(Px = 2) " ullae + 1 Pe(Pr = 2) " ul s

< (19 lullse + lull zg s + 121 1P = 2)ul o

B Z\m+1

< O (IS ullse + 1ull zp + ﬂcﬁ(zﬂllullzzl)
<Z>m+1

< O t—u|| zn+1.

Thus by induction, for all n > 0,

1+[Inl/2]
= 2) Y yne n <<Z>7
1P = 2) llyp-1ppn < | (2)]

The result for n < 0 follows by duality. [ ]

5.2 The spaces Dj

Since A = (A4 Caa(ko) +1)%/2,5 > 0, is finite for A € o(Py,), the functional calculus of unbounded
self-adjoint operators (see, e.g., [Sch12, Section 5.3]) allows us to define the self-adjoint operator

X5 = (Pi + (Caalko) + 1)1)*/? (5.9)
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with domain
D :=D(Xs) CH

where the inclusion is dense in the H norm. Since the functional calculus is an algebra homomorphism,
Xi,s = &P, where &), := X 1. Since &} is self-adjoint, it is, in particular, a closed operator, so the
space Dy is a Hilbert space for the graph norm

lull%s = llul3 + Xl
Moreover, o(X;7) C [1,4+00), hence
lull3, < (u, Xgu)re < ullaell Xulla,
so the graph norm associated of X}’ is equivalent to the norm

[[ul

2 = |l (5.10)
This way, the operator X} induces an isometry from Dj to Dz_t forall s >t > 0.

Proposition 5.19 Z,? = D,% with equal norms. Furthermore Zj, = D,ﬁ with equivalent norms; more
precisely, for all kg > 0, there exist constant C(ko) > 0 such that for all k > 0 and for all u € D?

1 2
mﬂuﬂzk <Hlullpy < Clko)llullz-

Proof. The first statement follows from the fact that X? and Py, differ by a multiple of identity, and
by the definition of the norm of Z? (compare (5.2) with the combination of (5.9) and (5.10)). On
the other hand, X,f is the operator associated to the lower semi-bounded form az 1 Zpx 2, — C
defined by
ajf (u,v) == Ray(u,v) + (Caalko) + 1)(u,v)
in the sense of [Sch12, Definition 10.4]. In particular, by Theorem 10.7 and Proposition 10.5 in the
latter reference,
Zp = D(IXZ|'?) = D(%) = Dy

The equivalence of the norms follows from the continuity of fa, and the Garding inequality. =
Corollary 5.20 For alln € N, D C Z! and the embedding is continuous.

Proof. The result is immediate if n = 0 and is Proposition 5.19 above for n = 1,2. Finally, if
u € DZH, then
Pru = (X2 — Cgal(ko) + 1)u € Dy

so the result follows by induction using elliptic regularity (Assumption 5.16). ]

We also define D, ® := (Dj)*. Since Dj is dense in H, for s > 0, H can be identified as a
subspace of D, *, so that D}, C Dj for all real s < ¢. We can extend X}, uniquely into a linear map
from Df to D; ! for all s € [0,1] by putting

(Xpu,v) = (Xiu, X 5v)  for all (u,v) € Df x D} °.

This way, X : Df — szl for all s € [0,+00) is an isometry and this is extended to s < 0

by duality. In turn, this allows us to view P, as a map Py : Di — DZ*2 for all s € R by
Py = XkQ — (C(;a(k'o) + 1) I, with

[Prullp; < (Caalko) + 1)]ul

s+2.
Dk

Proposition 5.21 (Resolvent estimates in the (Dj) scale) Let kg > 0 and s € R. There
exists C > 0 such that for all k > 0 and all z € C\ R,

1(Pr = 2) " lipg»py < I1S(2)| 71,

(P — 2)7"]

DIt S C{2)IS(=),

where (z) := 1+ |z].
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Proof. Using the fact that X} : Dj — H is an isometry, and functional calculus,

[(Px = 2) Moz ooy < 1A (Pr = 2) 7 X o = [1(Pe = 2) " Hlnon < [S(2)| 7

Similarly,
— s 1,5
1(Pr = 2) "My ypete = 167X = (Caa +2) X lsn = llg( XD Irsm < Sup l9(2)|
where g(z) := ;=75 Since for all z € C\R,
su v | I
veklv—z| " [SE)

we conclude that

sup l9(2)] < (14 Caa)(2)IS(2)| 7,

completing the proof. [

Proposition 5.22 (Functions of Py) Let kg > 0 and s > 0. There exists C > 0 such that, for
all k > ko and for any function f: R — C satisfying

[ llos,s := sup(l + [z[*)[ f(z)] < oo,
z€R

the operator f(Py) : H — H defined by the functional calculus extends uniquely into a continuous
map from D, * to Dy, with
||f(Pk)||DkTSaD; < CHf”OQS'

In particular (by Corollary 5.20 and the definitions of Vi and W} (5.6)) for any n € N, f(Py) :
Y. " = W) is continuous.

Proof. By functional calculus and using that X} = (Py, + Cga(ko) + 1)¥/2 : D! — H is an isometry
for all t € R,

||f(Pk)||Dk*3*>DZ <P 4 Caalko) + 1)*2F(Pr)(Pr + Caalko) + 1) lmsm = [lg(Pr)ll1—n
where g(z) = (Cga + 1+ z)° f(z) satisfies
l9(2)] < 2°(Caa +1)°(1 + |2]°)[f (2)]

for all z € o(Py). Hence, ||g(Pr)|ln—n < C||f|lco,s and the claim follows. |

5.3 Elliptic perturbation of P,

By Proposition 5.6, for every ky > 0, there exists a real-valued, compactly supported function
Yt € C2(R) such that

Vi () >
Following [GS25, Lemma 2.1], define

%OG& for all @ € o(Py). (5.11)

Si ==} (Py) (5.12)

by the functional calculus. Since ¥* has compact support,

is continuous for all n € N by Proposition 5.22. In what follows, the elliptic perturbation of Py is
defined by
Pl = P+ 5. (5.13)

The associated sesquilinear form, denoted by a,ﬁC 1 2 X Zy, — C, is thus given by

auk(u, v) = ag(u,v) + (Sku,v)y. (5.14)
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Proposition 5.23 (Properties of P,g) For every kg > 0 and any integer n, there exists a positive
constant Cy(ko,n) such that, for all k > ko,

R(ak (u,u)) > Cylko, Vl|ull%,  for allu € 2y, (5.15)
the operator P,g : W,ZH'Q — Y} is an isomorphism, and
H(P,g)*luﬂwgm < Cy(ko,n)||ullyr  for allu € Y.

Proof. By (5.11),
1
x4 (z) > 5(:17 + Cga) forall z € o(Py).

Therefore, by the functional calculus, for all u € Z],

((Pk + CaaDu, u)H.

|~

R(af(u,w)) = Rag(u, u) + (G (Pe)u, u)s = (Pi + 04 (Pr)u, u),, >

Hence, by the Garding inequality,

R(al (u, ) > C%auungk for all u € 22,

and the same inequality holds for all u € Zj, by the density of ZZ in Zj, and continuity of a’;. Thus,
alﬁC is coercive, and the Lax-Milgram lemma implies that P,g : 2 — (25)* is boundedly invertible;
this is the required result for n = 1. With n > 2, let u € "HZ_2 and suppose that v € Z, satisfies
P,gv =wu. Then Pyv =u — Spv € 7—[2_2 (by the smoothing property of Sy from Proposition 5.22),
so that v € Z! by elliptic regularity (Assumption 5.16). Moreover, since ||v||y < ||v]|z, < |Ju]
(again by the Lax-Milgram lemma),

Z5

lwllzp < C(llvlla + llu = Skvllyyn-2) < Cllullz- + lullyn-2) < Cllullyn-2,

which proves the result for n > 2. The same reasoning applied to P} + S} = P; + S, followed by a
duality argument (recalling that the dual of J}* is W, ™) gives the result for n < 0. ]

5.4 Order notation

Let
W= (YW, w2 = J Wi,

nez neZ

and define y,;too and D,ﬂf’o similarly.

Definition 5.24 (Order notation) Let (nx)k~o be a family of real numbers. Let m,n € Z and
let L : Wg° — Vi° be a linear operator. Then

L=0nn"W, = V)

if, for all ko > 0 and for all j € Z, there exists a real number C(ko, j) > 0 such that for all k > ko
and all uw € Wi,
1l < Ol )il (5.16)

The notations L = O (n™; V), = V.); L = On(n™; Dy — Di) are defined similarly.
Observe that these order relations can then be combined multiplicatively; e.g.,

L1 = Om(nn, Wk — yk) R L2 = Om’ (77"/;yk — Wk:) — L1L2 = Om+m,(nn+n/; yk — yk)
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5.5 Spatial pseudolocality

The statement and proof of the main result use both frequency cut-offs in the form f(Py) for
f € S(R) and spatial cut-offs coming from smooth compactly-supported functions. The following
assumption encapsulates the properties of these spatial cut-offs that are required in this section.

Definition 5.25 (Abstract “spatial cutoffs”) Let (n)r>0 be a family of real numbers. We
say that a linear operator is a spatial cutoff of order m with parameter  if R = O,,(1; Y, — Vi),

ad® Q = Opm_nio™ ;Wi = W), and  ad®. Q = Op_nio(n N Wi — W),

where @ is any one of the operators Py, Py and Pr. The set of spatial cutoffs of order m and
parameter is denoted by L7 (n), and we write Ls.(n) := L2 (n). We omit the n from the notation
when it will not lead to confusion.

Remark 5.26 Recall from Remark 5.8 that in the model settings of Table 5.1, the operator @
above is not a differential operator. Therefore the commutators adg Q and ad%* Q a priori contain
boundary terms, hence some care must be taken to check the continuity properties above. In §6,
we show that if R is given by the multiplication with a smooth cut-off function x with vanishing
normal derivative on 02_, then it satisfies the commutator estimates above.

Let A,B = Og(1, W, — W,) N Ou(1,Y, — YV,), where the intersection notation is used to
denote that the equation holds with either term on the right-hand side, and and let R € Ls.. We
say that A and B are separated by R if both

A(I=R) = Oo(n™ %Yy, = V) N Oo(n™ 5 Wy, = W),

RB = O0(n %Y, = Vi) N Oo(n™ %5 Wy, — W),

We say that A and B are separated if they are separated by R for some R € L.
The main result on spatial pseudolocality is as follows.

Theorem 5.27 (Pseudolocality of abstract Helmholtz operators) Let f € S(R), let A,B
be separated, and let () be one of the operators Py, P} or Py. Then

Af(Pi)B = O—oc(n™ ;) = W), (5.17)
AQB = O2(n" Wy, = V) (5.18)
APHTIB = 0_2(n> Y, = Wy). (5.19)

Remark 5.28 (The constants implicit in Theorem 5.27) Both the assumptions and the con-
clusions of Theorem 5.27 involve implicit constants coming from the order notation Definition
5.2/ used to denote bounds of the form (5.16). It is clear from the proof of Theorem 5.27 (but
cumbersome to write precisely) that given f € S(R) and a list of constants €, there is another list
of constants €' such that for all (nk)k>0, A, B and R satisfying the assumptions of the theorem
with the constants %, the conclusions of Theorem 5.27 hold with the constants €'. The same is
true of all results in the remainder of this section.

We first reduce the proof of Theorem 5.27 to the proof of various commutator estimates.

Proposition 5.29 Suppose that for all R € Ly, for all f € S(R), and for every N € N,

ady f(Pr) = O—cs(n™™; Vi = Wi, (5.20)
ady (P~ = 0_2(n™N; D = W), (5.21)

Then the results of Theorem 5.27 hold.

Proof. The structure of the argument is the same for all three results, albeit with different spaces.
We therefore omit the spaces from the notation for brevity.
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Since A and B are assumed to be separated, there exists R € L. such that A(I—R) = Og(n~>°)
and RB = Oy(n~°°). Hence, for any operator X such that X = O,,(1), since 4, B € Ly, C L,
AXB=ARXB+ AI1-R)XB
= A(adg X)B+ AXRB + AI-R)XB
= A(adg X)B + Oy (n™ ).

Repeating this argument N times gives
AXB = A(ad® X)B + O,,(n~>), (5.22)

since ad X = O,,(1) for any i € N (as can be easily checked by induction). By (5.22) applied
with X = f(Px) (and m = —oco by Proposition 5.22), X = @ (and m = 2), and X = (P,g)_1 (and
m = —2 by Proposition 5.23), for all N € N,

Af(Pg)B = A(adgy f(Pi))B + O—oo(n™™)
AQB = A(ad Q)B + O2(n~>)
A(P})T'B = A(adR (Pf)™)B + O _s(n~>).

Hence (5.18) follows immediately from the middle equality and Definition 5.25, while the first and
third equality show that (5.17) and (5.19) follow from (5.20) and (5.21), respectively.
[
We now prove that the assumptions (5.20)-(5.21) of Proposition 5.29 hold true. In order to
do this, the main tool the Helffer-Sjostrand formula, which allows to express f(Py) in terms of
(P, — z)~t. This formula is recalled below (for a proof, see, e.g., [Zwo12, Theorem 14.8]).

Proposition 5.30 (Helffer-Sjostrand formula) For all f € S(R), there exists a continuous
function w : C — C such that if A is a self-adjoint operator on a Hilbert space, then

fA) = [ -2 dme()
C
where dme(x + ty) = dx dy and for every M € N, there exists kpr such that

lw(2)| < kar(z) 27 S(2)| M for all z € C. (5.23)

The function w in Proposition 5.30 is obtained (up to a constant factor) via a so-called “quasi-
analytic extension” of f; see, e.g., [Zwo12, Theorem 3.6].
By the Helffer-Sjostrand formula,

ad f(Pr) = / w(z)ad (P — 2) " tdme(z)
c
Therefore, to prove (5.20), (5.21) we need to bound ad® Y1 with ¥ = P,§ or Y =(Pr—2)"%, in
terms of ady ¥V and Y1
The next result uses the notation that A = O (f(n,n,2);Y, — W,) if |\Au||W:7m <

f(77k7 n, z) Hu'

n.
Vi

Proposition 5.31 Let Q a subset of C. Suppose that X = O, (1; Y, = V) N O (LW, — W,)
and for every z € Q, let Y,, Y : W,T'z — Y be invertible. Furthermore, suppose that there are
L, > 0 such that

(a) for all z € Q,
Y1 =Ci(2)0((2)": 0, = W), (Y) = Ci(z)02((2)": Y = W)
(b) for all z € Q,

adX Y2 = C2(2)Oos n(m—1) (Vs Wi, = Vi), ady. Y7 = C2(2)Oasnim—1) (1™ Vs Wy = V)
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for some functions C1,Cs : Q@ — Ry. Then for all N € N, n € Z, there is M,, such that, for all
z €,

ady YV = (14 C1(2) " (1 + Ca(2) N O in (1) (17N ()75 Y = W)

Proof. The main idea is that ad¥ Y;! is equal to a linear combination of terms of the form
Yz_l(ad% YZ)YZ_l(adg‘é Y)Y L., Yz_l(ad?(” Y,)Y, !, and the next definitions formalize this more
precisely.*

We will prove the lemma by showing the estimate for ady Y, ! acting on elements of H and
then (using the second parts of assumptions (a) and (b)) argue by duality to act on H ".

An operator ay : H — H is called an (N, z)-atom if either

(i) N=0and ay =1, or
(ii) any = (ad¥ Y)Y, or
(i) an = a;a; where a; is an (4, z)-atom and a; is an (j, z)-atom with i+j = Nand 1 <4,j < N—1.

An operator ty is called an (N, z)-term if it is of the form

J
§ : -1
tN = UjYZ an,j
Jj=1

where J € N, ¢, are real coefficients and ay ; are (N, z)-atoms. For example,

ts =Y, Hady V)Y, ' = ¥ adk Y1)V, H(ad) V)Y
is a (5, z)-term. Notice that if ¢; and ¢; are (¢, 2)- and (j, z)-terms, then ¢,Y,¢; is an (i + j, z)-term.

It follows immediately from assumptions (a) and (b), by induction on N, that if ty(z) is a
(N, z)-term for all z € §, then

tn(2) = 1+ Cr()V A+ Co(2) N Oa -1y (17N ()75 V) = W),

Thus it remains to show that for all z € Q, ad¥ Y71 : H — H is an (N, z)-term. For this, it suffices
to prove that, for all V € N,

ty isan (N, z)-term = adxty isan (N + 1,2)-term. (5.24)

By linearity, it is enough to prove (5.24) in the case where ty = Y, lay for some (N, z)-atom ay.
We consider separately the three cases (i), (ii), (iii) above in the definition of an (N, z)-atom.

Case (i): If ay = 1, then

adxty =adx Y, ' = XY, ' — V' X =YV, V. XY, ' - VXYY = Y Hady Y)Y !
which is a (1, z)-term acting on u. This shows the implication (5.24) for N = 0, and in the following
cases, we fix N > 1 and proceed by induction assuming that it holds for all i < N — 1.

Case (ii): If ay = (ad¥ Y2)Y, !, then

adxty = (adx Y, ) (ad¥ V)V, 4+ Y, Y adY T Y)YV 4 Y Y ady V2) (adx Y1),

The second term on the right-hand side is an (N 4 1, z)-term. The first term on the right-hand side
can be rewritten as
—Y, Y (adx V.)Y ! (ad} Vo) Y7L

z

(1, z)-atom (N, z)-atom

41t is in fact possible to give a full closed-form expression for ad§ Y~ involving sums of compositions of quantities
of the form (ad"X Y) and Y. However, the fomula and its proof, involving sums over all possible ordered partitions
of {1,..., N}, are slightly cumbersome and for the present purposes, this would be more information than actually
needed.
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This is thus an (N + 1, z)-term. Similarly, the third term is an (N + 1, z)-term, and thus adx ¢y is
n (N + 1, z)-term.
Case (iii): If ay = a;a; then, since a; : H — H,

tN = Yz_laiaj = Yz_lainYz_laj = tiYth
where ¢; := Y, a; and t; := Y, a; are (i, 2)- and (j, z)-terms, respectively, with i + j = n. Thus

adxtN—(adxt)Yt —‘rt(adx )t +tY(adxt)

The first term is an (N + 1, 2)-term by the induction hypothesis. Similarly, the last term is an
(N + 1, z)-term. The middle term can be rewritten as

(t4+ (j+1), z)-term

(adx )t —tY Y (adX )Y Yt

(1, z)-term

(7 + 1, z)-term

which is an (N + 1, z)-term. This concludes the proof. |

We can now prove the estimate (5.20).

Proposition 5.32 For any N € N, f € S(R) and R € LT,

ad® f(Py) = O oo (7 N; D) — W),

Proof. By the Helffer—Sjostrand formula,
adff £(P) = [ w(2)ad}{ Py~ 2) dme().
C

By Proposition 5.31 with X = R, Q@ = C\ R, Y, = (P; — z), the first commutator property of
spatial cutoffs, and the resolvent estimate of Proposition 5.18,

adfi(Pe—2)7t = (1+ |s<2>|)N0—z+N<m-n<nN<z>M"; i = Wi).

Therefore,

wdf J(PR) = Ocsvnosy (1 [ e (14 20 ) dme(2) i WL )

The bound (5.23) on w implies that the integral is finite, and thus, for all f € S(R),
ady f(Pr) = O_aiNm-1) (0 ;i Y = Wp). (5.25)
We now upgrade the regularity index from —2 + N(m — 1) to —oco by induction on N. For N =0,
adp f(Pr) = [(Pk) = O—oo(1: ) = W) (5.26)
by Proposition 5.22. Next fix an integer N > 1 and suppose that for all i < N —1 and all g € S(R),
ady g(Pr) = O—cc(n™; Vi = Wy).

By, e.g., [Voi84, Theorem 3.2], given a Schwartz function f, there exist two Schwartz functions f;
and fo such that f = fyfo. Thus f(Pr) = f1(Pr)f2(Pr) with fi, fo € S(R). Furthermore, by the

Leibniz identity
N

ad¥ (Y 2) :Z( ) (ad’y Y)(ad} ' Z).

=0
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Thus,

ad (f1(Pr) f2(Pr))

N-—1
= AP £2(P0) + @} AP RP) + X (7 ) ade /(P ad ™ 2P
i=1

Bounding the first two terms on the right-hand side by (5.26) and (5.25), and bounding the third
term by the induction hypothesis, we obtain that

adj (f1(Pu) f2(Pr)) = O-oc ()02 (m-1)(n™") + 3 O (k™)O0—ao (™),

where all the operators are ), — W,. Since Wp C Y for all n, ad® (fi(Pr)f2(Pr)) =
O—oo(n™N; Y, — W,), and the proof is complete. [ ]

We now record a variant of the previous result.

Proposition 5.33 Let N € N, f € S(R) and let R = O,,,(1; D, — D,) be such that
adRy P, = Om_n42(n~ "Dy — Dy).

