

01
02
03

04 **18. Non-human genetics, agricultural origins
05 and historical linguistics in South Asia**

06
07
08
09
10

11 DORIAN Q FULLER

12
13
14
15
16
17

*Institute of Archaeology
University College London
31–34 Gordon Square
London, WC1H 0PY
England
d.fuller@ucl.ac.uk*

18
19
20
21
22

23 **Introduction**

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

In the histories of human populations, the origins of agriculture marks a major demographic watershed. In most cases, hunter-gatherer societies were mobile, or at least mobility was used strategically to cope with seasonal shortages in the surrounding environments. Agriculture made an important change from this situation because, even though it relies on a seasonal cycle of planting, growing and harvesting, it provides a storable surplus that can sustain populations through lean seasons. Other important changes usually associated with the beginnings of agriculture are those brought about by a reliable source of carbohydrate-rich staples such as cereals (or in some tropical regions, tubers). Starchy staples such as cereals, which can be cooked into soft gruel (or porridge), make a useful weaning food for infants. This allows babies to be weaned off mother's milk at an earlier age, and therefore agriculture increases the potential rate of population

growth (Cohen, 1991). A related side effect of stored starchy agricultural produce is the increase in starch and sugars in the diet that tends to cause increased dental cavities, an effect usually detectable in the skeletal remains of early agricultural societies, in contrast to those of earlier hunter-gatherer societies (Larsen, 1997). Another side effect of agriculture often visible in skeletal remains is increased malnutrition brought about by the vitamin deficiencies of starch-rich diets, but poor in vegetable diversity, of many early agriculturalists. Thus, although agriculture was fundamental to later developments of civilizations, its beginnings may not have been advantageous to populations when measured in terms of health. This begs the question as to why hunter-gatherers who were successful in most environments ever resorted to cultivation and agriculture. But once agriculture was adopted those groups who employed it had potentially vast demographic advantages, in terms of rate of population growth, over their hunter-gatherer contemporaries.

01 It is this demographic advantage of farming
 02 which is the fundamental premise of models
 03 of prehistory in which significant migration
 04 is supposed to have occurred in the Neolithic,
 05 with genetic consequences and language
 06 replacement. The basic extension of the
 07 demographic advantage to patterns of
 08 geographical spreads is the 'wave of advance'
 09 model of Ammerman and Cavalli-Sforza
 10 (1971), which was then related to the
 11 dispersal of major language families (or
 12 macro-families) by Renfrew (1987, 1996,
 13 2000) and Bellwood (1996, 2001, 2005,
 14 Diamond and Bellwood, 2003). In the case
 15 of South Asia this premise has been used to
 16 propose a Neolithic influx of Indo-European
 17 speakers from southwest Asia into India
 18 (Renfrew, 1987; Bellwood, 2005), as well as
 19 the ancestors of the Dravidian speakers of
 20 South India from the same general direction,
 21 on the assumption of an Elamo-Dravidian
 22 macro-family (Renfrew, 1987; Bellwood,
 23 1996, 2005:210–216). In addition, the Munda
 24 languages spoken by hill tribes in Eastern and
 25 parts of central India, which are clearly part of
 26 the larger Austro-Asiatic family in Southeast
 27 Asia, have been suggested to represent
 28 an agricultural Neolithic influx from the
 29 Northeast (Bellwood 1996, 2005:210–216;
 30 Glover and Higham, 1996:419; Higham,
 31 2003). These models have offered alternative
 32 populational prehistories, especially in terms
 33 of dating, to conventional views in which all
 34 major populations coming into South Asia
 35 came from the northwest: first the Paleolithic
 36 ancestors of the Munda, then the agricultural
 37 ancestors of the Dravidians and finally the
 38 chariot- and horse-riding pastoralists who
 39 brought Indo-European (e.g., Fuchs, 1973;
 40 Gadgil et al., 1998; Kumar and Mohan
 41 Reddy, 2003, and for more recent linguistic
 42 and archaeological data see, e.g., Parpola,
 43 1988; Witzel, 2005). The agriculture/language
 44 dispersal hypothesis also provides a clear
 45 explanatory framework: that of demographic
 46 growth of farmers with a long-term advantage

over hunter-gatherers. Despite the potential attraction of a demographic prime-mover for simplifying patterns in prehistory, like all hypotheses, it requires testing against the empirical evidence for human prehistory. As evidence for human prehistory, we can turn to archaeology, historical linguistics and physical anthropology (including human genetics), as all of these sources preserve to varying degrees of precision information about past population histories (Rouse, 1986). The present contribution will attempt such an assessment of the role of agricultural dispersals in structuring the major cultural divisions and linguistic geography of South Asia, by assessing some of the empirical details available from archaeology and historical linguistics. In developing this subject, I will expand upon and update a recent effort to correlate archaeology (especially archaeobotany) and linguistics (Fuller, 2003a). One issue which requires further consideration, but will not be pursued in the present chapter, is the impact of an endogamous, cross-cousin marriage system, which can be inferred for early Dravidian speakers but not other language groups, on genetic patterns and demography.

This chapter will move from genetic and biogeographic evidence of non-human species, through archaeology, towards a revised tabulation of linguistic data with implications for South Asian prehistory. While the picture of human genetics and physical anthropology are best dealt with by others (e.g., see chapters by Endicott et al., Stock et al., Lukacs, this volume), I will start by looking at genetics of selected non-human species, in particular those key companion species of farmers, crops and livestock. The genetics, and, at a less precise level, the general phylogenetic inferences and biogeography of crops and livestock, encodes information about histories of movement, as people have acted as important agents

01 in the dispersal of these species. While
 02 this dispersal may occur through exchanges
 03 between humans groups, and not necessarily
 04 through human population migration, the
 05 patterns of origins and dispersals in crops
 06 and livestock provides clear geographical
 07 and chronological parameters which must
 08 be accounted for in any model of human
 09 prehistory. Once we have set the scene, in
 10 terms of the non-human players and elements,
 11 I will turn to the archaeological evidence as it
 12 stands today. Archaeology provides the most
 13 clear, empirical and datable evidence for past
 14 economies and cultural practices, although
 15 it remains limited by gaps in the evidence.
 16 The patchiness of the archaeological record
 17 is particularly stark for the earliest agriculturalists
 18 in most parts of South Asia and
 19 their hunter-gatherer ancestors. Nevertheless,
 20 it is becoming increasingly clear that when
 21 farming groups began to settle permanently
 22 in villages, they were already agricultural in
 23 regionally distinctive ways, with at least three
 24 plausible indigenous South Asian foci of plant
 25 domestication (Fuller, 2003a, 2003b), plus an
 26 important northwestern agricultural tradition
 27 with its roots in Southwest Asia. I will then
 28 attempt to match this archaeological picture
 29 with that available from historical linguistics,
 30 in which increasing progress has been made
 31 at characterising not just cognates across
 32 existing, related languages, such as Dravidian
 33 languages of South India, but also in terms
 34 of inferring the past existence of now extinct
 35 substrate languages that have left their mark
 36 through loan words, especially relating to the
 37 Indian flora and agriculture.

38

39 **Where and When: Biogeography 40 and Genetics**

41
 42 Starting from the basics, we must ask what
 43 species served as the basis for early agricultural
 44 systems and where is it likely that hunter-
 45 gatherers regularly engaged and selected such
 46 plants as food sources. Biogeography and

biological systematics provide essential information about how species known today in domesticated form developed. Through systematics, from traditional taxonomy to the increasingly powerful tools of molecular genetics, the closest free-growing or free-ranging relatives of crops and livestock can be identified, i.e. the wild progenitors. Comparisons between these provide a basis for identifying wild progenitors and how the domesticated forms differ from their wild relatives and may thus be identified archaeologically. Once identified, the ecology and geographical distribution of wild progenitors in the present day provides essential evidence from which to infer where these species would have been available to past human groups, and thus where they could have been first brought under human control. This information about modern distribution does, however, need to be considered in relation to past climate and environmental changes. In the case of southwest Asia there are a number of crops which occur wild in the transitional zone between the Mediterranean oak woodlands, and other trees and open park woodland and the transition to grassland steppe, in a zone that averages 400–600 mm of annual rainfall, especially in the Levant, Anatolia and the parts of the Taurus Mountains (Moore et al., 2000:58; Zohary and Hopf, 2000). These are the founder crops of agriculture in the fertile crescent, most of which were also of importance to the agriculture of South Asia, especially in the northwest and the greater Indus region. The areas in which they were potentially domesticated have been inferred by combining their modern geography with information about paleoecology through the late Pleistocene and early Holocene (Hillman, 1996; Hillman, 2000:327–339; Willcox, 2005). The wild progenitors and ecologies of the most important seed crops of African origin were outlined by Harlan (1971, 1992), with only minimal refinements through more recent

work (see Fuller 2003c; Neumann, 2004). The equivalent level of information is not available for crops originating in other regions, and for some South and Southeast Asian species we are still in the early stages of documenting the distribution and environmental tolerance of wild progenitors, let alone trying infer from paleoecological sources their distribution immediately prior to domestication. Nevertheless, a first attempt to synthesize information from agronomic and floristic sources for grain crops of Indian origins has been published (Fuller, 2002:292–296, for some vegetables and fruits, see Fuller and Madella, 2001, although some revision is now possible, see below). For crops originating in China and Southeast Asia, Simoons (1991) provides a useful overview.

Despite there being much to learn about the wild progenitors of many South Asian crops, there is much that is already known which has not been incorporated in the reasoning of many archaeological syntheses. This is notably the case in language macro-dispersal models of the last few years (e.g., Diamond and Bellwood, 2003; Bellwood, 2005), which are contradicted by clear indications for multiple domestications in key subsistence taxa of South and East Asia as well as many indications of indigenous Indian domestications. In the proposals of Bellwood (2005), agriculture came to India from the outside, primarily by human dispersals. This is not a new conclusion, as the earlier attempt by MacNeish (1992) to synthesize early agriculture worldwide suggested essentially the same thing for South Asia. Similarly, Harlan (1975, 1995) viewed South Asian agriculture as a derivative mix of Southwest and Southeast Asian origins. Agriculture is argued to derive from the well-documented early domestications in the Near Eastern ‘fertile crescent’ brought to South Asia by the ancestors of both Dravidian speakers and Indo-European speakers. Meanwhile, rice-focused agriculture is assumed to derive

from early domestication in the Yangzi river basin of China and spread to India from the northeast together with ancestors of the Munda language family (Glover and Higham, 1996; Higham, 2003; Bellwood, 2005). While I will return to the language issues later, I would like to start by examining evidence that indicates that species shared between South and East Asia suggest a recurrent pattern of multiple origins, with separate East Asian and South Asian domestications.

On the Origins and Spread of Rice

Rice (*Oryza sativa*) is one of the most utilized crops of the world today, but the complexities of its early history remains largely unraveled. Rice is now cultivated in a wide range of habitats from temperate northern China and Korea to the eutropical areas of Indonesia. It is grown as broadcast sown crops on hillsides, often as part of extensive slash-and-burn systems, and it is grown in highly labor intensive, flooded ‘paddy’ lands in which seedlings grown in one paddy are dug up and individually replanted into another field. The assumption, which is widespread in the literature, that all Asian rice derived from a single domestication, somewhere in the wild rice belt from eastern India across northern Indo-China or South China (e.g., Chang, 1995, 2000), has been based more on the presumption of single origins for crops in general, coupled with problematic archaeological inferences. Starting with the assumption that rice was domesticated once, there have been some rather extreme attempts to relate East Asian and South Asian archaeology, such as via comparisons between Neolithic China (sixth through fourth millennium BC) and Neolithic Kashmir (2500–1000 BC) (e.g., Van Driem, 1998), even though the latter had agriculture based on Near Eastern crops (wheat, barley, lentils and peas) and not rice! More recently, Kharakwal et al.’s (2004) attempt to link cord-impressed

01 ceramics with rice agriculture suggests hyper-
 02 diffusionism based on superficial similarities in
 03 ceramics, including the Jomon of Japan (which
 04 is non-agricultural), parts of Neolithic China
 05 of the early to mid-Holocene, and much later
 06 4th to 2nd millennium BC material from the
 07 Ganges. All such hyperdiffusionist studies are
 08 flawed, not only because they stretch archaeo-
 09 logical logic by drawing comparisons across
 10 such vast areas and time-spans, but most impor-
 11 tantly because they fail to take into account
 12 what we already know from botany about
 13 rice origins. Historical linguists have been
 14 mistaken in trying to make sense of a vast
 15 array of potential rice words on the assumption
 16 of a single centre of rice origin from which
 17 such words ought to originate (e.g., Mahdi
 18 1998; Pejros and Snirelman, 1998; Witzel,
 19 1999:30–33). Less explicitly reasoned attempts
 20 to link all of South and East Asian rice into
 21 a single story, are the grand narratives linking
 22 agriculture and language spread, in which the
 23 spread of rice from the middle Yangzi to India
 24 with demographically expanding and migrating
 25 farmers is argued largely on the basis of
 26 model assumptions rather than archaeological
 27 evidence (e.g., Bellwood, 1996, 2005; Higham
 28 and Glover, 1996). Any attempt to make a single
 29 narrative about Asian rice is already falsified
 30 by phylogenetic evidence from rice itself.

31 Asian rice, despite being lumped under
 32 the species name, *Oryza sativa* (a Linnaean
 33 convention in use since the 1750s), is
 34 composed of two distinct phylogenetic
 35 species, *indica* and *japonica*. This has long
 36 been suggested by plant breeding research,
 37 in which hybridization between these two
 38 cultivars is found to be difficult and imperfect,
 39 with the majority of crosses between *indica*
 40 and *japonica* cultivars being wholly or
 41 partly sterile (Wan and Ikehashi, 1997).
 42 As a result, the botanical literature has
 43 had a persistent debate between hypotheses
 44 of rapid divergence after a single origin
 45 or two domestications (Oka, 1988; Chang,
 46 1989, 1995; White, 1989; Thompson, 1996),

although it is the single origin that has tended
 to be assumed in archaeological syntheses
 (e.g., Bellwood, 1996, 2005; Glover and
 Higham, 1996; Higham, 1998; Bellwood and
 Diamond, 2003), perhaps largely due to
 the influence of T. T. Chang (1989, 1995,
 2000). There now is substantial evidence
 for genetic distinctions between *indica* and
japonica from a range of data (Sato et al.,
 1990; Sano and Morishima, 1992; Chen et al.,
 1993a, 1993b; Sato, 2002; Cheng et al.,
 2003). Most significant is genetic evidence
 from the chloroplast (a plant organelle
 like the mitochondria inherited maternally)
 and nuclear DNA variants called SINEs.
 A sequence deletion in the chloroplast DNA
 of *indica* cultivars links them with wild
 annual “*O. rufipogon*” (i.e., *O. nivara* in
 the taxonomy used here) (Chen et al.,
 1993a, 1993b; Cheng et al., 2003; for
 current rice taxonomy see Vaughan, 1989,
 1994). Meanwhile, there are some seven
 SINEs that separate the *nivara-indica* group
 from the *rufipogon-japonica* (Cheng et al.,
 2003). Figure 1 shows the phylogenetic model
 produced by Cheng et al. (2003), in which
 the *japonica* cultivars form a very tight group
 in relation to the dispersed groupings of wild
rufipogon types. By contrast, the grouping
 of *indica* is looser and more interspersed
 with wild *nivara*. This contrast might even
 suggest that *indica* is composed of more than
 one domestication event from wild *nivara*
 populations. On the basis of the modern
 geography of wild forms and cultivars at
 least one of these *indica* domestications is
 likely to have occurred in northern or eastern
 South Asia (Figure 2), while the *japonica*
 domestication can be placed in Southern
 China, probably the Yangzi basin.

The available archaeological evidence also
 suggests two distinct centres of early rice
 cultivation. In China, despite continuing
 controversies about the antiquity of rice use,
 cultivation, and domestication, it is widely
 accepted that rice cultivation was underway in

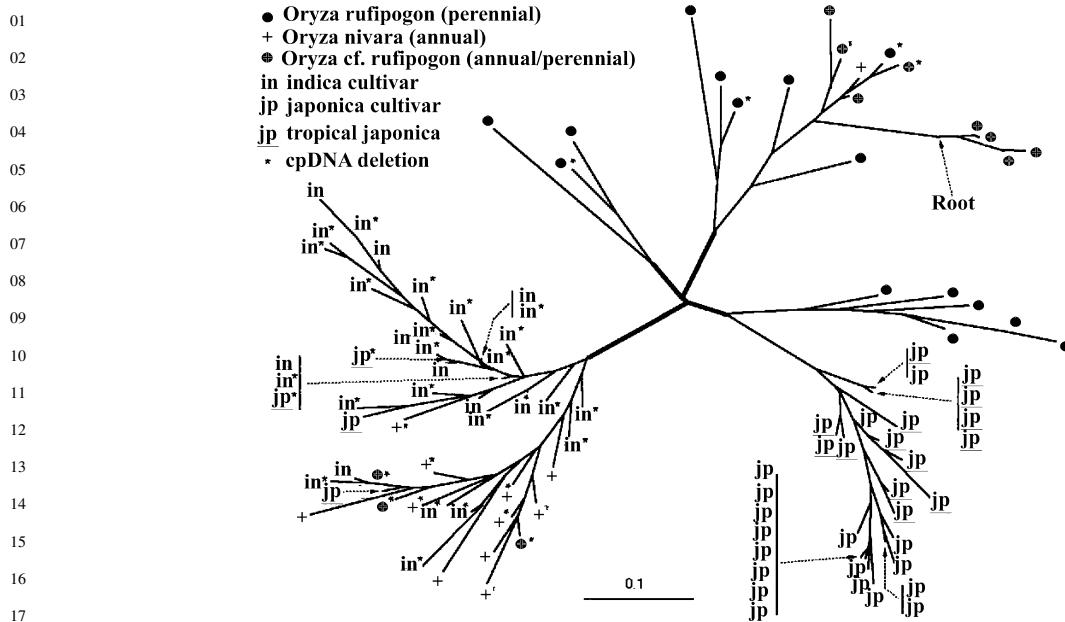


Figure 1. A phylogenetic representation of modern rice cultivars and wild populations based on SINE genetics (after Cheng et al., 2003; taxonomy revised to follow Vaughan, 1994). This shows the clearly distinct lineages of japonica (including most tropical forms, sometimes called javanica) and indica cultivars, which are interspersed with the annual wild populations (Oryza nivara)

the Middle Yangzi, and adjacent South China by the sixth millennium BC (e.g., Crawford and Shen, 1998; Lu, 1999, 2006; Cohen, 2002; Yan, 2002; Crawford, 2006). While rice spreads down the Yangzi river and northwards into parts of central China, and probably the

Shandong peninsula during this early period, archaeological evidence from further north, south or the upper Yangzi post-dates 3000 BC (see Figure 2). In India, rice cultivation is quite widespread by ca. 2500 BC from the eastern Harappan zone in the upper Ganges

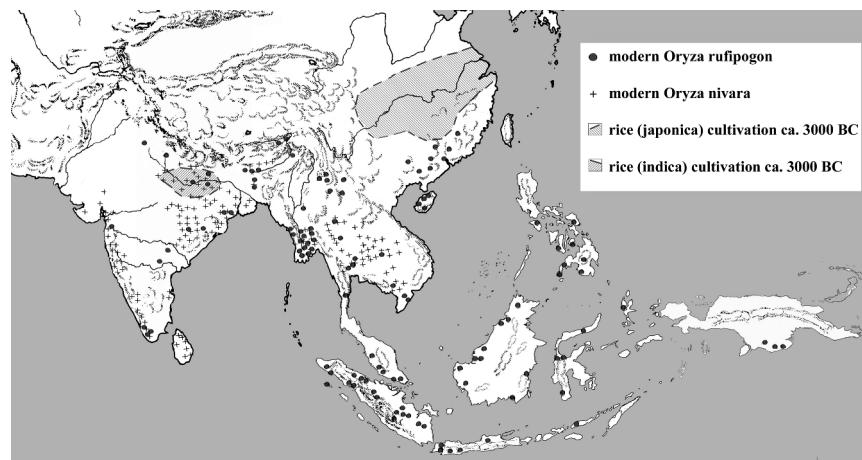


Figure 2. A map of wild rice distribution and likely zones of domestication. The distribution of the two wild progenitors of rice is plotted after Vaughan (1994). Some of these populations may be 'feral', e.g., along the Malabar coast. The extent of rice cultivation ca. 3000 BC indicated, based on archaeological evidence (for China, after Yan, 2002; for India, based on Fuller, 2002, with updated evidence discussed in text)

01 basin (e.g., at Kunal: Saraswat and Pokharia,
 02 2003) and the Swat valley in northern Pakistan
 03 (Costantini, 1987) through the middle Ganges
 04 (see Fuller, 2002, 2003c; Saraswat, 2004a,
 05 2005). A few sites with evidence for rice
 06 impressions in pottery (not necessarily domes-
 07 ticated) date back to the fourth millennium
 08 BC (Kunjhun II and Chopanimando), while
 09 recent excavations at Lahuradewa have been
 10 suggested to put rice cultivation back to as
 11 early as ca. 7000 BC, based on an AMS on
 12 a piece of a charred mass of rice (Tewari
 13 et al., 2003, 2005; Saraswat, 2004c, 2005; I.
 14 Singh, 2005). It must be cautioned, however,
 15 that criteria for recognizing domesticated rice
 16 as opposed to wild gathered rice remains
 17 weak and unsubstantiated, and the presence
 18 of cultivation practices is unclear. The sample
 19 size is very small, with less than a dozen
 20 grains recovered from the first season of
 21 work. While further research is needed, the
 22 recent evidence from Lahuradewa indicates at
 23 the very least that foragers were exploiting
 24 (wild) rice in the Ganges plain from ca.
 25 7000 BC and perhaps already producing some
 26 ceramics at this date (and undoubtedly by
 27 the Fourth Millennium BC) (cf. Saraswat,
 28 2005; I. Singh, 2005; Tewari et al., 2005).
 29 Sometime after this cultivation began and
 30 selection for domesticated rice, which may
 31 have taken one or two millennia, had taken
 32 place by 3000-2500 BC (see below, 'The
 33 Ganges Neolithic'). It is after this time when
 34 rice had spread towards the northwest in the
 35 first half of the third millennium BC, indicated
 36 by finds at Early Harappan Kunal and at
 37 Ghaleghay (see Figure 2). Whether early
 38 rice cultivation in Eastern India (e.g., Orissa)
 39 should be seen as dispersal from this same
 40 centre or a separate process, perhaps rather
 41 later, requires further archaeobotanical inves-
 42 tigation (see below, 'The Eastern Neolithic').

