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Abstract

In a related talk [1], the Boundary Element Method
(BEM) is generalised to the case of scattering by
fractal obstacles. Implementation requires eval-
uating integrals of singular Green’s kernels over
fractal domains, with respect to Hausdorff mea-
sure. This motivated the development of new
quadrature rules, which are discussed here.
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1 Introduction

We will study numerical quadrature rules for the
evaluation of integrals of the form

IΓ,Γ′ [Φ] :=

∫
Γ

∫
Γ′

Φ(x, y)dHd′(y)dHd(x), (1)

where Γ and Γ′ are compact subsets of R2 of
Hausdorff dimension d > 0 and d′ > 0 respec-
tively, Hd and Hd′ are the corresponding Haus-
dorff measures, and Φ(x, y) = eik|x−y|

4π|x−y| is the fun-
damental solution for the Helmholtz equation
with wavenumber k > 0 in R3. (In what follows,
similar results hold for the analogous problem
posed in R2.)

Our motivation for approximating (1) is the
Hausdorff BEM, which is introduced and anal-
ysed in the talk [1]. Such BEMs can model scat-
tering by planar screens with non-integer (frac-
tal) dimension, i.e. d ∈ (1, 2).

2 Attractors of Iterated Function Systems

Now we describe in detail the class of fractal
scatterers that we consider. An iterated func-
tion system (IFS) is a set of 2 ≤ M ∈ N con-
tracting similarities sm(x) = ρmAmx+δm, with
contraction factors ρm ∈ (0, 1), rotation ma-
trices Am ∈ Rn×n and translations δm ∈ Rn,
for m = 1, . . . ,M . Saying that Γ is the attrac-
tor of the IFS means that Γ is the unique non-
empty compact set satisfying Γ = s(Γ), where
s(E) :=

⋃M
m=1 sm(E), E ⊂ Rn.

Our quadrature rules are based on splitting
Γ into sub-components, using the IFS structure.

Figure 1: Vector indices on Cantor Dust.

To describe these sub-components we adopt vec-
tor index notation. For ` ∈ N let I` := {1, . . . ,M}`.
Then for E ⊂ Rn let E0 := E, and for m =
(m1, . . . ,m`) ∈ I` define Em := sm(E) and
sm := sm1 ◦ . . . ◦ sm`

. For an illustration of this
notation in the case of the middle-third Cantor
dust see Figure 1. We say Γ is hull-disjoint if

R := min
m6=m′

{dist(Hull(Γm),Hull(Γm′))} > 0.

A key ingredient is the set of vector indices

Lh(Γ) :=
{
m = (m1, . . . ,m`) ∈ ∪`′∈NI`′ :

diam(Γm) ≤ h and diam(Γ(m1,...,m`−1)) > h
}
.

Heuristically, these indices correspond to a par-
tition of Γ, where we have subdivided just enough
so that all components have diameter no more
than h. This is depicted in Figure 2.

3 The barycentre rule

We define the barycentre rule for double inte-
grals:

QhΓ,Γ′ [f ] :=
∑

m∈Lh(Γ)

∑
m′∈Lh(Γ′)

wmw
′
m′f(xm, x

′
m′),

(2)
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Figure 2: Partitioning Koch snowflake by
L0.3(Γ). Barcentres xm are represented by ×.

where the weights and nodes are given by wm :=
Hd(Γm) and xm :=

∫
Γm

x dHd(x)/Hd(Γm) for
m ∈ Lh(Γ), with analogous definitions for Γ′.
The weights and nodes can be easily computed
in terms of the IFS parameters, see [2, (27-29)].
For the single integral version of (2), see [2,
§3.1]. In all estimates that follow, C denotes
a constant which depends only on Γ.

Theorem 1 (Lipschitz integrands) [2, The-
orem 3.7] If L0[f ] and L1[f ] are the Lipschitz
constants of f and ∇f respectively in Hull(Γ)×
Hull(Γ′),∣∣∣IΓ,Γ′ [f ]−QhΓ,Γ′ [f ]

∣∣∣ ≤ CLp[f ]hp+1 for p ∈ {0, 1}.

A result for non-diagonal entries of Hausdorff
BEM matrices follows immediately:

Corollary 2 (Smooth Galerkin integrals) [2,
Proposition 5.2]
If R := dist(Hull(Γ),Hull(Γ′)) > 0, then∣∣∣IΓ,Γ′ [Φ]−QhΓ,Γ′ [Φ]

∣∣∣ ≤ Ch2 1 + (kR)n/2+1

Rn+1
.

4 Singular integrals of Laplace kernels

In Hausdorff BEM, the diagonal matrix elements
correspond to (1) with Γ = Γ′. Because
|Φ(x, y)| → ∞ as |x − y| → 0, the rule (2)
cannot be directly applied to (1) in this case.
We will derive a new method for evaluating the
singular (Laplace) component of (2), denoted
Φ0(x, y) := |x − y|−1. Then, to evaluate (1)
with Γ = Γ′, we use a singularity subtraction

technique, by considering the Lipschitz contin-
uous function Φ∗ := Φ − Φ0, and splitting the
integral as follows

IΓ,Γ[Φ] = IΓ,Γ[Φ0] + IΓ,Γ[Φ∗], (3)

and evaluating both components separately.
By exploiting the self-similarity of Γ, we can

express IΓ,Γ[Φ0] as a linear function of IΓm,Γm [Φ0]
for m = 1, . . . ,M , which leads to

IΓ,Γ[Φ0] =

∑M
m=1

∑M
m′ 6=m IΓm,Γm′ [Φ0]

1−
∑M

m=1 ρ
2d−1
m

, (4)

representing a singular integral as a linear com-
bination of smooth integrals. The smooth inte-
grals of (4) can be approximated using (2); we
denote this approximation by QhΓ,Γ,0.

Theorem 3 (Singular Laplace-type integrals)
[2, Corollary 4.7] If Γ is Hull-disjoint, then∣∣∣IΓ,Γ[Φ0]−QhΓ,Γ,0

∣∣∣ ≤ Ch2R−3

(
1−

M∑
m=1

ρ2d−1
m

)−1

.

5 Approximating (1)

Noting the decomposition (3), Theorem 3 states
that IΓ,Γ[Φ0] can be estimated with O(h2) error,
provided Γ is hull-disjoint.

Since Φ∗ ∈ C0,1(Rn) \ C1,1(Rn), Theorem
1 suggests |IΓ,Γ[Φ∗] − QhΓ,Γ[Φ∗]| = O(h). With
further work it can be shown that this is actu-
ally O(h2), when (i) Γ is hull-disjoint and (ii)
ρ1 = . . . = ρM . Hence using (3) we can approx-
imate IΓ,Γ[Φ] with O(h2) accuracy (see [2, §5]
for details).

Furthermore, numerical experiments [2, §6]
suggest O(h2) convergence for fractals which vi-
olate either or both of the conditions (i)–(ii).
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