Then
ad f(Px) = O (n™N; D, — D)

The proof is the same as that of Proposition 5.32, using a variant of Proposition 5.31 in the scale
(D§)ser, and using the mapping properties of (Py — z), (Pr — 2)~! and f(Pg) in this scale (with
the latter two mapping properties coming from Propositions 5.21 and 5.22).

Proposition 5.34 For all N € N and R € L,
ad%(Pﬁ)’l = 072+N(m71)(7]7N; Vi = Wy).

Proof. This follows from Proposition 5.31 applied with X = R, Q@ = {1} and Y7 = P,g. Indeed, for
assumption (a), the required estimate is given by Proposition 5.23, while for assumption (b),

adN PE=ad} Py +add ¢(Py) = Ogs nm-1y (™) + O_o (™)

by the definition of spatial cutoffs (i.e., Definition 5.25) and by Proposition 5.32. ]

5.6 Boundary compatible operators and pseudolocality in frequency

In some cases, we will need to use pseudolocality in the frequency space in addition to the physical
space. To this end, we introduce the set of boundary compatible operators, L}'.

Definition 5.35 (Boundary compatible operators) X = O,,(1;D, — D,) is a boundary
compatible operator of order m, X € Ly, if, for all integers N > 0,

ady X =Onim(n™;D, = D)) and  adpy X* = Onim(n Vi Dy, — Dy).
We write Ly, := LY.

Remark 5.36 We highlight that the requirement that an operator is boundary compatible is much
more stringent that the requirement that it is an abstract spatial cut-off, essentially because a
function w € H must satisfy many “boundary conditions” to belong to the spaces D} for large n
(see Table 5.1). In the setting of the Helmholtz PML problem of §6.3 below, we show that if R is
given by the multiplication with a smooth cut-off function that is locally constant near the obstacle
boundary, and vanishes near in a neighbourhood of the truncation boundary, then it satisfies the
commutator estimates above.
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Theorem 5.37 (Frequency pseudolocality) Let X € L, f,g € C®(R) be polynomially
bounded, such that one of f and g is in S(R), and supp f Nsuppg = 0. Then

f(Pe)Xg(Pr) = O—co(n™% Dy —= Dy). (5.27)

As in the case of spatial pseudolocality, the proof of Theorem 5.37 can be reduced to certain
commutator estimates.

Proposition 5.38 Suppose that for all X € L},
adfipy X = O_oo(n Vi D), = D). (5.28)
Then the results of Theorem 5.37 hold.

Proof. Without loss of generality, assume that f is Schwartz (the proof when g is Schwartz
is analogous). Since the sets supp f and suppg are disjoint, there exists fi € S(R) such that
supp f1 Nsupp g = 0 and supp(1 — f1) Nsupp f = 0. Therefore,

F(Pr)Xg(Pr) = f(Pr)(adf () X)g(Pr).

Therefore, (5.27), follows from (5.28) and the mapping properties of f(Py) and g(Px) from Propo-
sition 5.22. [

Proposition 5.39 Given f € S(R), m € R, and X € L],
adp,) X = O_o(n™™; Dy = D)
(i.e., the bound (5.28) holds).

Proof. Using the Helffer-Sjostrand formula, commutators with f(Pj) can be expressed in terms of
commutators with (Py — z)~': for all f; € S(R), j =1,..., N, all X € £, and for every integer
N eN,

adyy(py) adyy_y(py) - - -ad g (P X

(5.29)
= /N wl(zl) e wN(zN)(ad(pk,ZN)q .. .ad(pkle)fl X) dch (Zl, ey ZN),
C

where w; is as in Proposition 5.30 with f = f;. Using the identities ad(p, _.y-1 X = — (P —
z)"tadp, X(Pr — 2)7 ', adx (YZ) = (adx Y)Z + Y (adx Z), and the fact that adp,_.)-1 (Px —
2')~1 = 0, one obtains the formula

N N
ad(pk,zN)fl N ad(pkle)f1 X = (—I)N H(Pk — Zz adpk H ke — Zz

i=1 i=1
Therefore, by the resolvent estimate in Proposition 5.21 and the commutator assumption for
frequency cutoffs (in Definition 5.35),

N

ad('P;C —zn)t a‘d('P;C 21)7 1 X = H Z? ZJ)' 20—3N+m(77_N§Dk_>Dk)-
j=1

Using this in (5.29) and recalling the decay properties of the w; (5.23), we obtain that, for any
flv"wa S S(R)a
adi(Pk) T a‘d.fl(Pk) X = O—3N+m(777N;Dk — Dk)'
In particular, if f; = f, then ad}V(Pk) X =O0_anim(n~N; D, — D).
To upgrade the regularity index from —3N + m to —oo, we use again that, given a Schwartz

f, there exist two Schwartz functions f; and f; such that f = f; fo. By the functional calculus,
f(Px) = f1(Pr) f2(Py). Furthermore, adwy Z = (adw Z)Y + W(ady Z). Thus,

adfip,) X = ady, (p) fa(py) ad () X = (adg, (py) ad i) X) fo(Pi) + f1(Pr) (ad s, (py ad ) X)

O_sn(n=N) O_x(1) O—x(1) O_sn(n=N)
= O_oc(nN;Dy = Dy)

which completes the proof. [
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6 Pseudolocality results applied to the Helmholtz problem

In this section, we specialise the results of the previous section to the Helmholtz PML operator,
that is, to the case where H} = HJ!, ay, is defined by (3.1) and Zj, is defined by (3.2). With these
definitions fixed, we keep the rest of the notation from Section 5 (indeed, once we check that
Assumptions 5.1, 5.2, 5.3, 5.13 and 5.16 hold, all other objects appearing in this section are then
defined in terms of H}, Z; and ay). Observe that Z; is a subspace of H,i with Dirichlet conditions
on either 92 (Dirichlet setting) or just I'y; (Neumann setting), and for all j > 0, yi =H ,JC and the
inclusion H,;j C y,;j is continuous. In particular, if R = O_.(n™; YV, — yk), then

||RUHH,§’ < Cn"||u||H;N for all N € N.

In this particular setting, we give sufficient conditions for smooth cut-off functions y € C*°(Q) to
fulfil the conditions of Definition 5.25 or Definition 5.35. We also identify some boundary-compatible
operators in the sense of Definition 5.35 that are used for the proof of Theorem 3.11.

In the remainder of this paper, we adopt the following notation.

Definition 6.1 Given two cutoff functions ¢, 3,% € C=(Q) and a real number d > 0, we write
plgv <= dist(supp,suppy) > d
p=a¢p = ¢la(l-9).

We abbreviate 1y and <o by L and <.

6.1 Verifying the assumptions

We start by showing that the assumptions of Section 5 hold for the PML problem.

With the PDE coefficients in Ay, by, and ny defined in §A, that section shows that there exists
w € R such that e“a(-,-) satisfies Assumption 5.1 and 5.2 (with w = 0 for the most commonly-used
radial PML construction). Since

ar(u —up,vy) =0 if and only if eiwak(u — up,vp) =0,

without loss of generality we can assume that w = 0.
It is standard that Assumption 5.3 holds with Z? defined in (3.7). Moreover, for all u € ZZ,

Pru = —k~2div(AgVu) + k~*(bg(x), V) — ngu.

Thus, Py : Z}! — 7—[272 is continuous for n > 2, thus Assumption 5.13 holds. The smoothness of
0, Ap, bg, and ny ensure Assumption 5.16 (elliptic regularity) holds

Since DY = H, Di = Z,, and X}, > := (Px + (Cgalko) + 1)I)~! is an isomorphism from D} to
D2, it follows by induction that

Dy, ={ue H"(Q) : u,Pru,... ,’P,En/2]71u € Hy()}
and
wn={ueH" Q) :u=Pu=...= ,Ln/ﬂ_lu:() on Iy,
and 0y 4,4 = 0y 4, (Pru) = ... =0, 4, (’P,En/ﬂ_lu) =0 on BQ,}.

lullpy = 4 1wl 7= 2m,
PE 1 ullz,, n=2m+1,

Since X,f = Pi + (Cgalko) + 1) I so that, by induction, for m € N, X,fm coincides on Dim (and
thus on DZ’”H) with a differential operator of order 2m. Thus

[ullpp < Cllull#y  for u € Dy. (6.1)
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6.2 Pseudolocality results with smooth cut-off functions

The main result of this section is the following.

Theorem 6.2 Suppose that x1,x2 € C>(Q) with supp x1 Nsupp x2 = 0. Then, for all f € S(R),
Xif(Pe)xe = O—os (k™Y = Vi)s xaRixa = Oa(k™3 ), = V).

This result is proved by using Theorem 5.27 and showing, first, that if x € C°°7(§) and
Ovxloa_ = 0 then x € Ly (see Lemma 6.3 below) and, second, that given x1, x2 € C*°(2), there

exist x; € C*°(Q) with d,X;laa_ =0, j = 1,2, such that x; < X;, and X1 L X2 (see Lemma 6.6).

Lemma 6.3 Given {Cn}nso C Ry, there exist {Cg\/',n}an C Ry such that the following is true.

For alle > 0, if x € C°°(Q) satisfies Iy x|oa_ =0 and

maﬁalo“|aax| <Cn forall N €N,

|ex]

then N N
||adX Q||Wg~>y:+27N S C;V,n(gk)_ ) (62)

where Q is any one of the operators Py, Py or Pi. In particular x € Lgc.

Proof. We start by considering ad, Py acting in Z}. Indeed, suppose that u,v € Z}. Then,
XU, XU € Z,% and hence

(ady Pru,v) = a(u, xv) — ar(xu,v)
— 17240V, V(X0)) — (Ag(Vxu), Vo) ) + b~ 2(xby - T = by - ¥ (), v)
— k2 ((AQVU,UV@ — (uAyVy, Vv)) — k™*{(bg - Vx)u,v)
=k7*((AgVu) - VX + V- (udgVx),v) — k~*((bg - VX)u,v), (6.3)

where in the last line we use that d,x|sa_ = 0 and u|r,, = 0. In particular, for n > 1,
| ady Prullyn-1 < C(ek) ™ |ul zp. Next, since
k

(adi Pru,v) = (ad, Pyu,xv) — (ady Pi(xu),v),
a short calculation using (6.3) implies that, for u,v € Z},
<ad>2< Pru,v) = —k~*(2u(AgVy) - VX, v). (6.4)

Thus, for n > 0, ||adi Prull3p < C’(ek)_2||u\|gg. Since there are no derivatives of u on the

right-hand side of (6.4), a similar calculation shows that u € Z}, (adiv Py)u =0 for N > 3. Thus
N N -N
I adx PkHZg—H—Lz’ZJrN = adx Pk||Wg_>y;;—2+N < C(ek) for n >0, (6.5)
and, by identical arguments,
| ady Pl zpypn-2en = | ady Py llyypyyn—zen < C(ek)™ forn >0. (6.6)

Now, for £ >0, u € H;* and v € Z72, by the fact that (ady B)* = (=1)" ad}. B* (which one
can prove by induction),

(a2 Py, v)] = [{u, (~1)N (ad PEY0Y] < [l (2 B ol

If N > 3, then the right-hand side of the last inequality is zero. Otherwise, (6.6) with n =
{+2— N >0 implies that

[{(ady Py)u,v)| < C(gk)—N||u||H;e||v|\2£+w.
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Since Z£+2 is dense in Zﬁ”‘N , the previous inequality and similar arguments for P; imply that
|| adg PI:CHHEZ*)ZIC—Z—ZJrN + || adXN PkHHIZZsz*[*"‘*N < C(&k‘)_N, ?>0. (6.7)
The combination of (6.5), (6.6), and (6.7) are then (6.2). |

We first prove the existence of a cut-off in Ly, between 2; and 5, under the assumption that
Q; is sufficiently small — this assumption allows us to use Fermi normal coordinates defined by 0f2
on Ql.

Lemma 6.4 There exists €9 > 0 such that for all N > 0, there exists Cy > 0 such that for all
0 < e < e the following is true. If Q1,Q C Q are such that d(Q1,$2) > € and if there exists y €
such that Q1 C By, €p), then there exists x € C*°(;[0,1]) satisfying

QiNsupp(l—x) =0,  suppx N2 =10,
10%x| < Cnel for |a] < N, and  Odyxloa = 0.
Proof. Let Uperm; be a tubular neighbourhood of 952 in which there exists a Fermi normal coordinate
chart; we denote these coordinates below by (z1,2’)r (where the subscript F emphasises that
these are not Euclidean coordinates). Let dg > 0 be such that Upeymi D B(99,2080) := {x € Q:
diSt(l‘,aQ) < 2050} and let €0 = 950 If Ql ¢ UFermi then diSt(Ql,GQ) Z 250 = (2/9)60, and the
existence of x follows immediately (e.g., by mollification of the indicator function of Q7). We

therefore assume that Q1 C Upermi- Now, there exists ¢z > 0 (depending only on ) such that, for
all » > 0 and for all (0,2") € 09,

{00,9)r : |y — 2’| < epr} € B((0,2")p, ) NN (6.8)

We now define some mollifiers and cut-off functions. Fix ¢, € C°(Brm(0,1)) such that
[ m =1, m=d—1,d. Fix also Yy € C2°(—2,2) with (=1,1) Nsupp(1 — ;) = @. Then, for § > 0,
set Y s(x) = (5_7”%,1(5_13:), and ¢ 5(z) == ¢1(5_~1m). B B

Let § = €/10 and 5 := B(€4,46); note that d(Qy,Qs) > 6€/10. Let Q? =y N OQ; note that
this set may be empty.

Now let

x(z1,2") = (15(19 * ¢d—1,cF5)(JJ')IZ1,5($1) + (151 *Pq5) (x) (1 — 7;1,6(331)) = Xnear + Xfar, (6.9)
We now check that y has the required properties. First,
10% (ux v)[| Lo = [[(0%u) * vl < (|0%u|lLr[[v]|Le,

so that
1(8%(u* v)wlree < lwll oo 1(0%w) % v]| Lo < [J0]] oo [|0%ul| L1 [|0]] oo

Combining this with the product rule and
1001 5]l < Cad™®  and  [|0%Ypmslrr < Cad™ ¥l m=d —1,d,

implies the required derivative estimates on . Next, since Xfar = 0 near 92 and 95 Xnear|z;=0 = 0
for any «, it follows that 9, x|sq = 0.
We now show that €3 Nsupp(1 — x) = 0; we do this by showing that

x(*)=1 when z= (z1,2')€ B(Q,5)NAQ. (6.10)

First observe that, for such z, (151 *1g,5) () = 1. Then, since 7;[;175(;31) = 0 when z; > 26, (6.10)
then follows from (6.9) if we can show that

(15? *Pg_1,cp0)(2') =1 when z; <26 (6.11)
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(i.e., on the support of 1’/;175). To prove (6.11), observe that, by the triangle inequality,
d((O,x’)F, Ql) <z + d(l‘, Q1) <20+ d($7 Ql) < 3.

Since € := B(Q4,40), B((0,2')r,0) C Q1. Thus B((0,2')r,8) NI C Q1 NIQ = Q?. and (6.11)
follows by (6.8).
Finally, we show that Q5 Nsupp x = 0), again by showing that

x(#) =0 when z=(z1,2")r € B(Q2,6) N

Then, d(z,Q;) > ¢ — 56 = 56; thus (151 % Pg5)(z) = 0 and xgr = 0. If |21] > 20, Xnear = 0.
Otherwise, we claim that B
d((0,2"), Q%) > € — 75 = 36; (6.12)

then, by (6.8),
{(O,y’)p dy =2 < CF5} QQ? C B((0,2")F,0) ﬁﬂ? =0

so that (1, *Ya—1,crs)(2) = 0 (and hence xnear = 0). The inequality (6.12) follows by the triangle
1
inequality:
e < d(Q1,Q2) < d(91,99) +d((0,2") p, Q) + d((0,2") p, ) + d(z, ),
<46 +d((0,2"), Q) + 26 4 0,

concluding the proof. ]

Lemma 6.5 (Partition of unity satisfying Neumann boundary conditions) Let Q; C €2,

i=1,...,N be open with Q C U;Q;. Then there exist p; € C*°(Q)) satisfying
N
suppy; C Q;UIQ, ;=0 on ), and Zcpi =1.
i=1

Proof. Let U; € ); be open sets such that Q@ C U;U;. Then, for ¢ > 0 small enough, and
y € U;, B(y,2¢) C Q;. In addition, since U; is compact, there are {yij}j-\]:il C U; such that
Ui C U;.V:'ilB(yij7e),

By Lemma 6.4 (applied with Q1 = B(y;;,€) and Qo = Q\ ), for € > 0 small enough, there are
@ij € C*°(9;[0,1]) such that supp(l — ;) N B(yij,€) = 0, supp p;; C Q; UIQ, and 9,$;; = 0 on
0. Noting that Zfil Z;\;l ©i; > 1, we define

N; ~
2P
=N N =

Dz Zj;I Pij

which has the required properties. [

Pi -

We now remove the assumption from Lemma 6.4 that € is sufficiently small.

Lemma 6.6 There exists g > 0 such that for all N > 0, there exists Cy > 0 such that for all
0<e<e and Q1,09 C Q and d(Q1,Q2) > €, there exists x € C™(Q)) satisfying

@ Nsupp(l — x) =0, supp x N Qs =0,

(6.13)

0°x| < Cne '™, Ja| <N, Buxlaa =0,
Proof. Let €y be as in Lemma 6.4. Since Q is compact, there exist {z;}M, such that Q C
UM, B(xi,€0). Then, by Lemma 6.5, there exist {p;}M, a partition of unity subordinate to
{B(z4,€0)}}, satisfying 0,¢; = 0 on Q. Then, let Q4 ; := Q3 N B(z;,¢). By Lemma 6.4, there
exists x; such that the conditions in (6.13) hold with €2 replaced by €; ;. Define x := Zi\il XiPi-
The derivative estimates in (6.13) then follow from the product rule and the fact that the derivatives
of ¢; are independent of € (but depend on €y). The condition that 9, x|aq = 0 follows since both
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d,xi = 0 and 9,p; = 0. Next, since suppx; N Qy = 0, supp x Ny C U; supp(xipi) N Ny = 0.
Finally, since x; = 1 on Q1 N B(x;, €9) and supp ¢; C B(xi,€0), (1 — xi)p: = 0 on 4, and thus

N

supp(1 — x) N = supp (Z(l - Xi)%‘) Ny = 0.
i=1

]
Proof of Theorem 6.2. Since supp x1 Nsupp x2 = @, there exist ; neighbourhoods of supp x;
with d(Q1,Q2) > 0. Therefore, by Lemma 6.6 there are X; with suppx; N supp(l — x;) = 0,
supp x; Nsupp x; = 0, @ # j, and 9, x; = 0. Hence by Lemma 6.3, X; € Ly and using Theorem 5.27,
we have

X1f(Pr)x2 = x1X1f(Pr)Xox2 = X10—0o (k7% YV, = Wi)x2 = O— oo (K™% YV = Vi),

since x; = Op(1;Y,, = V). The proof for Rﬁk is identical. ]

6.3 Some boundary compatible operators

Lemma 6.7 If o € C°°(2), supp Voo NIQ = 0, and supp o N Ty, = 0, then ¢ € Ly, in the sense of
Definition 5.35.

Proof. By Definition 5.35, we need to show that adgk 0 =O0Nn(k™N;D, — D,). Let ¢ € C=(Q)
be such that ¢ =1 on supp V. We first show that adgk Y= (adgk ©)p on C(2) where Ly, is a
second-order differential operator. By (6.3), for u,v € Z,,

((adp, @)u,v) = =k *((RAgVu) - Vo + V - (u(RAg) Vi), v). (6.14)

By (6.14),
adp, ¢ = ¢(adp, ¢)¢ = @(adr, )P
Thus
adp, ¢ = Pr@(adr, )¢ — Gladr, ©)FP.
Since Prp = Ly and Py = @Ly,
adp, ¢ = Lig(adr, ¢)¢ — P(adr, )¢Ly = adl, ¢ = (adi, ¢)3

the fact that adgk = (adg . )@ can be proved similarly by induction. Therefore, given u € DZJFN

adgk ou = (adgk ©)pu € Hy with compact support in €2, and thus, when n € N, (adgk p)u € Dy.
Thus, by (6.1), commutator results for differential operators, and Corollary 5.20, for n € N,
N N N _ _
I(adp, )ullpy < ll(adp, )ullg = ll(adE, @)ullag < Ck™N [lullymey < Ok Nfull g

By the spectral theorem, (D), is an interpolation scale, and the result for general n follows by
duality and interpolation. [

Lemma 6.8 (¢Pp € L} for suitable ¢) Suppose that p € C®(2), supp Ve NN = O, and
suppp NIy, = 0. Then,

adlp, , P = Ony2(k™N; Dy — D), adgpw P, = Ony2(k~N;D, = D)), (6.15)
and
adP, ©Pup = Oni2(k™N; D) — Dy), ad%’; Pep = Onya(k™ VD), = D)5 (6.16)

in particular, Py € LE in the sense of Definition 5.35.
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Proof of Lemma 6.8. We prove (6.15); the proof of (6.16) is very similar. We write
adlp, , Pe = toadlp, , Po + (1 — o) adp, , Pr,

where 1 is supported in a region close to 92 where ¢ is constant. More precisely, let 1; € C>(Q),
i = —1,0,1 with supp(1l — ;) N9 = (), supp ¢); Nsupp(c — ¢) = 0, supp(1 — ;) Nsupp ;1 = 0,
and 19 P, = ¥ P} (note that such functions exist since supp Vo N oQ_ = 0).