East and South Again: Water Buffalo and Chicken

One of the major animal domesticates of Asia is the water buffalo. Its association with wet rice agriculture in China and Southeast Asia is well-known. Biological and archaeological evidence, however, suggest separate origins, which are unlikely to be tied directly to the centres of rice origins. Traditional taxonomy distinguishes between the swamp and river types of water buffalo, with the latter being prominent in the more semi-arid environments of South Asia and the former from the wetter lowlands of East Asia (Grove, 1985; Hoffpauir, 2000). Pleistocene or early Holocene fossil evidences include Pakistan and north-central China, as well as presumably most of the South and Southeast Asian mainland were in the wild buffalo range (see Figure 3). Traditional taxonomy suggested that distinctive swamp and river morphotypes might be distinguished, possibly with separate domestications (Zeuner, 1963). More recently mitochondrial DNA sequence data suggests at least two distinct clusters of phylogenetic diversity, suggesting two separate geographical sub-samples of the wild genetic diversity (Lau et al., 1998; Bruford et al., 2003:905). Based on modern distributions, this points again towards South Asia and East Asia. Archaeologically the challenge is to use bone evidence to distinguish wild from domesticated populations. Despite claims in the literature for a domestication in the Lower Yangzi (e.g., Chang, 1986; Bellwood, 2005), this has been based thus far on the assumption that finds of buffalo are necessarily domesticated, rather than on any morphometric data. Recently the study of water buffalo from the site of Kuahuqiao (ca. 6000-5400 BC) suggests no clear size reduction in relation to contemporary or early wild populations, and kill-off profiles are consistent with hunting, rather than specialized management (Liu and Chen, 2004). In China the first indication

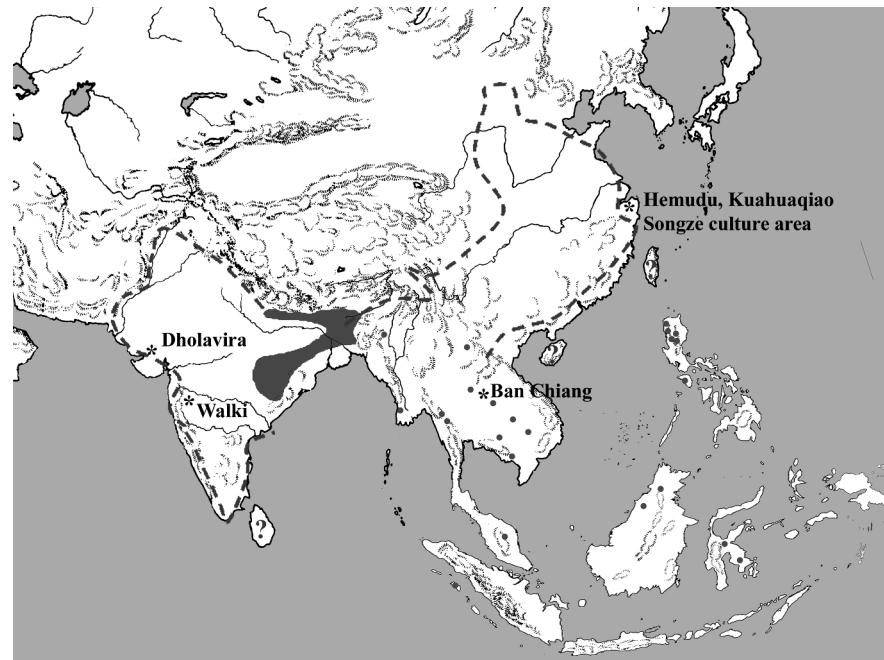


Figure 3. A map of probable Holocene distribution of wild water buffaloes, modern refugia of wild populations and important archaeological sites of buffalo remains. Modern wild distribution shown as grey areas and grey dots, while Early Holocene distribution based on Late Pleistocene/Early Holocene fossil evidence indicated by dash line (after Hoffpauir, 2000). Question marks indicate islands where past presence of wild populations is uncertain. Note that some island populations could represent feral escapes from domestication. Selected archaeological sites, discussed in text, are indicated

for domesticated water buffalo is indirect and artifactual. The presence of large stone plough tips from the Songze Neolithic culture of the Lower Yangzi area occur for the first time by ca. 3500 BC (Shanghai Cultural Relics Protection Committee, 1962:465). These tools imply the use of animal traction, of which the water buffalo is the only indigenous candidate, and the traditional source of power. Assuming that western (or South Asian) cattle had not yet been introduced to China this date provides a minimum age for domestication of water buffalo in the Lower Yangzi. When water buffalo came into use, perhaps by dispersal, in Southeast Asia remains unclear. Water buffalo bones at Ban Chiang in Thailand date back to 1600 BC, although it is not clear whether these represent domestic animals (cf. Bellwood, 1997; Higham and Thosarat, 1998).

In South Asia by contrast, bone evidence comes from the Harappan site of Dholavira by ca. 2500 BC. Here smaller sized animals are present and make up a substantial proportion of the animal bone assemblage and present kill-off patterns that could indicate management (Patel, 1997; Patel and Meadow, 1998; Meadow and Patel, 2003). Water buffalo from Walki on the northern Peninsula from the mid-Second millennium BC have been argued to be domesticated (Joglekar, 1993).

The situation with chickens is similarly problematic in terms of determining domestic status and geographical origins (Blench and MacDonald, 2000). Wild *Gallus* sp. are well-known in South Asia, such as *G. sonneratii* in the peninsula, while the wild progenitors of domestic chickens are distributed across north and northeast India through mainland southeast Asia and Southern China.

In addition, there are several other gallineous birds native to South Asia, and clear comparative criteria for determining these are needed. If we give reported identifications the benefit of the doubt, then, in China, the widespread occurrence of *Gallus*-type bones by the fifth millennium BC would seem to argue for husbandry/domestication at the northern margin of the wild distribution in central China (West and Zhou, 1988; Blench and MacDonald, 2000). If we take a similar view of the numerous *Gallus* reports from South Asia, which are by and large restricted to agricultural periods (see Fuller, 2003a: Table 4), we can suggest the pattern of chicken dispersal. In western regions (Gujarat and the Indus Valley), where the wild progenitor is absent today (although this need not have been in the case in prehistory), several finds point to chicken-keeping by the Mature Harappan phase. Similarly, most early finds from north India also come from the second half of the third millennium BC. Amongst these are the quantities of 'chicken' bones from Damdama (Thomas et al., 1995a). This site is culturally Mesolithic in the sense of lacking pottery, but clearly incorporates material dating to the second half of the third millennium BC, including domesticated cereals (see discussion, below), but with an apparently wholly wild fauna (Chattopadyaya, 1996, 2002). This might suggest a particular cultural context in which chickens came to be managed in Northern India.

Thus chickens, water buffaloes and rice show essentially the same pattern, that of likely East and South Asian origins. While it is still possible, even likely, that varieties of these domesticates were introduced to South Asia from the northeast, these would only have been new forms that added to diversity already established in South Asia on the basis of indigenous domestication. Thus there is little basis to attribute agricultural origins in parts of India to demographic influx from the northeast, but we should investigate

independent processes in India that paralleled those in China.

In the following section I will begin by addressing the other conventional source for diffusionist models of South Asian prehistory, population entry via the northwest. In this case archaeological, and archaeobotanical, evidence, can be considered. While domesticates of Southwest Asian origin are clearly important in South Asian agriculture, a significant early importance in subsistence is only found in northwestern South Asia. Meanwhile evidence for these Southwest Asian domesticates is limited or absent from the earliest food production in at least three parts of the subcontinent implying that local sources of food production were already established.

Indian Agricultural Traditions: Five Local Centres

In outlining the archaeology of early agricultural traditions in South Asia, I will simplify this into five key zones (Figure 4, building on Fuller, 2002, 2003b). First there is the northwest, including the greater Indus valley and its hilly flanks to the west and north. In these regions summer monsoon rains are limited or unreliable and much cultivation depends either on the limited regular winter rains or else river water, which rises in the spring and summer as Himalayan snow melts (Leshnik, 1973; Fuller and Madella, 2001). Second, there is the middle Ganges zone, an area with the benefits of both significant monsoon rains and numerous perennial river systems that are fed by the monsoons. This area incorporates significant cultural diversity in the archaeological record. Thirdly, it may be necessary to consider Neolithic traditions in Eastern India (Orissa and Jarkhand) as distinct from the Gangetic Neolithic, although the Neolithic there is still poorly documented and could relate to the Gangetic pattern (cf. Fuller, 2003a; Harvey et al., 2005). Fourthly, there is Western India,

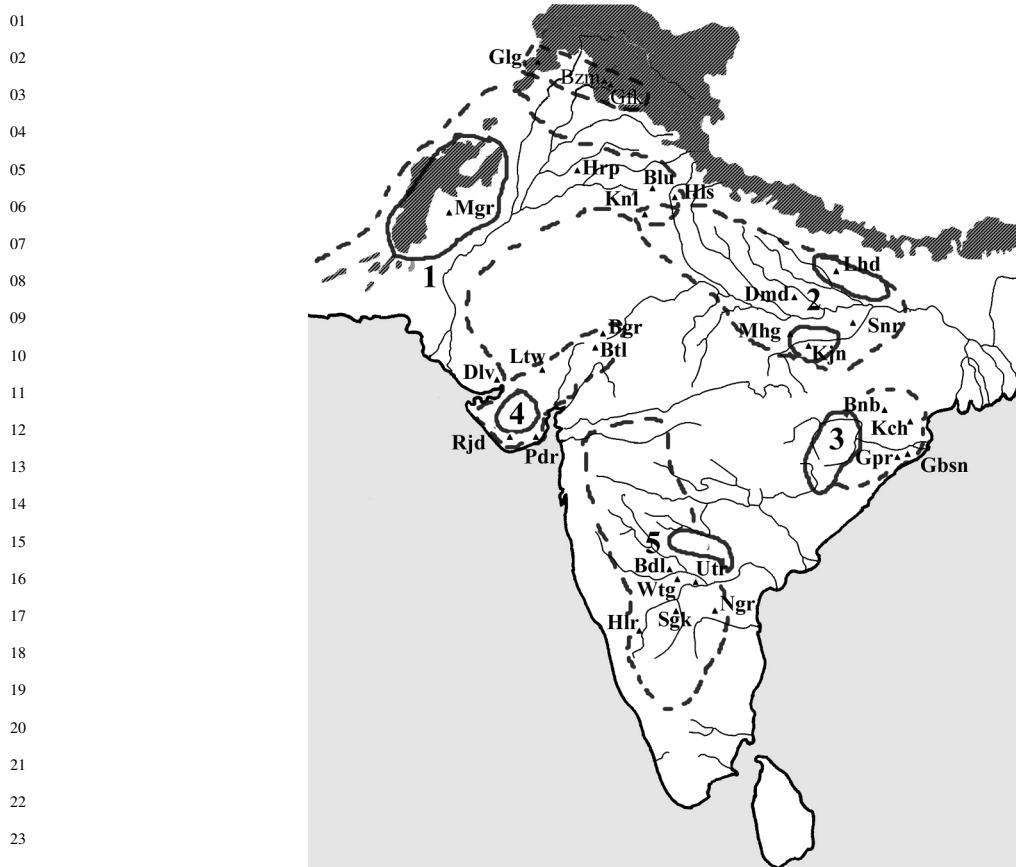


Figure 4. The major independent Neolithic zones of South Asia, with selected archaeological sites. For each zones the solid grey outline indicates best guess region(s) for indigenous domestication processes and/or earliest adoption of agriculture. The dashed lines indicates the expanded region of related/derivative traditions of agriculture; selected sites plotted. 1. The northwestern zone, with the disjunct area of the Northern Neolithic shown: Mgr. Mehrgarh; Glg. Ghaleghay; Bzm. Burzahom; Gfk. Gufkral; 2. The middle Ganges zone with two possible rice domestication areas: Dmd. Damadama; Lhd. Lahuradewa; Mhg. Mahagara; Kjn. Kunjhun; Snr. Senuwar; 3. Eastern India/Orissan zone: Bnb. Banabasa; Kch. Kuchai; Gpr, Gopalpur; Gbsn. Golabai Sasan; 4. Gujarat and southern Aravalli zone: Ltw. Loteshwar; Rjd. Rojdi; Pdr. Padri; Btl. Balathal; Bgr. Bagor; 5. Southern Indian zone: Bdl. Budihal; Wtg. Watgal; Utr. Utnur; Sgk. Sanganakallu and Hiregudda; Hlr. Hallur; Ngr. Nagarajupalle

mainly evidence from Gujarat, especially the Saurashtra peninsula but possibly also parts of Southeast Rajasthan and the area around Mount Abu. This region also is favoured by monsoons and represents the ecological transition from the dry Thar desert into the semi-arid monsoon tropics that support a mosaic of savannahs and deciduous woodlands. Fifthly, there is the Southern Neolithic zone

in the semi-arid peninsular interior which has received increasing attention as a region of domestication of monsoon-adapted pulses and millets in the later middle Holocene (Fuller et al., 2001, 2004; Fuller and Korisettar, 2004; Asouti et al., 2005).

The Northwest and the Indus

In northwestern South Asia, the dominant crops from the time of earliest evidence

01 derived from the Southwest Asian Neolithic
 02 Founder crops (Zohary, 1996; Zohary and
 03 Hopf, 2000). These crops, especially wheats
 04 and barley, but also lentils, peas, chickpeas,
 05 grasspea, flax and safflower, can now be
 06 placed in the Levantine zone and southeastern
 07 Anatolia. Cultivation of some of the cereals
 08 has now been postulated for the Late Pleis-
 09 tocene, after ca. 11,000 BC, while domes-
 10 ticates are clearly widespread in the region
 11 by the beginning of the Pre-Pottery Neolithic
 12 B (ca. 8800 BC) (Harris, 1998a; Willcox,
 13 1999, 2002; Garrard, 2000; Moore et al.,
 14 2000; Hillman et al., 2001; Colledge and
 15 Conolly, 2002; Charles, 2006). Representa-
 16 tives of this crop package had spread to
 17 Central Asia by ca. 6000 BC, the time of
 18 the Djeitun Neolithic (Harris, 1998b) and to
 19 western Pakistan by the time of Neolithic
 20 Mehrgarh. The second ceramic phase at
 21 Mehrgarh begins ca. 6000 BC, as recent strati-
 22 graphic reassessment indicates (Jarrige et al.,
 23 2006). The earlier aceramic period at the
 24 site is estimated to have begun by ca. 7000
 25 BC (Jarrige, 1987; Meadow, 1993; Possehl,
 26 1999; Jarrige et al., 2006). Despite some
 27 arguments in favor of cereal domestication
 28 in Pakistan (e.g., Possehl, 1999), the lack of
 29 wild progenitors (for wheats, all the pulses,
 30 flax and safflower) and the late available
 31 dates by comparison to Southwest Asia, points
 32 towards the spread of crops, and this could
 33 have involved the spread of farmers, although
 34 diffusion of just the crops is possible too. This
 35 Southwest Asian agricultural package was
 36 well-established and widespread in the Indus
 37 region by the time of Harappan urbanism in
 38 the Third Millennium BC (Meadow, 1996,
 39 1998; Fuller and Madella, 2001), although it
 40 is not yet clear whether all of the crops which
 41 were present by then had arrived already by
 42 the Neolithic.

43 While the staple crops were all intro-
 44 duced, livestock and other crops indicate
 45 a number local domestications. The best
 46 documented of these is the domestication

of zebu cattle inferred from metric changes
 in bones through the Mehrgarh sequence as
 well as distinctive humped cattle figurines
 (Meadow, 1984, 1993). Phylogenetic evidence
 from DNA is also clear in indicating a
 separate domestication (or two) of humped
 zebu cattle from Near Eastern (and African)
 taurine cattle (MacHugh et al., 1997; Bradley
 et al., 1998; Bruford et al., 2003; Kumar
 et al., 2003; Magee et al., this volume).
 Goats appear domesticated from the earliest
 occupation at Mehrgarh, but recent genetics
 suggests one or two domestications of goats
 additional that of the Near East (probably
 Iran) (Luikart et al., 2001; Bruford et al.,
 2003:905). Genetic evidence for sheep is
 similar, with a plausible domestication in
 Central Asia or Baluchistan (Hiendleder
 et al., 2002; Bruford et al., 2003:905). Bone
 evidence from Mehrgarh could indicate a
 sheep domestication process in this region
 (Meadow, 1984, 1993). In addition the fibre
 crop cotton appears at Mehrgarh during the
 Neolithic, perhaps by 5000 BC, and is a
 likely domesticate of this region (Costantini
 and Biasini, 1985; Fuller, 2002; Moulherat
 et al., 2002). The native cotton, *Gossypium*
arboreum, is a woody shrub and as such was
 likely to have been cultivated in perennial
 orchards like fruits. Mehrgarh also provides
 evidence for grapes and jujube that might
 have been cultivated or managed for fruit.
 The status of the large true date seeds
 from Mehrgarh is problematic as they are
 uncharred and undated, but at the Harappan
 site of Miri Qalat in Makran wild type date
 stones (probably *Phoenix sylvestris*) occur
 confirming date consumption (and probably
 cultivation) in this region (Tengberg, 1999),
 while true dates (*Phoenix dactylifera*) were
 certainly present in Iran (Tengberg, 2005).
 Sesame is also domesticated in this region
 although the earliest finds are from the Mature
 Harappan period (Fuller, 2003d; Bedigian,
 2004). Another important domesticate of the
 Indus region is the water buffalo, which has

01 been well-documented as a domesticate at
02 the Harappan city of Dholavira in the great
03 Rann of Kutch, culturally and climatically an
04 outlier of the Sindh region (Patel and Meadow,
05 2003).

06 This Harappan agricultural system, with
07 a large component derivative from further
08 west, was constrained by a major climatic
09 frontier from spreading further east. The
10 greater Indus region and the Indo-Iranian
11 Borderlands lack reliable monsoon rainfall,
12 whereas in the eastern zones of the Harappan
13 civilization (such as eastern and northern
14 Punjab and Haryana), monsoon rains are
15 consistently more reliable. It is such a zone
16 where we would expect reliance on rainfed
17 summer crops to have been important, and
18 indeed Early Harappan and Mature Harappan
19 archaeobotanical evidence from this region
20 consistently shows the presence of native
21 Indian monsoon crops alongside the Harappan
22 (Near Eastern) winter crops (e.g., Saraswat,
23 1991, 1993, 2002; Willcox, 1992; Saraswat
24 and Pokharia, 2002, 2003). While many of
25 the monsoon crops may have spread to the
26 region from areas to the east, such as the
27 middle Ganges, hard evidence for this is yet
28 to be established for this origin. It is possible
29 that some indigenous domestication occurs
30 in the Himalayan foothills or the Ganges-
31 Yamuna Doab region. Of particular interest
32 in this regard is the presence of small, Indian
33 millets from Early Harappan levels at Harappa
34 (back to the Ravi Phase, ca. 3200 BC),
35 especially *Panicum sumatrense* (Weber, 2003)
36 as this hints at domestication of monsoonal
37 millet crops that is earlier than and perhaps
38 independent of those further south, in penin-
39 sular India, or in Gujarat. Further archaeo-
40 logical evidence is needed to document the
41 emergence of agricultural villages and pre-
42 Harappan sites in this eastern Harappan zone
43 and the upper Ganges as well as their cultural
44 relations to developments in the middle
45 Ganges.

The Northern Neolithic

Another but later Neolithic tradition is documented from Kashmir and the far north of Pakistan (the Swat Valley). Generally known as the Northern Neolithic, this tradition is best represented by sites in the Kashmir valley, although related sites can be identified in Swat (Northwest Pakistan). Here sites occupy the milder valley bottoms and begin to be occupied in the later Fourth Millennium BC in an aceramic phase, known from recent excavations at Kanishpur (Mani, 2004) as well as older work at Gufkral (Sharma, 1982). Ceramic production has begun ca. 3000 BC and sites appear to be significantly more widespread by the end of the third Millennium BC (e.g., Allchin and Allchin, 1982:111–116; Sharma, 1982, 1986; Mani, 2004). The earliest phases are characterised by broad deep pits, with bell-shaped profiles. While these have conventionally been interpreted as pit houses, recent debates have raised the likelihood that they were large storage features (Conningham and Sutherland, 1998). Whatever the case it is clear from these sites that the dominant crops were winter wheat (including free-threshing and emmer), barley, peas and lentils (Kajale, 1991; Lone et al., 1993; Pokharia and Saraswat, 2004), and thus derive from the same ultimate Near Eastern source. Faunal evidence includes sheep, goat, and cattle, while the status of buffalos and pigs requires confirmation (see review by Kumar, 2004). The plant evidence is therefore opposed to the idea that the Kashmir Neolithic can be related to a westward dispersal of millet-growing Sino-Tibetan speakers as some have argued (Parpola, 1994:142; Van Driem, 1998:76–84; Possehl, 2002:39). The crops and livestock species present are clearly not those of Yangshao China. The presence of Chinese like stone harvesting knives in Kashmir remains curious but must be regarded as a technological diffusion given the subsistence data, and these forms only occur in later Neolithic phases such as Burzahom

01 II and Gufkral 1C (Allchin and Allchin,
 02 1982:figure 5.9; Sharma, 1982; Kumar, 2004).
 03 These harvester also appear around this
 04 time further south in Baluchistan in the Late
 05 Harappan era, as at Pirak (Jarrige, 1985, 1997).
 06 The agricultural situation might therefore be
 07 congruent with the suggestion of a distinct
 08 linguistic substrate in Kashmir (Witzel,
 09 1999:6–7). It is possible that the Near Eastern
 10 crops had diffused to local hunter-gatherers
 11 from the Indus region to the South or from
 12 Central Asia (the latter favoured by Lone
 13 et al., 1993), together with domesticated
 14 animals. Although an immigration of farmers
 15 from these directions is also possible. It is
 16 tempting to suggest that the late arrival of
 17 agriculture here was due to an ecological
 18 barrier, as cultivation here requires winter
 19 tolerant, vernalizing forms of cereals and
 20 might therefore be compared to the processes
 21 involved in the delay of agricultural spread
 22 between Southeast Europe and the central
 23 European plains (cf. Bogaard, 2004:160–164).

24 Subsequently, early in the Second
 25 Millennium BC, during the Late Harappan
 26 transition, we can infer that the northern
 27 Pakistan/Kashmir region had developed
 28 contact with cultural groups to the north/east
 29 in the Chinese cultural sphere, indicating
 30 either long-distance trade or immigration into
 31 adjacent Himalayan zones of Sino-Tibetan
 32 speaking groups. At this time stone harvest
 33 knives appear in Kashmir, and similarly they
 34 appear further south in Baluchistan in the
 35 Late Harappan era, as at Pirak (Jarrige, 1985,
 36 1997). As discussed by Jarrige (1985, 1997)
 37 this period sees important changes in cooking
 38 techniques as well. Impressions in pottery from
 39 Ghalegay, together with grains from Bir-Kot-
 40 Gwandhai, suggest some localized *indica* rice
 41 cultivation by 2500 BC (Constantini, 1987),
 42 which must have diffused from the Gangetic
 43 region to the Southeast. By contrast later
 44 Harappan rice from Pirak (after 1900 BC), has
 45 notably shorter, plumper grains, suggesting
 46 *japonica* type (Constantini, 1979), which is

also supported by the form of bulliform
 phytoliths from the site that suggest *japonica*
 (Sato, 2005), which therefore supports the
 contention of diffusion from China by the
 early Second Millennium BC.

The Ganges Neolithic

Although there is much to be resolved in
 terms of dating and domestication status of
 remains from the middle Ganges, this region
 is a likely centre of domestication. The earliest
 well-sampled levels contain potentially native
 crops, including rice, millets and slightly later
 monsoon pulses, while later levels include
 introduced winter crops. This suggests that
 when wheat, barley and lentils diffused from
 the west they were adopted into already estab-
 lished systems of cultivation. At the site of
 Mahagara, south of Allahabad on the Belan
 river, the adoption of these winter crops
 occurs ca. 1800–1700 BC (Harvey et al., 2005;
 Harvey and Fuller, 2005, unpublished dating
 evidence), whereas further north and east
 at Senuwar this adoption occurred perhaps
 ca. 2200 BC (Saraswat, 2004a). Recently
 directly dated barley from Damadama is ca.
 2400 BC (Saraswat, 2004b, 2005a), while
 from new research at Lahuradewa, it occurs
 in Phase 2, 2500–2000 BC, directly dated
 to ca. 2200 BC (Saraswat and Pokharia,
 2004; Saraswat, 2005). The crop that is
 consistently present at all these sites from
 the earliest phases in rice, although small
 millets are also consistently reported. In
 the case of Mahagara these include the
 widespread *Brachiaria ramosa* and *Setaria*
verticillata, whereas *Setaria pumila* is reported
 from Senuwar and Lahuradewa. While there
 remains room for concern over consistency
 of millet identification criteria, as well as
 problems of intrusive millets from later
 periods, it is nevertheless clear that one or
 more small millets were part of the early
 cultivation systems of the Ganges. Native
 Indian pulses are also present, especially
Vigna radiata and *Macrotyloma uniflorum*,

01 but these are in no case present from the
 02 earliest levels of sites and might therefore
 03 be adopted from an adjacent region of India.
 04 While the mungbean has wild progenitor
 05 population in parts the Himalayan foothills
 06 and central Indian hill ranges, wild horsegram
 07 is not yet documented close to this zone,
 08 which therefore suggests dispersal of native
 09 pulses from further south, or perhaps west,
 10 by ca. 2000 BC, although extinct progenitor
 11 populations might conceivably have occurred
 12 in drier parts of central India or the southern
 13 Vindhyas. Although there are cucurbit (gourd)
 14 crops native to north India (Decker-Walters,
 15 1999; Fuller, 2003a), hard archaeological
 16 evidence is still limited to ivy gourds
 17 (*Coccinia grandis*) from (early?) Harappan
 18 Kunal (Saraswat and Pokharia, 2003), Balu
 19 (Saraswat, 2002) and Late Harappan Hulas
 20 (Saraswat, 1993), and *Luffa cylindrica* after
 21 it had dispersed to South India (Neolithic
 22 Hallur) by the mid-Second millennium BC
 23 (Fuller et al., 2004).

