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Vision research has made very substantial progress towards understanding how we see.
It is one area of psychology where the three-way thrust of behavioural measurements
(psychophysics), brain imaging, and computational studies have been combined quite
routinely for some years. The purpose of this paper is to demonstrate a relatively
unusual form of computational modelling that we characterise as involving image
descriptions. Image descriptions are statements about structures in images and
relationships between structures. Most modelling in vision is either conceived in fairly
abstract terms, or is done at the level of images. Neither is entirely satisfactory, and
image descriptions are a simple formulation of age-old ideas about a Vocabulary of
image features that are detected and parameterized from actual digital images.

For our example, we use the domain of the visual perception of printed text. This is an
area that has been characterized by thorough, robust psychophysical experiments. The
fundamental requirements of visual processing in this domain are: grouping of some
parts if the image into words; at the same time segmenting words from each other.
We show how these are readily understood in terms of our model of image
descriptions, and show quantitatively that typographical practice, refined over
centuries, is about optimum for the visual system at least as represented by our model.
In addition, we show that the same notion of image descriptions could, in principle,
support word recognition in certain circumstances.

Look at the image shown in Figure 1. It is a wild flower that is relatively common in

upland areas of Scotland. If this was a real image formed in your eye, what would your
visual system have to say about the stimulus?

There are plenty of things that we can agree, a priori, that vision does not have to

say. First, and most emphatically, vision does not have much if anything to say about the

stimulus as an image. So it does not tell you how much light is to be found in such-and-

such a visual direction (which would correspond to the grey-level in some specified

pixel in the figure). The image certainly holds information in the form of how-much at
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such-and-such a point, but the purpose of vision is to tell you what-type of thing there is

and where.

However, vision does not go as far as telling you that the stimulus contains a flower

of the saxifrage family, Grass of Parnassus (Parnassia palustris). Vision will deliver
information about the contents of the stimulus that you can use, if you have the

necessary botanical expertise, to reach this conclusion. The idea that vision delivers

information about current stimulation that can be used to make decisions, guide actions

and formulate plans is not new and not difficult. It is, alas, rather bland and points out

the obvious doing little more than identifying vision with seeing.

Since Hubel andWiesel (1968, 1977) and Campbell and Robson (1968), vision science

has had a powerful theoretical construct to deal with the question of what information is

extracted from an image. The receptive field is an information selection mechanism
localized at a point in the image: a specific receptive field can tell youwhether the input has

aparticularpattern at aparticularplace.A set of identical receptivefields, one for eachpoint

in the visual field, is a visual filter. The output of a visual filter is a map showingwhich parts

of the input stimulus have pattern that resembles the receptive field. The early stages of

visionhavemany suchmaps, eachdealingwithone typeof elementarypattern.Thesemaps

contain all the information that vision delivers: they are the sum total of what we can see.

They have done very little towards seeing, however: all they tell you is how-much pattern

there is in such-and-such a visual direction.
The transition to the next type of representation is a crucial one. Where a specific

point in an image sufficiently resembles a particular pattern, we could say that it belongs

to a specific instance of that pattern, such as an elongated edge. We will use the word

structure to refer to a specific instance of a pattern. A significant number of points in an

Figure 1. A sample image.
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image map will belong to any given structure in this way, the information they hold can

be replaced by a description of the structure. This leads us to think of the visual field, not

as a fixed array of points each holding how-much of some pattern, but as variable list of

localized structures.

In almost a repeat of thepreviousparagraph,wenowsay that theseprimitive structures,

whichwill be simpler thanwhole objects, can each belong to a larger structure. The key to
this level of representation lies in the process of grouping: deciding what belongs with

what, and most importantly also deciding what does not belong with what.

To summarize: we want to explore the notion that vision delivers a symbolic

description of stimuli, using image primitives rather like nouns to refer to elementary

structures in the image. Primitives have properties: lengths, orientations, positions and

so on. These properties are rather like adjectives: they serve to distinguish between

different instances of primitives. Finally the symbolic description also expresses

relationships between image primitives, forming groups. This grouping is rather like
using verbs to describe the way things (referenced by nouns) interact.

There is a very important consequence of taking the process of vision to this level of

a symbolic language-like description. The full set of possible images is colossal, much

larger than the number of neurones inside the human cranium: even just the set of

discriminable images is colossal. Moreover, every image we form in our eyes is

completely novel. Only a linguistic style of image description will provide the necessary

generative power to be able to describe such a large number of images.

There is nothing new in the notion of a symbolic stage in vision. Perhaps in recent
times it has been explained most persuasively by Marr (1976, 1982). Marr’s primal

Sketch was particularly exciting, 30 years ago, because it suggested that one could take

an image and then actually simulate vision to produce a description of the scene imaged.

It offered the prospect of actual models of vision rather than hypothetical and abstract

formulations of vision.

One might suppose that 30 years would be enough to have fulfilled this promise: that

therewouldbecomputationalmodelsof biological vision thatproducedescriptions, at least

of images if not of scenes. The technology has been available – you can readily obtain digital
images, and desktop computers now have formidable power (actually the graphics card in

your home computer has orders of magnitude more power than was available to Marr).

Marr supposed that it is an important goal for vision to find and describe luminance

edges in images, since they often (but not always) correspond to the occluding edges of

objects in the scene. Marr didn’t have access to good information about the general

nature of everyday images and Marr and Hildreth (1980) simply had to suppose that the

image luminance pattern across the image of an occluding edge would have a locally

maximal intensity gradient across several adjacent spatial scales. There is now
considerable knowledge about the statistical nature of natural images (for a review, see

Simoncelli & Olshausen, 2001 and Geisler, 2008). Since Marr there has accumulated

detailed knowledge about the properties and reliability of various types of feature-

finding mechanism (for recent work see, Georgeson, May, Freeman, & Hesse, 2007; see

also Morrone & Burr, 1988; Watt & Morgan, 1985; Watt, 1988).

