A Hausdorff-Measure Boundary Element Method for Scattering by Fractal Screens II: Numerical Quadrature

Andrew Gibbs ${ }^{1, *}$, David Hewett ${ }^{1}$, Andrea Moiola ${ }^{2}$
${ }^{1}$ Department of Mathematics, University College London, UK
${ }^{2}$ Dipartimento di Matematica, Universitá Delgi Studi di Pavia, Italy
*Email: andrew.gibbs@ucl.ac.uk

Abstract

In a related talk [1], the Boundary Element Method (BEM) is generalised to the case of scattering by fractal obstacles. Implementation requires evaluating integrals of singular Green's kernels over fractal domains, with respect to Hausdorff measure. This motivated the development of new quadrature rules, which are discussed here.

Keywords: Quadrature, BEM, Fractals

1 Introduction

We will study numerical quadrature rules for the evaluation of integrals of the form

$$
\begin{equation*}
I_{\Gamma, \Gamma^{\prime}}[\Phi]:=\int_{\Gamma} \int_{\Gamma^{\prime}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d^{\prime}}(y) \mathrm{d} \mathcal{H}^{d}(x), \tag{1}
\end{equation*}
$$

where Γ and Γ^{\prime} are compact subsets of \mathbb{R}^{2} of Hausdorff dimension $d>0$ and $d^{\prime}>0$ respectively, \mathcal{H}^{d} and $\mathcal{H}^{d^{\prime}}$ are the corresponding Hausdorff measures, and $\Phi(x, y)=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|}$ is the fundamental solution for the Helmholtz equation with wavenumber $k>0$ in \mathbb{R}^{3}. (In what follows, similar results hold for the analogous problem posed in \mathbb{R}^{2}.)

Our motivation for approximating (1) is the Hausdorff BEM, which is introduced and analysed in the talk [1]. Such BEMs can model scattering by planar screens with non-integer (fractal) dimension, i.e. $d \in(1,2)$.

2 Attractors of Iterated Function Systems

Now we describe in detail the class of fractal scatterers that we consider. An iterated function system (IFS) is a set of $2 \leq M \in \mathbb{N}$ contracting similarities $s_{m}(x)=\rho_{m} A_{m} x+\delta_{m}$, with contraction factors $\rho_{m} \in(0,1)$, rotation matrices $A_{m} \in \mathbb{R}^{n \times n}$ and translations $\delta_{m} \in \mathbb{R}^{n}$, for $m=1, \ldots, M$. Saying that Γ is the attractor of the IFS means that Γ is the unique nonempty compact set satisfying $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E), \quad E \subset \mathbb{R}^{n}$.

Our quadrature rules are based on splitting Γ into sub-components, using the IFS structure.

Figure 1: Vector indices on Cantor Dust.

To describe these sub-components we adopt vector index notation. For $\ell \in \mathbb{N}$ let $I_{\ell}:=\{1, \ldots, M\}^{\ell}$. Then for $E \subset \mathbb{R}^{n}$ let $E_{0}:=E$, and for $\mathbf{m}=$ $\left(m_{1}, \ldots, m_{\ell}\right) \in I_{\ell}$ define $E_{\mathbf{m}}:=s_{\mathbf{m}}(E)$ and $s_{\mathrm{m}}:=s_{m_{1}} \circ \ldots \circ s_{m_{\ell}}$. For an illustration of this notation in the case of the middle-third Cantor dust see Figure 1. We say Γ is hull-disjoint if

$$
\mathcal{R}:=\min _{m \neq m^{\prime}}\left\{\operatorname{dist}\left(\operatorname{Hull}\left(\Gamma_{m}\right), \operatorname{Hull}\left(\Gamma_{m^{\prime}}\right)\right)\right\}>0
$$

A key ingredient is the set of vector indices

$$
\begin{aligned}
& L_{h}(\Gamma):=\left\{\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in \cup_{\ell^{\prime} \in \mathbb{N}} I_{\ell^{\prime}}:\right. \\
& \left.\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h \text { and } \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} .
\end{aligned}
$$

Heuristically, these indices correspond to a partition of Γ, where we have subdivided just enough so that all components have diameter no more than h. This is depicted in Figure 2.

3 The barycentre rule

We define the barycentre rule for double integrals:

$$
\begin{equation*}
Q_{\Gamma, \Gamma^{\prime}}^{h}[f]:=\sum_{\mathbf{m} \in L_{h}(\Gamma)} \sum_{\mathbf{m}^{\prime} \in L_{h}\left(\Gamma^{\prime}\right)} w_{\mathbf{m}} w_{\mathbf{m}^{\prime}}^{\prime} f\left(x_{\mathbf{m}}, x_{\mathbf{m}^{\prime}}^{\prime}\right), \tag{2}
\end{equation*}
$$

Figure 2: Partitioning Koch snowflake by $L_{0.3}(\Gamma)$. Barcentres $x_{\mathbf{m}}$ are represented by \times.
where the weights and nodes are given by $w_{\mathrm{m}}:=$ $\mathcal{H}^{d}\left(\Gamma_{\mathbf{m}}\right)$ and $\quad x_{\mathbf{m}}:=\int_{\Gamma_{\mathbf{m}}} x \mathrm{~d} \mathcal{H}^{d}(x) / \mathcal{H}^{d}\left(\Gamma_{\mathbf{m}}\right)$ for $\mathbf{m} \in L_{h}(\Gamma)$, with analogous definitions for Γ^{\prime}. The weights and nodes can be easily computed in terms of the IFS parameters, see [2, (27-29)]. For the single integral version of (2), see [2, $\S 3.1]$. In all estimates that follow, C denotes a constant which depends only on Γ.