24 Still to be clarified is whether there was
 25 one main trajectory towards agriculture or
 26 dispersed parallel trajectories in different local
 27 traditions, and what role interactions between
 28 early farmers and hunter-gatherers played.
 29 At present we might discern at least three
 30 contemporary cultural/economic traditions in
 31 the region. At present three distinct cultural
 32 traditions can be defined, each of which
 33 passed through two or three economic stages.
 34 First there is a tradition located in the eastern
 35 part of this region. Its earliest stage, repre-
 36 sented by the site of Lahuradewa shows
 37 evidence for occupation on a lake edge back
 38 to the 7th millennium BC (Tewari et al.,
 39 2003, 2005; Saraswat, 2004c, 2005; I. Singh,
 40 2005). Already in this period, or certainly by
 41 sometime in the the fifth millennium, ceramics
 42 had begun to be produced, and rice was part of
 43 the diet, and may even have been cultivated,
 44 although the very limited evidence available
 45 to date is inconclusive and is more suggestive
 46 of wild rice collecting. All the fauna thus far

studied from that period were wild (Joglekar,
 2004), and it is likely that occupation was
 intermittent (with hiatuses), or else highly
 seasonal to account for the long timespan of
 3000–3500 years that relates to this lowest
 layer less than 50 cm thick). Intriguingly,
 the ceramic assemblage does not yet suggest
 much perceptible change during the period,
 although the third millennium levels include
 several new forms including some that suggest
 influence from the Harappan zone to the west.
 In the third millennium and certainly during
 the period 2500-2000 BC, settlement probably
 became more regular, evidence for cultivation
 is less ambiguous, and new species from
 external sources were adopted, in particular
 barley (Saraswat, 2004c, 2005), as well as
 pulse species that may also be non-local.
 In this period at least some domesticated
 sheep/goats are present (also adopted from the
 west). At this period agricultural village settle-
 ments are being founded over a wider region,
 such as Senuwar (Saraswat, 2004a, 2005),
 suggesting the filling in of the landscape
 with agriculturalists and the emergence of
 sedentary settlements. After 2000 BC a wider
 crop repertoire is present, including summer
 and winter pulses and the faunal assemblage is
 predominantly domesticated including cattle,
 sheep and goats. Clay lined storage bins
 suggest more investment in permanent facil-
 ities at the site. A second tradition that shows
 parallel economic developments, but possibly
 following regionally distinct timing is found
 in the northern Vindhyan hills and the Son
 and Belan river valleys. An earlier phase of
 seasonal settlement, ceramic production and
 some rice use (if not cultivation) is indicated
 by sites like Kunjhun II and Chopanimando,
 dating back to the fourth millennium BC,
 with earlier preceramic roots (Sharma et al.,
 1980; Clark and Khanna, 1989). It should
 be noted that the pottery from Chopani-
 mando is a distinct cord-impressed style that
 does not match that from most other sites
 in the region, and suggests a local ceramic

'Mesolithic' tradition that developed amongst some Vihdyan hunter-gatherers. It is only in the early second millennium BC that sedentary village sites are widely founded in the region, including sites like Mahagara and Koldihwa (the latter possibly seasonal) (cf. Sharma et al., 1980; Harvey and Fuller, 2005; Harvey et al., 2005) and Tokwa (Misra et al., 2001, 2004). These sites have evidence for monsoonal crops, such as rice and millet from the earliest period and then at later levels the addition of Indian pulses, and winter crops like wheat, barley and lentils. By this period there is also clear evidence of animal herding, including sheep/goat and cattle, and features such as an animal pen with hoof impressions at Mahagara (Sharma et al., 1980).

The third tradition in the region is a persistent tradition of hunter-gatherer-fishers focused on oxbow ponds of the greater Ganges floodplain. Numerous Mesolithic sites are known in the region, especially in the region north of the modern Ganges river, such as Damadama (see Pandey, 1990; Lukacs and Pal, 1993; Chattopadyaya, 1996; V.D. Misra, 1999; Kennedy, 2000:200–205; Lukacs, 2002, see Lukacs, this volume). Although the available dates from these sites (Mahadaha, Sahar-Naha-Rai, and Damdama) range widely from the start of the Holocene (8000–10,000 BC) to 2000 BC, there are now clear grounds for assuming at least some overlap between this aceramic 'Mesolithic' cultural tradition and the ceramic 'Neolithic' food producers in adjacent regions to the South and East. This comes in the form of two direct AMS dates of the second half of the Third Millennium BC on barley (an introduced domestic) and rice (plausibly a domesticate, especially by this time) from Damdama (Saraswat, 2004b, 2005). Thus crop cultivation, or at least significant quantities of traded cereals, must have contributed to the economy of the hunter-fishers of the Ganges at least after 2500 BC; these groups remained hunting wild fauna and did not

use pottery. The interrelationships between these traditions still need to be elucidated (cf. Lukacs, 2002) and the role of local domestications versus crop adoptions needs to be assessed. The presence of crops that plausibly originated in this zone, such as rice, by the early third millennium BC in the upper Ganges region, e.g. at Kunal (Saraswat and Pokharia, 2003) and further afield in Swat (Ghalegay, Costantini, 1987) suggest that agriculture was established in the middle Ganges by 3000 BC, but if so, the communities of these early farmers have remained largely undiscovered, and were presumably less sedentary than their late third millennium successors.

The Eastern Neolithic

Early agriculture in eastern India (Orissa) is still largely unknown. As has often been discussed this region has widespread populations of wild rice (*O. nivara* and *O. rufipogon*). The native millets and *Vigna* pulses could also be domesticated in this region, as could the north Indian cucurbits and the tuber crop taro (*Colocasia esculenta*). Uniquely wild in this region is the pigeonpea (*Cajanus cajan*). At present the main excavated sites are late Neolithic mounds from the coastal plains or the Mahanadi River valley, such as Golbai Sassan, Gopalpur and Khameswaripalli established by the end of the 3rd millennium BC or during the 2nd millennium BC (Sinha, 1993, 2000; Mohanty, 1994; Kar, 1995, 2000; Kar et al., 1998; Behera, 2002; Harvey et al., 2006). These sites probably relate to the settling down of already agricultural populations, and the earliest phases of agriculture in this region are yet to be documented archaeologically. Archaeobotanical evidence from the later and better established phases of Gopalpur and Golbai Sassan (after 1500 BC) indicates cultivation of rice and native pulses (mung, urd, horsegram and the local pigeonpea). Small millets are present (including *Panicum*

01 *sumatrense*, *Setaria* sp. and *Paspalum* sp.)
 02 but these may occur as rice weeds or
 03 subsidiary crops (Harvey et al., 2006). A
 04 single winter crop, lentils, is present indicating
 05 a contrast from the Ganges where a wider
 06 range of winter crops is prominent. The
 07 available faunal data indicates domestic
 08 fauna (including bovines and caprines), while
 09 artifacts point to the importance of riverine
 10 fishing. Reconnaissance of upland Neolithic
 11 sites in the Orissa hills suggests a very
 12 different Neolithic tradition. Here, sites such
 13 as Banabasa (Harvey et al., 2006), appear
 14 to have been non-sedentary and largely non-
 15 ceramic, suggesting the likelihood of a pattern
 16 of shifting cultivation. An older excavation
 17 at the site of Kuchai, in the northern Orissa
 18 foothills, can probably be connected to this
 19 upland tradition, and showed a transition
 20 from microlithic technology to ceramics with
 21 ground stone axes (including the shoul-
 22 dered celts which are a typical component
 23 at these upland sites) (Thapar, 1978, *Indian*
 24 *Archaeology 1961–62-a Review*). Ceramics
 25 are reported to include rice husk impressions
 26 (Vishnu-Mitre, 1976), but there is no further
 27 basis for inferring a more complete subsis-
 28 tence system.

29
 30 *Pre-Harappan Western India: Gujarat*
 31 *and Adjacent Rajasthan*

32 Gujarat is likely to have been a centre for
 33 the domestication of local, monsoon-adapted
 34 crops, after livestock was adopted into this
 35 area from the Indus region to the west.
 36 Archaeobotanical evidence for the begin-
 37 nings of cultivation in this region is not yet
 38 available, and the earliest ceramic bearing
 39 sites, of the Padri and Anarta traditions (ca.
 40 3500–2600 BC) have so far not yielded
 41 plant remains. Nevertheless, these sites have
 42 produced evidence for some domestic fauna,
 43 including directly dated cattle bones from the
 44 fourth millennium BC from Loteshwar (Patel,
 45 1999; Meadow and Patel, 2003) and probable
 46 domestic fauna from Padri (Joglekar, 1997;

Shinde, 1998a) and Prabas Patan (P. Thomas,
 2000). Other sites, such as Bagor, which
 are often cited as evidence for adoption of
 livestock by mid-Holocene hunter-gatherers
 (e.g., Possehl, 1999), need archaeozoological
 reassessment in light of a refined under-
 standing of the difficulties of separating
 sheep and goat from blackbuck antelopes (cf.
 Meadow and Patel, 2003). While livestock
 are being adopted into this region, it is
 plausible that ceramic bearing sites in the
 wetter Saurashtra, as opposed to the desert
 fringe sites, were sites of communities of culti-
 vators. In the Mature Harappan period (from
 2600 BC), a period from which systematic
 archaeobotanical evidence is available, a
 stark contrast can be drawn between millet-
 dominated agriculture of Saurashtra and
 wheat-barley-winter pulse agriculture of the
 Indus valley and the Harappan core (Weber,
 1991; Reddy, 2003). While there have been
 recent controversies over identification of
 millets in this region (Fuller et al., 2001, 2002,
 2003b), it is clear that native Indian small
 millets were predominant.

The crop, little millet (*Panicum sumatrense*),
 which is native to monsoonal India), and
 a species (or two) of *Setaria*, were culti-
 vated (probably those which are native
 such as *S. verticillata* and *S. pumila*). In
 addition, it is now apparent that *Brachiaria*
ramosa was present at Rojdi (probably
 replacing the reported identifications of the
 introduced *Setaria italica*) (Weber, personal
 communication). It is possible that these
 species were domesticated in Saurashtra,
 although hard evidence for the process is
 lacking and other regions may also have
 witnessed domestication of these species (such
 as *Brachiaria ramosa* in South India and
Panicum sumatrense in Punjab). By the
 latest period of Rojdi C (2000–1700 BC),
 crops from Africa were introduced, including
 sorghum, pearl millet and finger millet – the
 presence of some of the latter now seems
 clear on morphological grounds despite earlier

01 concerns (Weber, personal communication, cf.
 02 Fuller, 2003c), although a full reassessment of
 03 contextual dates of these crops is needed. The
 04 pulse urd, *Vigna mungo*, which is native to the
 05 northern Peninsula or the southern Aravallis,
 06 is present from early Rojdi (ca. 2500 BC)
 07 and could represent a local domesticate,
 08 while horsegram (*Macrotyloma uniflorum*)
 09 and mungbean (*Vigna radiata*) are adopted by
 10 Rojdi C (2000-1700 BC). In general despite
 11 ties in trade and culture with the Harappan
 12 Indus valley, the archaeobotany of Gujarat is
 13 much more peninsular in character, suggesting
 14 a tradition of cultivation distinct from that of
 15 the Indus valley but plausibly from hunter-
 16 gathering roots similar to that of the Southern
 17 Neolithic. Recent research in Rajasthan on
 18 the Ahar/Banas culture region, indicates that
 19 agricultural villages were clearly established
 20 by ca. 3000 BC, as at Balathal (Shinde, 2002).
 21 What is less clear is whether this should
 22 be connected with Gujarat and indigenous
 23 domestications or agricultural dispersal from
 24 the Indus region (as postulated in Fuller,
 25 2003b). The archaeobotanical evidence from
 26 the mid to late third millennium BC (Kajale,
 27 1996), indicates predominance of the Near
 28 Eastern winter crops, a clear contrast with
 29 Gujarat.

30
 31 *The Southern Neolithic*

32 The Southern Neolithic, of northern Karnataka
 33 and southwest Andhra Pradesh, provides
 34 the earliest evidence for pastoralism and
 35 agriculture in Peninsular India (Korisettar
 36 et al., 2001a, 2001b; Fuller, 2003b, 2006).
 37 A well-known site category of the Southern
 38 Neolithic is the ashmound, which has been
 39 shown (especially at Utnur and Budihal) to
 40 be an accumulation of animal dung at ancient
 41 penning sites that have been episodically
 42 burnt, sometimes to an ashy consistency, and
 43 sometimes to a scoriaceous state (Allchin,
 44 1963; Paddayya, 1998, 2001). Animal bones
 45 (at all sampled sites) indicate the dominance
 46 of cattle in the animal economy, with a

smaller presence of sheep and goat (Korisettar et al., 2001a, 2001b). Although Allchin and Allchin (1974, 1995) have made a case for local domestication of zebu varieties in the South, this suggestion is not yet corroborated by archaeological bone evidence. Their argument is based on the morphology of rock art depictions which contrast with contemporary Harappan depictions and suggest the kind of varietal differentiation between southern and northwestern zebras was already established. Recent archaeobotanical research has provided a picture of recurrent staples and occasional secondary crops of the Southern Neolithic (Fuller et al., 2001a, 2001b, 2004; Fuller, 2003b, 2006). The staples include two native species of millets (*Brachiaria ramosa* and *Setaria verticillata*) and two pulses (*Vigna radiata* and *Macrotyloma uniflorum*). What is known of the ecology of these species suggests that domestication occurred in a Dry Deciduous woodland zone that interfingered with savannah scrub (favoured by *Macrotyloma uniflorum*) and moist deciduous woodland (favoured by *Vigna radiata*). The millets would have occurred patchily throughout these zones. While this zone has been argued to be on the inside of the Western Ghats (Fuller and Korisettar, 2004), patches along the Eastern Ghats between the Krishna and the Godavari river are now favored on the basis of recently gathered data on wild progenitors of the *Vigna* pulses (Fuller and Harvey, 2006). The modern distribution of these ecological zones in the peninsular region is illustrated in Figure 5. When climatic conditions were wetter during much of the early and mid-Holocene we would expect the Moist Deciduous zones to have expanded (especially eastwards towards the central peninsula, and for the savannah/scrub zones to have been reduced by impinging dry deciduous woodlands (Fuller and Korisettar, 2004). Some of the areas that are today Dry Deciduous forests with a significant teak (*Tectona grandis*) element that occur in

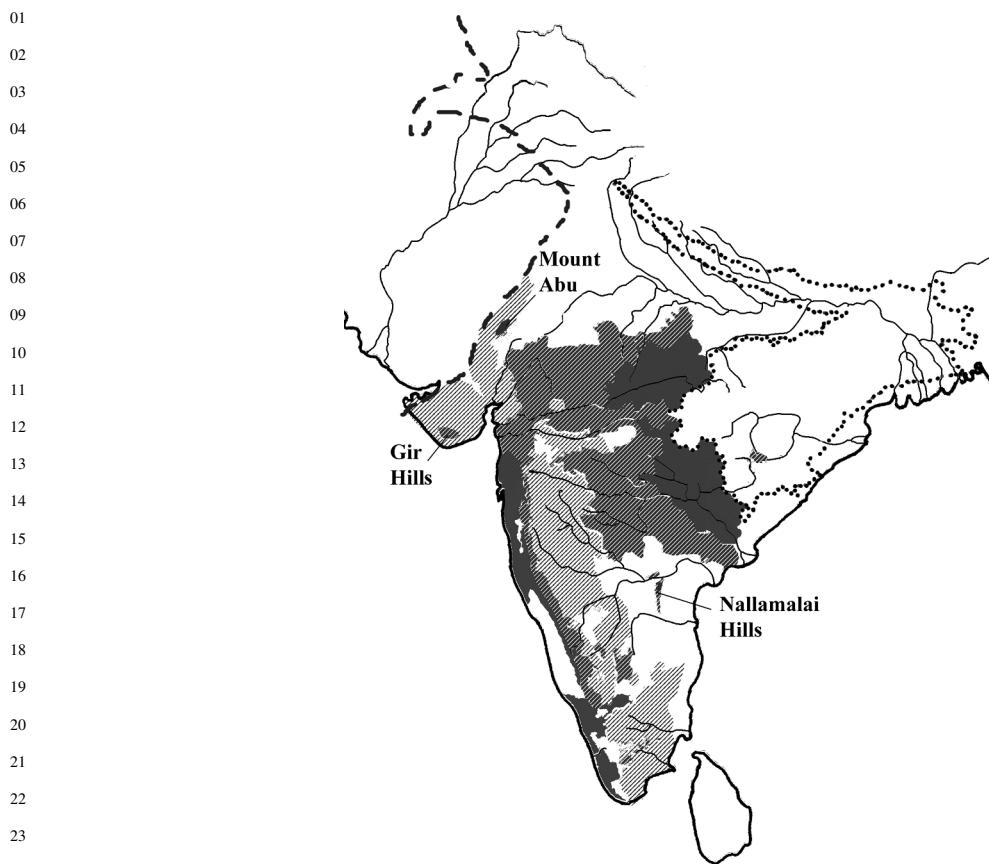


Figure 5. Map of important ecological zones of peninsular India relevant to understanding agricultural origins (after Asouti and Fuller, in press; based on Puri et al., 1983, 1989; Meher-Homji, 2001). The dark grey zone indicates Moist Deciduous forests with teak (*Tectona grandis*) as an important element, while the black dots indicates the western extent of the sal tree (*Shorea robusta*). The Dry Deciduous teak forests are darkly hatched (*Hardwickia* dominated dry deciduous forests have been excluded), while savannah-scrub areas are lightly hatched. The grey dashed line indicates the western boundary of the monsoon zone, east of this line summer rainfall averages more than 40 cm per year

the hills of the eastern peninsula (Eastern Ghats) would have been Moist Deciduous in character. It is such forests where we might expect former extensions of the wild mungbean, from which domestication could have occurred.

In addition there are data that non-native taxa were adopted into cultivation during the Southern Neolithic. These include wheat and barley by ca. 1900 BC (but only on a minority of sites), hyacinth bean (*Lablab purpureus*, probably a native of East Africa), African pearl millet (*Pennisetum glaucum*) and pigeonpea (*Cajanus cajan*, from

Orissa or adjacent parts of eastern India) and the vegetable *Luffa acutangula* (from North India), all of the latter by ca. 1500 BC. There is still no clear sequence from foraging to farming, and indeed archaeobotanical evidence to assess the earliest Southern Neolithic agriculture is still lacking from archaeological Phase I (3000–2200 BC). Nevertheless, the existing evidence indicates dependence on a group of species that are native to the peninsula, with non-native species being rare (on a minority of sites) or occurring only in the latest Neolithic period (Phase III), e.g., the African crops. Although

01 there are a few grains of rice from Hallur,
 02 these are most likely grains from a wild
 03 form (Fuller, 2003b:378, n.2), which could
 04 have infested millet fields along the upper
 05 Tungabhadra as a weed. Evidence for culti-
 06 vation and consumption of rice occurs only
 07 in the Iron Age (Kajale, 1989; Fuller, 2002).
 08 The archaeology of the Southern Neolithic
 09 suggests increasing sedentism over most of
 10 the region only after 2000 BC and especially
 11 during Phase III. This suggests that population
 12 densities began to fill in the landscape by
 13 comparison the earlier phases of the Neolithic,
 14 when we might expect forms of shifting culti-
 15 vation (and perhaps shifting settlement) to
 16 have been practiced. This filling in of the
 17 landscape is reflected in the west coast pollen
 18 evidence for deforestation focused on ca. 1500
 19 BC (Fuller and Korisettar, 2004).

20 It is only at this time that settled agricul-
 21 tural villages become widespread on the
 22 peninsula, consistent with a model of
 23 demographic expansion of early penin-
 24 sular farmers. For example, the millet-
 25 pulse-livestock agriculture of the Ashmound
 26 Tradition dispersed southwards and eastwards
 27 to adjacent regions. Evidence from the
 28 Kunderu river basin, just beyond the eastern
 29 distribution of the ashmounds indicates that
 30 the same subsistence package was established
 31 between 1900 and 1700 BC (Fuller et al.,
 32 2001b; Fuller, 2006). There is now new
 33 evidence for contemporary hunter-gatherer
 34 groups living in caves of the Erramalai hills
 35 who were in interaction with the ceramic
 36 producing farmers of the Kunderu plains. The
 37 cultural differences, in terms of the lack of
 38 ashmounds and some distinctive aspects of
 39 ceramic style, might suggest that this repre-
 40 sents cultural diffusion, it is equally likely
 41 that this represents an immigrant group with
 42 some cultural traits that set out from the core
 43 ashmound tradition into agriculturally virgin
 44 land where they could continue traditions of
 45 shifting cultivation rather than more intensive
 46 methods that would have been adopted in the

Southern Neolithic core. This is suggested for example by limited evidence for thin ashmound-like deposits at the base of the Nagarajupalle Neolithic site in the Kunderu river basin (author's data). It may also be the case that this Southern Neolithic agricultural tradition dispersed northwards, but if so it was of a less sedentary and less visible form of settlement than the later Malwa tradition, which became established ca. 1800 BC with well documented village sites on the middle Tapti river, the upper Godavari and the upper Bhima (Shinde, 1998b; Panja, 1999, 2001). At this later stage agriculture had a large component of Harappan elements, wheat, barley and the winter pulses, but also the native (or Southern Neolithic) pulses and small millets. Full identification details of Malwa/Jorwe millets is not available, but it is clear the *Brachiaria ramosa* is amongst them (Kajale, personal communication; for important published datasets see, e.g., Kajale, 1979, 1988, 1990, 1994), in addition to the urd bean which may have originated in this northern peninsular zone (or Gujarat).

A general process which can be perceived in the archaeological evidence is the replacement of older millet species by more productive millet types and in many cases by rice. This has clearly occurred in Peninsular India since Neolithic *Brachiaria ramosa* and *Setaria verticillata* have largely given way to Central Asian/Chinese *Setaria italica* and African *Pennisetum*, *Sorghum* and *Eleusine*, a process that can be perceived in Early Historic archaeobotanical samples and has finished by the colonial period. These later cereals are more productive and, in the case of the African cereals, generally free-threshing making them less labor intensive to prepare. In other areas millets have been replaced with rice, a process which began when rice first appeared at some sites in the first millennium BC, after 1000 BC. Dry rice cultivation is essentially equivalent in ecology to the wetter forms of millet cultivation, such as

01 river bank cultivation of *Panicum sumatrense*
02 or *Echinochloa* and in some areas such as
03 the drier Bellary and Kurnool district has
04 occurred in the past couple of decades with the
05 expansion of irrigation canals. A significant
06 implication of this process is that we might
07 expect a semantic shift to have occurred from
08 more ancient millets to more recent intro-
09 duced millets or rice which came to take
10 their place in agricultural and dietary impor-
11 tance. We must therefore consider the possi-
12 bility that linguistic evidence may prove to
13 be biased towards these modern replacements
14 and mask prehistoric semantic shifts which
15 have occurred in parallel across separate
16 language family branches.

17

18 **Setting the Speech Scene: Languages 19 Real and Inferred**

20

21 Historical linguistics is doubtless a reflection
22 of past population movements and
23 interactions, as are genetics. Much recent
24 research on integrating linguistics with
25 archaeology (and genetics) has happened in
26 the past two decades since the publication of
27 Renfrew's (1987) *Archaeology and Language*
28 (see also Blench and Spriggs, 1999; Renfrew,
29 2000; Blench, 2004). As physical anthro-
30 pology cannot define races, neither can
31 pure languages be defined. The process of
32 language change *and mixing* is complex, as
33 variants enter a pool in which selection takes
34 place for a variety of social and cultural
35 reasons (Mufwene, 2001). Variants from
36 different speakers are pooled, recombined
37 and selected for transmission to subsequent
38 generations. In cases of general cultural
39 homogeneity, without significant migration,
40 the variants are all similar, thus most language
41 lineages have traditionally remained stable
42 through time, but in some contexts speakers
43 of diverse origins may influence each other
44 and thus transmit to future generations a
45 mixed linguistic heritage. All historical
46 linguists accept that substrate languages have

left their mark on now dominant languages, implying considerable periods of interaction amongst different language speakers and bilingualism (Crowley, 1997:197; Witzel, 1999; Southworth, 2005a:98–125); this is perhaps difference in *degree*, but not in kind, to the kinds of processes of language transmission involved in creating historical creole languages, where the speakers contributing to a speech variant pool are from much more diverse backgrounds (see Mufwene, 2001). Thus while it is undoubtedly true that languages are carried with the movement of speakers (Bellwood, 2001, 2005:190–193), the number of speakers vis-à-vis pre-existing populations is a matter that is more difficult to infer (but for a model, see Ehret, 1988). In order to get at this we need to try to frame periods of language interaction in time and space so that we can consider the likely historical and social circumstances that were involved, which ultimately can be informed by archaeological evidence.

Our improving grasp of early agricultural traditions in South Asia (at least those that were becoming sedentary), and the biogeography of their cultivars as well as wild flora, means that there is a basis for assessing linguistic data. The assessment that follows improves upon and revises that of Fuller (2003a). This earlier study began with an assessment of the antiquity of different plants in the archaeology of South India and then looked at the distribution and probable antiquity of words for these selected species across the Dravidian languages (building on Southworth, 1988). Some initial comments were also formulated on possible north Indian domesticates and unknown substrate language(s) of Indo-Aryan (based on Masica, 1979) as well as Proto-Munda agricultural vocabulary (based on Zide and Zide, 1976). In addition to archaeobotanical advances, there have been significant linguistic advances in recent years. Of

note are efforts to identify distinct substrata that have influenced Indo-Iranian and Indo-Aryan languages at different periods and a relative chronology of these substrates (Kuiper, 1991; Witzel, 1999, 2005, 2006; Southworth, 2005a, 2005b; Southworth and Witzel, 2006), and new efforts to reconstruct early Dravidian vocabulary (Krishnamurti, 2003; Southworth, 2005a; but see some reservations, below). Recent analysis that explains much of the evolutionary divergence of Austroasiatic into Munda and Mon-Khmer, which are opposite in many linguistic structures, also has significant historical implications (Donegan and Stampe, 2004). One clear indication of this work is that we need to break free of the present as a complete key to the past: there were languages spoken in the past that are not reflected directly in those known at present. There are dead language families. But these have nevertheless left their mark through loanwords and other substrate features.