By locality of P, and Py and the fact that Py = Py on supp ¥2 O supp Yy,

Yo adlp, , Pe = 1hoadlp, . P = 0.
Now, let ¢ € C°°(Q) with supp @ N Ty, = 0 and supp ¢ Nsupp(l — @) = . Then

(1—+o) adsﬂ’w Py = (1 — o) ad@(l_wfl)PkW(l_"/)—l) [(1 —-1)pP(1 - ¢—1)‘/~’]'

Since supp @ Nsupp(l —1_1)NIN = (), integration by parts (with all the boundary terms vanishing)
shows that ¢(1—_1)Pre(l—1_1) and (1—1_1)@P;(1—1_1)@ coincide with differential operators
on C*(9). The result
N -N
I adsﬂ’w Pk||Dg—>D;’N’2 < Ck

then follows by direct differentiation (using the product rule) and then density of C°°(Q) in DJ.
The proof of the analogous bound for P} is identical. [

Lemma 6.9 (o(P!) o, o(PF*) 1o € Li%) Suppose that o € C>(Q) and supp VondQ = 0, and
suppp NIy, = 0. Then,

adgk sa(Pﬁ)’ls@ =On_2(k™N;D, — D)), adgk w(Plf’*)’lso =On_2(k™";D),, — D))
and thus go(P,g)_lap, @(P,ﬁ’*)_lw € L% in the sense of Definition 5.35.

Proof of Lemma 6.9. We prove the statement for P The proof for (Pu) is identical. Let
@ € C=(Q) with supp V@ N 9Q = 0 and supp(1 — @) Nsupp ¢ = (). Then, by locality of Py,

adp, o(P}) o =adlp, s (P~ (6.17)

By Lemma 6.7, adgk o =On(E~N; D, — D,,), so that, by repeated use of the identity adap C' =
A(adp C) + (ads C)B
adXp, ;¢ = On(k™N; D, — D). (6.18)

Therefore, by the combination of (6.18), (6.17), and repeated use of the identity ad4a BC =
(adg B)C + B(ad C), it is enough to show that

adXp, 5 (P)) ™" = On_2(k™N; Dy — D). (6.19)
To prove (6.19) we use Proposition 5.31. For this, observe that

adlp, s Pf = adlp, 5(P +9(Py)).
By Lemma 6.8,

addp s Py = Oain(E™N;Dy = Dy) and  adp s Pf = Oy n(k~N; D) — D).

¢Prp ¢Prp
. . N _ N N
By induction, ad (B + C) = ady B + ady C, and so
adXp, s Pe = O24n (k7 D), = D). (6.20)
Therefore, by Proposition 5.33,
adXp, 5 ¥(Pr) = O2un (k™ Dy — D).

We deduce that
adwfpkcp kﬁ = 02+N(k_N;Dk — Dk?)

and (6.19) — and hence also the result — then follows from Proposition 5.31. ]
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7 Pseudolocality of the elliptic projection

In Sections 4, 5, and 6, we studied pseudolocality properties at the continuous level. Another key
tool required for the proof of Theorem 3.11 is of a discrete nature, namely, we need to establish the
spatial pseudolocality of the Galerkin projection Hi associated to (the adjoint of) the sesquilinear

form aﬁk defined in Definition 5.13, see Theorem 7.2 below.
We keep the notation of Section 6. The operator Hﬁk is defined as follows.

Definition 7.1 (Elliptic projection) Given k > 0 and a linear subspace Vi, C Zj, the elliptic
projection onto Vi is the linear operator Hﬁ,C 2 2y, — Vi defined by

aﬁk(v, Hiu) = ai(v,u) for allv € Vy,
where we recall that 2y is defined by (3.2), ai(u,v) = ag(u,v) + (Sgu,v)y and Sy is defined by
(5.12).

The operator Hi is well-defined for all k > 0 by the Lax-Milgram theorem, since a?{ is coercive (by

Proposition 5.23).

Theorem 7.2 (Pseudolocality ofI—ch) Let (Vi)k>o be a well-behaved finite-element of order
p in the sense of Definition 3.7, let kg > 0 and let ¢ > 0. There exists hg > 0 such that for all
N >0, x, € C®(Q) satisfying x L¢ 9, there exists C > 0 such that for all k > ko, h < hg, and
u € Zy,

(=T ull gy < Ck=N (=T )by,

where H’; is the elliptic projection onto Vj.

Remark 7.3 Through the constants ¢ and hg, the assumptions of Theorem 7.2 require a sufficient
number of “layers” of elements separating the supports of x and .

Theorem 7.2 is an immediate consequence of the following two lemmas.

Lemma 7.4 Let (Vi)r>o be a well-behaved finite-element of order p in the sense of Definition 3.7,
and let ¢ > 0. Then, there exists hg > 0 such that the following holds. For any ko >0, N >0, and

any X, X+, € C=(Q) satisfying
X— <X+ and x4 L,

there exists C' > 0 such that, for all k > ko, h < hg, and u € Z,
e (Tl g < Ok (s (0T a2 + (1T by ).

Lemma 7.5 Let (Vi)r>o be a well-behaved finite-element of order p in the sense of Definition 3.7,
let ko > 0 and ¢ > 0. Then, there exists hg > 0 such that for all N > 0 and every x, 1» € C*°(2)
satisfying x L. ¥, there exists C' > 0 such that, for all k > ko, h < hg, and u € 2,

(=T woul 2 < CINI-TT)ooull; - (7.1)

If Sy is (formally) set to zero, then Lemmas 7.4 and 7.5 are analogous to [AGS24, Lemmas 5.1
and 5.5], respectively.

Proof of Lemma 7.4. Let ¢ > 0 be given and let hg > 0 be a sufficiently small constant depending
only on ¢. Fix kg > 0, N > 0 and x_, x4 and % as in the statement. In what follows, we denote
by C' a generic constant depending only on the previous quantities.

We first claim that, without loss of generality, we can assume that d,x_ = 0 and thus

ady Py =O1(k™ W, — V) (7.2)
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by Lemma 6.3 and Definition 5.25 and
ady Sy =O_w (k™Y — W) (7.3)

by Proposition 5.32. Indeed, if d,x_ # 0 we apply Lemma 6.6 with 2; = supp x_ and 25 equal
to supp(1 — x4 ) enlarged by distance ¢/2. We then relabel the resulting cut-off function x_ and
replace ¢ by ¢/2.

Let k > ko, u € Z;, and suppose that h < hg. It is sufficient to prove that

-G ull gy < Ck™2 s T du 2 + Ok~ [[(1-TT)dbu| (7.4)
since by iterating (7.4) 2N times, (changing the cutoffs x_ and y ), one arrives at
Ie-Tull < kN |xs Tbul 2 + CkN [ (T=TT)tbul|y x
= Okl (=T )pu 2 + Ck ™ [ (=T )| ;-

using the fact that x4+ = 0.
Let xo € C™(Q) be such that x_ <./4 Xo <c/4 X+- By the coercivity of P,§ (cf. (5.15)), the

definition of ch (Definition 7.1), locality of P and the fact that x_v = xo¢ =0,

Il < C{(PEx-TTvu, x-TTyu))

- C‘(P,ﬁx_nwu, Y- —H§)¢u>‘

= ([P vu, (=) + (PE - Ix- T, (111 i)

= C([(PEOE T wu = wn), (=T + ([P + S x-Ix- b, (1-T1 ) )

= C (PO T u — wy,), (T=T15)gpu) | + [([Pry x—Ix - TTEou, xo(1~TTE)vu)|) + 7,
for all wy, € Vi, where

ri= [(SOE M — wp), (=TI du) | + [{[Sk, x-]x- i, (1-TT; )pu))| (7.5)
is the “non-local” part. By (7.2) combined with the fact that oy =0,
I -TTpul3y < O|(PeO Mgbu — wp), (LTI )pou)| + Ok~ =T ul g || xoTT a2 + 7

which implies

I-T gl < C[(PEOC T du — wy), =TI )| + Ck~2|Ixollf dullf2 + 7. (T.6)

Let Uy be a neighbourhood of supp x—, and U a set contained in {xo = 1}. Since x_ <¢/4 X0 <c/4
X+, wWe can arrange that
d:=0<(Uo,Ur) = ¢/8.

Hence, taking hg < g, where  is as in Assumption 3.5, we ensure that d > rhg. Thus, we can
find a super-approximation wy to X%H,’id}u with suppwy, C Uy. Now, for all € < 1,

{(Pe (P T pu — wy,), (T-T15 )pu)| = [( PO T pu — wy), IMigpu)|  (by locality of Py)

< Z Hx%m;m - wh||H;(K)||Hi¢U||H;(K) (by the definition of a(-,-))
KeTr:KNsupp xo#0
hx
< Y Il e (Ml e + -l )

KeT,:KNsupp xo#0
(by the super-approximation property, Assumption 3.5)

1
e Y Il e g (T uls oo + - Tl o))

KeT:KnNsupp xo#0
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(by the inverse inequality, Assumption 3.6)

(1+e)
<C > WHH’MUHZH(K) + ellx-HiquI%;m
K eTr:KNsupp(xo)#0
C(l+et)
< —fpa— e vullia + ellx-Tul,. (7.7)

Inputting (7.7) into (7.6) and recalling that d > ¢/8 and k > kg, we find that
Ix-TTul%, < CR=2 s ThapullFeq) +, (7.8)

To estimate r, since dist(supp(wp,supp(1 — x0))) > 0, pseudolocality of Sy (Theorem 6.2) implies
that

[ (SO ipu = wn), (1= xo) (L =1{)gu)| < Ck~ N[y au — w5 [JA-T)vul] ; x-

Arguing as in (7.7), but now using Assumption 3.2 where before we used Assumption 3.6, and also
recalling that d > ¢/8, we find that

C
I Tpu — wnl, < 5 (IN-TEul, + T vl ).

Therefore, for all € < 1,
(SO T b — wn), (1~ x0) (1 -TI{ )|
= Ok (ellx-Tpull%, + el T pulFe ) + | T-TE)wul~ ).
Reasoning similarly and using the mapping properties of Sy, we find that
(4 MW — i), xo(—TTE)u)| < Ch " (ellx-TTEaul3, + el oul + e xotThwuf}, )

< Ok (- Twulll, + (e + ) s Mbul3a ).

(7.9)

Arguing similarly, we obtain

[([Sks x=Ix-TT} gpu, (1T )pu) |

_ _ _ L (7.10)
< C (k2 Tl + b2+ ) Thpulag, + o kN [T )gul?, );

indeed, [x—, Sk] = xo[x—, Sk] + (1 — x0)[x—, Sk] and
Xo[X—, Skl = O—oo (k™5 Y, = W,) and (1—x0)[x—,Sk] = —(1=X0)Skx= = O—c (k™% Y = V)

by, respectively, (7.3) and Theorem 6.2.
Combining (7.9)-(7.10) thus leads to

r < Celx-Tul%, + C(1+ ek s Mhvulfa) + Ce kY| —Hi)ﬁwllzk—w-

for all € < 1. Inserting this estimate in (7.8) and taking e sufficiently small, we obtain (7.4) and
hence the result. ]

In the proof of Lemma 7.5, we need a variant of Lemma 7.4 where, roughly speaking, the
contributions at distance k12" from supp x are multiplied by a weight decaying exponentially in
n. The main tool is the following lemma:

Lemma 7.6 (Dyadic decomposition for Sy) Let ¢g € C°(R?) with ¢o(x) = 1 for |z| <
do(x) = 0 for |z| > 1, and let ¢, () := ¢po(z/2") — ¢o(x/2"71) forn > 1. Let o € Q, and R >

and let pp ) € C™(Q) be defined by
Pno(@) = ¢n(( — z0)/(RETY)).
Then, for any kg > 0 and N € N, there exists C(N, kg, R) > 0 such that for all k > ko and n € N,
lonnSkpokll L2y < C(N, ko, R)27.

1
27
0,
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Proof. We start by observing that supp ¢ C B(0,1), while for n > 1,
supp(¢,) C B(0,2")\ B(0,2"7?),

and in particular, ¢,, L ¢¢ for n > 2. Let x,, be given by Lemma 6.6 applied with €, := supp @i »
and Qg 1= supp ¢y, and € = O(k~12"). Then ¢,k and g i, are separated by X, and the result of
the Lemma follows by the combination of Lemma 6.3, Theorem 5.27 and Remark 5.28. ]

Lemma 7.7 Let (Vi)k>o be a well-behaved finite-element of order k, let kg > 0, Cy > 0, let
Y € C*(Q) and let N > 0. Then there exists C > 0 and pn > 0 such that the following is true. If
k>ko, 20 €Q, R>0 and x—, x+ € C*(Q) satisfy

1. suppx_ C supp x+ C B(zo, Rk~1/4)
2. d := dist(supp x—,supp(l — x4 )) > pk~*
8. max|q|—p [|[0%X_[|L= < Ctk", n=0,...,p,
4. supp x+ Nsuppy =0, ,
then for all u € Z,

=T gullz, < ClixTTiullzzi) +C D2 o (I~ )vul| o

n=0

where oy, 1, s as in Lemma 7.0.

Proof of Lemma 7.7. Let ko > 0 be given and let u := C'x where C' is as in Assumption 3.3 and £
is as in Assumption 3.5. Let C; > 0, ¢ € C*°(Q), N > 0 and denote by C' > 0 any generic constant
depending only on the previous quantities. Let k > kg, suppose that h < hg and let zg, R and x_,

X+ as in the statement. The choice of r implies that
d > kh.

Therefore, one can proceed as in the proof of Lemma 7.4 using the super-approximation property
(Assumption 3.5), but taking into account that, now, d scales as k~! instead of 1, so that the
analogue of (7.2) is

| ad, Pk||Wg_>y;L71 <C.

This leads to

-1 ul%, < ClbvsTTidulfa o) + 1, (7.11)
where, as in (7.5),
ri= (SO T du — wn), (=T + [([Se, x- -, A -T)wu)].  (7.12)
We now use the property that for all z € R¢,
> el =172
neN

(see e.g. [AGO7, Lemma 1.1.1]) to write, for any f,g € Zj,

[(Skf, ) <2 1o kSkfs Pnrg)]-

n=0
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Taking f = X%Hﬁ@bu —wp, and g = (I fﬂi)wu, and using the fact that f = ¢g 1 f, the first term of
(7.12) is estimated by

[(SLOE T Y = wn), (1T )ou)|

<2 Z |<80n,kSk§00,k(X2_Hﬁk'L/)U —wp), onx(1 —Hﬁk)wu>|

n=0

< O pu = willz, > 10nkSkp0 k]l 2, - 13 @, (1 —Hi)ibu\\H,;N
n=0

oo
< C(lIx-Tullz, + Ix Tl 220) D 1@k Skpokll 2, o il —HQ)TWIIH;N,
n=0
where we have used that

1
I s = wilz, < g Mz, + e Tl

(obtained by reasoning as in (7.7)), and taken into account that (kd)~! < M~! < C. By Lemma
7.6,

l[on.kSkeo,kll 2, my < c27N" foralln € N.

Hence, for all € < 1,

[($10E M —wy), (-1 )ou)|

n=0

o 2
< Cel|x-Tpul%, + Cellx4TivuFzq) + Ce " (Z 2—N”<pn,k(1—ni)¢quN> (7.13)
Similarly, using that ¢, yx— = 0 for n > 1, we deduce that for all ¢ < 1,
(= Selx-Tt o, (1T )|
oo
< 2‘<‘P0,k[sk7X—]X—Hiwuv o,k (1 —H;’i)wu}‘ +) ‘<@n,kSkX2—Hﬂka7 Pni(l —Hﬁ)¢u>’
n=1
< OIx-1 gl 5, [leos[Sk Xl 5, v [l 0. (LTI )bu

+ ClIx-Tdullz, Y nkSk0.kl 2, - I pnp (T —TTE)doull

n=1
o 2
< Ce|x_hypul|%, + Ce™! <Z 27N k(1 —nﬁ)wunHkN) . (7.14)
n=0
Adding (7.13) and (7.14), inserting the result in (7.12) and then in (7.11), and letting & be small

enough, we obtain the result. ]

Proof of Lemma 7.5. We claim that, given ¢ > 0, there exists ho > 0 such that for all ky > 0 and
X—s X+, % € C™(Q) satisfying

X- <X+ and x-— L (7.15)
there exists C' > 0 such that for all k > kg, h < hg,u€ Zrand 0 < j<p—1,
I-Twuly s < (I ul o + | AT wul| -, )- (7.16)
If this is true, the lemma follows easily. Indeed, given ¢ > 0, let ¢/ = 2—‘}), and given y, ¥ as in the
statement, let x1,...,Xxp be a sequence of nested cutoffs, i.e. such that

Xi <o Xitl forallie {1,...,p—1} and x, L.
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One then applies (7.16) p times with x_ = x; and x4+ = X;+1, using at the end that Xpﬂﬂkz/)u =
xp(I —Hi)z/}u to obtain (7.1).

It therefore remains to prove (7.16). Let ¢ > 0 be given and let hg > 0 be a sufficiently small
constant. Let kg > 0, x_, x+,% € C°(Q) such that (7.15) holds and let C > 0 denote a generic
constant depending only on the previous quantities. Let k > kg, suppose that h < hg, let u € Zj,
andlet 0 <j<p-—1

By arguing exactly as at the start of the proof of Lemma 7.4, without loss of generality, we can
assume that d,x_ = 0 and thus the commutator estimates (7.2) and (7.3) hold (the first one by
Lemma 6.3 and Definition 5.25, and the second one by Proposition 5.32).

Let x0,x1 € C*=(Q) be such that

X— =(c/3) X0 =(¢/3) X1 =<(c/3) X+-

To prove (7.16), it is sufficient to show that, for all v € H,z,
[(v, x_TTEypu)| < C(|\X+Hﬁkwu\|H;(j+1) + ||(1—Hg)¢uHHk_p) 1oll 5 - (7.17)

By the relation P,gRﬁk =1, the definition of H’; (Definition 7.1), and the fact that x_ = 0, for all
wp, € Vi,

<v,X_H Yu) = <PﬂRﬁkv x—(I— Hti 1/)u>
= (x—P{Rbv, (1 -1} )pu)
= (Pix-Rjv, (1-T1})yu) + {[x—, PR} v, (I -TI} )obu)
= (P (x- Rkvfww (L-11)pu) + ([x—, P{REv, (1 -1 Jyu). (7.18)

For the second term on the right-hand side of (7.18), since x— = x— X+, by locality of Py, and by
the mapping properties of R,ﬁC (Proposition 5.23), [x—, Px] (from (7.2)), and [x—, Sk] (from (7.3)),

(b PAREY, (0T )pu)| < |(cx [ PdREw, (-T)u) | + (-, Sl Rhw, (11 )osu)|
< Ok ol gy (I (- )l i + ([ (=TT )ou] ).
Furthermore, by the mapping properties of Sy (Proposition 5.22),
’<Sk(X,Riv —wp,), (I —Hi)wu>‘ < CHX,RQU — wh”z; @ —Hi)wuHH;p.

Using the approximation property of Vi (Assumption 3.4) with m = 1, and using that j+2 < p+1,
we can choose wy, supported in supp xo such that

> (k) IV - Riw — willigy ) < Cllx-Riwl e < Cllolly,- (7.19)
KeTy

In particular,

Ix-Rjv — whHZl = > Ix-Riv—willm < (&)Y Y b Ix-Riv —willm x)
KeTy KeTy
2j 2
< CORY ol
where we recall that h := maxge7, hx. Hence, with this choice of wy, since Vj, satisfies hk < C,
[(Sk(x-Rbw — wn), (1T )gw)]| < Cllolly | T-TEE)gu] -

Therefore, to prove (7.17), it remains to prove that for this choice of wy, € Vi,

[(Pe(x-Rw = wn), (-T)wu)] < € (I Tl oo + [T ol (7:20)
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By (in this order) the locality of Py and the fact that xo = 1 on the support of X_R,ﬁgv — Wwp,
continuity of Py, and (7.19),
|(Pe(x—Rfo — wn), (1T Jyu)|
= [(P(x=Riv — wn), xo(I ~IT} )gou)|

< 3 o =T vull s sy Ix- Rpsv = will i )
KeTw

1
2

1
< ( > (th)Q(]H)||X0H1ﬁc¢U||?q;<K)) ( > (hick) 2(j+1)|\X—Rpg”—wthq;(K))

KeTk KeTy
1
; 2
< (3 (k)T xoltEdul3 ) ) 1ol (7.21)
KeT

To apply the arguments from [AGS24, Lemma 5.5], and especially the wavelength-scale quasi-
uniformity (Assumption 3.3), we now need to group the elements K € T into sets lying within
balls of radius ~ k1.

