Dr. Andrew Gibbs - UCL
Email address: andrew.gibbs@ucl.ac.uk
Numerical analysis
Asymptotic methods
Highly oscillatory quadrature
Boundary Element Methods
Here is a link to my github page.S.N. Chandler-Wilde, E.A. Spence, A. Gibbs, V. P. Smyshlyaev. High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis, SIAM J. Math. Anal., volume 52, issue 1, pages 845-893 (2020), arxiv copy.
A. Gibbs, S. Langdon and A. Moiola. Numerically stable computation of embedding formulae for scattering by polygons (arxiv preprint, under review).
A. Gibbs, S. Langdon, A. Moiola and S.N. Chandler-Wilde. A high frequency boundary element method for scattering by a class of multiple obstacles, IMA JNA, arxiv copy.
A. Gibbs, D. Hewett, D. Huybrechs, E. Parolin. Fast hybrid numerical-asymptotic boundary element methods for high frequency screen and aperture problems based on least-squares collocation, SN Partial Differ. Equ. Appl., arxiv copy.
J. Bannister, A. Gibbs, D. P. Hewett. Acoustic scattering by impedance screens/cracks with fractal boundary: well-posedness analysis and boundary element approximation., Math. Mod. Meth. Appl. Sci. (M3AS), arxiv copy
A. Gibbs, D. P. Hewett, A. Moiola, Numerical quadrature for singular integrals on fractals Num. Alg. (2022): 1-54, arxiv copy
A. M. Caetano, S. N. Chandler-Wilde, A. Gibbs, D. P. Hewett, A. Moiola, A Hausdorff-measure boundary element method for acoustic scattering by fractal screens (arxiv preprint, under review)
A. Gibbs, D. P. Hewett, B. Major, Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets, (arxiv preprint, under review)
A. Gibbs, D. Huybrechs and D. P. Hewett. PathFinder: a toolbox for oscillatory quadrature, Proceedings of Waves 2019, Vieanna, August 2019.
A. Gibbs, D. Huybrechs. A new toolbox for highly oscillatory and singular integrals, Proceedings of IABEM 2018, Paris, June 2018.
A. Gibbs, S. Langdon and A. Moiola. Stable implementation of embedding formulae for computation of far field patterns, Proceedings of Waves 2017, Minnesota, May 2017.
A. Gibbs, S. N. Chandler-Wilde, S. Langdon and A. Moiola. Hybrid numerical asymptotic approximation for multiple scattering problems, Proceedings of Waves 2015, Karlsruhe, Germany, July 2015.