In this consideration of South Asian linguistic prehistory I focus on the three major living language families: Dravidian, Austro-Asiatic and Indo-European. For the present consideration I will leave aside the complex Himalayan situation and the northwestern periphery of the subcontinent with its isolate Burushaski and the Dardic group of Indo-European languages (but see Witzel, 1999, 2005). There are thus three major families, plus the isolate of the upper Tapti river, Nahali. Indo-European languages are represented by the Indo-Aryan languages located today throughout northern and northwestern South Asia, with earlier linguistic forms preserved in Sanskrit literature such as the Rig-Veda (Southworth, 2005a). The peninsula is predominantly Dravidian. While Munda language groups are concentrated in the hills of Eastern India, where they often encapsulate smaller Dravidian languages, including the poorly documented North Dravidian Kurux (Oraon) and Malto. On the hills of northern

Maharashtra the isolated South Munda Korku language, occurs adjacent to the isolate Nahali (Figure 6). Nahali has been related by some authors to a hypothetical extinct Bhil language (Witzel, 1999:62–63; Southworth, 2005a). In addition, extinct substrate languages are clearly indicated for the Nilgiri hills (Emeneau, 1997; Witzel 1999:64) and the Veddas of Sri Lanka (Witzel, 1999:64; Southworth, 2005a). While most of these substrate languages are likely to have been of hunter-gatherers, two major extinct agricultural languages can be inferred for north and northwest South Asia (see below).

Although there has been archaeological discussion of an agriculturally-driven dispersal of Indo-European (specifically Indo-Aryan) into India (e.g., Renfrew, 1987; Bellwood, 2005), this hypothesis lacks support from specific linguistic or archaeological evidence (cf. Fuller, 2003a). Witzel (2005) provides the most recent, comprehensive attempt to infer the route and historical context of Indo-European entry into the subcontinent, including inferred substrate words from a lost Central Asian language, attributed to the Bactria-Margiana archaeological complex of the third millennium BC (e.g., wheat, hemp, sheaf, seed, Bactrian camels and donkeys), as well as words shared with northwestern substrates of the northwestern frontier (Burushaski) and Kashmir. The important evidence for an inferred Harappan substrate is taken up below. A model of two different branches of Indo-Aryan, an ‘inner’ branch focused on the central Ganges and an outer branch that extended from Sindh through the northern Peninsula and central India towards the east, will not be pursued below as these must relate to cultural processes that occurred after the establishment of agriculture in most regions but they may nevertheless be significant elements in Late Chalcolithic/Iron Age cultural processes in parts of India (for discussion, see Southworth, 2005a).

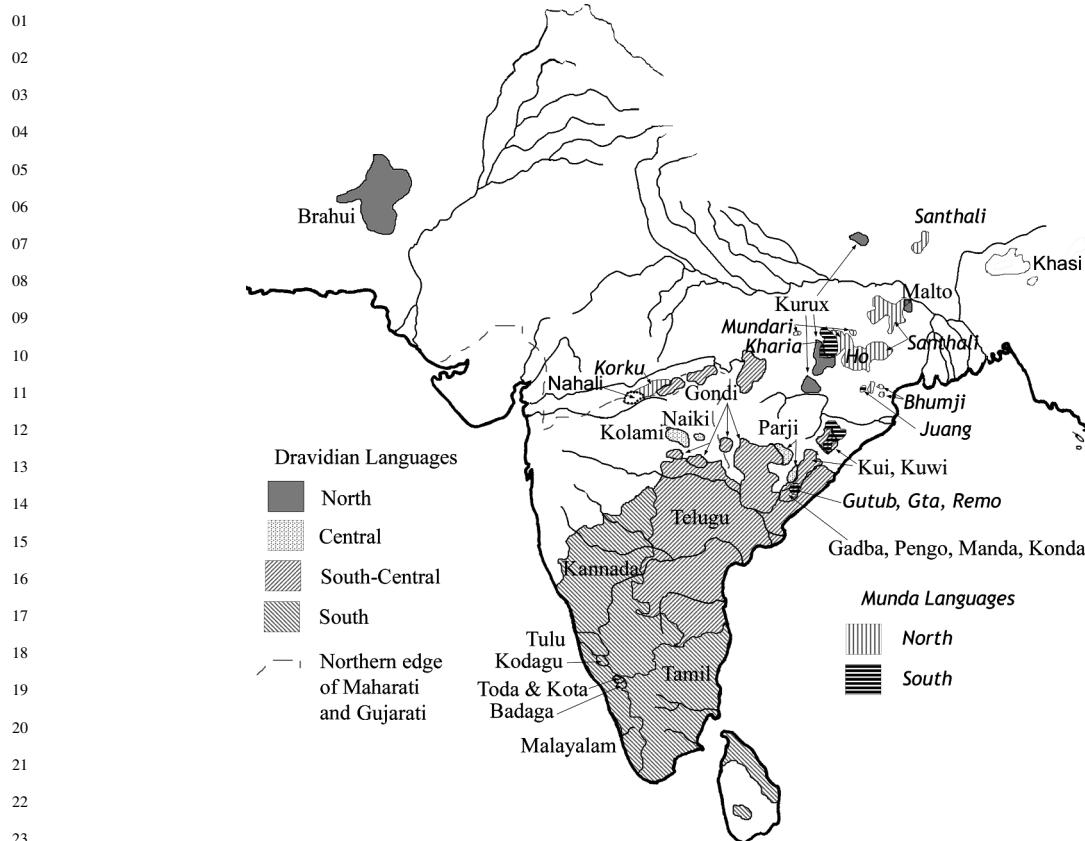


Figure 6. Map of non-Indo Aryan languages in South Asia (excluding Himalayan zone)

There is still room for some controversy with regards to how to represent Dravidian phylogenetically. Four major Dravidian subgroups are well-established

(Figure 7), although recent controversy has arisen about how these should be grouped in a hierarchical, phylogenetic framework (Krishnamurti, 2003:figures 11.2A, B; Southworth,

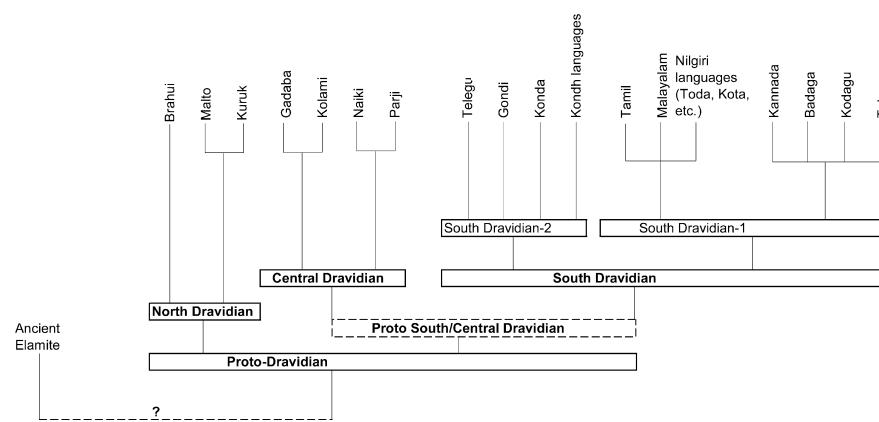


Figure 7. A phylogenetic representation of the Dravidian languages. Well-established groups are indicated by solid boxes (North, Central and South) (Krishnamurti, 2003). I have retained the hypothesis of a Proto-South/Central group, indicated by dashed box (after McAlpin, 1981; Southworth, 1988; Fuller, 2003d) for reasons offered in the text

01 2005a:233–236). A major issue concerns
 02 whether or not a nested hierarchy can
 03 be inferred between north, central and
 04 southern (including south-central) Dravidian
 05 subfamilies. I will continue to use the
 06 nested hierarchy of North, Central and South
 07 (Fuller, 2003a; following McAlpin, 1981,
 08 Southworth, 1988), as opposed to the more
 09 cautious but less historically informative
 10 three-branch polytomy of the most recent
 11 books. As the first botanical assessment
 12 of Fuller (2003a) revealed, there appears
 13 to be some archaeobotanical grounds for
 14 accepting this order of branching. Latecomer
 15 crops are generally only documented in
 16 South Dravidian, while native crops tend
 17 to be documented as cognates with Central
 18 Dravidian, while for the most part wild penin-
 19 sular species may sometimes be documented
 20 for the North Dravidian languages as well
 21 (see below). As discussed by Southworth
 22 (2005a:234–5) there is evidence for a longer
 23 and more recent history of contact between
 24 the South and Central subfamilies, and there
 25 are cases of shared innovations in semantics
 26 in South and Central Dravidian as opposed
 27 to North Dravidian languages. Thus, even if
 28 clear shared phonological or morphological
 29 changes are absent, there are grounds for
 30 suggesting a phylogenetic hierarchy which
 31 groups Central and South Dravidian (Proto-
 32 South/Central Dravidian); the lack of clear
 33 phonological innovations may suggest that
 34 these branches diverged quite rapidly as we
 35 might associate with rapidly expanding and
 36 dispersing (Neolithic) populations.

37 Another issue has been the placement
 38 Brahui, spoken by pastoralists in Western
 39 Pakistan surrounded by Baluchi speakers (an
 40 Iranian language). This isolated location has
 41 often been taken to indicate a dispersal of early
 42 Dravidian speakers from the northwest, with
 43 a subsequent language shift to Indo-European
 44 languages. It seems to now be increasingly
 45 accepted that the ancestral Brahui, found
 46 today in Baluchistan, migrated within the past

millennium from a North Dravidian area in central India (Elfenbein, 1987, 1998; Witzel, 1999:30, 63; Southworth, 2005a; but for a dissenting view see Parpola, 1994:161). As noted by Witzel (1999:63), there is a lack of older loanwords from Iranian languages such as Avestan or Pashto, but only from modern Baluchi. In addition, it was the latter position, which implied an early divergence of Brahui, that has long been taken to support to dispersal of the early Dravidian speakers from the northwestern subcontinent, perhaps to be connected with a shared ancestral relationship to the ancient Elamite speakers of Iran (McAlpin, 1981; Fairervis and Southworth, 1989; Bellwood; 2005). As will be argued below, the evidence of lexical reconstructions relating to flora, as well as placenames, modern language geography and archaeological correlations all point to Proto-Dravidian located on the peninsula, and thus Brahui must be accounted for by a migration from the Peninsular region (possibly including Saurashtra or parts of Rajasthan) towards Iran.

The Munda language family includes a number of relatively small and often isolated languages in two main sub-groups (Bhattacharya, 1975; Zide and Zide, 1976; Donegan and Stampe, 2004; Southworth, 2005a): South Munda, including the Sora and Kharia languages, and North Munda, including Santali of northern Orissa and Bihar, and the grouping of Mundari, Ho and Bhumij, further south (Figure 8). The isolated Korku in Madhya Pradesh is also grouped more distantly with the Northern group. This disjunct location of the Korkus suggests that the Mundaric dispersal westward (or alternatively eastward) preceded the northward expansion of Gondi (central Dravidian) speakers, who presumably moved from the southeast. Nahali, further west still, includes many Munda elements but is now generally excluded from this group (Bhattacharya, 1975; Tikkanen, 1999), and has been suggested as

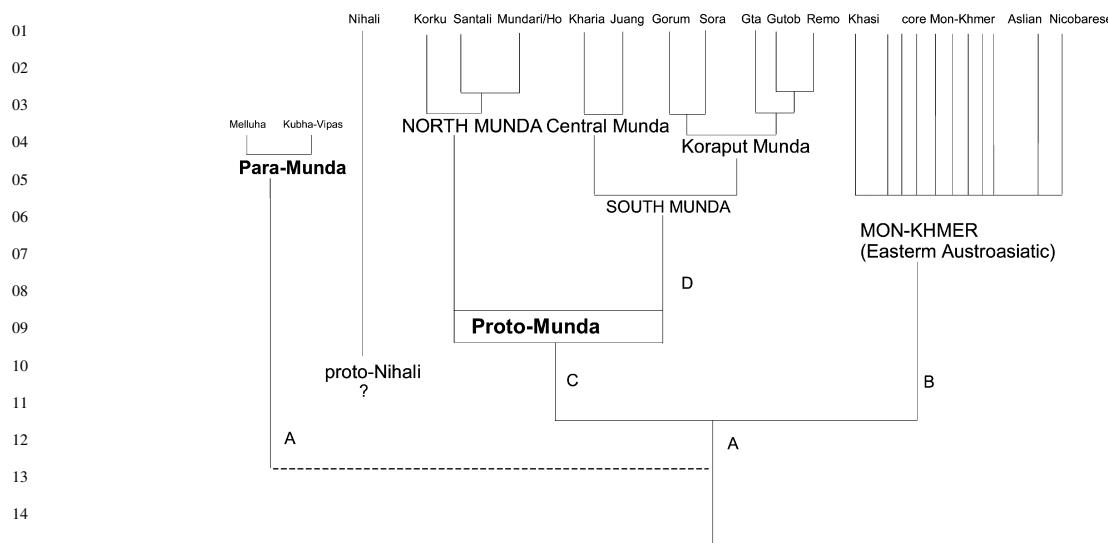


Figure 8. A phylogenetic representation of the Munda and Austroasiatic languages (top), with a hypothetical macro-phylogeny incorporating Witzel's 'Para-Munda' languages and the Mon-Khmer branches. Important cultural developments (derived traits) are indicated by letters (see text for discussion). It remains unclear whether Nihali should be incorporated in this phylogeny

a linguistic remnant of the earliest modern human dispersal out of Africa on the basis of possible distant relations with extinct Ainu (of north Japan) (Witzel, 1999:63). The entire Munda group is placed more as a distinct distant branch of the Austroasiatic family of languages, which is widely distributed in mainland Southeast Asia including the literary languages of Mon and Khmer in Burma and Cambodia (Blench, 1999:66; Diffloth, 2005). Of crucial significance to population history is how the Munda group is related to the rest of the Austro-Asiatic family, and whether the direction of spread should be seen as to or from India, an issue to which I return below. The centre of gravity of the Munda is clearly Eastern India, with the highest language diversity in Southern Orissa (the greater Koraput region), where the north and south Munda subfamilies overlap and where the highly diverse Koraput group of South Munda languages occur. One important lexical item, reconstructed by Zide and Zide (1976), which points also towards an Eastern India focus for Proto-Munda is the sal tree (*Shorea robusta*) since this species is confined to eastern India

and through the Central Ganges, but absent from the west, south and southeast Asia (although related species occur there).

Extinct North Indian Languages

Beyond the modern languages, there is possible evidence for at least two major extinct language groups (see especially Witzel, 1999, 2005). Of particular significance is the evidence for agricultural and botanical terminology borrowed into Indo-Aryan (Table 1), and to a lesser extent Dravidian, which appears to be neither Dravidian nor Munda (Mascia, 1979, 1991:42; Fairservis and Southworth, 1989:137; Kuiper, 1991:14–15; Fuller, 2003a). This includes a possibly earlier, and more upper Gangetic centred 'Language X' (Masica, 1979), which I have previously suggested might be linked to the Neolithic of the Ganges valley, or to be more precise the dispersal of the 'Language X' might be connected with the spread of rice, pulse, millet and cucurbit agriculture in northern India, from a possible epicentre in the hilly flanks of the

01 *Table 1. Vegetation and agricultural loanwords from the Harappan substrate(s) in Indo-Aryan languages (Based on*
 02 *Masica, 1979; Witzel, 1999, 2005a, 2005b; cf. Fuller, 2003d: Table 16.8). Words marked with a 'kv' have been identified*
 03 *by Witzel as etyma of the Kubha-Vipaś or "Para-Munda" language with phonological affinities to Munda/Austro-Asiatic.*
 04 *Witzel has divided those from Vedic sources into 'levels' in terms of probable relative chronology within the textual corpus,*
 05 *with 1.1 being earliest and 1.5 being latest. Some of Masica's substrate words are only attested in more recent languages*
 (MIA = Middle Indo-Aryan, NIA = New Indo-Aryan)

06	07	Term/species	Sanskrit/OIA	Vedic Level	Origins/Archaeology	Linguistic Comments
09	10	Plough (ard)	<i>Lāngala</i>	1.1	Present in Early Harappan period (Kalibangan Ardmarks); Harappan models. Also Bronze Age Mesopotamia, Late Neolithic Europe	Also to Dr. and to PMunda. From a Sumerian original for 'sickle' (Witzel, 1999:16)?
15	16	Sow	<i>Vap-</i>	1.1		Possibly also in Indo-Iranian from Hittite?
17	18	Ploughman, two ploughmen	<i>Kinasa^{kv}</i> <i>Kinara^{kv}</i>		See plough (above)	
19	20	Sow, furrow	<i>Śītū</i>	1.1		
21	22	Winnowing basket	<i>Śúrpa</i>	1.2		
23	24	Lentils, <i>Lens culinaris</i>	<i>Masura</i>	1.2/3	Domesticated in Near East probably by PPNB (8500 BC)	see Table 5.
25	26	Linseed (flax), <i>Linum ussitatissimum</i>	<i>Atasi^ī</i>	1.1	Domesticated in Near East probably by PPNB (8500 BC)	Similar source for PSDr word, see Table 5.
27	28	Date, <i>Phoenix</i> sp.	<i>Khajúra^{kv}</i>	1.2/3	<i>P. sylvestris</i> wild in Sindh and through most of India; <i>P. dactylifera</i> possibly wild in Iranian plateau, or domesticated in Arabia/Mesopotamia	Distinct from PDr and PMunda words, see Table 2.
29	30	Cotton, <i>Gossypium arboreum</i>	<i>Karpasa^{kv}</i>	1.5	Probably domesticated in Pakistan/Baluchistan. At Mehrgarh by c. 5000 BC	
31	32	Indian jambos, <i>Syzygium cumini</i>	<i>Jambu</i>	1.5	Moist and Dry Deciduous woodlands of South Asia	
33	34	Indian jujube, <i>Ziziphus mauretania</i>	<i>Badara-</i>	1.5	Wild throughout drier savanna and steppe zones of South Asia	
35	36		<i>Karkandu^{kv}-</i>	1.5		
37	38	Chaff, straw	<i>Busa</i>	1.5		From <i>busá</i> (Vedic 1.1)
39	40					
41	42	<i>Setaria italica</i>	<i>Priyángu</i>	1.2/3	Domesticated in North China by 5000 BC. Also in Caucasus(?). Finds in South Asia in Late Harappan period. Related <i>Setaria</i> spp. Native to South Asia (see Fuller 2002; 2003b)	
43	44					
45	46					

Table 1. Continued

Term/species	Sanskrit/OIA	Vedic Level	Origins/Archaeology	Linguistic Comments
<i>Panicum miliaceum</i>	Ānu	1.2/3	Domesticated in North China by 5000 BC. Also in Caucasus(?). Finds in South Asia in Late Harappan period (see Fuller 2003b). Similar <i>Panicum sumatrense</i> native to South Asia, cultivated at Harappa by 3000 BC (Weber, personal communication).	
<i>Vigna radiata</i>	Khálva	1.2	Domestication(s) on peninsula (south/east) and northern India. Neolithic finds from Ganges and Southern Neolithic.	
<i>Vigna mungo</i>	Másā	1.2	Domestication on northern peninsula/S. Rajasthan. Early finds from Harappan Gujarat and Neolithic Ganges(?)	
Horsegram, <i>Macrotyloma uniflorum</i> (syn. <i>Dolichos biflorus</i> auct. pl.)	<i>Khala-kula</i> , [=Skt. <i>kulattha</i>]	1.4/5	Domestication(s) Indian savannah zones from Rajasthan through peninsula. Widespread Neolithic finds (Ganges, South India)	Ultimately from PDr, biogeographically less likely from PMunda.
Sesame, <i>Sesamum indicum</i>	<i>Tila</i> ^{kv?}		Domestication in southern Harappan zone(?)	Kv > Skt.; also > SDr1 <i>ellu</i> ; > Sumer. <i>ili</i> ; > Akkadian <i>ellu/ūlu</i>
Wild sesame, <i>Sesamum malabaricum</i>	<i>Jar-tila</i> ^{kv}		Wild in Sindh(?), Punjab, Malabar coast	
Sieve, filter	<i>karotara</i> ^{kv}			
Silk-cotton tree, <i>Bombax ceiba</i> (syn. <i>Salmalia malabarica</i>)	<i>śalmali</i> ^{kv}		Native to Moist Deciduous forests and wetter variants of Dry Deciduous (e.g. teak zone)	
Papal tree, <i>Ficus religiosa</i>	<i>Pippala</i>		Wild throughout monsoonal South Asia, formerly in Baluchistan(?)	
Chickpea, <i>Cicer arietinum</i>	<i>Canaka</i> CDIAL 4579		Domesticated in Near East probably by PPNB (8500 BC)	See Table 5. Attested in Pali, Pkt.
Grasspea, <i>Lathyrus sativus</i>	<i>K(h)esari</i> CDIAL 3925		Domesticated in Near East probably by PPNB (8500 BC)	
Pea, <i>Pisum sativum</i>	*mattara CDIAL 9724		Domesticated in Near East probably by PPNB (8500 BC)	Only in NIA

Table 1. (Continued)

Term/species	Sanskrit/OIA	Vedic Level	Origins/Archaeology	Linguistic Comments
Cucumber, <i>Cucumis sativus</i>	<i>Kṣiraka</i> CDIAL 3667, 3698, 3703		Domesticated in northern India/Himalayan foothills	Only in NIA. Cf. Munda. Remo Sarlay, Kharia <i>kenra</i> , Santali <i>taher</i> MIA
Bitter gourd, <i>Momordica charantia</i>	<i>Kāravella</i> ^{kv}		Domesticated in northern India/Himalayan foothills	
Ivy gourd, <i>Coccinia grandis</i>	<i>Kunduru</i>		Domesticated in northern India/Himalayan foothills. Archaeological finds from Ganges plain by 1800 BC	Unconvincing Iranian and Austro-Asiatic etymologies have been suggested.
Sponge gourd, luffa, <i>Luffa acutangula</i>	* <i>tori</i> CDIAL 5977		Domesticated in northern India/Himalayan foothills. Southern Neolithic finds from mid-Second Millennium BC (Fuller et al., 2004)	
Okra, <i>Abelmoschus esculentus</i>	<i>Bhinda</i>		Domesticated hybrid of Gangetic <i>A. tuberculatus</i> x <i>A. ficulneus</i> , of semi-arid western/peninsular India. Could originally refer to cultivars or wild forms of either parent species.	
Grape, <i>Vitis vinifera</i>	<i>Drākṣha</i>		Domesticated in Southwest Asia, also Indo-Iranian borderlands (?). Present in Pre-Harappan Baluchistan. Harappan fruit crop.	Southworth, 2005:107
Sheep, <i>Ovis aries</i>	<i>Bhedra</i>		Domestication in Near East by late PPNB; additional Asian domestication(s) may include Afghanistan/Baluchistan	MIA, NIA, <?> PMunda * <i>medra</i>

middle Ganges zone (from Allahabad towards western Bihar). Early texts indicate that Indo-Aryan speakers picked up retroflexion as they moved into northwest India/Pakistan (Deshpande, 1995; Tikkanen, 1999), which might be connected with this extinct language. More recently, it has become increasingly clear that another, distinct substrate language or languages heavily influenced early Vedic

Sanskrit, probably mainly in the greater Punjab region (Witzel, 1999, 2005). This has been inferred therefore to be substrate influence from the Harappan language, or the *Kubhā-Vipāś* language (to use Vedic terms) (Witzel, 1999:8–16, 2005:176–179). On the basis of prefixes and consonant clusters, Witzel suggests that this language shares phonological structure (especially prefixes)

01 with Munda or the greater Austro-Asiatic
 02 family of languages, and thus refers to it
 03 as 'Para-Munda'. Witzel has further inferred
 04 a separate dialect or related language that
 05 seems to have been focused in the southern
 06 Indus or greater Sindh region, thus a
 07 southern Harappan language, or *Meluhhan*,
 08 to apply to an ancient Mesopotamia term
 09 for the region. Loanwords, and versions
 10 of the same word, from the Southern and
 11 Northern Harappan dialects can be shown
 12 to have regular phonological differences
 13 (Witzel, 1999:30–37). Current archaeological
 14 orthodoxy implies that actual Proto-Munda
 15 was a relative latecomer to the subcon-
 16 tinent from the Northeast (e.g., Higham, 1998;
 17 Fuller, 2003c; Bellwood, 2005), a problem
 18 which requires reconsideration.