To this end, we choose a sufficiently large constant > 0 depending only on hg and kg and let
{xg}le C Q be a “maximal pk~! separated set”, constructed inductively by choosing an initial
point 1 € Q, and if x1, ..., 7, are constructed, choosing z¢.; € Q\ U, _; B(xy, uk™1) if this set is
not empty, or finishing the construction with ¢ = £ otherwise. By construction,

L

QcC U Bz, uk™1),
=1

and one can check that for all M > 0, there exists ®j; > 0 depending solely on M and the space
dimension d, and there exists a partition of {1,..., £} into Dy sets M, TM, ..., jéWM, such that

(b1, 0y € TM and 0 # £y) = By, Muk™) N B(xg,, Muk™') = 0,

i.e., the maximal number of overlaps between balls of radius M k™! with centers in {xg}le is ®Opr.
Define

he :=max {hg : KN B(xe, k™) #0} < Cyrinf {hg + KN Bxg, Mpk™") # 0},

where the second inequality follows from Assumption 3.3. For all 1 < ¢ < £ and for m > 1, let

Xe.m € C(£2) be such that
supp Xe.m C B(ze, (m +1Dpk™)NQ,  supp(l — xe.m) N B(xe, muk™) N Q = 0. (7.22)
Using a construction via scaling, one can arrange that there exists a universal constant C; such that
10%Xemlloe < Ci(uk~1)~1o1 for all |a| < p. (7.23)

By choosing p large enough, one ensures that uk~—! > 2h, which implies that K N B(xy, uk~1) #
) = K C B(xy,2uk™1). Therefore,

Mo

Y (k) oIl bl 3 ) < C
KeTg ¥

(hek?UFD 3" oI gbull
KNB(xg,pk=1)#£0

Il
-

<O (hkPOTD ST oMbl d

KCB(z¢,2pk—1)

M~ I

<O (hek)2IHY | yoxe 2 I Yl %, - (7.24)

o~
I
-

Next we apply Lemma 7.7 to estimate the norms ||XOXZ,2Hﬁk¢UHZk' Choosing R = 20u, one gets
that for every £ =1,..., L,

supp(xoXe,2) C supp(xixe,a) C Bz, Rk~ /4),
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so that assumption (1) is satisfied. Moreover, by definition of x4, (see (7.22)),

d := dist(supp(xoxe,2), supp(l — x1X¢,)) > dist(B(z, 3uk™"), B(ze, 4uk ™)) > pk~,

showing that assumption (2) is also satisfied by taking p sufficiently large. Assumption (3) follows
from this and the control on the derivatives of ¢, in (7.23). Finally, we have supp(xixe4) C
supp x1 C (supp )€ so that assumption (4) holds. Therefore, by Lemma 7.7, for N > p,

Ixoxealtwuld, < CllxaxealTipul3a + € 32V oy o1 ~I)vull3,- (7.25)
n=0
where
P = bn((x —x)/(RE™")) for n >0, (7.26)
with ¢, as in Lemma 7.6. (note that here it is crucial that € in Lemma 7.7 does not depend on x_
and x4 ).
By (7.20), (7.21), (7.24), and (7.25), to prove (7.17), it is sufficient to prove that
L
D (kP xaxeallpul g < ClxsThgully, - (7.27)
£=1
and
L
S (k20D S 27N, (1T Dvul?, o < CII-TE)pul?, . (7.28)
{=1 n=0

By the wavelength-scale quasi-uniformity (Assumption 3.3) and the inverse inequality (Assump-
tion 3.6),

r L
> ek oxealivulae <CY 3 (k) Ml B
= £=1 KnNsupp x1X¢,470

L
< C’Z Z ”Hg;wuHiI—(.Hl)(K)'
=1 KNsupp x1Xe,a#0

Applying [AGS24, Lemma 5.2] (a simple bound on sums of negative Sobolev norms on elements by
a global dual norm) and Lemma 7.8 below, there exists M > 0 large enough such that

L

c
Z Z T a2, oK) S CZHX+XZ MH;J/)UHH G < CDarlx4 11, wUHH G415
I=1 KnNsupp x1x¢,470 =1

and the combination of these last two displayed equations is (7.27).
On the other hand, by the definition of ¢, ¢ (7.26), there exists Cj, g > 0 such that for every

z € RY,
L oo 00
332 (max Ko@) < Con Y 2N (o) (7.20)

=1 n=0 n=0

where
Kn(x) = Card({l <e< Lo dist(x, zy) < 2"+1Rk71}).

To estimate k,(x), we write
x) = Z Card(Kp,(z)), where K, (z):={l€ J) : dist(z,z,) <2""'Rk™'}

and since the pk~! balls centered at x, for £ € J, are pairwise disjoint,

d
Z w(B(ze, k™)) < p(B(z,2" M RE™Y)) <= Card(K,,(z)) < Qd(""’l)%.
LeEK, (x)
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This proves that r,(z) < C2"¢. Inserting this bound into (7.29) and choosing N large enough, we
find that

L oo
>3 K lonstl) < O

¢=1n=0

We now use Lemma 7.8 with {x,}, = {2720, 4,: £ =1,...,L,n=0,...,00} to obtain that

L oo
>3 2V len e (T-TR)wulf, > < CC, gl (T -TH)Yully .
£=1n=0 * *
which is (7.28), and the proof is complete. |

Finally, we prove the following technical lemma used in the proof of Lemma 7.5.

Lemma 7.8 Given N > 0 there exists Cy > 0 such that the following is true. Suppose that (Xn)n
is such that there exists Coyer > 0 such that for all x € R?,

|| <N

i ( max k:_‘a||8axn(x)|)2 < Cyver-
n=0

Then, for all v € H,;N,

2
Z HXnUH?{k—N < OnCover ||UHH;N : (7.30)
n
Proof. For every n, let 6,, := ||xnvl -, let ¢, € H}Y with unit norm, and let
k
P =Y Xnbnn.
n

Then by assumption,
||<P||§.¢kN < OnCover Z 62.
n

Therefore,
2 2
> (v, o) > ’ 2y, ean@n)’ _ ‘ > On(Xn, ‘pn)|

v —
i 2 oy % CnCoe D O G 3,62

By taking the supremum over each ¢,

2

2
1 ‘ >0t 1
N> = 6>
HU”H’" Y= CNcover En 9721 CNCover ; "

and the result (7.30) follows. |

8 Proof of the main result (Theorem 3.11)

We fix ay, : H,% X H,i =R, J C Ry, p, (Vk)k>o as in the statement of Theorem 3.11, and keep the
definitions and notations from Sections 3, 5, and 7. We denote by h = h(k) := maxger, hi.

8.1 Outline of the proof
Let X~ (¢), X+ (¢) € RM XP € RMF be the column vectors defined by
X (0) = e —un)llgs X0 = Il = W) —un)lgg, 1< < M,

K2

and X7 (0) = |[xi4an (u — up)llgz 1 <0< Mp
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and let Z € RM be the column vector of local best approximation errors, i.e.,
Zi = |lu— wh”H;(szi)

where wy, is an arbitrary, fixed element of Vj,. The heart of the proof of Theorem 3.11 consists of
X=(0)

forming a matrix system of inequalities for the vector X (¢) = | X*(¢) | . We start by obtaining
X ()

this system in the lowest possible norm, which is dictated by the polynomial order p, i.e., with

{=—p+1. In Lemma 8.10, we show that

X(—p+1) < CyWX(—p+1)+CBZ+R (8.1)

where R is a superalgebraically small remainder term, where W and B are the matrices defined in
(3.13) and (3.12), and where Cy, C are positive constants. Therefore, if (I — C;W)~! exists, then

X(-p+1)<e(I-CiW) 'BZ+R.

Each line of the inequality (8.1) is obtained by applying a localised version of the elliptic-projection
argument, Lemma 8.1, and exploiting both the local behaviour of the mesh size and the microlocal
behaviour of the solution operator of the continuous problem from §4 (and in particular, its improved
behaviour on high-frequencies or in the PML region, leading to Lemmas 8.7 and 8.8).
We then use Theorem 8.13 to bound (I — CtW)~! in terms of the simple-path matrix T* of
C;W (Definition 3.9), giving
X(—p+1)<e€T*BZ+R. (8.2)

Next, we upgrade (8.2) to higher norms, i.e., we estimate X (¢) for 1 —p < ¢ < 1. For this, we
notice that, on the one hand, since ¥ is smoothing and pseudo-local,

X (/) <CX (—p+1)+R (8.3)

forall 1 —p < ¢ < 1. (In fact, (8.3) should actually have an X~ on the right-hand side involving X;
such that x; < X;, but we have neglected this in this outline for brevity.)
On the other hand, by the “improved” local duality arguments of Lemmas 8.7 and 8.8,

X0 < (HE) ™ Z + (HEPTIX (—p+ 1) + (K™ (NENX T (—p+ 1)+ R (8.4)

XP(0) S (HE) T Z + (H™™(N)EV) (X T (—p+ 1)+ X (-p+1)) + R (8.5)

for all 1 — p < ¢ < 0. Combined with (8.2), this gives the bounds in the second and third block
rows of (3.17), up to the L? norm. Finally, to obtain (8.4) and (8.5) in the H} norm, i.e., for £ =1,
we use Lemmas 8.15 and 8.17 which give

XT(1) S Z+XT(0) + (Hiik)’ X (—p+1) + R, (8.6)

XP1) £Z2+X70)+ R (8.7)
The estimates in the H] norm are then obtained by inserting (8.2), (8.4), (8.5) into (8.6) and (8.7).

8.2 Localised duality argument

The next result relates the Galerkin error in some region A of phase-space to (i) the set of local
best-approximation errors in subdomains covering € and (ii) the set of local Galerkin errors in
these subdomains, modulo a small global term. The subdomain contributions are weighted by
“transfer coeflicients” 7;_, 4 that describe the corresponding local behavior of the Helmholtz solution
operator. This result is applied several times later in the proof of Theorem 3.11, for special choices
of the partition of unity {¢,} and operators A.
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Lemma 8.1 (Localised duality argument)~Given ¢, kg > 0, there exists hy such that the fol-
lowing holds. Let N >0 and let {¢;}]_, and {¢;}7_, be such that

(bjﬂéj ECSO(Rd7 [07 1})7 ¢j <¢ ;5]7 j:177J7 (88)
and ijl ¢;j =1 on Q. For any k > 0, define
hj = max{hK : K eTy s.t. Kﬂsuppq;j + (D}.

Then there exists C > 0 such that for each £ € {0,...,p— 1}, for all k > ko, k ¢ J, with h < hyg,
for all A : H,;e — L2(), for all uw — uy, satisfying (3.16), and for all wy; € Vi, j=1,...,J,

J
1A(w = un)l[z2 < C Y mjsalhik)? ((hjk)_pllqu(u = wi )y + |5 (u — Uh)”Hl:N)
=1
J J
+ Ok (kY YAl e o ;(hk)*pllu —wnjllm + = unll g~
where for all j € {1,...,J},
Njosa = (k)P G REA" | Loy r2 + (k) 16y (R ATl o, e (8.9)

To prove Lemma 8.1 we use the following two lemmas; the first is a localised version of the classic
Aubin-Nitsche duality argument applied to the operator P,g defined in (5.14), and the second is a
localised version of the bound on the adjoint-approximability constant from [GS25, Theorem 1.7]
(with similar bounds appearing in [MS10, MS11, CFN20, LSW22b, GLSW23, GLSW24, BCFM25)).
Recall the definition of Hi from Definition 7.1, and let

k- H]% — Vk
be the H}-orthogonal projection onto V.

Lemma 8.2 (Localised Aubin-Nitsche argument forfg) For any ¢ > 0, there exists ho > 0
such that the following holds. Let ko >0, N >0, x € C*°(Q2) and U C § be such that

suppx C U, O<(suppx,U) >,
where the notation O« is defined by (3.4). For any k > 0, let
hy :=max{hg : K€ Tpy, KNU #0}.
Then, there exists C > 0 such that for all¢=0...,p—1, k > ko, h < ho, and u € H},
(=Tl e < C ((hok)™ + &N (hk)“) (1T -TTe)ul| ;.

Proof. Fix ¢ > 0, and let hg be such that ¢ > 2xhg where k is as in Assumption 3.4. Let N, x
and U as in the statement, and let C' denote a generic constant depending only on the previous
quantities. Let ¥ € C°°(€2) be such that x <./ X, suppx C U, and

O<(suppXx,U) > ¢/2.

Let £ € {0,...,p— 1}, and let v € Hf. be such that ||UHH£ =1
By the Definition of Hi (Definition 7.1), for all w1, wp 2 € Vi, letting wp, := wp 1 + wh, 2,

|<vxl Hji | |XUIHti |
= | Pti Rﬁkxv —wp), (I —Hﬁk)u>|
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< O R xv — wn | (=TT | s
< € (IR = wnallmy + 10 = DRxw —wiallm ) | inf Jlu—wilm, (810

where we used Céa’s lemma for the coercive operator P,g in the last step. By the approximation
property of Vi, (Assumption 3.4), wp 1, wn,2 € Vi can be chosen such that

D (hick)> 2 YR v — whill sy < ClliRiva?{iﬂ ,
KeTy

> (kD)1= ) RExv — wnallin ey < Ol = R RE Xl
KeTy

with in addition suppwy,1 C U. In this case, by the definition of hy and b,
IXR}xv = wallgy < Clhuk) M [XRE XV es2,  and (8.11)
(1 = ) Rixw = wnallmy < CR)FI(1 = D) Rix]| yea (8.12)
Using (8.11) and (8.12) in (8.10) and the estimates

IXRExvll g2 < ClRLwllgoee < Cllollag
(by the mapping properties of Ri, Proposition 5.23) and
(1 = D RExvllgev2 < CllREV] gres < CK ol
(by pseudo-locality of R,ﬁc, Theorem 6.2), we obtain

[ (o, x(T-TT)w)| < O((huk)™*" + k=N (hk)H!) inf N O Al

wp €V

and the conclusion follows by taking the supremum over v. ]

Lemma 8.2 has the following special case when xy = 1 on Q:

Corollary 8.3 Given ko > 0, there exists C > 0 such that for all £ € {0,...,p — 1}, and for all
u e H,ﬁ N Zg,
(=15 )ull e < CRE) (T~ )ull .

Definition 8.4 (Localised adjoint-approximability constant) For A : H,;Z — L? and ¢ €
C>(Q), define the localised adjoint-approximability constant associated to ¢ and A as

n(é— A) = [|(I-T)pREA™ || 2y 1 -

Lemma 8.5 (Bound on 7(¢ — A)) For all ko > 0 and ¢ > 0, there exists ho > 0 such that, for

allN >0, ¢,¢ € C°°( ) with ¢j <. b, there exists C > 0 such that for all h < hy, for all k > ko,
and for all A: Hy* — L2,

16— A) < C((hgh PIBRLA" |raspe + (hgh) H G(RL) A" o, gn + (YR,

where hg = max{hK : K eT, st. KNsuppo # (/)}.

Proof. Let ko,c > 0 and let hg > 0 be such that ¢ > rkhg where & is as in Assumption 3.4. Let
N >0, ¢, qS be as in the statement. Let ¢ € C>(Q) be such that ¢ < b < gz& Let C denote a generic

positive constant depending only on the previous quantities. Since (P,g) = P} + Sk, applying
(Ri)* to the left, and then Rj to the right, we obtain that

R} = (R})" + (R})" Sk Rj. (8.13)
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Thus

(¢ = A) < (1) SR A" |l 2y + |(T-TLe)S(RE)" Sk REA™ || 12y
< Clhgk) THIG(R) A" | oy revs + Clhgh)P |(RE) SkRGA" || pay s (8.14)

by the approximation property of V; (Assumption 3.4), which can be applied since ¢Ruk maps L?
into Z (i.e., d)Ri satisfies a zero Dirichlet boundary condition on I'y; and, if necessary, also on

0f1_). Finally, one can use pseudolocality of (Ri)* and Sy (Theorem 6.2) to “move ¢ to the right
of S;” in the second term, as follows

O(RE)* Sy = (RL)* Sk + ¢(RL)*Si(1 — o)
= (R})*So + H(RY)*[6Sk(1 — d)] + dl(RE)* (1 — $)]Sk(1 — )
= G(R})"Skd + ¢(RL) O oo (k™3 Vi = Vi) + O—oo (k™% Vi = Vi) Si(1 — 9)
= G(R})*Skd + O oo (k™% Vi = Vi), (8.15)

using the mapping properties of Sy (Proposition 5.22) and of R’; (Proposition 5.23). Inserting
(8.15) into (8.14) and using the continuity of R from H?™" to H'™ (Proposition 5.23) and of Sy,
from L% — Hlf_l (Proposition 5.22), the result follows. ]

Proof of Lemma 8.1. Let ¢, kg > 0, and let Ay > 0 be small enough to apply Theorem 7.2, Lemma
8.2 and Lemma 8.5. Fix {QSJ 1, {9 }j , as in the statement, and let N > 0. Let C denote
a generic constant (whose value may change from line to line) dependlng only on the previous
quantities. Let k > ko with k ¢ J. By Assumption 3.1, there exists N’ > 0 such that

kN p(k) < kN, (8.16)
Let v € L? with |Jv||z2 = 1. Arguing as in (1.29), we obtain that, for all wy, ; € Vi, j =1,...,J,

J J
(Al —up),v) =Y (u—wh, (PH*(I-T1}) ¢, Ry A"v) — > (u— up, Se(1—11})p; Ry A™v).
1 =1
" ’ (8.17)

The plan is to use the pseudo-locality properties of (P, ) Sk and (I— Hu) shown in Sections 5-7, to
show that, up to small remainders,

PHI-T1)p; ~ ¢; PR (1-T1)p; and  Si(I—T1%)¢; ~ ¢;Skd;(1-114)o;
where ¢; € C°(R2,[0,1]) is such that
¢j <¢/4 QZ)j <c/4 5;' for alle{l,...,J}.
To achieve this, we rewrite the difference as
X(U-T1)6; — 6;X6;(1-T)¢0 = X (1= ;) I -T})é; + (1= 6;) X5 (1 -1T})g;,  (8.18)
where X is either (P,g)* or Sy. First, when X = Sy, (8.18) gives, for all w € H;, ™2 N 2y,
1Sk (1=T1E)dyw — ;S (1 ~T1E) djw]| v
< 1Skl oy (1 = &) A=TTE) dyw gz + 1 (1 = ¢j)5k5j||H;p_>H,yH(I—Hi)%WHHk—p
<k N —Hi)qﬁijH;p (by Theorem 7.2 and (5.17) of Theorem 5.27)
< Ck_NIH(I _Hi)@‘w”H;P“
< CE™N (hk)PHH w]| e (by Corollary 8.3), (8.19)
k
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where the condition that w € Z, is need to apply Corollary 8.3. In particular, taking w = R; A*v,
(8.19) gives
4
e

< Ok (BRI (L4 p(R) A g e ] 2
< Ok N (k)P A g s (8.20)

H (S’“(I —I1})¢; — 65605 (1 *Hﬁ)%)R;A*

using the mapping properties of R} from Proposition 5.17 and the definition of N’ in (8.16).
Similarly, when X = P!, (8.18) gives

(P (X115 5w — 5 (PE)* 65 (L~TI} ) gswll
<P gy g 11 = S AT G50l 1 + (1 = &) (PE)* S5z gy 1L ~T1F) b0 1y
< Ck~ N (1) g5l + Ck™N (k) ] o2

(by Theorem 7.2, (5.17) of Theorem 5.37, and Assumption 3.4)
< Ck™N' ((hE)PHHY 4 (hk)*HY) ]l gre+2, (by Corollary 8.3). (8.21)

Choosing again w = RjA*v in (8.21),

| (B a-1)e; - &;(PY d;0 -1, ) iAo
k
< Ck™ N (hE) Y A™|| 2 e ol 2. (8.22)
Therefore, by the combination of (8.17), (8.20) and (8.22),
‘<A(u —up), v>‘

IN

MK

i

+R>,

I
—

;
it

J
(= w5065 (B &y (1T 0y R A" 0) | 4 3 | (= 6,81 (1~ 0, R A*0) | + R)

j=1

Mu

J
(P26 (= wi ), &5 (LTI, B A™)| + D | (S48 (u — wn), 65 (1 -1} ), R A”)

Il
-

j=1
(8.23)
where
J
R = kN (W) A% s (Z lu— w5l g2 + (Ak)P|lu— uh||Hk_N)
j=1
(where we have used that ||v||z2 = 1). Since a,nC is coercive, Céa’s lemma implies that
[T ol s < O T
Therefore, for each j € {1,...,J},
| -TE2 ) Ry A%l gy < Conly — A)ollzs = Ci(6; — A), (8.24)

where n(¢; — A) is the localised adjoint-approximability constant defined in Definition 8.4. Similarly,
by Lemma 8.2 with £ =p — 1,

16 (T—T14) 3 Ri A" 0]y oer < O ((Rk)? + k=N (RE)?) (g5 — A), (8.25)

By (8.24), (8.25) and the mapping properties of Sy (Proposition 5.22) in (8.23),

’<A u—up), ‘ = CZ” (65 — A)(||¢J(u_whj)||H1 + (hjk)? ||¢J(u_uh)||H ) +C(R+ R
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where R’ = k:’]\](hk)p(Zj=1 v —wnlla + (hk)P|[u — unll-~), using the fact that Ry, and thus
k

n(¢; — A), are polynomially bounded on R, \ 7, thanks to Assumption 3.1 and Proposition 5.17

(while Ri is bounded by Proposition 5.23). The result then follows by using Lemma 8.5 to estimate

the constants 7(¢; — A), and taking the supremum over v. ]
8.3 Improvements at high frequency and in the PML region

We now use the improved behavior of the resolvent on (i) high-frequency functions and (ii) functions
localised in the PML region to improve Lemma 8.1.

