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Abstract

In a related talk [1], the Boundary Element Method

(BEM) is generalised to the case of scattering by
fractal obstacles. Implementation requires eval-
uating integrals of singular Green’s kernels over
fractal domains, with respect to Hausdorff mea-
sure. This motivated the development of new
quadrature rules, which are discussed here.
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1 Introduction

We will study numerical quadrature rules for the
evaluation of integrals of the form

ferfel = [ [ e@ant marte). o)

where I' and I are compact subsets of R? of
Hausdorff dimension d > 0 and d’ > 0 respec-
tively, H¢ and HY are the corresponding Haus-
dorff measures, and ®(z,y) = Z:“;ZZH is the fun-
damental solution for the Helmholtz equation
with wavenumber k£ > 0 in R3. (In what follows,
similar results hold for the analogous problem
posed in R?.)

Our motivation for approximating (1) is the
Hausdorff BEM, which is introduced and anal-
ysed in the talk [1]. Such BEMs can model scat-
tering by planar screens with non-integer (frac-
tal) dimension, i.e. d € (1,2).

2 Attractors of Iterated Function Systems

Now we describe in detail the class of fractal
scatterers that we consider. An iterated func-
tion system (IFS) is a set of 2 < M € N con-
tracting similarities Sy, (x) = pmAm®+ Om, With
contraction factors p, € (0,1), rotation ma-
trices A,, € R™" and translations §,, € R",
for m = 1,..., M. Saying that I' is the attrac-
tor of the IFS means that I' is the unique non-
empty compact set satisfying I' = s(I"), where
s(E) :==UM_, s(E), ECR™

Our quadrature rules are based on splitting
I' into sub-components, using the IFS structure.

Figure 1: Vector indices on Cantor Dust.

To describe these sub-components we adopt vec-
tor index notation. For £ € Nlet Iy := {1,..., M}*.
Then for £ C R" let Ey := F, and for m =
(mi,...,my) € I; define Ey, = sm(F) and
Sm = Sm; O ... 0 Sy,. For an illustration of this
notation in the case of the middle-third Cantor
dust see Figure 1. We say I' is hull-disjoint if

R := H;éin/{dist(HuH(Fm),Hull(Fm/))} > 0.

A key ingredient is the set of vector indices

Lh(F) = {m = (ma,... ,mg) € Upenlp :
diam(T'y) < h and diam (T, m, 1)) > h}.
Heuristically, these indices correspond to a par-
tition of I', where we have subdivided just enough

so that all components have diameter no more
than h. This is depicted in Figure 2.

3 The barycentre rule

We define the barycentre rule for double inte-
grals:

Qt p[f] = Z Z

mel,, (F) m’ELh(F’)

W Wiy f (T Ty ),

(2)
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technique, by considering the Lipschitz contin-
uous function @, := & — ®y, and splitting the
integral as follows

Ir r[®] = It r[®o] + Irp[Ps], (3)

and evaluating both components separately.

By exploiting the self-similarity of I', we can
express It 1[®¢] as a linear function of Ir,, r,, [®o]
form=1,..., M, which leads to

Z%:l Z%’;ém ‘[F'm:Fm/ [©0] (4)
1—- Zf\n/[:1 p%il - ’
. representing a singular integral as a linear com-

-1 1 bination of smooth integrals. The smooth inte-
Figure 2: Partitioning Koch snowflake by grals of (4) can be approximated using (2); we
Lo 3(T"). Barcentres xy, are represented by x. denote this approximation by Qllz,r,o-

Theorem 3 (Singular Laplace-type integrals)
[2, Corollary 4.7] If T is Hull-disjoint, then

0.5

-0.5
Irp[®o] =

where the weights and nodes are given by wy, :=
HITwm) and zp, = Jr.. xdH(z)/H (T m) for M -1
m € L,(T), with analogous definitions for I". Iy r[®o] — Q}IL,F,O < Ch2R 3 (1 _ Z ,0727?_1> _
The weights and nodes can be easily computed m=1

in terms of the IFS parameters, see [2, (27-29)].

For the single integral version of (2), see [2, 5 Approximating (1)
§3.1]. In all estimates that follow, C' denotes Noting the decomposition (3), Theorem 3 states
a constant which depends only on I'. that I r[®o] can be estimated with O(h?) error,

provided I' is hull-disjoint.

Since @, € C%(R") \ CH1(R™), Theorem
1 suggests |Irr[®.] — QR [®*]| = O(h). With
further work it can be shown that this is actu-
ally O(h?), when (i) T' is hull-disjoint and (ii)
p1=...= py. Hence using (3) we can approx-
imate It p[®] with O(h?) accuracy (see [2, §5]
for details).

Furthermore, numerical experiments |2, §6]
suggest O(h?) convergence for fractals which vi-
Corollary 2 (Smooth Galerkin integrals) /2,  olate either or both of the conditions (i)—(ii).
Proposition 5.2/

Theorem 1 (Lipschitz integrands) /2, The-
orem 3.7 If Lo[f] and L1[f] are the Lipschitz
constants of f and V f respectively in Hull(T") x
Hull(T),

Inp[f] = QR (]| < CL[fIRPT for p € {0,1}.

A result for non-diagonal entries of Hausdorff
BEM matrices follows immediately:

If R = dist(Hull(T"), Hull(T")) > 0, then References
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