19 This range of substrate words clearly
 20 indicates indigenous agriculturalists at the
 21 time of the arrival of Indo-Aryan speakers
 22 in the subcontinent. The crop species repre-
 23 sented point towards Indus agricultural tradi-
 24 tions and/or that of the upper Ganges,
 25 including species of Southwest Asian origins
 26 as well as Indian species of northern origins.
 27 This also indicates that if 'Language X'
 28 is indeed to be related to a Gangetic
 29 Neolithic tradition, that this had already inter-
 30 mingled with the Harappan (*Kubhā-Vipāś*)
 31 tradition, presumably already by the period
 32 of urbanism. Indeed in the Eastern Harappan
 33 zone, including the upper Yamuna basin there
 34 is growing evidence for an Early Harappan
 35 tradition that incorporated the Southwest Asia
 36 crops with native rice, pulses and probably
 37 millets (cf. Saraswat, 2002, 2003, 2004), and
 38 became part of the Harappan civilization
 39 area in the later Mature period (from 2300–
 40 2200 BC). Vedic terms for singing, dancing
 41 and musical instruments also come from
 42 the *Kubhā-Vipāś* substrate source (Kuiper,
 43 1991:19–20; Witzel; 1999:41). The loans
 44 from the *Kubhā-Vipāś* language, and probable
 45 'Language X' is pronounced in the earliest
 46 parts of the Rig Veda, whereas plausible

Dravidian loans are few and later in the Rig Veda, or post-Rig Veda (and possibly indirect through an intermediary language) as are those of the *Meluhha* language (Witzel, 1999:18–23; cf. Southworth, 2005a). Witzel (1999:24), however, has continued to accept that early Dravidian must have entered the subcontinent via Sindh as non-agricultural farmers, a view which can be contrasted with either the Proto-Dravidian farming vocabulary suggested by Southworth (1976, 1988, 2005a) or the development of agriculture early within the divergent lineages of Proto-Dravidian hunter-gatherer-herders (Fuller, 2003a). Evidence for placing early Dravidian, and perhaps Proto-Dravidian speakers needs to be considered, both through reconstructible vocabulary as well as toponyms.

Early Dravidian Ecology and Agriculture

A challenge is to untangle reliable Proto-Dravidian cultural vocabulary and to relate this to archaeology and evidence for place-names (which may relate to later dispersal of subfamilies of Dravidians). Evidence for a more widespread distribution of Dravidian cultural groups (but not necessarily Proto-Dravidian) in the past, with subsequent conversion to Indo-European languages is clear (see Figure 4; Trautman, 1979; Fairervis and Southworth, 1989; Parpola, 1994; Southworth, 2005a; 2005b). Southworth, for example has traced village place-name endings typical of South India throughout Maharashtra and the Saurashtra peninsula, and with a few in Sindh and Rajasthan (Southworth, 2005a: Chapter 9). In these regions (specifically Gujarat and Maharashtra) cross-cousin marriages are either typical or practiced by some cultural/caste groups, as discussed by Trautman (1979, 1981). There appears to be no evidence that cross-cousin marriages were ever practiced in Gangetic India (Trautman,

01 1981). This implies that this characteristi-
 02 cally Dravidian cultural practice has persisted
 03 in areas where Indo-Aryan languages are
 04 now spoken. This terminology is recon-
 05 structed for Proto-Dravidian by Krishnamurti
 06 (2003:10). The practice of cross-cousin
 07 marriages within the North Dravidian sub-
 08 family remains problematic, with the practice
 09 only recorded amongst the Kurukh but neither
 10 Malto or Brahui; the absence from the
 11 latter can be explained by cultural influ-
 12 ences due to their encapsulation. The recon-
 13 struction of this practice has potential implica-
 14 tions for archaeology and paleodemography,
 15 as it implies a particular kind of extended
 16 kin-network and endogamy that we might
 17 expect to influence aspects of settlement
 18 pattern and perhaps genetic structure within
 19 populations.

20 Two difficulties face historical linguistic
 21 reconstruction: incomplete recording and
 22 anachronistic definitions. As is well-known,
 23 the better recorded languages are the
 24 large and literary languages (Tamil, Telugu,
 25 Kannada, Malayalam), whereas the word
 26 lists available for other languages are
 27 more limited (e.g., absence of data for
 28 names of many crops in North Dravidian
 29 and often Central Dravidian in Fuller,
 30 2003a). While it is undoubtedly true that
 31 absence of a cognate word in these incom-
 32 pletely recorded languages is not necessarily
 33 evidence for absence, it seems methodologi-
 34 cally flawed to reconstruct Proto-Dravidian
 35 from cognates just across the South (SDr1)
 36 and South-Central (SDr2) families, as Krish-
 37 namurti (2003) does. These larger and more
 38 widespread language subfamilies share a
 39 more recent common ancestry and as such
 40 can be expected to preserve later cultural-
 41 historical developments, such as greater social
 42 complexity. The fact that these are the
 43 most widespread and diverse subfamilies
 44 also suggests that they have expanded more
 45 recently and successfully, which may itself
 46 relate to demographic and cultural factors

related to the emergence of more intensive
 agriculture and social complexity. There is
 also a danger in projecting into prehistory
 more modern definitions of words that have
 arisen metaphorically in parallel in the more
 recent past. Krishnamurti (2003) had recon-
 structed a Proto-Dravidian word for “write,”
 but the cognates in all Central Dravidian
 and South-Central languages, as well as most
 South Dravidian languages is glossed as
 ‘scratch’ or make ‘lines’ and indeed only
 in Tamil has this meaning been extended
 to ‘inscribe’ or ‘write’ (Dravidian Etymol-
 ogycal Dictionary [DEDR], entry number
 1623, Burrow and Emeneau, 1984). He has
 also reconstructed ‘king’ from cognates found
 only in the four literary languages (DEDR
 527), i.e. those languages which have been
 historically associated with states, and which
 derives from a compound word meaning “the
 high one,” a fairly recurrent way to make
 terms for rulers (e.g., English, ‘her highness’).
 Meanwhile his large state territory is a term
 (*natu* DEDR 3638) that has extended in Tamil
 from an original meaning of village or culti-
 vated land (cf. Krishnamurti, 2003:7–8), and
 weaving (DEDR 3745) is widely glossed as
 ‘to do matwork’ or even ‘thatch’, and need not
 imply a textile industry! In other words he has
 inferred an essentially urban and Bronze Age
 (or even Iron Age, as he reconstructs iron, but
 from a word meaning ‘black’) for the Proto-
 Dravidians, and he cites their identification
 with the Harappans as possible (although the
 Harappans did not have iron). Nevertheless
 there are many things which have cognates
 across a large number of Dravidian languages,
 and many are to be found in terms of
 plants. While there remain gaps in recording,
 especially for the North Dravidian languages,
 these need to be filled by new linguistic
 field recording or use of sources beyond the
 Dravidian Etymological Dictionary (Burrow
 and Emeneau, 1984).

In terms of pinning down early Dravidians,
 an ecological assessment of tree names may

be useful (compare with Figure 5). In Table 2 there is a selection of trees, that are found in the Dry Deciduous forests of the Peninsula and central India (Puri et al., 1989; Meher-Homji, 2001; Asouti and Fuller, 2006). Many of them also occur in Eastern India and in parts of the Himalayan foothills, but some do not, notably teak. They are entirely monsoonal, absent from the northwest, and also present in smaller patches in Saurashtra (Gir hills) and Rajasthan (Mount Abu). The fact that several of these species have good cognates across all Dravidian subfamilies strongly supports a Proto-Dravidian homeland somewhere in Peninsular India. Culturally, it is of interest that some of these species are ecological dominants in the Dry Deciduous woods of the peninsula, suggesting that this was a particularly salient environment to these people. In addition, a number of these species are useful, as sources of edible fruits, medicines or lac (used for lacquering and as dye). In the drier savannah zones, that in reality intergrade with the dry deciduous, two more fruit trees can be definitely reconstructed to proto-Dravidian, and another nearly so (Table 3). By comparison, Moist Deciduous trees in Table 4 in no cases are recorded to extend to North Dravidian, although they do consistently have cognates across the South and Central branches (absence from North Dravidian could be a limitation of recording). Of interest from this zone is the likely tuber food (perhaps cultivated), taro. Those wetter species present, both *Syzygium* and *Artocarpus* favour watercourses and along rivers extend their ranges into drier zones. Of the species on these lists, only *Ziziphus* and the date palm(s), might possibly have been known in Baluchistan/Iran, and only a few more species (toddy palm, the *Ficus* spp., *Terminalia* spp.) would have occurred in Sindh (and probably very patchily). Thus, taken together, the tree words and place-names point to a restricted peninsular zone for the early Dravidian speakers focused on

the Dry Deciduous and savannah zones. If the Moist Deciduous elements are taken into account (assuming incomplete recording for North Dravidian) then even Saurashtra is less likely (although these species could be found as relicts on Mount Abu, Rajasthan). Thus the plant name evidence clearly contradicts Krishnamurti's (2003:15) claim that early Dravidians were throughout the subcontinent "even as far as Afghanistan."

From similar vegetation zones we find the wild progenitors of the crops that also have wide Dravidian cognates (included in Tables 2–4, also, Fuller, 2003a). It is not possible to know whether knowledge of these plants implies their cultivation (although that is often assumed, e.g., Southworth, 1988), if they might have been encountered wild in the environment. As previously argued (Fuller, 2003a) those species with the deepest Dravidian roots, based on recorded cognates, correspond to those with the oldest archaeological occurrences in South India, and suggest an identification with the Southern Neolithic (also concluded by Southworth, 2005a). Crops that are non-native and archaeologically turn up somewhat later, such as wheat, barley and African crops, tend to have recorded cognates only for Proto-South Dravidian, although in many cases these plants are poorly recorded in the DEDR (which calls for moving to further sources or new recording). There remain some unresolved issues. Crops such as urd and pigeonpea are not part of a widespread and early Southern Neolithic crop package. Pigeonpea arrived later, ca. 1500 BC, spreading from Orissa while urd has been found as a trace occurrence on a few sites, and is rather to be associated with cultures like the Deccan Chalcolithic and Late Harappan Gujarat. If we assume that some (like horsegram and mung) will prove to be cognate in Kurukh and Malto (once additional linguistic sources become available), while others (urd, pigeonpea) do

01 *Table 2. Trees and shrubs of the Dry Deciduous zone cognate across Dravidian subfamilies, indicating those languages for*
 02 *which cognates are documented in their respective subfamilies. DEDR entry numbers indicated (Burrow and Emeneau,*
 03 *1984). Protoform reconstructions from Southworth (2005). For comparison of Indo-Aryan (after Turner 1966) and Munda*
 04 *languages (after Zide and Zide, 1976) are included*

05	06	Species	Uses	SD1	SD2	CDr	ND	DEDR	CDIAL nos.	PMunda
07	<i>Butea monosperma</i> , flame of the forest	Lac host, resin: Bengal kino, 'holi powder' yellow pigment, medicinal uses	X	X	X	X	4981 *mur-ukk-	3149 <i>su-kimšu-ka</i> (from Witzel's K-V language)		
11	<i>Pterocarpus marsupium</i> , Malabar kino tree	resin: Malabar kino,	X	X	X		5520 Ta. <i>venkai</i>			
14	<i>Moringa</i> sp., Drumstick tree, horseradish tree	<i>M. oleifera</i> wild in W. Himalayan foothills, but similar <i>M.</i> <i>concanensis</i> in Nallamalais, Conkan, inner Western Ghats	X	X	X	X	4982 *murum-	> 10209 <i>murangi</i> (H., Or.). 12437 <i>sigru</i>		
20	<i>Schleichera oleosa</i> , Ceylon oak	Lac host (true shellac), edible leaves, fruits and seeds	X	X	X	X	4348 *puc-/*puy-			
23	<i>Ficus religiosa</i> , Pipal	One of the Sacred figs. Introduced to peninsula?	X	X			202 PSDr *ar-ac-al	8205 <i>pippala</i>		
26			X	X	X		2697 *cuw-			
27	<i>Ficus benghalensis</i> , banyan	One of the sacred figs, introduced to peninsula??	X	X	X		382 *āl	7610 <i>nyagrodha</i>		
30	<i>Phyllanthus emblica</i> , emblic myrobalan	Edible fruit, medicinal	X	X	X		3755 *nelli-	1247 <i>amalaka</i>		
34	<i>Feronia limonia</i> , wood apple	Edible fruit	X	X	X		574 Te. <i>usirika</i> (?) 5509 *wel-V-	2749 <i>kapittha</i>		
37	Bombax ceiba, silk-cotton tree	Source of fibre	X	X	X		495 & 5539	12351 <i>Śalmali</i> , <i>Śimbala</i>		
38	<i>Gmelina arborea</i>	Edible fruit, medicinal root and bark	X	X	X		1743 Ta. <i>kumīr</i>	3082 <i>karsmarya</i> ^{kv} 4030 <i>gambhari</i>		
40	<i>Tectona grandis</i> , teak	Medicinal uses	X	X	X		3452 *tēnkk-	? >12369 <i>saka</i>		
42	<i>Terminalia tomentosa</i>	Dominant peninsular deciduous tree	X	X	X		4718 *mar-Vt-	963 <i>asana</i>		
44	<i>Terminalia bellerica</i>	Medicinal uses	X	X	X		3198 *tānt-i	11817 <i>vibhidakā</i>		

Table 2. *Continued*

Species	Uses	SD1	SD2	CDr	ND	DEDR	CDIAL nos.	PMunda
<i>Phoenix sylvestris/ dactylifera</i> , wild forest date, domestic date	Edible fruit	X	X	X	X	2617 *cīn(t)-	<i>Khajúra</i>	*Vn-deñ, *raloXg
<i>Borassus flabellifer</i> , toddy palm (may also mean <i>Caryota urens</i> , the west coast's toddy palm)	Sweet fruit, edible, generally fermented	X	X	X	X	3180 *tāZ	>Skt. <i>Tāla</i> CDIAL 5750	
<i>Cordia myxa</i> , sebestan plum	Edible fruit		X	X		3627 5408	1990 <i>uddala</i> 12610 <i>selu</i>	
<i>Azadirachta indica</i> , neem	Medicinal uses, sacred	X	X			5531 *wē-mpu	7245 <i>nimba</i>	

Table 3. *Trees and shrubs of the dry evergreen scrub and zone cognate across Dravidian subfamilies, indicating those languages for which cognates are documented in their respective subfamilies. DEDR entry numbers indicated (Burrow and Emeneau, 1984). Protoform reconstructions from Southworth (2005). For comparison words Indo-Aryan (after Turner, 1966) and Munda languages (after Zide and Zide, 1976) are included*

Species	Uses	SD1	SD2	CDr	ND	DEDR	CDIAL nos.	PMunda
<i>Diopsyros melanoxylon</i>	Edible berry, a kind of ebony wood, used in tanning	X	X	X		3329 3464	>5872 tumburu-.	
<i>Tamarindus indica</i> , tamarind	Edible fruits, native(?) to India as well as Africa	X	X	X	X	2529 *cin-tta	1280 <i>amla</i> *(ro)joXd	*R-tiXn also(?)
<i>Ziziphus mauritania</i> , Indian jujube	Edible fruit	X	X	X	X	475	Skt. <i>badara-</i>	
<i>Macrotyloma uniflorum</i> , horsegram	Edible pulse, crop	X	X	X		2153 *koL	>Skt. <i>kulattha</i> , or from PM (?)	*kodaXj <?>Skt./PDr. Dr. source more likely

not, then we would have clear linguistic stratification that reflects that of archaeobotany, and implies that indigenous peninsular agriculture (perhaps focused on the Eastern Ghats Dry Deciduous zones north of the Krishna River) can be associated with Proto-Dravidians. The Southern Neolithic, as it is currently known, would then reflect one of the cultural offshoots as this early Dravidian

agriculture expanded. While the status of plant cultivation amongst Proto-Dravidians remains unresolved, the herding of animals seems clear with reconstructed words for cow *ām (DEDR 334), bull *erum- (DEDR 815), two probable sheep/goat terms (one for each species, or female and male?) *yātu- (DEDR 5153), *kat-ā- (DEDR 1123) (Southworth, 2005a: Chapter 8, Appendix A).

01 *Table 4. Trees and shrubs of the Moist Deciduous zone cognate across Dravidian subfamilies, indicating those languages*
 02 *for which cognates are documented in their respective subfamilies. DEDR entry numbers indicated (Burrow and Emeneau,*
 03 *1984). Protoform reconstructions from Southworth (2005). For comparison words from Indo-Aryan (after Turner, 1966)*
 04 *and Munda languages (after Zide and Zide, 1976) are included*

Species	Uses	SD1	SD2	CDr	ND	DEDR	CDIAL nos.	PMunda
<i>Artocarpus integrifolia</i>	Edible fruit	X	X	X		3988 *pal-ac/ *pan-ac	7781	
<i>Syzygium cumini</i> , Indian jambos or java plum	Edible fruit	X	X	X		2917 Ga. Nendi *ñānt-Vl also SDr 2914 Ta. naval	Jambu	NM *koXda SM *ko?-deX
<i>Vigna radiata</i> , mung bean	Edible pulse, crop	X	X	X		3941 *payaru (S) *pac-Vt/*pac-Vl	10198 mudgā, khálva	
<i>Vigna mungo</i> , urd bean	Edible pulse, crop	X	X	X		690 *uZ-untu	>1693 *uddida 10097 mása	*rVm
<i>Cajanus cajan</i> , pigeon pea	Edible pulse, crop		X	X		4862 *minimu 3353 *tu-var-	>Skt. malada >Skt. tubarika	*sVr/d – u/aj *sVr/d – oXm
<i>Colocasia esculentum</i> , taro	Edible, tuber crop		X	X	X	1213 *kar-Vnti 2004 *kic-ampu	?> Skt. Kemuka, kacu, kacvi	
Sesame (wild?), <i>Sesamum indicum</i> / <i>malabaricum</i>	Edible oil seed	X	X	X		3720 *nuv-	Skt. tila, jar-tila (wild sesame); cf ellu in SDr, and similar in ancient Sumer and Akkad.	

25 Some challenges for further investigation
 26 remain. First, it should be noted that tables
 27 used here have excluded the native millets and
 28 rice. As discussed in Fuller (2003a), millet
 29 terms that can be extracted from botanical
 30 sources are often unrepresented in the DEDR,
 31 and key millet species that occur archaeo-
 32 logically, especially *Brachiaria ramosa*, are
 33 not recorded at all. Between (some) millet
 34 species we might expect a substantial degree
 35 of semantic shift, as these species have many
 36 superficial similarities. Thus, it is of interest
 37 that Southworth (2005a) has reconstructed two
 38 millet terms to Proto-Dravidian, with another
 39 four added at the Proto-South Dravidian stage,
 40 and two more to the proto-language of Tamil
 41 and Kannada (Southworth, 2005a:247–248).
 42 From southern Neolithic sites there are two
 43 predominant millet crops (Fuller et al., 2001,
 44 2004), whereas by the early historic period
 45 as documented on archaeological sites in
 46 Tamil Nadu seven millets have been identified

archaeologically (but not including Sorghum) (Cooke et al., 2005). I have also omitted rice, for which Southworth (2005a: Chapter 7, B8) reconstructs 3 possible early Dravidian terms, although glosses in some languages suggest that these might originally have been more general terms for ears of grain, crops, cooked grain (and I would suggest perhaps some other crop, such as a millet). While South and North Munda each have a reconstructible terms for rice, with apparent cognates in other Austroasiatic languages, there is not one coherent rice etymology for the whole family, and etymologies like those in Mahdi (1998) and Witzel (1999:30–33) also use proto-forms for millet terms. In general, I would regard such a semantic shift as more likely to have occurred in the other direction, from older millet terms to rice (which is everywhere a more productive and increasingly widespread crop in historical

times). Horse terms, which include those for donkeys and probably wild hemiones, are also problematic with three possible terms reconstructed to Proto-Dravidian or Proto-S/C Dravidian (Southworth, 2005a, Chapter 8, Appendix A; cf. Witzel, 2005:103–104). One problem is that the archaeozoology of the equid species in peninsular India is still poorly documented and the actual semantic categories of the proto-words may not be clearly fixed. Southworth expresses the most confidence in a Proto-South/Central Dravidian term for donkeys (DEDR 1364, **kaz-ut-ay*), which might plausibly have spread to South India by the third millennium BC (from ultimate origins in Egypt or the Sahara). Sesame also raises questions, as linguistic data suggest a reconstruction for one term back to Proto-South/Central Dravidian, although there is no archaeobotanical evidence yet for its early use, as early as native pulse (and millet) crops which we know were being cultivated in Neolithic South India. While I previously suggested that this species may have been encountered by early Dravidians in wild form (Fuller, 2003a), since it is native to South Asia, further consideration makes this less likely. The habitats on the peninsula where sesame occurs are restricted to the wet west coast near sea-level, including coastal sand dunes (personal botanical field observation), and such an ecology is incompatible with the deciduous woodland species that readily reconstruct to Proto-Dravidian or Proto-South/Central Dravidian. Sesame is likely to have been domesticated prior to the Mature Harappan period somewhere in the greater Indus region (Fuller, 2003d; Bedigian, 2004), in line with its Para-Munda etymology. There is no evidence to suggest dispersal to the peninsula prior to the Late Neolithic/Chalcolithic period, i.e. the same time horizon as wheat, barley and some African crops, which would be in line with the northwestern *tila* loanword in Proto-South Dravidian.

Archaeological evidence can make a significant contribution to dating the antiquity of languages. While one might suggest correlation between a reconstructed proto-language vocabulary and an archaeological culture horizon, it is easy for dating to be wrong, since technologies and crops will have continued in use. On the other hand, when different language sub-families have distinct words for items of culture, we may hypothesize that such technologies (or domesticates) entered the cultural repertoire independently in each of the language/culture sub-families, and archaeological evidence for the adoption of such technologies might be used to place a general minimal age for the separation of these branches. Evidence for a number of items which have distinct roots across the South, Central and North Dravidian language groups, suggest a mid-second millennium BC minimal divergence for the Central and South Dravidian languages on the basis of archaeological dates. This includes domesticates that have distinct etyma across these three language subfamilies, including several tree-fruit cultivars (mangoes, *Citrus* spp., bael fruits), as well as chickens (see Table 5). In addition, adopted tree crops from Southeast Asia can be reconstructed only for Proto-South Dravidian, *Areca* nuts, coconuts and sandalwood. Wood charcoal evidence for sandalwood indicates its establishment in South India by ca. 1300 BC, with probable *Citrus* tree cultivation from the same period (Asouti and Fuller, 2006). Bananas may have been introduced even later since the two South Dravidian branches have different roots. In the future we may expect archaeological phytolith evidence to be able to pin down the date of introduction of Bananas to this region; it now appears that some banana cultivar was established in the lower Indus region already in Harappan times (Madella, 2003). These data suggest therefore that Proto-South Dravidian might be identified with the latest phase of the Southern Neolithic and the transition to

01 *Table 5. Selected plants and livestock with separate linguistic roots from different Dravidian subfamilies, indicating those*
 02 *languages for which cognates are documented in their respective subfamilies. DEDR entry numbers indicated (Burrow and*
 03 *Emeneau, 1984). Protoform reconstructions from Southworth (2005). This list included introduced crops. For comparison*
 04 *words from Indo-Aryan (after Turner, 1966) and Munda languages (after Zide and Zide, 1976) are included*

05	Species	Uses, comments on	Dravidian Languages (DEDR entry nos.)				Indo-Aryan	Munda
06		Origins (in relation to South India)	PSDr	[PDr.3]				
07			SDr1	SDr2	CDr	NDr		
08			[SDr]	[SCDr]				
09	Mango <i>Mangifera indica</i>	Edible fruit, wet Western Ghats forests and introduced cultivars from northeast India (Assam)	4782 PSDr	*mām	4772	2943	*uXli/ *uXla	
10							SM	
11							*kaj'-er/	
12							*kag'-er	
13							(green	
14							mango)	
15	Bael <i>Aegle marmelos</i>	Edible fruit, introduced as cultivar from central/north India(?)	1910 Ta.	4821 Te. maredu	4821 SDr2>Nk	2072 Kur. Xotta	[p.457] Skt. bailvam, Pkt. Billa-	
16								
17								
18								
19	Mast tree <i>Calophyllum inophyllum</i>	Restricted distribution: Western Ghats wet forests, west and east coast pockets	4343 PSDr	*pun-ay				
20								
21								
22								
23	Coconut <i>Cocos nucifera</i>	Introduced from Malaysia/ Indonesia, via Sri Lanka(?)	3408 PSDr	*ten-kāy “southern-fruit”			Nārikela	
24							Ramayana	
25							Skt.	
26	Citron, <i>Citrus medica</i>	Introduced to south by 1300 BCE from central-eastern Himalayas	4808 Ta. <i>Matalai</i> , PSDr. <i>Māt-al</i>				Cf. 10013	
27							Skt.	
28							<i>Matu-lunga-</i>	
29								
30	Orange, <i>Citrus aurantium</i>	Introduced from SE Asia via NE India(?)	552 PSDr	*ize				
31								
32	Sandalwood, <i>Santalum album</i>	Introduced from Indonesia by 1300 BCE	2448 PSDr	*cāntu				
33								
34	Banana, <i>Musa paradisiaca</i>	Introduced from Malaysia/ Indonesia, via Sri Lanka(?). In Sindhi Harappan Kot Diji by 2000 BCE	5373 PSDr1	205 PSDr2	754 Pa., Ga.			
35								
36								
37								
38								
39								
40	Areca nut, <i>Areca catechu</i>	Introduced from Southeast Asia	88 PSDr	*at-ay-kkāy				
41								
42	Mustard, <i>Brassica</i> sp., probably <i>B. juncea</i>	In northwestern subcontinent by the Harappan civilization. Native there(?)	921 PSDr	*ay-a-				
43								
44								
45								

46

(Continued)

Table 5 (Continued)

the Megalithic period in South India, in the time horizon 1500–1300 BC, and certainly no earlier than 1800–1700 BC. Central Dravidian is likely to have diverged prior to this date (by ca. 2000 BC, before the introduction of wheat and barley), and North Dravidian even earlier (but further linguistic clarification is needed on native crop words before a date can be assigned). Further support comes from other technologies such as those of metal working. Terms for gold and smelting can be reconstructed from Proto-South Dravidian only (Southworth, 2005a). Archaeological evidence for metals is restricted to Phase III of the Southern Neolithic (i.e., 1800–1400 BC), including gold objects from Tekkalakota (1700–1400 BC) (Nagaraja Rao and Malhotra, 1965, Korisettar et al., 2001a). It is also at the Proto-South Dravidian level that a number of terms that suggest incipient social hierarchy (and political economy) are found (e.g., chiefs or lords, tribute, commodity/ware, ‘money’ [some standard of exchange value], battle/army, a range of buildings and settlement types) (Southworth, 2005a: Chapter 8, Appendix B), which is congruent with the evidence for the evolution towards social complexity from Neolithic Phase III towards the Megalithic (Fuller and Boivin, 2005; Fuller et al., 2006).

form the sister group to Munda languages (e.g., Zide and Zide, 1976; Diffloth, 2005; see also, Blench, 1999, 2005). Implicit in most of this literature is the assumption that rice has a single origin to be located in South China. For reasons already reviewed above, this assumption is in error. It is contradicted by genetic evidence from rice, and is inconsistent with currently available archaeobotanical evidence, which instead indicates that Chinese *japonica* rice domestication is distinct from *indica* rice domestication, probably in the Ganges and perhaps an additional locus. Since Mon-Khmer and Munda share (some) agricultural vocabulary (Zide and Zide, 1976; Blench, 2005), including terms for rice, but not a strongly rice-focused vocabulary (Fuller, 2003a; Blench, 2005) this was taken to imply dispersal from the Chinese centre of rice domestication. The archaeobotanical case negates this, leaving it an open question whether Mon-Khmer or Proto-Munda should be seen as dispersing.