Lemma 8.6 (Improvement of R} on high-frequencies) Let ¢ € C2°(R) satisfy * < ¢ and
let W :=(Py) and let ¢ € C°(Q) be such that supp o N Ty, = 0. Then

Ri(1 = W)p = (B)"(1 = W)@+ O—oo (k™3 Y = V).
Proof. We use again the resolvent identity (8.13) to write
Ri(1= W) = (R)"(1 = W) + RiSk(R)"(1 - 0).

The idea is to now use pseudolocality of (R?C)* to move (1 — ¥) next to Sk, with this product then

zero since 1¥(1 —¢) = 0. The issue is that we have only shown that (Ri)* is pseudolocal with
respect to frequency cut-offs when sandwiched by appropriate spatial cut offs — see Lemma 6.9 and
Theorem 5.37.

To this end, let p 1, ¢p2 € C>=(Q) be such that ¢ < Yp1 < p2, and

supp(pp2) Ny =0 and  supp(l — wp1) NIQ_ = 0. (8.26)
By Lemma 6.2 applied to both (1 — ¥) and (Ri)*,
RiSK(RL)™ (1 — ®)p = RESK(RY) epa(1— W) + O_ oo (k™1 Y —= V)
= RiSpep2(RE) opi(1— W) + O_oc (k7 Y — W),
= RiSiep2(RE) opapp (1 — )p + O_oc (k™ V) — Vi),
= R}.Sk(ep 2(R)) 0p2) (1 = W)+ O_ oo (k7% Yy = V).
By Lemma 6.9 (with ¢ = ¢p 2) gppg(R,{)ﬂpp,g € £ ,. Thus by Theorem 5.37, with o < {/)v < 1,
RS(RY)* (1 — W) = RjSep 2(RE) ¢p 2(1 = ©)g + O oo (k™3 Yy = V)

= RiS(1 — U)ppo(RE) opa(1 — U)o + O oo (k%5 Yy — W)
= O_ o (k™% = Vi),

where we have used that
O—oo (k™D = D) = O—oc (k™5 Vi = Vi),
since, for any n € Z, DL"‘ CYp C D;ln‘ with continuous inclusions (by Corollary 5.20). [

Lemma 8.7 (High-frequency upgrade) For any ¢, ko, there exists hg such that the following
is true. Let N > 0, let ¢p € O (R) satisfy ¥* <1 and let U := (Py,). Let , (E € C>(Q) be such
that ¢ <c ¢ and supp ¢ N Ty = 0. Then there exists C > 0 such that for all { € {0,...,p— 1}, for
allk > ko, k¢ J, h < hg and wy, € V,

le(1 = @) (= un)| gy
< C(hgk)PHH! ((h$k)_p|\$(u —wi) |z + 169 (u — un)ll g~ + (hgk)Né(1 — ) (u — uh)HHk_N)

+ RN (Rl (k)72 — gy + [l = wnll v ), (8.27)

where hjy := max { diam(K) : K € Ty, s.t. K Nsupp ¢ # 0}.
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We highlight that the advantage of (8.27) over the bound in Lemma 8.1 is the arbitrary power
N in the term (hq;k)N||¢(1 —U)(u— Uh)HHk—N.

Proof of Lemma 8.7. Let ¢ > 0, kg > 0. Let ¢ € (0,¢) be arbitrary and let hg be small enough
to apply Lemma 8.1 with ¢ = ¢. Let N, 9, ¢ and g as in the statement, and let y, ¥ € C™(Q)
be any cutoff functions chosen such that y <. X and supp ¥ N 'y, = 0. Denote by C any positive
constant whose value depends only on the previous quantities. Then, given k > ko, k ¢ J, h < hg
and wy, € Vg, it is enough to show that

(1 = W) — w0
< Clhgh) (IR = )Ly + (k)P IR (= )y + (k)P IR(L = W) (= )y )
+ Ok () (1l = wnll gy + (RR) = |y ) (8.28)

where hy is defined analogously to h 5 Indeed, one can then apply (8.28) iteratively with a sequence

of cut-offs appropriately nested between ¢ and 5
Let X, X be such that x <./4 X <c/a X <c/a X- We apply Lemma 8.1 with A = E;x(1 — ¥),
where Ej : Hk_e — L? an isomorphism, with {qu}?:l ={X,1— %} (i.e., only two functions in the

21 ={X,1—x}. Then, by Lemma 8.6 (since supp x N T, = 0),

partition of unity) and {Cf;g}
IXREA |2 pe < [R(RE)* A™[| Lo + CEY

and
(1= X)RpA™ ([ L2sze < [I(1— X)(RE) A" |2y e + Ok,

Moreover, by Theorem 6.2,
(L= (R A oy ez < RN

and by Proposition 5.23
HS(I(R’;)*A*”L2*>H2+2 < (.

Therefore, with n,_, 4 defined by (8.9),
M < Ok IRREA 520+ heh) T IRBD A% yeos) < Clhgh)' ™,
and 79,4 < Ck~N(hk)*!. Lemma 8.1 thus gives
(1 = )= )l < (k) O (IKw = 1) g + (kPR = )l
+ Ok (k) (Il = wn Ly + (Rl = v )

and (8.28) follows using ||X(u — U}L)”H]:N < X (u — U,h)”Hk—N +Ix(1 —¥)(u — U,h)”Hk—N. [
Recall from §3 that Up is a neighbourhood of I'y, such that Theorem 4.2 holds on Up.

Lemma 8.8 (PML upgrade) For any ¢, ko, there exists hg > 0 such that the following is true.
Let N > 0, let p € C(R), let U := (Py), and let ¢,¢ € C(Q) be such that ¢ <. ¢ and
suppq~SC Up. Then there exists C > 0 such that, for all € {0,...,p—1}, k > ko, k¢ T, h < hg
and wy, € Vi,

109 (= wn) e + 91— ©) (= un) |y
< Clhgh 1 ((hgh) 19 — wi)lag + (k) ¥ 16— )y v)

+ Ck=N (hk)PHiHt ((hk)*?”u — wpllg + [lu— Uh”Hk—N),
where hg = max{diam(K) : K eTy st. KNsuppo # Q)}.
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Proof. We proceed as in the proof of Lemma 8.7, with A = E;xV¥ or A = Eyx(1 — V), but this time,
the terms n;_, 4 in Lemma 8.1 are bounded by first using pseudolocality of ¥ (or 1 — ¥) to write

RpUx = RpxUX 4 O_ oo (k™% Dk — Vi),
where x < x < X. The conclusion is then obtained from
11 = X)Rixll2rz < CE™Y and  [IXRjxX|[22 522 < C,
with these bounds following from Theorem 4.2, since 1 — ¥ L x and supp x C Up. [

Remark 8.9 The iteration in the proofs of Lemmas 8.7 and 8.8 is possible because the n;_, 4 are
small, precisely because of the “good” behaviour of the solution operator on high frequencies/in the
PML, respectively.

8.4 Estimates in lowest regularity

In the remainder of this section, we fix a cover {€;}1<;<nr satisfying (3.8).

Lemma 8.10 (The system of inequalities involving X) Let {x;}M, be such that (3.14)
holds, let 1 € CX(R) with Y% < 9, let ¥ = (Py), and let ko, N > 0. Then, there erists
ho, Ct,C > 0 such that the following holds for all k > ko, k ¢ J, h < ho, v — uy, satisfying (3.16)
and wy; € Vi, i € {1,...,M}. Letting X, X+, XP be the column vectors of local Galerkin errors
defined by

X; = ||X,L~\1/(’u,—uh)||1_1;p+17 Xj = ||Xi(1—\11)(u—uh)||H;p+1, i:L...,Mh
. ‘ X~ (8.29)
Xi = Ixogilu —up)| g-vrr, i=1,...,Mp X := [ X"
k XP

(with + standing for high and low frequency), Z the column vector of local best approximation errors
defined by
Zi = ||u — whvi”Hé(Qi)’

and B, W the matrices defined by (3.12) and (3.13), the following system of inequalities

(I-CiW)X <C(BZ+ R1) (8.30)

holds in the component-wise sense, with 1 := (1 1)T and R := Ry + R,, where

M
Ry =k~ V()P Y llu—wnillmy,  Ra =k~ (k)P u — up| .

i=1
Let mp 4 € M((2M1 4+ Mp) x M) and mp € M(Mp x (2M; + Mp)) be defined by
m,— = (IMI 0]\4I OMIXMP) 5 T+ = (OMI IMI OMIXMP)’ (831)

™ = (OMpoI Onsp x My IMP)~ (8.32)
Lemma 8.10 has the following corollary.
Corollary 8.11 Let {x;}},, 1 be as in the statement of Lemma 8.10 and let ko, N > 0. Then

there exist Ci, hg > 0 such that for every M > 0 and Cy; > 0 there exists C > 0 such that the
following holds. For all k > ko, k ¢ J, h < ho, if

CiW)™ < CarkM,
T

n=0
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and if u — uy, satisfies (3.16), then
X<C(I-CiW)'BZ+CRy1

for all wy, € Vi, with X, Z, Ry, and 1 defined as in Lemma 8.10.
That is, for 1 <1 < Mj,

M
¥ (w = up) | s < C> [m-(I- CyW) ' B], - llu = whjll i () + CRi,
j=1

M
(1 = O)(w = un)|| v er < CY [m (- CiW)™'B],  llu = wnll o) + CRi,
j=1

and for 1 <i < Mp,

M
[ am+i(u = )| gpsr < Oy [me(I = C;W) ™' B], | [lu— wallsi () + CRi,
=1

where 1+ and p are defined by (8.31) and (8.32).
Corollary 8.11 follows from Lemma 8.10 using the following lemma.

Lemma 8.12 For all kg > 0, there exist constants C, hg, N' > 0 such that for all k > ko, k ¢ T,
h < hg, u— uy, satisfying (3.16) and wy, € Vj,

lu— unll gy —rer < CEY (hk)|lu = wp ;.-

Proof. We apply Lemma 8.10 with any cover {x;}£, satisfying (3.14) and with N = 2p. By the
definition of X (8.29) and the fact that for k£ ¢ J, all the elements of B (3.12) are bounded by
CkN (hk)P for some N’ > 0 (by Assumption 3.1)

2Mi+Mp
[l — UhHHk—:D+1 < Z X; < CEN (hE)P|lu — whHH; + CE™2P(hk)?P||u — uh||Hk_p+1
i=1
= CkN' (Rk)P[[u — wpl| gz + CRPlu = | g o1

the result then follows by choosing hg small enough. [

Outline of the proof of Lemma 8.10 The main idea of this proof — and, indeed, the heart of
the paper — is that one can use the localised duality argument (Lemma 8.1) to obtain a system
of inequalities (as in (8.30)) relating local Galerkin errors and local best approximation errors.
By choosing A = x; ¥ or x;(1 — ¥) in Lemma 8.1, this allows to obtain bounds for X~ and X .
However, it turns out that this idea is not quite sufficient to fully exploit the fact that the solution
operator on either the PML or high frequencies is pseudolocal (via Theorem 4.2 and Lemma 8.6
below). Our method is to split the domains {€2;} more finely, use Lemma 8.1 on this finer cover and
then gather back the errors on the original domains. The improvements over the straightforward
application of Lemma 8.1 are that, thanks to pseudolocality, we obtain instances of h;; instead of
h;, and we exploit the situations where the resolvent on ©; N §2; behaves better than on ;.

Proof of Lemma 8.10. Throughout this proof, let x;, ¥, ¥, kg and N be as in the statement.
Without loss in generality, we can assume N > p — 1. Denote by C' any positive constant, and
by ho > 0 a small enough constant (to be specified in the proof), whose values only depends on
the previous quantities. Now let k > ko, k ¢ J, such that h < hg, u — uy, satisfying (3.16), and
Wh,; € Vi, 7 € {1,...,M}.
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Definition of an expanded set of domains. We first define an expanded set of domains
{Qi}1<z’<1\7' These appear only in the proof, and allow us to exploit the fact that the intersection of
an “interior domain” (i.e.,, an Q; for 1 <4 < Mp) and a “PML domain” (i.e., an ; for M4 <i < M)
occurs only in the PML.

Let

M
Qo= |J
Jj=Mi1

be the union of all domains lying in the PML region. Recall that Qp € Up by assumption (3.8).
Thus, for each i € {1,..., M1}, we may find two open sets V;, W; such that

Q4,NQp eV, e W; € Up.
Let o
Q= \W,, and QF:=Q NV
(where Q2 may be empty) and observe that
QL=QuUQr, XNOp=0, and QFecUp

(the notation x is chosen because these domains “cross” the PML). Let ¢?, 32,0 € C°>°(Q) be
such that
pi < Pi (8.33)

Xi = @7+, supp(@7) C QF U (8.34)
Let
X; =xip;  and X, =X
so that, in particular,

{xi=1}c{x=1}u{xi=1}, i=1,.... M. (8.35)

To see (8.35), observe that if x;(z) = 1 and ¢ (z) # 1, then ¢$(z) # 0 (since ¢ =1 — ¢ on
supp X; D supp x by (8.34)), and thus @9 (x) =1 by (8.33).
We now renumber

o o X X
X17"'aXM17X1 7"'7XMI7XM1+17"'7XM as {(pi,l}lsz-éﬁa

with M = 2M; + Mp, and
O, 05, O Qatys - Q. as {2}

1<i<M’

The key properties of these domains and cutoffs that we use in the rest of the proof are that the
condition (3.14) still holds, i.e.

QcC int({<pi71 = 1}) (836)

C»

i=1

(by (8.35)) and, for i =1,..., M,

max {@; 1, Pitm1} < Xi < Qi1 + Piga,  and Q= ;U §i+M1 (8.37)
(by (8.34)). Let ﬁj be upper bounds for the local meshwidth on ﬁj and define ?Lij analogously to
(3.9).

Definition of suitable cut-off functions. Let {(pi70}iﬂi1 be a partition of unity subordinate to
the cover (8.36) of , and thus such that ;o < @i 1.

Given {¢; 0}, and {¢;1}M,, there exists ¢ > 0 and sequences {¢; .}, v = 2,3, 4, of elements of

C2°(R%) supported in €2; such that Yiy <¢ Pipt1, fori=1,...,M and v =0,...,3 (the conditions
involving <. are used below to apply Lemma 8.1). Let

00, = Pin,  PF = PikMuys  Phy = PitaMy- (8.38)
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Bound on X~. We first show that

X" <C (C(’HLIk)QP C(HLIk‘)Qp ’Hﬁlllpn(N)k‘N) X
C (C(H11k)? 0)Z+CR, (8.39)
which gives the first block row of (8.30) (where here, and in the rest of the proof, we use the

convention that a vector plus a scalar is the vector obtained by adding the scalar to every entry).
To do this, we estimate X~ (defined by (8.29))

X~ <X 4+ X%~

where X 7% := || xoW(u — up)|| ;y-»+1 and X % = ||[xU(u — up)|| -»+1.° We estimate X —° and
k k

XX separately.
Bound on X°~. The main work is to bound X*~. To this end, we fix i € {1,..., Mi} and
apply Lemma 8.1 w1th A= A; =V (observe that the smoothing property of U, Prop081t10n

5.22, implies that A; : H, """ — L?) and the functions {63} <jcomio {¢]}1<]<2M defined by
;= {@?,3%‘727 ]il/,\,M\, N
(L=9f3)e,_fig J=M+1,....2M,
and N
aj = {@?’4¢j7§7 ]il/,\,M7 N
Q=9fo)e, gy J=M+1,....2M.
With these definitions, {¢J }1<j<2M is indeed a partition of unity on € and {¢J }1< <o . satisfies

the condition (8.8) by the definition of ¢;,. Therefore, choosing hy small enough Lemma 8.1
ensures that

i
Z (hijk)Payy; + (hik) o] X + [(hijk)Paji + (hik)Pali_,;] Z; + CR,  (8.40)

where R =k~ (k)P lJu = wnll v + (k)P S22 = wn )

Xj = llejau—wn)ll g~ Zj:=lleja(u—wny)lug, j=1....M, (8.41)

and
jsi = 92 ain BRUXE 212 + 1954050 (RE) " UXG [l 2y ot

o= (1= 95 2) i REUXG Loz + [[(1 - wf,z)sog-,l(R}i)*\Px?HLzﬁHgH~
Since N > p — 1, by (8.41), (8.37), and (8.29),

Xj < N5 a®(u—un)llggvir + 19521 (1 = O)(w —un)llyoir < X7 + X7, 1<5 <M,
(8.42)

Xjonry < lja®(u—un)llgrir + l@fy (1= ®)(u — up)ll grer < X7 + X7 1<5 <My,
(8.43)
Xjrory < I@5a(u—un)llyrr = X7, 1<j < Mp, (8.44)

and similarly,
Zj 1<75 <M,

Zj < Zj*MI Mi+1<j5<2M, (845)

Ziay 2Mi+1<j<M.

5Without this splitting, one only gets Hm‘n(Qp)k2p instead HinPi,H(N)kN in the third block of the first matrix in
the right-hand side of (8.39).
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Let
wimsi = (hijk)P oy + (hik)*Pal_; . Bimi = (hijk)Pagoi + (hik)Paj_,;

and
Wiy = Wi, wjxﬁi =WisMm—i, J=1,..., M,
UJ;D*)@ = wj+2M1~>’L'7 j = 17"‘7MP7
and define j37_,;, jX ~,; and ]P _,; analogously. Then (8.40) can be written as
X" <C(9 B €)X+(2 E)Z+R (8.46)
where, for 1 <17 < Mj,
%] :%Z]:w;—n_‘_wjxﬁla 1§J§Mla %:w‘f—)za 1§J§MP7 (847)
and
-@i’ = 6]04)1 + JX*”. 3 1 S ,7 S MI, éaZ] = 6;)4)7,7 1 S j S MP~ (848)

To proceed, we now bound the following four terms appearing in the definitions of o;_,; and a;- VS
i aia Ri ¥l lliesres 103050 (RE) 005 || o, oo

(1 = i2)sn RiPs e, and  [I(1 = i2)esa (RE) el [l oy o,

where we have used that x7 = ¢;1 = 7, fori=1,..., My by (8.38).
First, by pseudolocality of ¥ (Lemma 6.2), polynomial boundedness of R} (Assumption 3.1)
and boundedness of R}, in Up (estimate (4.3) in Theorem 4.2),

kN 4 llos Rilogllresre, 1< < M

”‘pi,49@j,1Rz\II‘Pz1”L2—>L2 S Cl{ﬁ]ggc#@} 1) MI + 1 S.] S 2MI
0) 2]\41 + 1 S .7 S M7
(8.49)

since by definition, for j € {My+1,...,2M1}, ﬁj C Up, and for j € {2M7 + 1, .. .,1\7}, ﬁj C Qp,
while Q7 N Qp = 0.

Second, by the mapping properties of R}i (Proposition 5.23), boundedness of ¥ : L? — H,ffl
(Proposition 5.22), and similar arguments,

L, 1<j<M
lpi.a051 (RE)* U 1 |22 < Ol naosoy | b Mi+1 <5 <2M,

Third, by pseudolocality of ¥ again, and of Ry in Up (estimate (4.4) of Theorem 4.2), and since
Voo = i3,

lee Rilosllr2mrz, 1<) <M

1— %) 1 REU® < Ck N +C _
II( %,2)903,1 k %,1HL2HLZ > { M +1<j< M.