Theorem 1 (Lipschitz integrands) [2, Theorem 3.7] If $L_{0}[f]$ and $L_{1}[f]$ are the Lipschitz constants of f and ∇f respectively in $\operatorname{Hull}(\Gamma) \times$ $\operatorname{Hull}\left(\Gamma^{\prime}\right)$,
$\left|I_{\Gamma, \Gamma^{\prime}}[f]-Q_{\Gamma, \Gamma^{\prime}}^{h}[f]\right| \leq C L_{p}[f] h^{p+1}$ for $p \in\{0,1\}$.
A result for non-diagonal entries of Hausdorff BEM matrices follows immediately:

Corollary 2 (Smooth Galerkin integrals) [2, Proposition 5.2]
If $R:=\operatorname{dist}\left(\operatorname{Hull}(\Gamma), \operatorname{Hull}\left(\Gamma^{\prime}\right)\right)>0$, then

$$
\left|I_{\Gamma, \Gamma^{\prime}}[\Phi]-Q_{\Gamma, \Gamma^{\prime}}^{h}[\Phi]\right| \leq C h^{2} \frac{1+(k R)^{n / 2+1}}{R^{n+1}}
$$

4 Singular integrals of Laplace kernels

In Hausdorff BEM, the diagonal matrix elements correspond to (1) with $\Gamma=\Gamma^{\prime}$. Because $|\Phi(x, y)| \rightarrow \infty$ as $|x-y| \rightarrow 0$, the rule (2) cannot be directly applied to (1) in this case. We will derive a new method for evaluating the singular (Laplace) component of (2), denoted $\Phi_{0}(x, y):=|x-y|^{-1}$. Then, to evaluate (1) with $\Gamma=\Gamma^{\prime}$, we use a singularity subtraction
technique, by considering the Lipschitz continuous function $\Phi_{*}:=\Phi-\Phi_{0}$, and splitting the integral as follows

$$
\begin{equation*}
I_{\Gamma, \Gamma}[\Phi]=I_{\Gamma, \Gamma}\left[\Phi_{0}\right]+I_{\Gamma, \Gamma}\left[\Phi_{*}\right], \tag{3}
\end{equation*}
$$

and evaluating both components separately.
By exploiting the self-similarity of Γ, we can express $I_{\Gamma, \Gamma}\left[\Phi_{0}\right]$ as a linear function of $I_{\Gamma_{m}, \Gamma_{m}}\left[\Phi_{0}\right]$ for $m=1, \ldots, M$, which leads to

$$
\begin{equation*}
I_{\Gamma, \Gamma}\left[\Phi_{0}\right]=\frac{\sum_{m=1}^{M} \sum_{m^{\prime} \neq m}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}\left[\Phi_{0}\right]}{1-\sum_{m=1}^{M} \rho_{m}^{2 d-1}} \tag{4}
\end{equation*}
$$

representing a singular integral as a linear combination of smooth integrals. The smooth integrals of (4) can be approximated using (2); we denote this approximation by $Q_{\Gamma, \Gamma, 0}^{h}$.
Theorem 3 (Singular Laplace-type integrals) [2, Corollary 4.7] If Γ is Hull-disjoint, then
$\left|I_{\Gamma, \Gamma}\left[\Phi_{0}\right]-Q_{\Gamma, \Gamma, 0}^{h}\right| \leq C h^{2} \mathcal{R}^{-3}\left(1-\sum_{m=1}^{M} \rho_{m}^{2 d-1}\right)^{-1}$.

5 Approximating (1)

Noting the decomposition (3), Theorem 3 states that $I_{\Gamma, \Gamma}\left[\Phi_{0}\right]$ can be estimated with $O\left(h^{2}\right)$ error, provided Γ is hull-disjoint.

Since $\Phi_{*} \in C^{0,1}\left(\mathbb{R}^{n}\right) \backslash C^{1,1}\left(\mathbb{R}^{n}\right)$, Theorem 1 suggests $\left|I_{\Gamma, \Gamma}\left[\Phi_{*}\right]-Q_{\Gamma, \Gamma}^{h}\left[\Phi^{*}\right]\right|=O(h)$. With further work it can be shown that this is actually $O\left(h^{2}\right)$, when (i) Γ is hull-disjoint and (ii) $\rho_{1}=\ldots=\rho_{M}$. Hence using (3) we can approximate $I_{\Gamma, \Gamma}[\Phi]$ with $O\left(h^{2}\right)$ accuracy (see $[2, \S 5]$ for details).

Furthermore, numerical experiments [2, §6] suggest $O\left(h^{2}\right)$ convergence for fractals which violate either or both of the conditions (i)-(ii).

References

[1] S. N. Chandler-Wilde, A. Caetano, A. Gibbs, D. P. Hewett and A. Moiola, A Hausdorff-Measure Boundary Element Method for Scattering by Fractal Screens I: Numerical Analysis, in Proceedings of the 15th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Paris, France, 25-29 July 2022.
[2] A. Gibbs, D. P. Hewett and A. Moiola, Numerical quadrature for singular integrals on fractals, arXiv 2112.11793 (2021).