The evidence of an Austroasiatic substrate in the Indus valley and new linguistic research on comparative phonology and syntax both support an indigenous development for Proto-Munda and a dispersal eastwards for Mon-Khmer. If the Austroasiatic affiliation of the inferred *Kubhā-Vipāś* and *Melluha* languages (‘Para-Munda’) are correct then this would imply a much earlier and more widespread distribution of pre-Munda/Austro-Asiatic. As already noted, the reconstructed vocabulary (e.g., Sal trees) and modern linguistic geography suggest an Eastern Indian (Orissan) homeland for Proto-Munda, which would suggest that these language substrates, as well as Munda-like placenames in the Gangetic zone (Witzel, 1999:15, 2005:179–180) come from an earlier pre-Proto-Munda branch of Austro-Asiatic. This is also suggested by the phonological structure of Para-Munda vis-à-vis modern Austro-Asiatic languages. As discussed by Witzel (2005:178–179), these substrate loanwords have active prefixing,

33 Early Munda agriculture 34 and Austroasiatic Dispersals

36 New linguistic research suggests that Munda
37 ancestry, and the larger Austroasiatic family,
38 should be placed in South Asia. In recent
39 discussions archaeologists have assumed
40 that Munda was a relative late-comer to
41 the subcontinent, coming from Southeast
42 Asia/Southwest China (e.g., Higham, 1998,
43 2003; Bellwood, 2001, 2005; Bellwood and
44 Diamond, 2003; Fuller, 2003c). This has also
45 tended to be the assumption of linguists, since
46 the Southeast Asian Mon-Khmer languages

01 a small number of possible infixes and
 02 no clear suffixes. This is typical of the
 03 eastern Austro-Asiatic languages of the Mon-
 04 Khmer family (Diffloth, 2005; Donegan and
 05 Stampe, 2004), whereas Munda tends to be
 06 suffixing (with other infixes). As explored
 07 in detail by Donegan and Stampe (2004:20)
 08 proto-Austroasiatic is inferred to have had
 09 a ‘rising rhythm’ with one or two syllable
 10 words stressed on the second syllable, pre-
 11 fixing and analytic grammar (i.e., without
 12 complex declensions and conjugations) based
 13 on subject-verb-object ordering. This rhythm
 14 has been retained in Mon-Khmer, whereas in
 15 Munda it has evolved in an opposite direction,
 16 to a ‘falling rhythm’ in which grammar
 17 became synthetic based on subject-object-verb
 18 ordering in which suffixes became necessary
 19 for marking gender, tense, etc. for subordinate
 20 clauses. While falling rhythm is typical across
 21 language families in South Asia, the Munda
 22 suffixes do not appear to be either borrowings
 23 or calques (translations) from Dravidian
 24 (Donegan and Stampe, 2004:19), but instead
 25 they evolved for reasons of simplifying speech
 26 rhythm (a ‘trochaic bias’) (ibid.:25–26). This
 27 falling rhythm is an important trait uniting
 28 Munda languages (*sensu stricto*), and thus
 29 the lack of clear suffixing in Witzel’s ‘Para-
 30 Munda’ would place this language lineage
 31 prior to, or separate from, the Proto-Munda
 32 lineage. Donegan and Stampe (2004:27)
 33 conclude that the diversity of Munda struc-
 34 tures and low level of Munda cognates, in
 35 contrast to Mon-Khmer, argues that this is
 36 the older branch of this language family,
 37 thus suggesting a South Asian Austroasiatic
 38 homeland. Similarly, acceptance of ‘Para-
 39 Munda’ as a branch prior to the diver-
 40 sification of Proto-Munda (and presumably
 41 Mon-Khmer) also argues for greater antiquity
 42 of Austroasiatic in South Asia than in
 43 Southeast Asia. This further implies that
 44 if the Austric hypothesis, which links
 45 Austronesian languages of island Southeast
 46 Asia with Austroasiatic, is accepted (cf. Blust,

1996b; Higham, 2003) then this divergence
 must be placed in deeply, pre-agricultural
 times and related probably to a Pleis-
 tocene demographic process (see also, Blench,
 1999, 2005).

In terms of agricultural history, we
 probably need to assume at least two
 origins (or adoptions) of agriculture within
 Austroasiatic, as indicated by the label “A”
 on Figure 8. In the history of the ‘Para-
 Munda’ lineage Near Eastern wheat-barley
 agriculture was adopted, as documented
 archaeologically in Baluchistan and the
 Indus valley. Note that neither of these
 cereals or the winter pulses or flax have
 ‘Para-Munda’ etymologies. Additional local
 domesticates were added, such as cotton,
 sesame and some fruits (*Phoenix sylvestris*,
 jujube and Indian jambos), all with ‘Para-
 Munda’ etymologies. Some species from the
 Gangetic basin were also adopted, carrying
 with them loanword names and perhaps
 accompanying some immigrant farmers (of
 Language X), such as rice, cucumbers (and
 other gourds) and native *Panicum* and *Setaria*
 millets (which would have been subsequently
 replaced by larger grained *P. miliaceum*
 and *S. italica*), and native Indian pulses
 (horsegram, mung and urd).

By contrast the (pre-)Proto-Munda lineage
 somewhere in Eastern India followed a
 different trajectory to agriculture. These
 people adopted (or domesticated) two or three
 small millets, rice, probably pigeon pea and
 mungbean, while adopting horsegram and
 perhaps a small millet from early Dravidian
 groups or some intermediary, extinct group.
 It may be that during this process of
 agricultural beginnings in Eastern India that
 demographic expansion and cultural differ-
 entiation led some offshoot group to move
 eastwards towards Southeast Asia retaining
 some tradition of shifting cultivation that
 involved rice and/or millets (ancestral to Mon-
 Khmer) (labelled ‘B’). If this group had an
 economic emphasis on shifting cultivation in

01 hilly zones then we might tentatively identify
 02 them with the Neolithic of the Orissa hills
 03 which produced some shouldered celts, which
 04 have long been taken to indicate connections
 05 with Southeast Asia (e.g., Wheeler, 1959),
 06 but the arrow of dispersal needs to now be
 07 reversed to an out-of-India dispersal. Proto-
 08 Munda agriculture should perhaps be placed
 09 in the Orissan lowlands. The reconstructed
 10 rice and millet terms in Proto-Munda all
 11 show evidence of having suffered semantic
 12 shift between species (including between rice
 13 and millets) and often plausible connections
 14 with other language families as loanwords
 15 in one direction or another (cf. Zide and
 16 Zide, 1976:1311; Mahdi, 1998; Witzel, 1999:
 17 30–33). Words for goat, chicken, and draught
 18 cattle (zebu?) suggest that the Proto-Munda
 19 speech community existed at the time these
 20 taxa were dispersed as domesticates across
 21 northern India, i.e., in the mid to late third
 22 millennium BC. The reconstructed word for
 23 water buffalo is perhaps more likely to imply
 24 a separate domestication in eastern India,
 25 as there is no archaeological basis to infer
 26 that the domesticated water buffalos of the
 27 Sindhi Harappan (e.g., Dholavira) dispersed
 28 widely. It is of note that the water buffalo
 29 is symbolically significant amongst ethnoge-
 30 graphic Munda-speaking peoples (Zide and
 31 Zide, 1976:1319). It would be within the
 32 cultural context of these emergent agricul-
 33 turalists of eastern India, that key linguistic
 34 changes occurred (marked as “C” in Figure 8,
 35 such as the rhythmic and word order changes).
 36 Then one cultural lineage (North Munda) must
 37 have been more prone to dispersal, perhaps
 38 with more of an ancestral emphasis on shifting
 39 cultivation (a second wave of hill culti-
 40 vators), while the other (South Munda) was
 41 more prone to sedentarisation and increasing
 42 population density. It was within this more
 43 sedentary group that pigs were domesticated
 44 or adopted and became culturally salient
 45 (Figure 8, “D”).

Conclusion: A Mosaic of Origins, Expansions and Interactions

Currently we are on the brink of being able to produce a new synthesis of early agriculture and later Holocene population history in South Asia. Both the archaeology of early agriculture and the historical linguistics of South Asia have undergone major advances in data collection and analysis in recent years. Nevertheless there remain major gaps in the evidence. In archaeology, there are major regional biases in Neolithic excavation and in systematic archaeobotany. Key regions such as central India (Madhya Pradesh) and Eastern India (Jarkhand, Chattisgarh, Orissa, northern Andhra) are still largely unknown and we are forced into speculative scenarios. In the Gangetic basin and South India we face the archaeological challenge that our better documented Neolithic sites are already fully agricultural and more or less sedentary. Their less sedentary, more archaeologically ephemeral predecessors await discovery, although the new research findings at Lahuradewa (Uttar Pradesh) hint at some of the insights such sites may soon yield. As some have long-maintained (e.g., Possehl and Rissman, 1992; Possehl, 1999) there may be a stage during which animal herding spread prior to the beginnings of plant cultivation, but which parts of South Asia and which cultural traditions participated in this remains to be clearly documented through archaeology, in which modern archaeozoology is critical. In the northwest of India and Pakistan a research focus on the Harappan civilization has left Neolithic developments poorly understood.

In terms of linguistics, further collection of data from small languages and relating to ‘minor’ crops is needed. As noted, millets are poorly represented in linguistic sources, both because the botany of linguistic sources is not always clear (and always poorly documented in botanical terms) and because these crops

01 are often not of great subsistence significance in the modern day. Similar problems
02 surround certain vegetable crops, such as the
03 numerous indigenous gourd (cucurbitaceae)
04 crops of northern India. In addition, a more
05 realistic and botanically informed assessment
06 of semantic shift between millets, rice and
07 other cereal crops is needed. As recent
08 research indicates (e.g., Witzel, 1999, 2005;
09 Southworth, 2005a), there is much to gained
10 by further assessment of substrate loanwords
11 and ancient borrowing between languages.
12 The integration of such linguistic findings
13 with an archaeological framework of cultural
14 complexes and chronology offers the greatest
15 promise for an integrated long-term cultural
16 history of South Asian populations. Some
17 working hypotheses in this direction have
18 been offered in the present chapter. Once such
19 a framework is in place, historical linguistics
20 potentially offers archaeologists access to less
21 material aspects of culture, such as concepts
22 of kinship and the supernatural.

24 The Neolithic revolution fuelled a major
25 demographic expansion. While population
26 density can be theorized to have promoted
27 sedentism (e.g., Rosenberg, 1998), this in
28 turn helped to accelerate population growth.
29 Archaeology indicates a number of distinct
30 Neolithic cultural traditions likely to be based
31 on separate transitions from hunting-and-
32 gathering that involved domestication. This
33 is likely to have occurred at least in South
34 India, Western India (Gujarat), the middle
35 Ganges and probably the Orissan region,
36 as well as distinctive developments in the
37 Indus basin and hill regions to its west.
38 These, and possibly other, Neolithic begin-
39 nings must have involved population ex-
40 pansions of culturally distinct groups, presumably
41 with different languages. In addition, the
42 spread of farming through the incorporation
43 of hunter-gatherers might also be expected
44 to have involved language shift to estab-
45 lished farmer languages, presumably through
46 high degrees of bilingualism that can account

for some of the varied substrates detectable in South Asian languages. As suggested above, the Neolithic languages that underwent expansion, and subsequent diversification, include Proto-Munda (in Eastern India), Proto-Dravidian (or an early derivative) in South India, 'Para-Munda' in the Greater Indus region, and perhaps 'Language X' in the Ganges basin. In Gujarat or south Rajasthan we might perhaps think in terms of a proto-Nahali agricultural language or a second early branch of Dravidian. All of this implies that a large degree of cultural (and linguistic) diversity was already established in South Asia prior to the Neolithic, and this must be accounted for by population expansions during an era of hunter-gatherers, such as during the Pleistocene.

The language history of South Asia extends back to the entry of modern humans, and must be complicated by processes of internal expansion and differentiation and further influxes. In general terms such population processes are indicated in the genetic diversity of modern populations in South Asia, which points to a substantial proportion of human biological diversity as developing within South Asia since the Pleistocene (e.g., Su et al., 1999; Kumar and Mohan Reddy, 2003; Kivisild et al., 2003; see Endicott et al., Stock et al., this volume). Technological innovations and climatic changes must have contributed to these processes (James and Petraglia, 2005). Oxygen Isotope Stage 3 saw the expansion of wet forests as well as grass-dominated savannas, especially after ca. 50,000 years ago (Prabhu et al., 2004), and this presumably promoted the expansion of human groups and facilitated migrations between South Asia and areas to the west. Subsequent dry climate of the last glaciation may have forced population distributions to adjust and separated lineages on either side of the greater Thar Desert. The wetter conditions of the terminal Pleistocene and early Holocene, provided a context that would

01 have encouraged expansion and migration
 02 again. It is presumably to such processes, and
 03 numerous still imperceptible local processes,
 04 that language dispersals into South Asia and
 05 deep separations with related cultural lineages
 06 must be attributed. Linguistic macro-phyla
 07 hypotheses need to be considered against
 08 such a backdrop, including the proposed links
 09 between Nahali and Ainu (perhaps at the
 10 earliest stage), links between Austroasiatic
 11 and Austronesian (and perhaps Sumerian, see
 12 Witzel, 1999:15–16) or Dravidian and Elamite
 13 (and perhaps Afro-asiatic or Sumerian,
 14 see Blazek 1999) (at a later stage, but
 15 probably still Pleistocene). It is within
 16 these earlier stages in which Austroasiatic
 17 became widespread across northern South
 18 Asia, from the Para-Munda Indus region
 19 to the Proto-Munda Orissan region, and
 20 during which the ancestors of Proto-Dravidian
 21 became established on the Peninsula.
 22 The Neolithic revolution then provided a
 23 major demographic transition through which
 24 established languages expanded and diver-
 25 sified in parallel in several areas of the
 26 subcontinent. Subsequently language changes
 27 occurred through processes of social inter-
 28 actions that were political as much as
 29 demographic, reflected in the extensive
 30 evidence for substrates and loanwords (e.g., in
 31 Indo-Aryan), and contextualized by the
 32 increasing social complexity of the Chalcol-
 33 ithic and Iron Age societies of South
 34 Asia. Further research in linguistics, archae-
 35 ology and their integration has much to
 36 reveal about the dynamics of these cultural
 37 histories.

39 Acknowledgments

41 I would like to acknowledge my debt to
 42 several friends and collaborators who have
 43 introduced me to the Neolithic archaeology
 44 of various parts of India, including Ravi
 45 Korisettar, P. C. Venkatasubbaiah, J. N. Pal,
 46 M. C. Gupta, Rabi Mohanty, Kishor Basa,

Basanta Mohanta, and K. Rajan. My ideas
 have also developed through ongoing discus-
 sions with Nicole Boivin, Emma Harvey,
 Michael Petraglia, Eleni Asouti and Marco
 Madella. I have benefited from several discus-
 sions and arguments with my archaeobotanist
 colleagues, Mukund Kajale, K.S. Saraswat
 and Steve Weber in recent years, which have
 helped to me to clarify my thinking on our
 present state of knowledge with regards to
 early plant cultivars, and I accept respon-
 sibility for my differences of opinion. My
 avocational thinking on Indian linguistics has
 benefited from recent discussions and corre-
 spondence with Frank Southworth, although
 any mistakes are likely my own. I must
 thank Qin Ling for introducing me to aspects
 of the Chinese Neolithic, including material
 published in the Chinese language. This paper
 has been improved by those who took time
 to read and comment on various drafts,
 including Emma Harvey, Edgar Samara-
 sundara, Archana Verma, Mary Anne Murray
 and three anonymous peer-reviewers.

References

Allchin, B., Allchin, F.R., 1982. The Rise of Civilization in India and Pakistan. Cambridge University Press, Cambridge.

Allchin, B., Allchin, F.R., 1995. Rock art of north Karnataka. Bulletin of the Deccan College Post-Graduate and Research Institute 54–55, 313–339.

Allchin, F.R., 1963. Neolithic Cattle Keepers of South India. A Case Study of the Deccan Ashmounds. Cambridge University Press, Cambridge.

Allchin, F.R., Allchin, B., 1974. Some new thoughts on Indian cattle. In: van Lohuizen-de Leeuw, J.E., Ubags, J.N. (Eds.), South Asian Archaeology 1973. E.J. Brill, Leiden, pp. 71–77.

Ammerman, A.J., Cavalli-Sforza, L., 1971. Measuring the rate of spread of early farming in Europe. Man (n.s.) 76, 674–688.

Asouti, E., Fuller, D.Q., 2006. Trees and Woodlands in South India: An Archaeological Perspective. UCL Press, London.

01 Asouti, E., Fuller, D.Q., Korisettar, R., 2005. Vegetation context and wood exploitation in the southern Neolithic: preliminary evidence from wood charcoals. In: Franke-Vogt, U., Weisshaar, J. (Eds.), *South Asian Archaeology 2003. Proceedings of the European Association for South Asian Archaeology Conference, Bonn, Germany, 7th - 11th July 2003*. Linden Soft, Aachen, pp. 336–340.

02 Bedigian, D., 2004. History and lore of sesame in southwest Asia. *Economic Botany* 58(3), 330–353.

03 Behera, P.K., 2002. Khameswaripali: a protohistoric site in the middle Mahanadi Valley, Orissa: results of first season (1996–97) excavation. In: Sengupta, G., Panja, S. (Eds.), *Archaeology of Eastern India: New Perspectives*. Jayasree Press, Kolkata, pp. 487–514.

04 Bellwood, P., 1996. The origins and spread of agriculture in the Indo-Pacific region: gradualism, diffusion or revolution and colonization. In: Harris, D.R. (Ed.), *The Origins and Spread of Agriculture and Pastoralism in Eurasia*. UCL Press, London, pp. 465–498.

05 Bellwood, P., 1997. *Prehistory of the Indo-Malaysian archipelago*. University of Hawaii Press, Honolulu.

06 Bellwood, P., 2001. Early agriculturalist population diasporas? Farming, languages and genes. *Annual Review of Anthropology* 30, 181–207.

07 Bellwood, P., 2005. *First Farmers: The Origins of Agricultural Societies*. Blackwell, Oxford.

08 Bhattacharya, S., 1975. *Studies in Comparative Munda Linguistics*. Indian Institute for Advanced Study, Simla.

09 Blazek, V., 1999. Elam: a bridge between Ancient Near East and Dravidian India? In: Blench, R., Spriggs, M. (Eds.), *Archaeology and Language IV*. Routledge, London, pp. 48–78.

10 Blench, R., 1999. Language phyla of the Indo-Pacific region: recent research and classification. *Bulletin of the Indo-Pacific Prehistory Association* 18, 59–76.

11 Blench, R., MacDonald, K.C., 2000. Chickens (II.G.6). In: Kiple, K.F., Ornelas, K.C. (Eds.), *The Cambridge World History of Food*. Cambridge University Press, Cambridge, pp. 496–499.

12 Blench, R.M., 2004. Archaeology and language: methods and issues. In: Bintliff, J. (Ed.), *Blackwell's Companion to Archaeology*. Blackwell, Oxford, 52–74.

13 Blench, R.M., 2005. From the mountains to the valleys: understanding ethnolinguistic geography in Southeast Asia. In: Blench, R.M., Sagart, L., Sanchez-Mazas, A. (Eds.), *Perspectives in the Phylogeny of East Asian Languages*. Curzon Press, London, pp. 31–50.

14 Blench, R.M., Spriggs, M., 1999. General introduction. In: Blench, R.M., Spriggs, M. (Eds.), *Archaeology and Language IV*. Routledge, London, pp. 1–20.

15 Blust, R., 1996a. Austronesian culture history: the windows of language. In: Goodenough, W. H. (Ed.), *Prehistoric Settlement of the Pacific*. American Philosophical Society, Philadelphia, pp. 28–35.

16 Blust, R., 1996b. Beyond the Austronesian homeland: the Austric hypothesis and its implications for archaeology. In: Goodenough, W.H. (Ed.), *Prehistoric Settlement of the Pacific*. American Philosophical Society, Philadelphia, pp. 117–160.

17 Bogaard, A., 2004. *Neolithic Farming in Central Europe*. Routledge, London.

18 Bradley, D.G., Loftus, R., Cunningham, P., MacHugh, D.E., 1998. Genetics and domestic cattle origins. *Evolutionary Anthropology* 6, 79–86.

19 Burrow, T., Emeneau, M.B., 1984. *A Dravidian Etymological Dictionary*. Clarendon Press, Oxford.

20 Chang, K.-C., 1986. *The Archaeology of China*. Yale University Press, New Haven.

21 Chang, T.T., 1989. Domestication and spread of the cultivated rices. In: Harris, D.R., Hillman, G.C. (Eds.), *Foraging and Farming: The Evolution of Plant Exploitation*. Unwin, London, pp. 408–417.

22 Chang, T.T., 1995. Rice. In: Smartt, J., Simmonds, N.W. (Eds.), *Evolution of Crop Plants*. Longman Scientific, Essex, pp. 147–155.

23 Chang, T.T., 2000. Rice (II.A.7). In: Kiple, K.F., Ornelas, K.C. (Eds.), *The Cambridge World History of Food*. Cambridge University Press, Cambridge, pp. 132–149.

24 Charles, M.P., 2006. East of Eden? A consideration of the Neolithic crop spectra in the eastern Fertile Crescent and beyond. In: Colledge, S., Conolly, J. (Eds.), *The Origins and Spread of Domestic Plants in Southwest Asia and Europe*. UCL Press, London.

25 Chattopadyaya, U.C., 1996. Settlement pattern and the spatial organization of subsistence and mortuary practices in the Mesolithic Ganges Valley, North-Central India. *World Archaeology* 27, 461–476.