Finally, by pseudolocality of (Ri)* and ¥ (Lemma 6.2), since 55 <¢ ¢§ 3,
(L = 05 2) 051 (BE) 0?1 [l oy per < CRN. (8.50)
From the estimates (8.49)-(8.50), we deduce that

Wi < C((higk)1 g oo sy +Bik)?) (KN +Il0s Rilagllza 12 ) < Clhgh)#Cig+C(hk)#E,
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using the inclusions Q7 C Q;, the fact that if A’ C A, B’ C B, then

1aRilp |l = [1alaRilplp |l < [[1alILaRE1s] 15| < [[1aRi1B|,
and the fact that 1 < C;; when Qf N Q% # (). Similarly,

WIS < Laxnap oy (Rigk)*? + C k)N < CH™™(2p))ig k™ + C(hk)* k™.
Therefore, by (8.47), the following inequalities hold componentwise
o < CC(HE)? + C(hk)?k~N | 2 < CC(HE)* + C(hk)*P kN
One can check in a similar way that, by (8.48),
9 < CC(Hk)? + O(hk)Pk~N
Finally, the estimates (8.49)-(8.50) also imply that, for j € {1,..., Mp},
]ﬁz < C(hk)*k=N jﬁl < C(hk)PE~N,
and thus, componentwise, by (8.47) and (8.48),
€ < Chk)®EN, & <Chk)Pk™N

Taking into account the definition of R, (8.46) thus yields

X7 < C(C(Hi1k)*® C(Hiik)* 0) X +C (C(Hiik)? 0)Z+CR (8.51)

Bound on X*>~. To bound X,;*~ fori € {1,..., Mi}, we write

M
X = ”50;?1 (u—un) HH 1 S Z “Pz 195.0¥ u—uh)HH Pt

since {‘pjv()}lgjgz\? is a partition of unity. Applying Lemma 8.8 with £ = p — 1 to each term with
© = 91950, P = Prowji, we deduce that

/\

X < CZ Lo, 20) (( TN X + (hysk)P min(Z;, Zi)) +CR, (8.52)
=
with 2j and )?j given by (8.41) and Z; given by (8.29). Estimating {)/(\' }1< <3 and {Z }1<j<ﬁ
in terms of {Z,}1<;<m and {X]i}lngM as in (8.42)-(8.45), we obtain
Xo-<cC ('H{f}in(N)kN "Hf"llin(N)kN ’Hﬁ‘li)n(N)kN) X
C ((M11k)? 0)Z+CR, (8.53)

where, in the minimum in (8.52), we always choose the Z;. Summing the estimates (8.51) and
(8.53) gives the claimed estimate (8.39) for X .

Bound on XT. We now show that

XT <O ((HP )k HE(N)EY  HPE(N)EY) X
C ((Hiik)? 0)Z+CR (8.54)

which gives the second block row of (8.30). As before, we write

X+ < XO’+ —|—XX’+

(0]



where X 1= ||x2(1 — ¥)(u — up) || y-»+1 and X*F := [|x; (1 — ¥)(u — up)|| j-»+1. Using exactly
k k
the same method as above for the bound on X~ we obtain
X0t < C(HPP(IN)EY HPP(N)EN HPR(N)EY) X
+ C ((Hiik)? 0) Z + CR. (8.55)
Using the same arguments, but applying Lemma 8.7 instead of Lemma 8.8, we obtain
Xt < C(H 2p)k* HP(N)EN  0) X
+C ((/HLIk)p 0) Z + CR. (8.56)

The bound (8.54) then follows by adding (8.55) and (8.56).

Bound on XF. Following the same method as for X >, we obtain
XP < C(HPP(NEY  HEP(N)EY  HPB(N)EN) X
+C (0 ('Hpvpk‘)p) Z + CR. (8.57)

Gathering the estimates (8.39), (8.54) and (8.57) and taking into account the definitions of B
and W in (3.12) and (3.13), we obtain (8.30), which concludes the proof of the lemma. ]

8.5 A bound on (I — C;W)~! via graph arguments

We now state the result that allows to bound the matrix (I — CyW)~! coefficientwise by the
simple-path matrix (see Definition 3.9) of C4W in Corollary 8.11. The proof is deferred to Appendix
B. Recall the graph notation from §3.6.

Theorem 8.13 (A bound on (I — W)~! by the simple-path matrix) Let M € N, let W €
M(M x M) be a matriz with non-negative coefficients.

If c=> Wr<1, then » W"<oo, (8.58)
LeSL n=0
and -
1
<> W< T* 8.59

in the componentwise sense, where T is the simple-path matriz of W.

8.6 Estimates in higher norms and completion of the proof of Theorem
3.11

In this section, we complete the proof of Theorem 3.11. In view of Corollary 8.11 and Theorem
8.13, the main task is to obtain higher norm estimates for the Galerkin error.

We now fix {x}*,, ko, N and v as in the statement of Theorem 3.11. For i = 1,..., M, let
Xiw € C%®(Q), v =0,1,2,3, be such that

Xi,0 < Xi,1 < Xi,2 = Xi,3

with x;0 = Xx; and supp(xi,,) C ©; NON. Let Cy > 0 be as in Corollary 8.11 applied with {x;2},.
Let hg be sufficiently small, depending on k¢ and the cutoff functions (this restriction that hg is
sufficiently small comes from the applications below of Corollary 8.11 and Lemmas 8.7, 8.8, 8.12,
8.15, and 8.17). Let ¢ € (0,1) and suppose that the simple loop condition (3.15) holds. Let C
denote any positive constant whose value only depends on the previous quantities. Let k > ko,
k¢ J,ue H} and wy, € Vi. To show that there exists a unique uy, € Vi such that (3.16) holds,
by linearity and the fact that V}, is finite-dimensional, it suffices to show that when u = 0, the
unique solution to (3.16) is u;, = 0. But since the latter is a consequence of (3.18), without loss of
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generality, we may assume that there exists uj, € Vj satisfying (3.16) and it remains to prove the
bound (3.17).
By Theorem 8.13,

- 1
Sy < L

1-c¢

n=0

where T is the simple-path matrix of CtW. Since p(k) is polynomially bounded on Ry \ 7,
T* < CkM coefficient-wise (since by definition, the coefficients of T* are finite linear combination
of finite products of coefficients of C;W). Thus, we can apply Corollary 8.11 to deduce that for
i=1,..., M,

M
I3, (1 = un)l| f—rsr < C> lm,-T*Bl, llu—wn,llmq,) + CR, (8.60)
=1
M
i (1 = W) (u —un)| g —rer < CY [m T Bl llu—wn;lm@, +CR (8.61)
j=1

and for 1 <1i < Mp,
M
X am+io(u = )| g-pin < C> [meT*Bl, ; | — wn;lm q,) + CR, (8.62)
j=1

with R = k=N (k)P Y7L, [lu— wn |72

Low-frequency bound in arbitrary norms

The first block row of (3.17), i.e., the low-frequency bound, follows from (8.60) by applying Lemma
8.14 below for each i = 1,..., My, with ¢ = x50 = X4, ® = Xi2, V = u — up, and N = N’ large
enough, and then using Lemma 8.12 (with wy, = (Ejzl wp,.;)/J) to estimate k=N |ju — up | -~

k
by R.

Lemma 8.14 (Low-frequency shift) Let ¢, ¢, € C(Q) be such that ¢ < ¢ and supp pNTy; = 0.
Let ¢p € C(R) and let U := (Py). Then, for all kg > 0 and N € N, there exists C > 0 such that

H(b\IJUHHIsz < C”d;\IJUHH;N + Ck_NH’UHHk—N for allk > ko and v € H. ™.

Proof. As in the proof of Lemma 8.6, the assumptions let us define pp € C°(Q) such that (i)
pp = 1 near 9Q_, (ii) pp = 0 near Ty, and (iii) ¢ < ¢p. By Lemma 6.7, pp is a boundary
compatible operator in the sense of Definition 5.35, and thus by Theorem 5.37,

U = popV¥ = ¢WopW + GO_ o (k™ Dy — Di) = ¢Up ¥ + O_ oo (k™% Vi — Vi)

where 1 € S(R) is such that 1 < ¢ and U := ¢)(P,), and where the last step uses the fact that
forn >0, " C D", Di C Y} are continuous inclusions and ¢ € Og(1, YV, — Vi). Hence, since
oW = U + O_oo(k=>°; Y, — V) by Theorem 6.2,

O = PUOY + 0o (k™5 Y, = W),
using that <pp¢~) = ¢. Thus,

H(b\puHH}f < ‘|¢||H,§Y—>HIZCV||\I'||H;NHH£Y||¢\IJ“HH;N + Ck_NHuHHk—N

and the conclusion follows using the mapping properties of U from Proposition 5.22. ]
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High-frequency and PML bounds up to the L? norm.

The second and third block rows of (3.17) when m € {1,...,p} (i.e., up to the L? norm) are obtained
by using Lemma 8.7 and 8.8, and then using Lemma 8.12 (again with w;, = (ijl wp,5)/J) to
estimate |lu — UhHHk—N in the remainder term.

Indeed, to prove the second block row of (3.17) for m € {1,...,p}, observe that from Lemma 8.7
(with £ = m — 1) combined with Lemma 8.12 (with w;, = wy,;), with 1 <4 < M,

i (1= W) (= )l gz < CCRik)™ (Il = wn,s

o (hak)V a2 (1= ©) (= )y ) + Ok ()™ [ = iy
(8.63)

() + (hak)P | xi 2% (u — up) | g v

the second block row of (3.17) then follows from (8.63) and (8.61), using that x; o < x;,1 (this extra
“layer” is used in the proof for m = 0 below).

The third block row of (3.17), i.e., the bound on the PML error, is proved in a similar way
to the high-frequency bound, using Lemma 8.8 instead of Lemma 8.7. Indeed, Lemma 8.8 (with
¢=m—1and N sufficiently large) combined with Lemma 8.12 (with wj, = wp, ;) implies that, with
Mi+1<i< M,

i1 (= ) g < COR)™ (= wnall iz ey + (k) iz (w = an) o)
+ Ok N (hk)™ lu — wp i 1 - (8.64)

The third block row of (3.17) then follows from (8.64) and (8.62), using again that x; 0 < Xi,1-

High-frequency and PML bound in the energy norm.

The second block row of (3.17) for m = 0 (i.e., in the H} norm) follows from (8.61), (8.63) with
m = 1, and the following lemma applied with ¢ = x;.0, ¢ := x4,1, IN := N’ large enough and using
Lemma 8.12 (with wy, = wy, ;) to estimate k=N ||lu — up|| -~ by R.

k

Lemma 8.15 For any ko > 0 and ¢ > 0, there exists ho > 0 such that the following holds. Let
o, € C*°(Q) be such that

¢ =<cd and supp(¢) N Ty, = 0.
Furthermore, let 1,19 € C(R) be such that ¥y < ¥, let ¥ := (Py), Yo := o(Pr) and

A:=¢(1-0) and A:=¢(1—T).

Then, for all N > 0, there exists C > 0 such that for all k > ko, h < hg, u— up, satisfying (3.16)
and for all wy, € Vy,

1A = w)llay < € (1600 = wn)llay + 1 AGx = un) 22 + (k)P |9 — wn) |~ )

+ Ok (lu— wn g+l — un - )-

where hg := max {hx : K € Tp, s.t. Kﬂsupp((;) #0}.

The heart of the proof of Lemma 8.15 is that, by the Garding inequality, Galerkin orthogonality,
and the definition of IT%,

A — )3y < RCPLA( — un), Al —un)) + Cll A(u —u)|32

< [(Pelw —up), (I = ) A" Alu = un))| + [([Pe Al (w = un), A —un))| + Ol A = un)| 72
(8.65)
The first term on the right-hand side of (8.65) is dealt with in a similar way to the proof of Lemma
8.1 (compare the first term on the right-hand side of (8.65) to the right-hand side of (8.17)). The
following lemma deals with the second term on the right-hand side of (8.65) (i.e., the commutator
term).
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Lemma 8.16 Let ¢,$ € C™(Q) be such that O,¢lsa. = 0, ¢ < 5 and supp(%) Ny = 0, let
¥,109 € C(R) be such that vy < ¥, let U := (Py) and Vo := ¥o(Px) and let

A:=¢(1-W) and A:=¢(1—T)

Then B
A=AA+O_o(k™% Y = V)

[P, A] = [P, AJA+ O_oo (k™3 Y = V) (8.66)
and for all kg > 0, there exists C > 0 such that for all k > ko,

1P Al 2y < Ch. (8.67)
Proof. Similar to in the proof of Lemma 8.6, let ¢p € C*°(£), be such that 5 < pp and that
supp(pp) NTy, =0  and  supp(l —¢p)NON_ =0

(compare to (8.26)). We claim that

[Pr, Al = [op Prop, Al + O—_ oo (k™% Yy — V) (8.68)
A=AA+ O_o (k™Y — W), (8.69)
A(pp Pupp) = A(op Prpp) A + O—oo (k7% Vi = V). (8.70)

Once these three properties are shown, we obtain (8.66) and (8.67) as follows. First,
[P, Al = [pp Propp, Al + O oo (75 Y, = J)) - (by (8.68))
= [ppPop, AJA + O_ oo (k7% Y, = V) (by (8.69) and (8.70))
= [P AJA+ 0o (K70 = V) (by (8.68))
which is (8.66). Second,
[Pr, Al = [epPrpp, Al + O oo (k75 Y, = V) (by (8.68)

= [ppPripp, ¢](1 = V) + ¢lpp Prop, (1 — )] + O (k%5 V) — Vi)
(by definition of A)

= ¢p[Pr, dlpp(1 — W) + ¢lpp Prpp, (1 = W)]  (since [pp, ¢] = 0) (8.71)

By Lemma 6.3, ¢ € Ly, and by Lemma 6.8, pp Prpp € Ly,. Thus, by the Definition of these spaces
(Definitions 5.25 and 5.35), (8.71) gives (8.67).
We now prove (8.68)-(8.70). First, by locality of P,

PkA = Pkgb(]. — \I/) = LppPkQOP¢(1 — \I/) = (pppk(ppA. (872)

Moreover, by Theorem 6.2, the locality of Py, the fact that (;~5 = q~3<pp, and then Theorem 6.2 again,

APy = (1 = W) Py = §(1 = V)¢ P + 0o (k™3 Yy = V)
$(1 = U)6Prop + O—oo (k™3 V) = Vp)
$(1 — 0)dgp Prpp + O—oa (k™% V) = V)

= ¢(1 = V)ppPrpp + O—oo (k™Y — V),

= AppPigp + O_ oo (k™ Y, — V). (8.73)
Combining (8.72) and (8.73) gives (8.68). Second, by the fact that (1 — ) = (1 — ¢)(1 — ¢g) and
by Theorem 6.2,

A=¢(1-V)=¢(1 - V)(1-¥g) =¢(1 = ¥)p(1 — Vo) + O (k™ V. — Vi),
= AA+ O_oo (k=% Y, — Vo).
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which is (8.69). Finally, using again that ¢p Prpp € L}, we obtain
(1= 0)(ppProp) = (1 = V) (ppPrpp) (1 = ¥o) + O—oc (b7, Vi = Vi)
by Theorem 5.37. Left-multiplying by ¢ thus gives

A(ppPrpp) = ¢(1 = U)(pp Prpp) (1 — Vo) + O_ oo (K™, V), — Vi)

= ¢(1 — W) (epPryp)p(l — Vy)

+¢(1 = V) (ppPrpp)(1 — )(1 — o) + O—oo (k™ Yy — Vi)

= A((pppk@p)A
+ (1= W)(pp Pupp) (1 — 6)(1 = Wo) + O_ oo (K™, Y = V),

and (8.70) then follows from locality of ¢p Pypp and pseudolocality of ¥ (Theorem 6.2), since

o(1 — W) (ppPrpp)(1 — )
= [p(1 — ©)(1 — @)](wpPrpp) (1 — ¢) + d(1 — V) [d(wp Prpp) (1 — ¢)]

O— oo (k™% Y, = Vi) (pp Prp)(1 — ¢) +0
O— (k™Y = Vi)

where ¢ € C>® () is such that ¢ < b =< 5 [ ]

Proof of Lemma 8.15. Let kg > 0 and ¢ > 0, and let kg be small enough to apply Theorem 7.2 and
Lemma 8.2. Let ¢, ¢, ¥, 19 and N be as in the statement, and denote by C any positive constant
depending only on the previous quantities. Let k > kg, suppose that h < hg let u — uy, be such
that (3.16) holds. Let ¢1, ¢a, d3 € C°°(Q2) be such that

¢ ’<c/4 ¢1 '<c/4 ¢2 '<c/4 ¢3 '<c/4 %
with, additionally, 9, (¢1)|sa_ = 0; such a ¢; exists by Lemma 6.6. Since
[6(1 = W)ul[gr < [|o1(1 — W)ul| g,

it is enough to estimate the latter. Let A = é(l — ). By the Garding inequality and Galerkin
orthogonality (3.16),

lA(uw — Uh)”?{; < R(PpA(u —up), Atu —up)) + Cl|A(u — up)|| 72
< [(Py(u — up), T -TIE)A* A(u — up))| (8.74)
+ |{[Pe, A (u — up), Alu — up) )| + CllA(u — up)|[7 .
With A as in the statement, Lemma 8.16 gives

‘<[Pk,A](u —up), Alu — uh)>’
< ([P, AVA(u = up), A(w — up))| + Ck™N|u — unl g~ 1 A(w = un)| 1y

< € (KM AGr = un) 22 + Ok =l ) [ AGe = n) |y, (8.75)
and
A = un)liFe < A= un) 22 | Al = un) sy
< C (1A = un) ez + Okl = wnll ) 1A G = w) . (8.76)
Combining (8.74), (8.75) and (8.76), we deduce that

| A(u — uh)“?{}i < [(Pelu—un), (A —Hi)A*A(u —un))| + CllA(u—un)F2 + CEN|ju - “h”?{;Nv
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and to conclude the proof, it remains to show that

‘<Pk(u_uh) (I- ) A(u —uhm
< (o(u— wh)| g2 + (hgk)P||(u — un)l g~ + CR)||A(w —up) gy (8.77)

where R := k=N (|lu — Uh“H;N + llu = wallg1 )
To establish (8.77), we use the identity

(Py(u—up), I -TE)A* A(u — up))
= (u —wp, (PH*(I-T1) A" A(u — up)) — (u — up, Sp(I—T15) A* A(u — uy,))

(shown in the same manner as (8.17) in the proof of the localised duality argument, Lemma 8.1).
Next, by pseudo-locality of 1 — ¥, A* = ¢ A* + O_oo(k~°; Y, — Vy.), so that

(Pulu = ), (=T A" A = )|
< | = wn, (PE*(T=T1)62A4" Al = un)) | + | (= wn), SW(I-TE) g2 A" A = wn))|
+ CR[|A(u — un) |-
Now, adapting the arguments in the proof of Lemma 8.1 (from (8.17) to (8.23)), we obtain
[ (Ptos = ), (L-TEE) 4* A — )|
< [(PEd(u — wn), ds(1-TI)w)| + |(Sedlu — wn), Spes(1 -1 )w)| + CRIAG = un)l sz,
(8.78)

where w = ¢oA* A(u — uy) and Sy, := ¢ (P)) where ¢ € C°(R) is such that ¢ < 1. Namely, we
follow exactly the same steps as in (8.19) and (8.21) but with £ = —1, and in (8.20) and (8.22),
choosing v = A*A(u — uy), we use the estimate [[v]z1 < [[A"|| g1 a1 [[A(u — up)||m2, and the

fact that ||A*|] gt omr < C. Finally, by the quasi-optimality of H,uC and the previous bound on
1A 2 2
1T =T1})wl < CllA®@ = un)l|
and in turn, by Lemma 8.2,
ks (LT w2 < C((hgh)” + k=™ (k) )| A = un) | ;.
Using these bounds in (8.78),

[(Pu(u = ), (1-TE) A" A — un)

< & (13— wi)llg + (k) + k= (k)P 1St — wn) = + CR) [ ACw — un) 1
and (8.77) follows by using the mapping properties of Sk. [ ]

The proof of the third block row of (3.17) in the H} norm (i.e., m = 0), is similar to that of the
second block row, using Lemma 8.17 below instead of Lemma 8.15.