26 Chattopadyaya, U.C., 2002. Researches in archaeozoology of the Holocene period (including the Harappan Tradition in India and Pakistan). In: Settar, S., Korisettar, R. (Eds.), *Indian Archae-*

01 ology in Retrospect, Volume III. Archaeology
02 and Interactive Disciplines. Manohar, New Delhi,
03 pp. 365–422.

04 Chen, W.-B., Nakamura, I., Sato, Y.-I., Nakai, H.,
05 1993a. Distribution of deletion type in cpDNA
06 of cultivated and wild rice. *Japanese Journal of
07 Genetics* 68, 597–603.

08 Chen, W.-B., Nakamura, I., Sato, Y.-I., Nakai, H.,
09 1993b. Indica and Japonica differentiation in
10 Chinese landraces. *Euphytica* 74(3), 195–201.

11 Cheng, C., Motohashi, R., Tchuchimoto, S., Fukuta, Y.,
12 Ohtsubo, H., Ohtsubo, E., 2003. Polyphyletic
13 origin of cultivated rice: based on the inter-
14 spersion patterns of SINEs. *Molecular Biology and
15 Evolution* 20, 67–75.

16 Clarke, G.D., Khanna, G.S., 1989. The site of Kunjhun
17 II, Middle Son Valley, and its relevance for the
18 Neolithic of Central India. In: Kenoyer, J.M.
19 (Ed.), *Old Problems and New Perspectives in
20 the Archaeology of South Asia*. Department of
21 Anthropology, University of Wisconsin, Madison,
22 pp. 29–46.

23 Cohen, D.J., 1998. The origins of domesticated cereals
24 and the Pleistocene-Holocene transition in East
25 Asia. *The Review of Archaeology* 19, 22–29.

26 Cohen, D.J., 2002. New perspectives on the transition
27 to agriculture in China. In: Yasuda, Y. (Ed.), *The
28 Origins of Pottery and Agriculture*. Lustre Press
29 and Roli Books, New Delhi, pp. 217–227.

30 Cohen, M.N., 1991. *Health and the Rise of Civilization*.
31 Yale University Press, New Haven.

32 Colledge, S., Conolly, J., 2002. Early Neolithic
33 agriculture in Southwest Asia and Europe: re-
34 examining the archaeobotanical evidence. *Archae-
35 ology International* 5, 44–46.

36 Committee, S., C.R.P. 1962. The test excavation of
37 Guang Fu Lin Neolithic site at Songjia county of
38 Shanghai. *Kao Gu (archaeology)*, 9.

39 Cunningham, R., Sutherland, 1998. Dwellings
40 or granaries? The pit phenomenon of the
41 Kashmir-Swat Neolithic. *Man and Environment*
42 22, 29–34.

43 Cooke, M., Fuller, D.Q., Rajan, K., 2005. Early Historic
44 agriculture in southern Tamil Nadu: archaeob-
45 otanical research at Mangudi, Kodumanal and
46 Perur. In: Franke-Vogt, U., Weisshaar, J. (Eds.),
South Asian Archaeology 2003. Proceedings
of the European Association for South Asian
Archaeology Conference, Bonn, Germany,
7th – 11th July 2003. Linden Soft, Aachen,
pp. 341–350.

Costantini, L., 1979. Plant remains at Pirak. In:
Jarrige, J.-F., Saontoni, M. (Eds.), *Fouilles de
Pirak*, Volume 1. Diffusion de Boccard, Paris,
pp. 326–333.

Costantini, L., 1983. The beginning of agriculture
in the Kachi Plain: the evidence of Mehrgarh.
In Allchin, B. (Ed.), *South Asian Archaeology
1981*. Cambridge University Press, Cambridge,
pp. 29–33.

Costantini, L., 1987. Appendix B. Vegetal remains.
In: Stacul, G. (Ed.), *Prehistoric and Protohistoric
Swat, Pakistan*. Instituto Italiano per il Medio ed
Estremo Orientale, Rome, pp. 155–165.

Costantini, L., Biasini, L.C., 1985. Agriculture in
Baluchistan between the 7th and 3rd Millennium
B.C. *Newsletter of Baluchistan Studies* 2, 16–37.

Crawford, G., Shen, C., 1998. The origins of rice
agriculture: recent progress in East Asia, *Antiquity*
72, 858–866.

Crawford, G., 2006. East Asian plant domestication. In:
Stark, M. (Ed.) *Archaeology of Asia*. Blackwell,
Oxford, pp. 77–95.

Crowley, T., 1997. *An Introduction to Historical
Linguistics*. Oxford University Press, Oxford.

Decker-Walters, D.S., 1999. Cucurbits, Sanskrit, and
the Indo-Aryans. *Economic Botany* 53(1), 98–112.

Deshpande, M.M., 1995. Vedic aryans, non-Vedic
aryans, and non-Aryans: judging the linguistics
evidence of the Veda. In: Erdosy, G. (Ed.), *The
Indo-Aryans of Ancient South Asia. Language
Material Culture and Ethnicity*. Walter de Gruyter,
Berlin, pp. 67–84.

Diamond, J., Bellwood, P., 2003. Farmers and their
languages: the first expansions. *Science* 300,
597–603.

Difflot, G., 2005. Austroasiatic languages.
In *Encyclopedia Britannica*, 2005 online
edition, retrieved from 10 July 2005 from
<http://www.britannica.com/eb/article-9109792>.

Donegan, P., Stampe, D., 2004. Rhythm and the
synthetic drift of Munda. In: Singh, R. (Ed.),
*The Yearbook of South Asian Languages and
Linguistics 2004*. Mouton de Gruyter, Berlin,
pp. 3–36.

Ehret, C., 1988. Language change and the material
correlates of language and ethnic shift. *Antiquity*
62, 564–74.

Elfenbein, J., 1987. A peripus of the ‘Brahui Problem’.
Studia Iranica 16, 215–233.

Elfenbein, J., 1998. Brahui. In: Steever, S.B. (Ed.),
The Dravidian Languages. Routledge, London,
pp. 388–414.

Emeneau, M.B., 1997. Linguistics and botany in
the Nilgiris. In: Hoskins, P. (Ed.), *Blue
Mountains Revisited: Cultural Studies on the*

01 Nilgiri Hills. Oxford University Press, New Delhi, pp. 74–105.

02 Endicott, P., Metspalu, M., Kivisild, T., 2006. Genetic evidence on modern human dispersals in South Asia: Y chromosome and mitochondrial DNA perspectives. In: Petraglia, M.D., Allchin, B. (Eds.), *The Evolution and History of Human Populations in South Asia: Interdisciplinary Studies in Archaeology, Biological Anthropology, Linguistics and Genetics*. Springer, Netherlands, pp. 227–242.

03 Fairservis, W.A., Southworth, F., 1989. Linguistic archaeology and the Indus Valley Culture. In: Kenoyer, J.M. (Ed.), *Old Problems and New Perspectives in the Archaeology of South Asia*. Department of Anthropology, University of Wisconsin, Madison, pp. 133–141.

04 Fuchs, S., 1973. *The Aboriginal Tribes of India*. Macmillan Press, Madras/London.

05 Fuller, D.Q., 2001. Harappan seeds and agriculture: some considerations. *Antiquity* 75, 410–413.

06 Fuller, D.Q., 2002. Fifty years of archaeobotanical studies in India: laying a solid foundation, In: Settar, S., Korisettar, R. (Eds.), *Indian Archaeology in Retrospect, Volume III. Archaeology and Interactive Disciplines*. Manohar, Delhi, pp. 247–363.

07 Fuller, D.Q., 2003a. An agricultural perspective on Dravidian historical linguistics: archaeological crop packages, livestock and Dravidian crop vocabulary. In: Bellwood, P., Renfrew, C. (Eds.), *Examining the Farming/Language Dispersal Hypothesis*. McDonald Institute for Archaeological Research, Cambridge, pp. 191–213.

08 Fuller, D.Q., 2003b. Indus and non-Indus agricultural traditions: local developments and crop adoptions on the Indian peninsula. In: Weber, S.A., Belcher, W.R. (Eds.), *Indus Ethnobiology. New Perspectives from the Field*. Lexington Books, Lanham, pp. 343–396.

09 Fuller, D.Q., 2003c. African crops in prehistoric South Asia: a critical review. In: Neumann, K., Butler, A., Kahlheber, S. (Eds.), *Food, Fuel and Fields: Progress in African Archaeobotany*. Heinrich-Barth Institut, Köln, pp. 239–271.

10 Fuller, D.Q., 2003d. Further evidence on the prehistory of sesame. *Asian Agri-History* 7(2), 127–137.

11 Fuller, D.Q., 2006. Dung mounds and domesticators: early cultivation and pastoralism in Karnataka. In: Jarrige, C., Lefèvre, V. (Eds.), *South Asian Archaeology 2001, Volume I. Prehistory*. Éditions Recherche sur les Civilisations, Paris, pp. 117–127.

12 Fuller, D.Q., Boivin, N.L., 2005. From domestic economy to political economy: a framework for thinking about changes in artefacts and agriculture in prehistoric South India. Paper presented at the Biennal Conference of the European Association of South Asian Archaeology, London, July, 2005.

13 Fuller, D.Q., Boivin, N.L., Korisettar, R., 2006. Dating the Neolithic of south India: new radiometric evidence for key economic, social and ritual transformations. *Antiquity*, in press.

14 Fuller, D.Q., Harvey, E.L., 2006. The archaeobotany of Indian pulses: identification, processing and evidence for domestication. *Environmental Archaeology*, in press.

15 Fuller, D.Q., Korisettar, R., 2004. The vegetational context of early agriculture in South India. *Man and Environment* 29, 7–27.

16 Fuller, D.Q., Korisettar, R., Venkatasubbaiah, P.C., Jones, M.K., 2004. Early plant domestications in southern India: some preliminary archaeobotanical results. *Vegetation History and Archaeobotany* 13, 115–129.

17 Fuller, D.Q., Madella, M., 2001. Issues in Harappan archaeobotany: retrospect and prospect. In: Settar, S., Korisettar, R. (Eds.), *Indian Archaeology in Retrospect, Vol. II. Protohistory*. Manohar, New Delhi, 317–390.

18 Fuller, D.Q., Korisettar, R., Venkatasubbaiah, P.C., 2001a. Southern Neolithic cultivation systems: a reconstruction based on archaeobotanical evidence. *South Asian Studies* 17, 171–187.

19 Fuller, D.Q., Venkatasubbaiah, P.C., Korisettar, R., 2001b. The beginnings of agriculture in the Kunderu River Basin: evidence from archaeological survey and archaeobotany. *Puratattva* 31, 1–8.

20 Thompson, G.B.T., 1996. *The Excavations of Khok Phanom Di: A Prehistoric Site in Central Thailand. Volume IV: Subsistence and Environment: The Botanical Evidence*. Oxbow Books, Oxford.

21 Gadgil, M., Joshi, N.V., Shambu Prasad, U.V., Manoharan, S., Patil, S. 1998. *Peopling of India*. In: Balasubramanian, D., Appaji Rao, N. (Eds.), *The Indian Human Heritage*. Universities Press, Hyderabad, pp. 100–129.

22 Garrard, A., 2000. Charting the emergence of cereal and pulse domestication in South-West Asia. *Environmental Archaeology* 4, 67–86.

23 Glover, I.C., Higham, C.F.W., 1996. New evidence for early rice cultivation in South, Southeast and East Asia. In: Harris, D.R. (Ed.), *The Origins and Spread of Agriculture and Pastoralism in Eurasia*. UCL Press, London, pp. 413–441.

01 Grove, C.P., 1985. On the agriotypes of domestic cattle and pigs in the Indo-Pacific region. In: Misra, V.N., Bellwood, P. (Eds.) *Recent Advances in Indo-Pacific Prehistory*. Oxford and IBH, New Delhi, pp. 429–438.

02 Harlan, J.R., 1971. Agricultural origins: centers and noncenters. *Science* 174, 468–474. Harlan, J.R., 1992. *Crops and Ancient Man*. American Society for Agronomy, Madison.

03 Harris, D.R., 1998a. The origins of agriculture in Southwest Asia. *The Review of Archaeology* 19, 5–11.

04 Harris, D.R., 1998b. The spread of Neolithic agriculture from the Levant to Western Central Asia. In: Damania, A.D., Valkoun, J., Willcox, G., Qualset, C.O. (Eds.), *The Origins of Agriculture and Crop Domestication*. Proceedings of the Harlan Symposium 10–14 May 1997, Aleppo, Syria. International Center for Agricultural Research in the Dry Areas, Aleppo, pp. 65–82.

05 Harvey, E., Fuller, D.Q., 2005. Investigating crop processing through phytolith analysis: the case of rice and millets. *Journal of Archaeological Science* 32, 739–752.

06 Harvey, E., Fuller, D.Q., Basa, K.K., Mohanty, R., Mohanta, B., 2006. Early agriculture in Orissa: some archaeobotanical results and field observations on the Neolithic. *Man and Environment*, 30, in press.

07 Harvey, E., Fuller, D.Q., Pal, J.N., Gupta, M.C., 2005. Early agriculture of Neolithic Vindyhas (North-Central India). In: Franke-Vogt, U., Weisshaar, J. (Eds.), *South Asian Archaeology 2003*. Proceedings of the European Association for South Asian Archaeology Conference, Bonn, Germany, 7th - 11th July 2003. Lindin Soft, Aachen, pp. 329–334.

08 Hiendleder, S., Kaupe, B., Wassmuth, R., Janke, A., 2002. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. *Proceedings of the Royal Society of London B* 269, 893–904.

09 Higham, C.F.W., 1998. Archaeology, linguistics and the expansion of the Southeast Asian Neolithic. In: Blench, R., Spriggs, M. (Eds.), *Archaeology and Language II*. Routledge, London, pp. 103–114.

10 Higham, C.F.W., 2003. Languages and farming dispersals: Austroasiatic languages and rice cultivation. In: Renfrew, C., Bellwood, P. (Eds.) *Examining the Farming/Language Dispersal Hypothesis*. McDonald Institute for Archaeological Research, Cambridge, pp. 223–232.

11 Higham, C.F.W., Thosarat, R., 1998. Prehistoric Thailand: From early settlement to Sukothai. River Books, Bangkok.

12 Hillman, G.C., 2000. Abu Hureyra 1: The Epipalaeolithic. In: Moore, A.M.T., Hillman, G.C., Legge, A.J. (Eds.), *Village on the Euphrates: From Foraging to Farming at Abu Hureyra*. Oxford University Press, New York, pp. 327–398.

13 Hillman, G.C., Hedges, R., Moore, A.M.T., Colledge, S., Pettitt, P., 2001. New evidence of Late Glacial cereal cultivation at Abu Hureyra on the Euphrates. *The Holocene* 11, 383–393.

14 Hillman, G.C., Mason, S., de Moulins, D., Nesbitt, M., 1996. Identification of archaeological remains of wheat: the 1992 London Workshop. *Circaea* 12, 195–209.

15 Hoffpauir, R., 2000. Water Buffalo, (II.G.23). In: Kiple, K. F. and Ornelas, K. C. (Eds.), *The Cambridge world history of food*. Cambridge University Press, Cambridge, pp. 583–607.

16 James, H.V.A., Petraglia, M.D., 2005. Modern human origins and the evolution of behavior in the Later Pleistocene record of South Asia. *Current Anthropology* 46(S5), S3–S28.

17 Jarrige, J.-F., 1985. Continuity and change in the North Kachi Plain (Baluchistan, Pakistan) at the beginning of the second millennium BC. In: Schotmans, J., M. Taddei, M. (Eds.), *South Asian Archaeology 1983*. Instituto Universitario Orientale, Dipartimento di Studi Asiaci, Naples, pp. 35–68.

18 Jarrige, J.-F., 1987. Problèmes de datation du site néolithique de Mehrgarh, Baluchistan, Pakistan. In: Aurenche, O., Evin, J., Hours, F. (Eds.), *Chronologies du Proche Orient/Chronologies in the Near East: Relative Chronologies and Absolute Chronology 16,000–4,000 B.P.* British Archaeological Reports International Series 379, Oxford, pp. 381–386.

19 Jarrige, J.-F., 1997. From Nausharo to Pirak: continuity and change in the Kachi/Bolan region from 3rd to 2nd Millennium BC. In: Allchin, R., Allchin, B. (Eds.), *South Asian Archaeology 1995*. Oxford-IBH, New Delhi, pp. 35–68.

20 Jarrige, J.-F., Jarrige, C., Quivron, G., 2006. Mehrgarh Neolithic: the updated sequence. In: Jarrige, C., Lefèvre, V. (Eds.), *South Asian Archaeology 2001*. Éditions Recherche sur les Civilisations, Paris, pp. 129–142.

21 Joglekar, P.P., 2004. Animal economy at Lahuradewa, preliminary results. Paper presented at the Indian Archaeological Society and Indian Society for

Quaternary Science and Prehistoric Studies annual conference, Lucknow, December 2004.

Joglekar, P.P., Thomas, P.K., 1993. Faunal diversity at Walki: a small Chalcolithic settlement in western Maharashtra. *Bulletin of the Deccan College Post-Graduate and Research Institute* 53, 75–94.

Kajale, M.D., 1979. On the occurrence of ancient agricultural patterns during the Chalcolithic periods (c. 1600–1000 BC) at Apegaon, District Aurangabad in central Godavari valley, Maharashtra. In: Deo, S.B., Dhavalikar, M.K., Ansari, Z.D. (Eds.), *Apegaon Excavations*. Deccan College, Pune, pp. 50–56.

Kajale, M.D., 1988. Plant economy. In: Dhavalikar, M.K., Sankalia, H.D., Ansari, Z.D. (Eds.), *Excavations at Inamgaon*. Deccan College Postgraduate and Research Institute, Pune, pp. 727–821.

Kajale, M.D., 1989. Archaeobotanical investigation on Megalithic Bhagimohari, and its significance. *Man and Environment* 13, 87–96.

Kajale, M.D., 1990. Observations on the plant remains from excavation at Chalcolithic Kaothe, District Dhule, Maharashtra with cautionary remarks on their interpretations. In: Dhavalikar, M.K., Shinde, V.S., Atre, S.M. (Eds.), *Excavations at Kaothe*. Deccan College, Pune, pp. 265–280.

Kajale, M.D., 1991. Current status of Indian palaeoethnobotany: introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general. In: Renfrew, C. (Ed.), *New Light on Early Farming – Recent Developments in Palaeoethnobotany*. Edinburgh University Press., Edinburgh, pp. 155–189.

Kajale, M.D., 1994. Archaeobotanical investigations on a multicultural site at Adam, Maharashtra, with special reference to the development of tropical agriculture in arts of India. In: Hather, J. (Ed.), *Tropical Archaeobotany: Applications and New Developments*. Routledge, London, pp. 34–50.

Kajale, M.D., 1996. Palaeobotanical investigations at Balathal: preliminary results. *Man and Environment* 21, 98–102.

Kar, S.K., 1995. Further exploration at Golpalpur, Orissa. *Puratattva* 26, 105–106.

Kar, S.K., 2000. Gopalpur; A Neolithic-Chalcolithic site in coastal Orissa. In: Basa, K.K., Mohanty, P. (Eds.), *Archaeology of Orissa*. Pratibha Prakashan, Delhi, pp. 368–391.

Kar, S. K., Basa, K.K., Joglekar, P.P., 1998. Explorations at Gopalpur, District Nayagarh, Coastal Orissa. *Man and Environment* 23, 107–114.

Kennedy, K.A.R., 2000. *God-Apes and Fossil Men: Paleoanthropology in South Asia*. University of Michigan Press, Ann Arbor.

Kharakwal, J.S., Yano, A., Yasuda, Y., Shinde, V.S., Osada, T., 2004. Cord impressed ware and rice cultivation in South Asia, China and Japan: possibilities of inter-links, *Quaternary International* 123–125, 105–115.

Kivisild, T., Roots, S., Metspalu, M., Mastana, S., Kaldma, K., Parik, J., Metspalu, E., Adojaan, M., Tolk, H.-V., Stepanov, V., Goge, M., Usanga, E., Papiha, S.S., Cinnioglu, C., King, R., Cavalli-Sforza, L., Underhill, P.A., Villem, R., 2003. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. *American Journal of Human Genetics* 72, 313–332.

Korisettar, R., Joglekar, P.P., Fuller, D.Q., Venkatasubbaiah, P.C., 2001b. Archaeological re-investigation and archaeozoology of seven southern Neolithic sites in Karnataka and Andhra Pradesh. *Man and Environment* 26, 47–66.

Korisettar, R., Venkatasubbaiah, P.C., Fuller, D.Q., 2001a. Brahmagiri and beyond: the archaeology of the southern Neolithic. In: Korisettar, R., Settar, S. (Eds.), *Indian Archaeology in Retrospect, Volume I. Prehistory*. Manohar, New Delhi, pp. 151–238.

Krishnamurti, B., 2003. *The Dravidian Languages*. Cambridge University Press, Cambridge.

Kuiper, F.B.J., 1991. *Aryans in the Rig Veda*. Rodopi, Amsterdam/Atlanta.

Kumar, P., Freeman, A.R., Loftus, R.T., Gaillard, C., Fuller, D.Q., Bradley, D.G., 2003. Admixture analysis of South Asian cattle. *Heredity* 91, 43–50.

Kumar, V., Mohan Reddy, B., 2003. Status of Austro-Asiatic groups in the peopling of India: an exploratory study based on the available prehistoric, linguistic and biological evidence. *Journal of Bioscience* 28, 507–522.

Larsen, C.S., 1997. Biological changes in human populations with agriculture. *Annual Review of Anthropology* 24, 185–213.

Leshnik, L.S., 1973. Land use and ecological factors in prehistoric north-west India. In: Hammond, N. (Ed.), *South Asian Archaeology*. Duckworth, London, pp. 67–84.

Liu, L., Chen, X., 2004. The measurement and primary analysis of the buffalo bones from the Kua Hu Qiao site. In: Zhejian Provincial Institute of Archaeology and Cultural Relics, *Kua Hu Qiao: A Neolithic Site Excavation Report*. Wenwu Press, Beijing. [In Chinese]

01 Lone, Farooq A., Maqsooda Khan, Butth, G.M., 1993.
 02 Palaeoethnobotany – Plants and Ancient Man in
 03 Kashmir. A.A. Balkema, Rotterdam.

04 Lu, T.L.D., 1999. The Transition from Foraging to
 05 Farming and the Origin of Agriculture in China.
 06 British Archaeological Reports, Oxford.

07 Lu, T.L.D., 2006. The origin and dispersal of
 08 agriculture and human diaspora in East Asia. In:
 09 Sagart, L., Blench, R., Sanchez-Mazas, A. (Eds.),
 10 The Peopling of East Asia: Putting Together
 11 Archaeology, Linguistics and Genetics. Routledge
 12 Curzon, London, pp. 51–62.

13 Luikart, G., Gielly, L., Excoffier, L., Vigne, J.-D.,
 14 Bouvet, J., Taberlet, P., 2001. Multiple maternal
 15 origins and weak phylogeographic structure in
 16 domestic goats. Proceedings of the National
 17 Academy of Sciences (USA) 98, 5927–5932.

18 Lukacs, J.R., 2002. Hunting and gathering strategies in
 19 prehistoric India: a biocultural perspective on trade
 20 and subsistence. In: Morrison, K.D., Junker, L.L.
 21 (Eds.), Forager-Traders in South and Southeast
 22 Asia. Cambridge University Press, Cambridge,
 23 pp. 41–61.

24 Lukacs, J.R., 2006. Interpreting biological diversity
 25 in South Asian prehistory: Early Holocene
 26 population affinities and subsistence adaptations.
 27 In: Petraglia, M.D., Allchin, B. (Eds.), The
 28 Evolution and History of Human Populations in
 29 South Asia: Interdisciplinary Studies in Archaeology,
 30 Biological Anthropology, Linguistics and
 31 Genetics. Springer, Netherlands, pp. 271–295.

32 Lukacs, J.R., Pal, J.N., 1993. Mesolithic subsistence
 33 in north India: Inferences from dental attributes.
 34 Current Anthropology, 34(5), 745–765.

35 MacHugh, D.E., Shriver, M.D., Loftus, R.T.,
 36 Cunningham, P., Bradley, D.G., 1997.
 37 Microsatellite DNA variation and the evolution,
 38 domestication and phylogeography of taurine and
 39 zebu cattle (*Bos taurus* and *Bos indicus*). Genetics
 40 146, 1071–1086.

41 MacNeish, R.S., 1992. The Origins of Agriculture.
 42 University of Oklahoma Press, Norman,
 43 Oklahoma.

44 Madella, M., 2003. Investigating agriculture and
 45 environment in South Asia: present and future
 46 considerations of opal phytoliths. In: Weber, S.A.,
 Belcher, W.R. (Eds.), Indus Ethnobiology: New
 Perspectives from the Field. Lexington Books,
 Lanham, pp. 199–250.

47 Magee, D.A., Mannen, H., Bradley, D., 2006.
 48 Duality in *Bos indicus* mtDNA diversity:
 49 support for geographical complexity in zebu
 50 domestication. In: Petraglia, M.D., Allchin, B.
 51 (Eds.), The Evolution and History of Human
 52 Populations in South Asia: Interdisciplinary
 53 Studies in Archaeology, Biological Anthropology,
 54 Linguistics and Genetics. Springer, Netherlands,
 55 pp. 381–387.

56 Mahdi, W., 1998. Transmission of southeast Asian
 57 cultigenes to India and Sri Lanka. In: Blench, R.,
 58 Spriggs, M. (Eds.), Archaeology and Language II:
 59 Archaeological Data and Linguistic Hypotheses.
 Routledge, London, pp. 390–415.

60 Mani, B.R., 2004. Further evidence on Kashmir
 61 Neolithic in light of recent excavations at
 62 Kanishkapura. Journal of Interdisciplinary Studies
 63 in History and Archaeology 1(1), 137–142.

64 Masica, C.P., 1979. Aryan and non-Aryan elements
 65 in north Indian agriculture. In: Deshpande, M.M.,
 66 Hook, P.E. (Eds.), Aryan and Non-Aryan in India.
 67 Center for South and Southeast Asian Studies,
 68 University of Michigan, Ann Arbor, pp. 55–151.

69 Masica, C.P., 1991. The Indo-Aryan Languages.
 Cambridge University Press, Cambridge.

70 McAlpin, D.W., 1981. Proto-Elamo-Dravidian: The
 Evidence and its Implications. American Philosophical
 Society, Philadelphia.

71 Meadow, R., 1984. Animal Domestication in the
 Middle East: A View from the Eastern Margin.
 In: Clutton-Brock, J., Grigson, C. (Eds.), Animals
 in Archaeology 3. Early Herders and their
 Flocks. British Archaeological Reports, Oxford,
 pp. 309–337.

72 Meadow, R., 1993. Animal domestication in the Middle
 East: a revised view from the eastern Margin.
 In: Possehl, G.L. (Ed.), Harappan Civilization: A
 Recent Perspective. Oxford and IBH, New Delhi,
 pp. 295–320.

73 Meadow, R., 1996. The origins and spread of
 agriculture and pastoralism in northwestern South
 Asia. In: Harris, D.R. (Ed.), The Origins and
 Spread of Agriculture and Pastoralism in Eurasia.
 UCL Press, London, pp. 390–412.

74 Meadow, R., 1998. Pre- and Proto-Historic agricultural
 and pastoral transformations in northwestern South Asia. The Review of Archaeology
 19, 12–21.

75 Meadow, R., Patel, A.K., 2003. Prehistoric pastoralism
 in northwestern South Asia from the Neolithic
 through the Harappan Period. In: Weber, S.A.,
 Belcher, W.R. (Eds.), Indus Ethnobiology: New
 Perspectives from the Field. Lexington Books,
 Lanham, pp. 65–94.

76 Meher-Homji, V.M., 2001. Bioclimatology and
 Plant Geography of Peninsular India. Scientific
 Publishers, Jodhpur.

01 Misra, V.D., 1999. Agriculture, domestication of animals and ceramic and other industries in prehistoric India: Mesolithic and Neolithic. In: Pande, G.C. (Ed.), *The Dawn of Civilization up to 600 BC*. Centre for Studies in Civilization, Delhi, pp. 233–266.

02 Misra, V.D., Pal, J.N., Gupta, M.C., 2001. Excavation at Tokwa: a Neolithic-Chalcolithic settlement. *Pragdhara* 11, 59–72.

03 Misra, V.D., Pal, J.N., Gupta, M.C., 2004. Significance of recent excavations at Tokwa in the Vindhyas and Jhusi in the Gangetic Plains. *Journal of Interdisciplinary Studies in History and Archaeology* 1(1), 120–126.

04 Mohanty, B., 1994. Golbai: a new horizon in Orissan archaeology. *Orissa Historical Research Journal* 39, 30–32.

05 Moore, A.M.T., Hillman, G.C., Legge, A.T., 2000. *Village on the Euphrates: From Foraging to Farming at Abu Hureyra*. Oxford University Press, New York.

06 Moulherat, C., Tengberg, M., Haquet, J.-F., Mille, B., 2002. First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. *Journal of Archaeological Science* 29, 1393–1401.

07 Mufwene, S.S., 2001. *The Ecology of Language Evolution*. Cambridge University Press, Cambridge.

08 Nagaraja Rao, M.S., Malhotra, K.C., 1965. *Stone Age Hill Dwellers of Tekkalakota*. Deccan College, Pune.

09 Neumann, K., 2004. The romance of farming: plant cultivation and domestication in Africa. In: Stahl, A.B. (Ed.), *African Archaeology: A Critical Introduction*. Blackwell, Oxford, pp. 249–275.

10 Oka, H. I., 1988. *Origin of Cultivated Rice*. Japan Science Society Press, Tokyo.

11 Paddayya, K., 1998. Evidence of Neolithic cattle-penning at Budihal, Gulbarga District, Karnataka. *South Asian Studies* 14, 141–153.

12 Paddayya, K., 2001. The problem of ashmounds of Southern Deccan in the light of the Budihal excavations, Karnataka. *Bulletin of the Deccan College Post-Graduate and Research Institute* 60–61, 189–225.

13 Pandey, J.N., 1990. Mesolithic in the Middle Ganga Valley. *Bulletin of the Deccan College Post-Graduate and Research Institute* 49, 311–316.

14 Panja, S., 1999. Mobility and subsistence strategies: a case study of Inamgaon, a Chalcolithic sites in western India. *Asian Perspectives* 38, 154–185.

15 Panja, S., 2001. Research on the Deccan, Chalcolithic. In: Settar, S., Korisettar, R. (Eds.), *Indian Archaeology in Retrospect, Volume I. Prehistory*. Manohar, New Delhi, pp. 263–276.

16 Parpola, A., 1994. *Deciphering the Indus Script*. Cambridge University Press, Cambridge.

17 Parpola, A., 1988. The coming of the Aryans to Iran and India and the cultural and ethnic identity of the Dasas. *Studia Orientalia* (Helsinki) 64, 195–302.

18 Patel, A.K., 1997. The pastoral economy of Dholavira: a first look at animals and urban life in third millennium Kutch. In: R. Allchin, Allchin, B. (Eds.), *South Asian Archaeology 1995*. Oxford-IBH, New Delhi, pp. 101–114.

19 Patel, A.K., 1999. Paper presented at Fifteenth International Conference on South Asian Archaeology, Leiden University, July 5–9, 1999.

20 Patel, A.K., Meadow, R., 1998. The exploitation of wild and domestic water buffalo in prehistoric northwestern South Asia. In: Buitenhuis, H., Bartosiewicz, L., Choyke, A. M. (Eds.), *Archaeozoology of the Near East III*. Centre for Archaeological Research and Consultancy, Rijksuniversiteit Groningen, Groningen, pp. 180–199.

21 Pejros, I., Snirelman, V., 1998. Rice in Southeast Asia: a regional interdisciplinary approach. In: Blench, R., Spriggs, M. (Eds.), *Archaeology and Language II: Archaeological Data and Linguistic Hypotheses*. Routledge, London, pp. 379–389.

22 Pokharia, A.K., Saraswat, K.S., 2004. Plant resources in the Neolithic Economy at Kanishpur, Kashmir. Paper presented at National Seminar on the Archaeology of the Gange Plain, Joint Annual Conference of the Indian Archaeological Society, Indian Society of Prehistoric and Quaternary Studies, Indian History and Culture Society, December 2004, Lucknow.

23 Possehl, G.L., 1999. *Indus Age: The Beginnings*. University of Pennsylvania Press, Philadelphia.

24 Possehl, G.L., 2002. *The Indus Civilization: A Contemporary Perspective*. Alta Mira, Walnut Creek.

25 Possehl, G.L., Rissman, P., 1992. The chronology of prehistoric India from earliest times to the Iron Age. In: Ehrich, R.W. (Ed.), *Chronologies in Old World Archaeology*. University of Chicago Press, Chicago, vol. 1, pp. 465–490, vol. 2, pp. 447–474.

26 Prabhu, C.N., Shankar, R., Anupama, A., Taieb, M., Bonnefille, R., Vidal, L., Prasad, S., 2004. A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea. *Palaeogeography, Palaeoclimatology, Palaeoecology* 214, 309–321.

01 Puri, G. S., Gupta, R.K., Meher-Homji, V.M., Puri, S.,
02 1989. *Forest Ecology* (second edition), Volume
03 II. Plant Form, Diversity, Communities and
04 Succession. Oxford and IBH, New Delhi.

05 Puri, G.S., Meher-Homji, V.M., Gupta, R.K., Puri, S.,
06 1983. *Forest Ecology* (second edition), Volume I.
07 Phytogeography and Forest Conservation. Oxford
08 and IBH, New Delhi.

09 Reddy, S.N., 2003. *Discerning Palates of the Past: An Ethnoarchaeological Study of Crop Cultivation and Plant Usage in India*. Prehistory Press, Ann Arbor.

10 Renfrew, C., 1987. *Archaeology and Language: The Puzzle of Indo-European Origins*. Cambridge University Press, Cambridge.

11 Renfrew, C., 1996. Language families and the spread of farming. In: Harris, D.R. (Ed.), *The Origins and Spread of Agriculture and Pastoralism in Eurasia*. UCL Press, London, pp. 70–92.

12 Renfrew, C., 2000. At the edge of knowability: towards a prehistory of languages. *Cambridge Archaeological Journal* 10, 7–34.

13 Rosenberg, M., 1998. Cheating at musical chairs: territoriality and sedentism in an evolutionary context. *Current Anthropology* 39, 653–681.

14 Rouse, I., 1986. *Migrations in Prehistory*. Yale University Press, New Haven.

15 Sano, R., Morishima, H., 1992. Indica-Japonica differentiation of rice cultivars viewed from variations in key characters of isozyme, with species reference to Himalayan hilly areas. *Theoretical and Applied Genetics* 84, 266–274.

16 Saraswat, K.S., 1991. Crop economy at ancient Mahorana, Punjab (c. 2100–1900 B.C.). *Pragdhara* 1, 83–88.

17 Saraswat, K.S., 1993. Plant economy of Late Harappans at Hulas. *Purattatva* 23, 1–12.

18 Saraswat, K.S., 2002. Banawali (29°37'5"N; 75°23'6"E), District Hissar. *Indian Archaeology* 1996–97- A Review, 203.

19 Saraswat, K.S., 2004a. Plant economy of early farming communities at Senuwar, Bihar. In: Singh, B.P. (Ed.), *Senuwar Excavations*. Banaras Hindu University, Varanasi.

20 Saraswat, K.S., 2004b. Plant economy of Damdama. Paper presented at Indian Archaeological Society and Indian Society for Quaternary Science and Prehistoric Studies, Lucknow, December 2004.

21 Saraswat, K.S., 2005. Agricultural background of the early farming communities in the Middle Ganga Plain. *Pragdhara* 15, 145–178.

22 Saraswat, K.S., Chanchala, 1995. Palaeobotanical and pollen analytical investigations. *Indian Archaeology* 1990–91 - A Review, 103–104.

23 Saraswat, K.S., Pokharia, A.K., 2002. Harappan plant economy at ancient Balu, Haryana. *Pragdhara* 12, 153–172.

24 Saraswat, K.S., Pokharia, A.K., 2003. Palaeoethnobotanical investigations at Early Harappan Kunal. *Pragdhara* 13, 105–140.

25 Saraswat, K.S., Pokharia, A.K., 2004. Archaeological studies in the Lahuradewa Area 2. Plant economy at Lahuradewa: a preliminary contemplation. Paper presented at National Seminar on the Archaeology of the Ganga Plain, Joint Annual Conference of the Indian Archaeological Society, Indian Society of Prehistoric and Quaternary Studies, Indian History and Culture Society, December 2004, Lucknow.

26 Saraswat, K.S., Sharma, N.K., Saini, D.C., 1994. Plant economy at ancient Narhan (Ca. 1,300 B.C. - 300/400 A.D.). In: Singh, P. (Ed.), *Excavations at Narhan (1984–1989)*. Banaras Hindu University, Varanasi, pp. 255–346.

27 Sato, Y.-I., 2002. Origin of rice cultivation in the Yangtze River Basin. In: Yasuda, Y. (Ed.), *The Origins of Pottery and Agriculture*. Lustre Press and Roli Books, New Delhi, pp. 143–150.

28 Sato, Y.I., 2005. Rice and Indus civilization. In: Osada, T. (Ed.), *Linguistics, Archaeology and Human Past*. Research Institute for Humanity and Nature, Kyoto, pp. 213–214.

29 Sato, Y.-I., Ishikawa, R., Morishima, H. 1990. Nonrandom association of genes and characters found in indica x japonica hybrids of rice. *Heredity* 65, 75–79.

30 Shanghai Cultural Relics Protection Committee, 1962. The Test Excavation of Guang Fu Lin Neolithic Site at Songjia County of Shanghai, Kao Gu (archaeology), 9. [in Chinese]

31 Sharma, A.K., 1982. Excavations at Gufkral, 1981. *Purattatva* 11, 19–25.

32 Sharma, A.K., 1986 Neolithic Gufkral. In: Buth, G.M. (Ed.), *Central Asia and Western Himalaya – A Forgotten Link*. Scientific Publishers, Jodhpur, pp. 13–18.

33 Sharma, G.R., Misra, V.D., Mandal, D., Misra, B.B., Pal, J.N., 1980. *Beginnings of Agriculture (Epi-Palaeolithic to Neolithic: Excavations at Chopani-Mando, Mahadaha, and Mahagara)*. Abinash Prakashan, Allahabad.

34 Shinde, V., 1998a. Pre-Harappan Padri culture in Saurashtra: the recent discovery. *South Asian Studies* 14, 173–182.

01 Shinde, V.S., 1998b. Early Settlements in the Central
02 Tapi Basin. Munshiram Manoharlal, New Delhi.
03 Shinde, V.S., 2002. The emergence, development and
04 spread of agricultural communities in South Asia.
05 In: Yasuda, Y. (Ed.), *The Origins of Pottery and*
06 *Agriculture*. Lustre Press and Roli Books, New
07 Delhi, pp. 89–115.
08 Simoons, F.J., 1991. Food in China. A Cultural and
09 Historical Inquiry. CRC Press, Boca Raton.
10 Singh, I.B., 2005. Landform development and
11 palaeovegetation in Late Quaternary of the Ganga
12 Plain: implications for anthropogenic activity.
13 Pragdhara 15, 5–31.
14 Sinha, B.K., 1993. Excavations at Golbai Sasan,
15 District Puri, Orissa. Puratattva 23, 48–50.
16 Sinha, B.K., 2000. Golbai: a protohistoric site on the
17 coast of Orissa. In: Basa, K.K., Mohanty, P. (Eds.),
18 Archaeology of Orissa. Pratibha Prakashan, Delhi,
19 pp. 322–355.
20 Southworth, F.C., 1976. Cereals in South Asian
21 prehistory: the linguistic evidence. In:
22 Kennedy, K.A.R., Possehl, G.L. (Eds.), *Ecological*
23 *Backgrounds of South Asian Prehistory*. South
24 Asia Program, Cornell University, Ithaca, New
25 York, pp. 52–75.
26 Southworth, F.C., 1979. Lexical evidence for early
27 contacts between Indo-Aryan and Dravidian. In:
28 Deshpande, M.M., Hook, P.E. (Eds.), *Aryan*
29 and Non-Aryan in India. Center for South and
30 Southeast Asian Studies, University of Michigan,
31 Ann Arbor, pp. 191–233.
32 Southworth, F.C., 1988. Ancient economic plants
33 of South Asia: linguistic archaeology and early
34 agriculture. In: Jazayery, M.A., Winter, W. (Ed.),
35 *Languages and Cultures: Studies in Honor of*
36 *Edgar C. Polome*. Mouton de Gruyter, Amsetrdam,
37 pp. 649–688.
38 Southworth, F.C., 1992. Linguistics and archaeology:
39 prehistoric implications of some South Asian
40 plant names. In: Possehl, G.L. (Ed.), *South Asian*
41 *Archaeology Studies*. Oxford and IBH, New
42 Delhi, pp. 81–85.
43 Southworth, F.C., 2005a. *The Linguistic Archaeology*
44 of South Asia. Routledge, London.
45 Southworth, F.C., 2005b. Prehistoric implications of
46 the Dravidian element in the NIA lexicon with
47 special reference to Marathi. *International Journal*
48 *of Dravidian Linguistics* 34(1), 17–28.
49 Southworth, F.C., Witzel, M., 2006. The SARVA
50 (South Asia Residual Vocabulary Assemblage)
51 Project Website (<http://www.aa.tufts.ac.jp/sarva/>).
52 Stock, J., Lahr, M.M., Warusawithana-Kulatilake, S.,
53 2006. Human dispersals and cranial diversity
54 in South Asia relative to global patterns of
55 human variation. In: Petraglia, M.D., Allchin,
56 B. (Eds.), *The Evolution and History of Human*
57 *Populations in South Asia: Interdisciplinary*
58 *Studies in Archaeology, Biological Anthropology,*
59 *Linguistics and Genetics*. Springer, Netherlands,
60 pp. 243–266.
61 Su, B., Xiao, J., Underhill, P., Deka, R., Zhang, W.,
62 Akey, J., Huang, W., Shen, D., Lu, D., Luo, J.,
63 Chu, J., Tan, J., Shen, P., Davis, R., Cavalli-
64 Sforza, L. L., Chakraborty, R., Xiong, M., Du, R.,
65 Oefner, P., Chen, Z., Jin, L., 1999. Y-Chromosome
66 evidence for a northward migration of modern
67 humans into Eastern Asia during the last Ice
68 Age. *American Journal of Human Genetics* 65,
69 1718–1724.
70 Tengberg, M., 1999. Crop husbandry at Miri
71 Qalat, Makran, SW Pakistan (4000–2000
72 B.C.). *Vegetation History and Archaeobotany*
73 8, 3–12.
74 Tengberg, M., 2005. Exploitation and use of plants
75 in the Halil Valley during the Bronze Age:
76 first results from the archaeobotanical analysis at
77 Kunar Sandal A and B, Southeast Iran. Paper
78 presented at the 15th Conference of the European
79 Association of South Asian Archaeologists,
80 London.
81 Tewari, R., Srivastava, R.K., Singh, K.K.,
82 Saraswat, K.S., Singh, I.B., 2003. Preliminary
83 report of the excavation at Lahiradewa, District
84 Sant Kabir Nagar, U.P. 2001–2002: wider
85 archaeological implications. *Pragdhara* 13, 37–68.
86 Tewari, R., Srivastava, R.K., Singh, K.K., Vinay, R.,
87 Trivedi, R.K., Singh, G.C., 2005. Recently
88 excavated sites in the Ganga Plain and North
89 Vindhya: some observations regarding the pre-
90 urban context. *Pragdhara* 15, 39–49.
91 Thapar, B.K., 1978. Early farming communities in
92 India. *Journal of Human Evolution* 7, 11–22.
93 Thomas, P.K., Joglekar, P.P., Mishra, V.D.,
94 Pandey, J.N., Pal, J.N., 1995. A preliminary report
95 of the faunal remains from Damdama. *Man and*
96 *Environment* 20, 29–36.
97 Tikkanen, B., 1999. Archaeological-linguistic corre-
98 lations in the formation of retroflex typologies
99 and correlating areal features in South Asia.
100 In: Blench, R., Spriggs, M. (Eds.), *Archae-
101 ology and Language IV: Language Change and*
102 *Cultural Transformation*. Routledge, London,
103 pp. 138–148.
104 Trautman, T.R., 1979. The study of Dravidian kinship.
105 In: Deshpande, M.M., Hook, P.E. (Eds.), *Aryan*
106 and Non-Aryan in India. Center for South and

01 Southeast Asian Studies, University of Michigan,
02 Ann Arbor, pp. 153–173.

03 Trautman, T.R., 1981. *Dravidian Kinship*. Cambridge
04 University Press, Cambridge.

05 Turner, R.L., 1966. *A Comparative Dictionary of the
06 Indo-Aryan Languages*. Oxford University Press,
07 Oxford.

08 Van Driem, G., 1998. Neolithic correlates of
09 ancient Tibeto-Burman migrations. In: Blench, R.,
10 Spriggs, M. (Eds.), *Archaeology and Language II: Archaeological Data and Linguistic Hypotheses*. Routledge, London, pp. 67–102.

11 Vaughan, D.A., 1989. *The Genus *Oryza* L.: Current
12 Status of Taxonomy*. International Rice Research
13 Institute, Los Banos, Philippines.

14 Vaughan, D.A., 1994. *The wild relatives of rice: a
15 genetic resources handbook*. International Rice
16 Research Institute, Los Banos, Philippines.

17 Vishnu-Mitre, 1976. The archaeobotanical and
18 palynological evidence for the early origin of
19 agriculture in South and Southeast Asia. In:
20 Arnott, M.I. (Ed.), *Gastronomy*. Mouton and Co.,
21 The Hague, pp. 13–21.

22 Wan, J., Ikehashi, H., 1997. Identification of
23 two types of differentiation in cultivated rice
(*Oryza sativa* L.) detected by polymorphism
24 of isozymes and hybrid sterility. *Euphytica*
94, 151–161.z

25 Weber, S.A., 1991. *Plants and Harappan Subsistence:
26 An Example of Stability and Change from Rojdi*.
Oxford and IBH., New Delhi.

27 West, B., B.-X., Z., 1988. Did chickens go north? New
28 evidence for domestication. *Journal of Archaeo-
29 logical Science* 15, 515–533.

30 Wheeler, R.E.M., 1959. *Early India and Pakistan*.
Thames and Hudson, London.

31 Willcox, G., 1992. Some differences between crops of
32 Near Eastern origin and those from the tropics. In:
33 Jarrige, C. (Ed.), *South Asian Archaeology 1989:
34 Prehistory* Press, Madison, pp. 291–299.

35 Willcox, G., 1999. Agrarian change and the beginnings
36 of cultivation in the Near East: evidence from
37 wild progenitors, experimental cultivation and
38 archaeobotanical data. In: Gosden, C., Hather, J.
39 (Eds.), *The Prehistory of Food: Appetites for
40 Change*. Routledge, London, pp. 478–500.

41 Willcox, G., 2002. Geographical variation in major
42 cereal components and evidence for independent
43 domestication events in Western Asia. In:
44 Cappers, R.T.J., Bottema, S. (Eds.), *The Dawn
45 of Farming in the Near East*. Ex Oriente, Berlin,
46 pp. 133–140.

47 Willcox, G., 2005. The distribution, natural habitats
48 and availability of wild cereals in relation to
49 their domestication in the Near East: multiple
50 events, multiple centres. *Vegetation History and
51 Archaeobotany* 14(4), 534–541.

52 Witzel, M., 1999. Early sources for South Asian
53 substrate languages. *Mother Tongue Special
54 Issue*, 1–76.

55 Witzel, M., 2005. Central Asian roots and accul-
56 turation in South Asia: linguistic and archaeo-
57 logical evidence from Western Central Asia, the
58 Hindu Kush and northwestern South Asia for early
59 Indo-Aryan language and religion. In: Osada, T.
60 (Ed.), *Linguistics, Archaeology and the Human
61 Past*. Research Institute for Humanity and Nature,
62 Kyoto, pp. 87–211.

63 Witzel, M., 2006. South Asian agricultural terms in
64 Indo-Aryan. In: Osada, T., Sato, Y.-I., Witzel, M.
65 (Eds.), *Ethnogenesis in South and Central Asia*.
Harvard-Kyoto Roundtable (7th ESCA), Research
66 Institute for Humanities and Nature, Kyoto.

67 Yan, W., 2002. The origins of rice agriculture, pottery
68 and cities. In: Yasuda, Y. (Ed.), *The Origins of
69 Pottery and Agriculture*. Lustre Press and Roli
70 Books, New Delhi.

71 Zeuner, F.E., 1963. *A History of Domesticated
72 Animals*. Hutchinson, London.

73 Zide, A.R.K., Zide, N.H., 1976. Proto-Munda cultural
74 vocabulary: evidence for early agriculture. In:
75 Jenner, P.N., Thompson, L.C., Starosta, S. (Eds.),
76 *Austroasiatic Studies, Part II*. University of Hawaii
77 Press, Honolulu, pp. 1295–1334.

78 Zohary, D., 1996. The mode of domestication
79 of the founder crops of Southwest Asian
80 agriculture, In: Harris, D.R. (Ed.), *The
81 Origins and Spread of Agriculture and
82 Pastoralism in Eurasia*. UCL Press, London,
83 pp. 142–158.

84 Zohary, D., Hopf, M., 2000. *Domestication of Plants in
85 the Old World*. Oxford University Press, Oxford.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46