Lemma 8.17 For any kg > 0 and ¢ > 0, there exists hg > 0 such that the following holds. Let
6,0 € C>(Q) be such that ¢ <. é. Then, for all N > 0, there exists C > 0 such that for all k > ko,
h < hg, u—uyp, satisfying (3.16) and for all wy, € Vi,
(= un)llmy < € (16 = wn)ly + 19w = wn)llzz )
+ Ok (Jlu - wplpy + [lu— Uh||H,;N)~

where hj = max{hK : K €Ty, st. KnNsupp(e) # (Z)}.
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Proof. Let ¢1, ¢2 € C°°(Q) be such that

¢ <1< 2 <o,
with in addition, d,(¢1)|aq_ = 0. Then, observe that

6 — un)ll: < Clléa(u—un)ll-

The proof is now identical to that of Lemma 8.15, with the following replacement for Lemma 8.16:
(1) [Pk, 1] = [Pk, ¢1]¢2, which follows from locality of Py and (ii), [|[Pk, #1]llr2—z; < Ck™1is
continuous, which follows from Lemma 6.3 and Definition 5.25. [

9 Proof of Theorem 1.3

Under the assumptions on (7;)g>o in Theorem 1.3, the family (V% )k>0 is a well-behaved finite
element of order p in the sense of Definition 3.7; we can therefore apply Theorem 3.11 (in particular,
(3.18)). By (8.59), T* < >-° ((C+W)™. To prove Theorem 1.3, it is therefore sufficient to show
that, provided the mesh conditions (1.8) holds, the loop condition (3.15) holds and

<(I> g (hpok)N> 2_(CiW)'B<O(7% + ) .
n=0

where B, W are defined by (3.12), (3.13), while H;1, 7 and & and Z are defined by (1.6). In
fact, by Theorem 8.13, the loop condition (3.15) holds if and only if the sum ) 2 W™ converges,
and from the way the simple-path matrix 7* was used in the proof of Theorem 3.11 to bound
(I —CyW)~1, it suffices to show (9.1) with 7* replaced by > - W". In addition, since, under the
mesh conditions (1.8), (7—[17116)21”1\// < kNI and (hpk) < ¢, it suffices to show that

(é g (1)> S (CW)B < CTB. 9.2)

n=0

We obtain (9.2) by “forgetting” about the improvements on the high-frequency components of
the Galerkin error. That is, we consider the directed graph G in Figure 9.1 — which describes the
error propagation without any frequency splitting (where we have used the bounds on the solution
operator from §4) — and let

W Cr1(Hi1k)?  Bmin(N)EN
o hmin(N)TkN (hpk)N

be the associated weighted adjacency matrix. Here,
hin(N) = (0 WY o hYp BN

The point is that .7 is, up to a constant, the simple-path matrix of #". More precisely, the following
result holds.

Lemma 9.1 For all Cy > 0, there exists ¢, C > 0 such that if (1.8) holds with c, then
Y crwr<cT.
n=0

Proof. Observe that under (1.8), only one edge in this graph can possibly have a weight > ¢, namely,
Wis = \/Rp(R) (k).

Moreover, any simple loop in this graph containing the edge %] > must also contain the edge
Wo = (hick)* \/kp(k),
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(hy pk)N

(h;ck)pr (hvk)ka (h[k)2p/€ (hpk)N
(hick)?*\/kep O (hyk)?Pk O (hz ph)™
T

(hzk)ka (hz,pk)Y

(hy pk)N

Figure 9.1: The graph showing propagation of errors for the decomposition into Qx, 2y, 7. Recall
that hy p = min(hy, hp) and hzp = min(hz, hp).

and the product of these two weights is

WiaWas = (hick)? plk) (k) 7k < .
—_—
<c <c

Therefore, provided that c is sufficiently small, the sum of the weights of all simple loops in G can
be made < 1. The conclusion follows by remarking that, under the mesh conditions (1.8),

> ey, <oy,
PEV;;

as can be checked by direct calculation. ]
By Lemma 9.1, it suffices to show that for all C; > 0, there exists C’J; > 0 and C' > 0 such that

(é 8 ?) (C{W)"B < CCl"p™ 3. (9.3)

To prove this, we first observe that, with £ = p or 2p,
fo,llin(g)ke < Cri(Hitk)".

Indeed, (C11);; > 1 for all 4, j such that (H"(¢));; # 0 (since when the domains overlap, the norm
of the solution operator is > 1). Since H is diagonal, it follows that for such pairs 4, j and all £ > 0,

(HET™(0))i; = min(hi, hy)* < (Crp)iihl = (CLi(H) )i

7%
Therefore, the matrix W associated to the full graph (Figure 3.1) and the matrix B can be
estimated by blocks as

Cri(Hi1k)® Cri(Hiik)*®  hmin(N)EN dia
ANTLL, AMTEL, g(A(2p))J Kb(N)
W < C | CrLi(Hik)®  Cri(Hitk)®  hmin(N)EN | =C ( BN)TKT  (hpk)N

hgln(N)kN hgln(N)kN (h'pl{?)N
Cr1(Hi k)P 0 .
B<C|Cu(Huk)y 0 |=C (dlag(z;l)(p)ﬂf . Ok)P>
0 (hpk)? P

where

A(f) = Crp(Higk)',  diag(A) = (61 31) o b0 = hnin (DK, T = (2 2) K= (2)
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with I3 denoting the 3 x 3 identity matrix. With these definitions, observe that

7= wm) 2= (8 )

thus the estimate (9.3) immediately follows from the next lemma.

Lemma 9.2 Let A, B be M x M matrices with positive coefficients, b,b' € RM ¢ € R,. Then, for
all n,

Iy 0 0 [diag(A)J Kb\" (diag(A)K 0 conti (A D "(A 0

0 0 Iy bTKT c 0 )= T ¢ 0o )

Proof. Let
A, b\ (A b\"
L oe, ) 0T )

Using that J? = 2J, JK = 2K and KT K = 2, one can check by an easy induction that

diag(A)J Kb\" < on (diag(An)J Kb,
bVTKT = b KT Cn-

The result then follows using that

I
Ly 0 0 (diag(A,)J Kb, (diag(A)VK KY\ _ (An A b Z‘, 0
0 0 Iy bIKT Cn pT c b b ¢ 0

A, by (A 0
S2(1)2 cn)<0 c’)'

A Definition of radial perfectly matched layers

Let Rgcat be such that

supp(A — I) Usupp(n — 1) UQ € Bpg (A1)

scat ®

Let Rpymp,— > Rscat be such that By, = € Q.
Asin §1.1 and §3.1, let Q := Q4 N Q, and Ty, := 9, For 0 < 0 < /2, let the PML scaling
function fy € C*°([0,00); R) be defined by fy(r) := f(r)tan for some f satisfying

{fr)y=0} ={f'(r) =0} ={r <Rpmw-}, [f(r)>0; (A.2)
i.e., the scaling “turns on” at r = Rpmr,—. Given fy(r), let
a(r):=1+ify(r) and B(r):=1+1ifge(r)/r.

We now define two possible PML problems (1.2); both are formed by first replacing A in (1.1) by

1 0\2 d—1 0 1
8= (5 +if5<r>5) T AT i) o T i)
_ 1 9 ((T+ife(7“))d_1 9 ) L
(1+ifé(r))(r+if9(r))d*1 or 1—|—if(§(7") or (r+ife(r))?

(with A, the surface Laplacian on S9~!) and then either multiplying by o391 or not — the
coefficients Ay, by, and ny for both options are defined below.
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Comparison of the two different formulations. The multiplication by a8% ! has the ad-
vantage that the resulting operator is in divergence form; however, for Py to satisfy (3.5), one
requires additional assumptions. In particular, [GLSW24, Lemma 2.3] shows that (3.5) holds for
any fy(r) satisfying the above assumptions in d = 2 and holds in d = 3 when fy(r)/r is, in addition,
non-decreasing and [GLSW24, Remark 2.1] shows that such an additional assumption is needed.

If one instead integrates by parts the complex-scaled PDE directly (i.e., avoids the above multi-
plication), then the resulting sesquilinear form satisfies the Garding inequality after multiplication
by el“, for some suitable constant w [GLS24, Lemma A.6].

We highlight that, in other papers on PMLs, the scaled variable, which in our case is r + ify(r),
is often written as r(1 + i (r)) with o(r) = o for r sufficiently large; see, e.g., [HSZ03, §4], [BPO7,
§2]. Therefore, to convert from our notation, set o(r) = fy(r)/r and oo = tan 6. In this alternative
notation, the assumption that fy(r)/r is nondecreasing is therefore that & is nondecreasing — see
[BPO7, §2].

The sesquilinear form after multiplication by o3%"!. Define by := 0,

Ag = 4 - ?n 2 and ng:= " i1 %n 20 Bres..- (A.3)
HDH m (BRPML,—)C a(r)ﬁ(r) m (BRPML,—)C’

where, in polar coordinates (r, ),

_( B(r)a(r)~ 0 [ cosp —sing B
D< 0 a(r)B(r)~! ) and - H = ( sinp  cosgp ) ford =2,

and, in spherical polar coordinates (r, ¢, ¢),

B(r)?a(r)™t 0 0 singpcos¢ cospcosd —sing
D= 0 a(r) 0 and H = | sinpsing cospsing  cos¢
0 0 «ar) cos —singp 0

for d = 3. (observe that then A = I and n =1 when r = Rpmp,— and thus Ay and ng are continuous
at r = RPML,—)-

Lemma A.1 ([GLSW24, Lemma 2.3]) Let fy satisfy (A.2) and the additional assumption when
d = 3 that fo(r)/r is nondecreasing, given € > 0 there exists ¢ > 0 such that, for alle < 0 < 7w/2—¢,
Ay defined by (A.3) satisfies

R(Ap(2)E,€), > €z for all ¢ € CY and x € Q;

thus the Garding inequality (3.5) holds.

The sesquilinear form without multiplication by a3%~'. Define

A in in QN B
Ag = - Tn ’ and ng 1= " Tn M RPMLj_’ (A.4)
HDH m (BRPML,—)C 1 m (BRPML,—)C7

where, in polar coordinates (r, ),

o alr)? 0 [ cosp —sing _
D= ( 0 B(r)2 > and H = < singp  cose for d = 2,

and, in spherical polar coordinates (r, ¢, ¢),

a(r)=2 0 0 singpcos¢ cos@cosp —sing
D= 0 B(r)~?2 0 and H=| sinpsing cospsing cos¢
0 0 B(r)—2 cos @ —sinp 0
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for d = 3 (observe that then Ag = I and ng = 1 when r = Rpyyp,— and thus A and n are continuous
at r = Rpmr,—). In addition, for d = 2,

0 QﬁBRPML,7
bo(r) = =2(1 ’
o(7) " (a (log(ap)) ) (Bro )",
0
and for d =3
0 QQBRPML,—
a~2(log(aB?))
by(r) = (log(ap?)) C
H 0 (BRPML,—) .
0

Lemma A.2 ([GLS24, Lemma A.6]) Let fy satisfy (A.2). Given e > 0 there existsw € R,¢ >0
such that, for alle < 0 < w/2 —¢, Ag defined by (A.4) satisfies

%(eiwAg(x)g,E)z >cll€lz forallé € Ct and x €

thus the Gdrding inequality (3.5) holds for the sesquilinear form e“ay(-,-).

B Loop decompositions in directed graphs (Theorem 8.13)

Fix a matrix W € M(M x M), let G be the graph associated to W as defined in §3.6 and T™ the
simple-path matrix of W. Denote by P;; the set of paths from ¢ to j. Recalling the classical identity

W= >, W
pEP;; s.t. |p|=n
and summing over n, one obtains that
| - xw,
neN ij pEP;;

provided that the right-hand side converges. The first inequality in (8.59) then follows immediately.
To prove the implication in (8.58) and the second inequality in (8.59), it is sufficient to show
that

1
> w, < 7 (B.1)
pEP;;
B.1 Outline
We show (B.1) by constructing an injective map
Dec : P;j — Vi x SLWY

where for any set A, AN denotes the set of finite ordered sequences of elements of A (possibly of
size 0). The map Dec is defined in Definition B.4 below, and its properties are stated in Lemma B.5.
It corresponds to a decomposition of every path p € P;; into a non-intersecting segment v € Vj;

and a tuple of simple loops (L1,...,Lg) € SL™. The idea is that one obtains the decomposition
by recursively removing loops from p until the remainder is non-intersecting. If one defines

W('Uv(Ll,-A.,LQ)) = WUWL1 s WLQ; (BQ)

then it will be seen that W), = Wpe,(,) for all p € P;;. The proof of Lemma 8.13 is then obtained

as follows:
Z W;D = Z WDec(p) = Z Wq < Z Wq

peP;; peP;; g€Dec(Pi;) g€V, ; xSLM
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since Dec is injective. The last term can be rewritten as

> Wq:Zi > WUWLl...WLQZWUi<ZWL>Q.

q€eV;; X SLM) veV; Q=0 Ly,...,Lq eSL veV; Q=0 \LeSL

Therefore if (ZLGS]L WL) <e¢< 1, then

1
ZWPSE ZWU:TZ;"

pEP;; veEV;;

B.2 Construction of the map Dec

For 1 < ¢ <m < |p| + 1, the splice of p between ¢ and m, denoted by p[¢, m), is the path obtained
from p by only keeping the edges from ¢ to m — 1, that is

pll,m) :=epepyr ... €m—1,

with the convention that p[/,f) = 0. Given two paths p = ejes...e;, and ¢ = fifo... fig such
that p(|p| + 1) = q(1), the concatenation of p and ¢ is defined by

p.q26162...e‘p‘f1f2"'f|q|’

with the convention that for all paths p, p- 0 =0 - p = p. In particular, for all p,q € P,

lp-ql = |p| +|ql.

Furthermore, when m > £, p[¢,m) is a path from p(¢) to p(m), and for all 1 < ¢ < |p| + 1,

p=p[1,0)-plt,|p| +1).

If p(¢) = ip and L;, is either O or a loop through ig, one can then define the insertion of L;, in p at
index £ by

¢
p = Liy :==p[1,€) - Ly, - pl¢, |p| + 1).

To extract the first loop of a self-intersecting path, one can “follow” the path until some vertex
1% occurs for the second time. One then backtracks to the first occurence of that vertex, and the
splice in between those two occurences defines a simple loop that can be extracted from p. More
precisely, let

Ce(p) = inf {0 € {1, pl + 1} :p(0) € {p(1),...p(¢ = 1)} },

the index of first crossing. Note that £« (p) = oo if, and only if, p is non-intersecting. If £« (p) < oo,
define iy (p) := p(£x (p)) the first crossing point of p, and

lo(p) := inf {£ €{0,...,|p|+1} :p(¥) = ix(P)}

the first index at which p visits i (p). These definitions are illustrated in Figure B.1. Define the
maps L:P—Pand £F: P — P by
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pllo(p), €x(p)) if £x(p) < oo,
« L(p) =
0 if £, (p) = 0.

the first loop in p, and

p[L,o(p)) - pllx (), [p| +1) if £x(p) < oo,

. E(p) = p(11)
p if £ (p) = o0, Figure B.1: Example of a
" der aft tracting the 1 I self-intersecting path. Here,
e remainder after extracting the loop L(p). lo(p) = 5 and ly(p) = 8.

The vertices of L(p) are high-
lighted in red.

The properties of L and F are summarized in the following lemma. The proof is immediate from
the definitions.

Lemma B.1 For all paths p,
£Lo(p)
p=E(p) = L(p),

Ipl = [E(p)| + |L(p)]  and W, = Wi Wep)-

The path p is non-intersecting if, and only if, L(p) = 0, in which case, p = E(p). Otherwise,
L(p) e SL, |L(p)| > 1 and

to(p) =inf {€ € {0,..., [E@)] +1}  (E®)(0) = (LE)()}.

If p € Py;, then either

1. E(p) € Py;, or

2. E(p) =0, and this can only occur if i = j.
Define E™(p) := E(E""1(p)), with E°(p) := p.

Corollary B.2 Let p € P. Then there exists a unique number ny € N, the number of loops in p,
such that the following properties hold:

o cither ng = 0 or E™~1(p) # E™(p),
o foralln >ny, E"(p) = E™(p).

Proof. If E"*1(p) # E™(p), then by Lemma B.1, |E""!(p)| < |E™(p)| — 1. Since infinite sequences
of natural numbers cannot be strictly decreasing, the sequence (E™(p)),, must eventually stagnate.
]

Corollary B.3 The map

Dec: P xP®M — PxP®M
p,(L1,...,Lg) = E@),(L,...,Lg, L(p))

is injective. If X € P x PN and if Wx is defined as in (B.2), then

Whee(x) = Wx. (B.3)
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Proof. Suppose that

(E(p)v (Lla .- ~,LQ,L(]3))) = (E(p/), (Llla sy /QvL(p/)))

and let E = E(p) = E(p') and L = L(p) = L(p'). To conclude, it suffices to show that p = p’ (since
it is obvious that L, = L} for 1 < i < Q). There are two cases: either |L| = 0 or |L| > 1. By
Lemma B.1, in the first case, E = p = p’. In the second case, since E(p) = E(p) and L(p) = L(p'),

lo(p) = bo(p/) = inf {e €{0,...,|E|+1} 1 E(t) = L(l)} A

andp=p =F £ L. Thus in both cases, p = p’. The proof of (B.3) is immediate. ]

Definition B.4 (Loop decomposition of a path) Given p € P, the loop-decomposition of p,
denoted by Dec(p) € P x PN | is defined by

Dec(p) := Dec™ (p, &)
where & is the empty sequence of paths, and ng is the number of loops in p.
Lemma B.5 For all p € P;j, Dec(p) € V;; x SL™, and
Wpecp) = Wop. (B.4)
Furthermore, the map Dec : P — V X SLM™ s injective.

Proof. Write Dec™ (p, @) = (v,(L1,...,Lp,)), and observe that v = E™(p). If v were self-
intersecting, then it would follow that E™*1(p) # E™(p), contradicting Corollary B.2. Thus,
v € V. If p € IP;; then either ¢ # j, in which case it follows by B.1 that v € V;;, or ¢ = j in which
case v = 0 (otherwise we would have an non-intersecting path in P;;, which is impossible). On the
other hand, one can check easily by induction that

Ly = L(p)a Ly = L(E(p)), s Lno = L(En()il(p))v

and thus, by Lemma B.1, for 1 < i < ng, L; is either 0 or a simple loop. But L; cannot be 0, since
this would imply that E*~!(p) = E*(p), contradicting again Corollary B.2. Thus L1,..., L,, € SL.
The relation (B.4) follows immediately from (B.3).
Finally, suppose that Dec(p) = Dec(p’). Then p and p’ have the same number of loops
no (otherwise, the list of loops in their loop-decomposition could not be the same) and thus
Dec(p) = Dec™ (p, @), Dec(p’) = Dec™ (p', &) and therefore

Dec™ (p, @) = Dec™ (¢, 2)

But since Dec is injective (by Corollary B.3), Dec™ is injective, and thus it must be that p=p’. =

C Proofs of the local bounds on the solution operator (The-
orems 4.1 and 4.2)

In this section we prove Theorems 4.1 and 4.2. In fact, we prove a stronger analogue of Theorem
4.1 phrased using semiclassical pseudodifferential operators — i.e., pseudodifferential operators in a
calculus where each derivative is weighted by k~!. Furthermore, because we work on a bounded
domain, we need a special class of pseudodifferential operators adapted to the boundary.

C.1 Pseudodifferential operators and b-pseudodifferential operators
C.1.1 Semiclassical pseudodifferential operators.

Semiclassical pseudodifferential operators are generalisations of Fourier multipliers acting as

Op(@)ula) == sy [ eF (e, ulu)ayde,
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where, for some m € R, a satisfies
10207 a(,€)] < Cap (&)™ 1.

In this case we write @ € S™(T*R?) and Op(a) € ¥™(R?). When m = 0 we write S(T*R%) and
U (R?) respectively. This class of pseudodifferential operators is the natural class of operators
generalising quantization of b(z)(hD)® for some b € C*(R?) and o € N¢. For more details and
information about the calculus of such operators see e.g. [DZ19, Appendix E] and [Zwo12].

The class of b-pseudodifferential operators that we work with is, instead, the natural class of
operators quantizing differential operators that are tangential to the boundary of ;. Away from
09, they are pseudodifferential operators in the sense above, but near 92 they have a different
form. In particular, in coordinates (x1, ") with 9Q, = {1 = 0}, their symbols are functions on
the b-cotangent bundle, *T*Q) , whose sections are of the form

dIl

o—1

Z1

Notice that *T*€), is the dual to sections of T*Q that are tangent to Q. We also write *T*,
for the fiber radially compactified b-contangent bundle; i.e., *T*Q, with the sphere at infinity in

(0,¢') attached.
In coordinates, b-pseudodifferential operators are of the form

Opy(a)(u)(z) = (27T1h)d /6%((ml_yl)gﬁ(r/_y/)’g,)cb(ﬂfl/yl)a(l‘h$/,$1€1,f')u(y)dyd§7

where ¢ € C°(1/2,2) with ¢ = 1 near 1 and for some m
|DgDIDSa(wr, 2, 0,€')| < Capl(o, €)™ 7717,

In this case, we write Op,(a) € ¥*(Q) and a € S™(*T*Qy). When m = 0 we write S(®T*Q)
and Wy (€ ) respectively. We also write ¥, > = N, ¥}".

The class comes equipped with principal symbol map ‘¢ : ¥™(Q,) —
S™(PT*Q1)/hPS™H(T*Qy ) such that if A € Uy(Q) and o(A) = 0 then A € AU} 1(Q4). We
now introduce two important sets for b-pseudodifferential operators. For A € ¥'(Q,) and
q € °T*Q, we say q € PEll(A) if there is a neighbourhood, U of ¢ such that

o(A)(@){(0,€) "™ >e>0, ¢ eUn’TQ,.
Next, we say ¢ ¢ ® WF(A) if there is E € *¥(Q, ) with ¢ € *Ell(E) such that

EA € h®U; >,

+&dx’.

For a more complete treatment of these operators, we refer the reader to [HV18, Appendix A] and
the references therein.

C.1.2 The generalised bicharacteristic flow on *T*Q), .

Let py € S?(T*Q) denote the semiclassical principal symbol of P, and observe that on B(0, Recat),
po = >i; 9" (x)&i&; — 1, where g~ ' (z) = A(x)/n(x). We then let ¢, : 7°{Rpy = 0} — 7°{Rpy = 0}
be the generalised bicharacteristic flow for Rpy in the sense of [Vas08, Definition 1.1].

We are now in a position to define the forward and backward trapped sets T and T, respectively,

Iy = {q € " ({Rpe = 0}) :sup{t > 0 : px4(q) €°T*Q} = oo},
as well as the trapped set,
K:=T,ND_.
One can show that I'y and hence K are closed (see e.g. [DZ19, Proposition 6.3]).

Remark C.1 For this flow to exist, we assume that 92 has no infinite order tangency with the
Hamiltonian bicharacteristics of Rpg. By [Hor85, Theorem 24.3.9] this suffices for the flow to be
unique and by [Hor85, Example 24.3.11] uniqueness may fail in the opposite case.

We highlight that the definitions of K and '+, and the statements of Theorems C.3 and C.4
below can all be rewritten without the need for uniqueness of the flow (with the results of the theorems
still true); however, for simplicity we do not do this.
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C.2 Improved resolvent estimates

We can now state our improved estimates on the solution operator. Below, we use the notation
b (Q) for elements of *¥(Q, ) whose kernels are supported away from T,.

Theorem C.2 Let ky > 0, and let J be such that Assumption 1.2 holds. Then for all A € *W¥(()
with ® WF(A) N K = (), there exists C > 0 such that, for all k € (ky,0) \ J,

[ARk |22 + [ RrAll 22 < OVIIRk(R, [[ARRA] L2 2 < CF.

Theorem C.3 Let ko > 0 and let J be such that Assumption 1.2 holds. Then for all A, B € ®¥(Q)
with

PWF(A) U | o i WF(A) nab({Rps = 0})) N WF(B) =0,  "WF(A)NT, =0

>0
and all N > 0 there exists C > 0 such that, for all k € (ko,0) \ T,
|ARLB|| 122 < Ck~N.

Theorem C.4 Let ky > 0 and let J be such that Assumption 1.2 holds. Then for all A, B € ®¥(Q)
with

PWF(A) U | ei(PWF(A) N e ({Rpg = 0})) NP WEF(B) =0,  "WFA)NT_ =0

>0
and all N > 0 there exists C > 0 such that, for all k € (ko,0) \ J,
|AR:B|| 22 < Ck~N.

Proof of Theorem 4.1 using Theorems C.2-C.3. Part (i) of Theorem 4.1 follows immediately from
Theorem C.2. Part (ii) of Theorem 4.1 follows from Theorems C.3 and C.3 by choosing B =
(i.e., the cutoff in K) and then noting that the choice A = x (i.e., the cutoff in 7) satisfies the
assumptions in Theorems C.3 and C.3. [

C.3 Estimates away from the scatterer

We start by proving an estimate ‘deep’ in the PML region; i.e. near the truncation boundary.

Lemma C.5 There exists U C Q such thag,‘VU is a meighbourhood of Ty, and for all kg > 0,
P, € C°(Q) with supp v, supp v C U, ¥ < 1, and supp(l — ) NI = 0, there exists C > 0 such
that for k > ko,

leullmy < (19 Pulze + CE ull v ). (C.1)

Proof. By [GLS23, Lemma 4.4], there is U with U a neighbourhood of 9§, such that for v € H} ()
with v|r,, = 0 and suppv C U,
ol < CllPol 2. (©2)

Let ¢; € C2°(U) be such that ¢ < 19 < {/}v and supp(1 — 11) Nsupp 9 = @. Applying (C.2) with
v = Yu, we obtain

lbull: < ClPabulze < C(lwPeullze + |[[Pestlu] 2) < C(lePrullze + Ckwhrull:) (C.3)
Now, shrinking U if necessary so that
{z € U : there exists & such that pg(z,&) = 0} = 0,
the elliptic parametrix construction [DZ19, Proposition E.32] implies that

1l < ClivaPrullze + Ck™V |Jull v, (C4)
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and the result follows by combining (C.3) and (C.4). |
We now prove Theorem 4.2.

Proof of Theorem 4.2. The bound ||xRg||r2—r2 < C follows immediately from (C.1), with the
bound ||Ryx|/r2—12 < C then following by applying the previous bound with Py replaced by Pj}.
The bound [[xRit)|[r2m; < Ck=" also follows immediately from (C.1), with then the bound

IXRe|| 2 N < Ck~N following by elliptic regularity up to the boundary.

Finally, the bound |[¢YRyx||r2—r2 < Ck= follows by applying the bound ||xRiv|r2—r2 <
Ck~N with Py replaced by P}, and then the bound ||¢ka||L2_>le€v < Ck~N follows by elliptic
regularity up to the boundary. ]

Next, we prove an estimate near incoming points away from the truncation boundary.

Lemma C.6 Let m > 2, x € C°(Q\ B(0, Rscat)) (where Rgcat is defined by (A.1)). Then there
is € > 0 such that for A, B € U° with

WE(A) 0 {(2.€) > e, po(w,€) =0} =0,

WE(A) U () {(x —16.6) : (x,6) € WE(4) N {py = 0}} N {py = 0} C EII(B)

and N >0, given kg > 0 there exists C' > 0 such that for all k > kg

[ Axull g < CkHBPkUHH;"*Q + Ck/’_NH“”Hk—N'
Proof. Since
WE(A) N {(£,6) > ¢, po(, ) = 0},
there is a neighbourhood, V' of {ps = 0} such that
WF(Ax)NV C {(ﬁ,@ < 2e}.
In particular, for (z,£) € WF(Ax) NV, and t > 0,
| —t€]? = |a|* — 2t|z|(;5, &) + tIEP* = |of? — dtfale + 1 > |2 (1 - 2€) + 13(1 - 2¢).

Therefore, there is T > 0 such that for all (z,£) € WF(Ax) NV, there is 0 < t < T such that
(x —t&,&) ¢ {ps = 0}. Using a microlocal partition of unity on WF(Ax) NV, {X; }5.\7:1, there are
0<T; <T and E; € ¥ with WF(E;) C {pg # 0} N Qi NEL(B) such that

{(z—1£,€) + (x,6) € WF(AX,x) NV, 0< t<T;} CEl(B)

and
{(z = T36,6) : (2,8 € WF(AX;x) NV} C EIl(E;).

Now, let X € Ue™P with WF(X) C V and WF(I — X) N {ps = 0} = 0. Then, by the elliptic
parametrix construction [DZ19, Proposition E.32)

17— X)Axul sy < ClBPgul s + Ok~ ]y (C5)

On the other hand, using that X € ¥°™P and then that Spy < 0 near pg = 0, by [DZ19, Theorem
E.47] we have

IXAX;xullap < CIXAXjxull v + Ck™N|ull -~ < Ck||BPyull2 + | Ejullz2 + CE~ Jul| .
(C.6)
Finally, since WF(E;) C {py # 0} N Ell(B), we have

| Bjullz < ClIBPullrz + Ck™|jul . (C.7)
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Combining (C.5), (C.6), and (C.7), and summing in j,
[ Axull g < C’k;||BPkuHHLn72 + Ok_NH'U,”Hk—N.

]
We now prove the key propagation lemma that allows us to improve resolvent estimates away
from trapping. In particular, we estimate u in an annulus away from Q_ but inside B(0, Rpmr,_ )

Lemma C.7 Let Rpyvy, > Rpmn_ with B(0, Rpyp, ) € Qi a € C2°((Rscat, Remr_)) and b €
Cgo(RscatyRPML+) with

b=1 on {x € (Rscat, Rpmr_) : & > infsuppa}.

and define A = a(|z|), B = B(|z|). Then, for X € *W° with ® WF(I — X)N*WF(Pyu) = 0, given
ko > 0 there exists C > 0 such that for all k > kg

|Aul|F2 < Ck||Peul| 2| Xull 22 + CK?||BPgul|72 + Cnk™ ||ul|7-.

Proof. Let a,by € C°((Rscat, RpmL_)) with a < by, suppby N {b < %} — 0. Let by €
C2°(Recat, Rpm, ) with suppbo N {b < 2} = () and

by =1 on {Jc € (Rscat, RpMmL_) : @ > inf supp bl}.
Let A = a(|z|) and Bj = b;(|z|), j = 1,2. We claim that
cllAully, < CH|[Pullza | Xullzs + KBy Peul3: + Ok~ | Bual3s + OVl (C.8)
To establish (C.8), first let g € C°(R) with suppg C [0, Rpmr_), ¢ > 0, ¢ < 0, suppg’ C

(Rscats Rpmr_) 9° < —1 on suppa, and supp(l — b;) Nsuppg’ = (. Next, let £ € ¥° with
0<o(F)<1,and

WE(E) € {(@,8) : (.0 <2}, WFI-E)n{(@.9 : (.0 <@} =0.

Finally, let by € Cgo((Rscat, RPML,) with g/ < by < by.
Put G = g(|z|), Bo = bo(|z|) and consider

kS (P, GPu) = 2£<[Pk,G2]u,u> = ; (Bo|Py, G*| By Byu, Biu).

Now, define Z := £ By[Py,, G*| By € ¥! and observe that
o(2) = Bg(|al) (&, Dag|2])) = g (|2} (€ 1) (a])
= 03 (9(I2) (€. ) (=) (1 = 0 (%) + g2} €, )9/ (12} (E2))
< 3((— cea(©)(1 — o(E) + () (€, 1) (la))o ()
03— cea®(€) + Co(B?)¢))
03( — cea®(€) + Co(E)(€) + Cwi)

IN

IN

Therefore, by the microlocal Garding inequality [DZ19, Proposition E.34],

k _
qukaQ]BluaBlw < —Ce||BoABlu||§{; + CHBOEBWH?LI; + C||BoPyByul72 + Ck™ || Byul 72

Thus, since a < by < by and * WF(I — X) N® WF(Pyu) = 0,

cellAulz < ChlIPyull 2 |GXull 2 + CIEByullfyy + ClI By Peulfz + Ck ™ [ Brull T + Ck™[ul3,

93



Then, by Lemma C.6,

cellAullzz < ChIIPyull 2 [ Xull L2 + Ck?|| B Peull 12 + CE~H | Brul[fz + CE™Y |lullf,

as claimed in (C.8).
Now, suppose by induction that for a,by € C°((Rscat, Rpmr_)) with @ < by and by €
C2°(Rcat, Rpv, ) with suppba N {b < 3} =0 and

by =1on {x € (Rscat, Rpvr_) : x > inf supp bl},
we have, with A = a(|z|) and By = b1 (|z|), B2 = ba(|z|),
cl|Au||2. < Ck||Pyul|p2|| X u||p2 + Ck?||BaPrul|2: + Ck~L||Biul|2. + C’k_N||u||?{’:N. (C.9)

Now, fix a,b; € C°((Rgscat, Rpmr_)) with a < by, and by € C°(Rscat, Rpmvr, ) with supp by N
{b<3}=0and
bs =1 on {9: € (Rscat, Rpyvr_) : @ > inf supp bl}.

Then, by (C.9), letting by € C2°((Rscat, Remr._)) with a < by < by and by € C2°(Racat, Rewr, )
with supp b, N {bs < 1} =0 and
32 =1on {z € (Rscat, RpmL_) : « > inf suppgl},
by (C.9) with A = a(|z]) and By = by (|z]), By = ba(|z]),

cllAullZ: < CHl|Peullz2]| Xul 22 + CK|| B Prul 12 + Ck~¥|| Byul| 2 + Ck™[Jull§ -

Now, by (C.8) with A replaced by El,
¢| Brullzz < Ck||Peul 2| Xull 2 + Ck || Byul72 + Ck*NHullilk—N-
Hence,
c| AulZ. < Ck||Peul| 2| Xul 12 + CK||Bo Peul|22 + Ck~" Y| Byul|72 + Ch™MJull, -~
< k|| Pl 2| Xull e + CR| By Pl + Ok~ Byuls + kN Jull
we have therefore obtained (C.9) with L replaced by L + 1, and the result then follows by induction.

C.4 Estimates near the scatterer and away from trapping

Before proceeding, we record the following consequences of [Vas08, Proposition 4.6, Theorems 8.1
and 8.5].

Theorem C.8 Let A, E € *U(Q) with *WF(A) U WF(E) C Q, with *WF(A) C *EI(E) and
PWEF(A) N ({pe = 0}) = 0. Then, for all kg > 0 there exists C > 0 such that

[Aull 2 < C||EPgul| 2 + Cnk™ " [|ul| 2

Proof. The estimate follows from [Vas08, Proposition 4.6] when ® WF(A) C B(0, Rscat) and from the
standard elliptic parametrix construction [DZ19, Proposition E.32], when ® WF(A4) N T*0Q)_ = ().
[

Theorem C.9 Let A, B, E € *¥(Q) such that

T
PWEF(A) U o—i(" WF(A) N7’ ({Rpy = 0}) C "EI(E),
t=0
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T
and for all ¢ € "WF(A) N’ ({Rpy = 0}), U ©_+(q) N EI(B) # 0.
t=0

Then, for all kg > 0 there exists C > 0 such that
| Au| L2 < Ck||EPyul|zz + [|Bullz2 + Cnk™ [[ul 2

Proof. The estimates follow from the combination of the propagation results in [Vas08, Theorem
8.1] (for Dirichlet boundary conditions on 9§2_) and [Vas08, Theorem 8.5] (for Neumann boundary
conditions on 9Q_) applied near the 9Q and [DZ19, Theorem E.47] applied away from 0Q2_. m

Our next lemma shows that, to measure u away from trapping, we need only have an estimate
for w in an annulus.

Lemma C.10 Suppose that A € *U(Q) and * WF(A)NK = 0. Then, for any Rscar < R1 < Rpyr_
and B € C°(Q) with supp(1l — B) N{|z| = R1} = 0, given ko > 0 there exists C > 0 such that for
all k> ko

| Aul|r2 < Ckl|Peull 2 + || Bullzz + Onk™ |JuZ.. (C.10)

Proof. First, by Lemma C.5 we may assume that
PWF(A) C Q.
Next observe that if ®* WF(A) N7 ({pg = 0}) = (), then by the ellipticity results in Theorem C.8
JAullzz < CllPeullze + Cok= ul 2.

Therefore, we may assume that ® WF(A) is contained in a small neighbourhood of *w({ps = 0}).
If *WF(A) C {B = 1} then, by the elliptic parametrix [DZ19, Proposition E.32],

[Aullz2 < CllBullzz + Ck™N]Jul 2.

Therefore, using a partition of unity, we need only consider two cases: * WF(A) C {|z| > R;} and
YWF(A) C {|=| < R1}.

First, suppose that ® WF(A) C {|z| > R;}. Let U be as in Lemma C.5. Then, there exists
T > 0 such that for all (x,&) € ®WF(A), there is ¢ € [0, 7] such that

o_t(z, &) e {B=1}U{(z,§) :x € U}

(i.e., flowing backwards, one either hits B = 1 or the PML). In particular, by the propagation
results [DZ19, Theorem E.47] there is ¢p € C°°(U) with ¢ = 1 near I'y; such that

| A2 < Ck||Prullzz + || Bull 2 + [[dull 2 + Ok~ [Ju]| 2.
By Lemma C.5, we then obtain
| Aullz> < CHl|Pyullzs + [ Bull g + Ck= |lul 12

as required.

Next, suppose * WF(A) C {|z| < R;}. Then, since > WF(A4) N K = (), applying a partition of
unity again, we may assume there exists 7' > 0 such that for all (z,£) € ® WF(A), either there is
t € [0,T] such that

oi(x,€) € {(x,f) . B(z) > %}, U @s(2,€) € B(0, Roair._),

s€[0,t]

(informally, one flows forwards from A, staying away from the PML region, and reaches where
B > 1/2 at time t) or there is t € [0,7] such that

pi(w @ e{@e: B@ >4} U o) eBORoun),

s€[—t,0]
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(informally, one flows backwards from A, staying away from the PML region, and reaches where
B > 1/2 at time t). The result (C.10) then follows by the propagation results of Theorem C.9. m

Finally, we combine the above lemmas to show that we may estimate u away from trapping by
u near the wavefront set of Pyu. In particular, this will improve the resolvent estimate when the
measurement is away from trapping.

Lemma C.11 Suppose that A € *WU(Q) and *WF(A) N K = (. Then, for any X € *W° with
PWF(I — X) N WF(Pyu) = 0, given ko > 0 there exists C > 0 such that for all k > kg

[AulZ2 < Okl Peull el Xul L2 + CK?||PeullZs + Cnk™Nful|Z..

Proof. Let Rgcat < R1 < Rpumr_ and b € C°(Rycat, Rpyr_ ) with supp(1 —b) N {|z| = Ry} = 0.
Then, by Lemma C.10

|Au]|Z2 < CK?||PyulZz + C||BullZ2 + Cnk™ " |Jul2s,
and, by Lemma C.7,
[Bullz: < Ck||Peul 2| Xul 12 + CE*|| Pyulz2 + Cnk ™ |22,
which completes the proof. ]

When the both the data and measurement are away from trapping, we can use the previous
lemma to improve our estimates further— all the way to a non-trapping type bound.

Lemma C.12 Suppose that ®* WF(Pyu) N K = ), then for any A € *W(Q) with *WF(A) N K =0
given ko > 0 there exists C' > 0 such that for all k > kg

| Aullz2 < CE| Pyullzz + Ck=||ul| 2.

Proof. Let A, X € *¥(Q) with *WF(I — X) N*WF(Pyu) = 0, *"WF(A) N K = 0, and *WF(I —
A)N(*WF(A) U WF(X)) = (. By Lemma C.11,

1Aull?> < Ckl|Prullz2l| Xull 2 + CR*||Peul| 22 + Ck™ |lull e

Then, by the elliptic parametrix construction in the b-calculus [GW23, Equation 3.11] (see also
[HV18, Appendix A]), }
| Xullze < CllAul| e + Ck™N]|ul| 2

Combining the last two inequalities and using the inequality (5.5), we obtain that
1Au|Z2 < CK?|| PeulZ + Ck™N][ul|Z2.
Finally, since A is elliptic on WF(A),
[Aul|r2 < CllAullz2 + Ck™N]Jul| 2,

which completes the proof [

C.5 Proof of Theorem C.2
To prove the first bound in Theorem C.2, let w = R f. Then, by Lemma C.11 with X =T,

|AulZ2 < Okl Peullellullzz + CR?|| Peul[g + Cnk™" [[ulg2
< Ck||Rillces2 | fIZ2 + CR||£Il72 + Onk™ | RillZa_, 12 |1 £
< C(kl|Rill 22 + K| f1I7-

In particular,

ARk 2212 < C(VE[|Rillp2— 12 + k) < CVE|Ryllp2— 12,
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where the last inequality follows since ||Rg||r2—r2 > ck.
Reversing the direction of the flow in all of the above lemmas (or, equivalently, applying the
above results to —F}), the proof of Lemma C.11 also yields

A ul|Z2 < Okl Piullzllull 2 + CR||PEullfe + Onk ™ |lu2..
Therefore, putting u = R} f, and arguing in the same way as above, we obtain
|ReAl L2 12 = |A* Rl 22 < CVE||Re||p2—r2-

To prove the second bound in Theorem C.2, let u = Ry Af. Then, by Lemma C.12, since
Pyu=Af, and *"WF(A)N K =),

[Aullzz < CEIAfl|L2 + Ck™ N |lullzz < Cklfllze + Ck™ M| Rillzare | f122-

C.6 Proof of Theorems C.3 and C.4

Proof of Theorem C.3. Since ®WF(A) NT'; = () there exists T > 0 and B; € ¥(f) such that
WF(By) C ((T*Q\ T*B(0, Rscat)) N {pe # 0}) \ * WF(B) and for all ¢ € > WF(A) N w°({Rpy = 0}),

T

U ¢—t(q) NEL(B1) # 0

t=0
(informally, By is supported in the PML region away from B, and flowing backwards from A one
hits By). In addition, since

T
PWF(A) U ot ("WF(A) N7 ({Rpy = 0})) N* WF(B) = 0,
t=0

there exists E € *¥(Q) such that
T
PWE(A)U o ("WF(A) N7 ({Rpy = 0})) CPEI(E),  "WF(E)N"WF(B) = .
t=0

Therefore, applying Theorem C.9 with u = R, Bf, and then using both > WF(E) N®* WF(B) = ()
and Assumption 1.2, we obtain

| Aullys < CKIEBF| 2 + Cl|Buull 2 + Cok ™ |lullys < [Byullze + Cnk~N|fllz2. (C.11)
The elliptic parametrix construction [DZ19, Proposition E.32] then implies that
|Brullr2 < C|BiBfll2 + Onk™Null 2 < Cnk™N | f] 2. (C.12)
Combining (C.11) and (C.12), we obtain that
| Aull 2 < Ok | £l 2
and the result ||ARgB| 2,2 < Cnk™ follows. |

The proof of Theorem C.4 is nearly identical with Py replaced by —F;'.
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