However, the deep issue concerns how edge information might be represented.

A common notion is that of an edge map: an image where the values are some measure

of the presence of an edge. An edge map can hold all the information about edges in an
image, but cannot tell you directly very much about any of it: only how-much edge at

such-and-such a place. Marr’s notion of the full primal sketch was richer in that he

supposed that there would be primitive tokens standing for localized pieces of edge.
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Each token would be described by various parameters relating to the piece of edge that

the token referred to. This area – what the symbolic description should be – remains

poorly explored (see Watt, 1988 and Watt, 1991 for some post-Marr discussion).

We use the framework developed by Watt (1991) to take the notion of a primal

sketch further: an image description that can be computed from any digital image. The

purpose of this paper is to show one way in which a symbolic form of image description
might be built and how that might open up new explorations of vision. We expect that

the model we describe is wrong in many different details. However, we persist because

we think the architecture of a model which generates a symbolic description of an image

is useful. It is not known with any certainty how such a model might be implemented in

neurones inside the brain, but recent attention to long-range interactions between

relatively remote receptive fields may hold the key (e.g. Li & Gilbert, 2002; Polat & Sagi,

1993;Yen & Finkel, 1998).

Having explained the model in some detail, we will turn to a simple but well studied
example domain, visual perception of printed text, to show how the notion of an

image description can complement an existing set of rigorous and comprehensive

psychophysical studies (for a recent review, see Legge, 2007). This domain is a long way

removed from scene-perception, but has several useful features. The business of

grouping – what goes with what and most importantly what does not go with what – is

central and unambiguous to the effective description of a page of text. Pages of text are

designed for a specific purpose, and with several centuries of design experience one

might suppose them to be well designed. The existence of a specific purpose – word
identification and word sequence representation – makes it possible to establish

whether a model of vision is succeeding in doing something useful.

Making image descriptions

The model we describe has three steps (details are provided in the appendix). The first

of these is familiar to all vision scientists: filtering. This process takes an optical image

and produces a range of different copies, each filtered to enhance some particular

feature. The second step is more novel: to produce descriptions of the significant

structures in each of the filtered images. This second step is not as familiar but is critical

because it represents a shift from the analogue domain of images into a quasi-linguistic

domain of image primitives. The third step is to group together the image primitives,
where appropriate, to produce descriptions of larger scale entities in the image.

Step 1: Filtering
The early stages of vision appear to employ rather simple linear filtering processes

(e.g. Campbell & Robson, 1968; Wilson & Bergen, 1979). The input to such processes is

an image and the output is an image representation, referred to as a filtered image.

The filtering process is modelled by convolution between an image and a filter function:

If the filter function is thought of as a receptive field, and the output of that receptive

field as a firing rate, then the filtered image shows the output of a sheet of identical
receptive fields densely covering the whole image. The value at any one point in a

filtered image is the response amplitude (firing rate) that would be found for a receptive

field centred on that point. Technically speaking, the filtered image is an image function

because of its formal structure: to read it, you specify a point in image space and then

you can find out the response value.
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Visual filters are selective for elongated structures in images and for present purposes

vary in three different parameters: they have an orientation preference; they have

a spatial scale, or a width preference; and they have four different spatial phases, or a

preference for a particular type of luminance pattern – light bar, light/dark edge, dark

bar, and a dark/light edge. Example filters are shown in Figure 2. The 4 phases are shown

for a vertically oriented filter of one spatial scale.
In essence, filtering is equivalent to cross-correlation: a filter will respond strongly to

parts of an image that have structure which is similar to the filter. Figure 3 shows the

spatial pattern of response of filters in 4 orientations to the image. The responses of

filters with different phases are shown in different colours. These spatial patterns are

called filtered images. Any image can be taken and filtered: the process is entirely blind

to the contents of the image.

Several observations can be made about the filtered images in Figure 3. Notice, for

example, that there are very strong responses to the edges of the petals, and weaker
ones to the markings on the petal. The apex of the top petal in the image causes a strong

response in the horizontal filter (top left). Moving clockwise round the petal edge, you

can see that the place where there is a strong response moves progressively round

through the other orientations to the vertical filters. Different parts of the edge of the

petal cause responses in filters of different orientations.

Although the filters are fixed structures, the pattern of their response is a direct

consequence of the image. Moreover, provided a full set of orientations and scales is

used, then there is nothing lost from the image.

Figure 2. This figure shows sample filters. The four phases for one orientation and spatial scale are

shown. Note that the filters form pairs that are just the negative of each other. The colour coding of the

different phases relates to subsequent figures.
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Step 2: Finding primitives
Filtered images contain characteristic spatial forms of response pattern. The average

spatial form of filter response (after rotation to align outputs from different orientation

filters) is shown in Figure 4 with height standing for filter response amplitude. The

predominant form of filter response is an elongated ridge of high response with a sharp
fall off in response on either side. The colouring of the surface shows the variability in

Figure 3. Filtered images are shown, for the top petal in Figure 1. For each, grey represents no response,

and the brighter the colour, the stronger the response. Different colours correspond to different filter

phases. The different graphs show the responses of filters with different orientations. The lowest panel

shows the sum of all the orientations, illustrating how complete the filtered images can be.
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filter response: red areas have the highest variability. This suggests that the main

differences between individual responses lie in their length.

The main area covered by a ridge will be referred to as an image region. Each region

is an area of the image where a filter of a single phase produces a spatially uninterrupted

region of high response. The response of a filter across an image is a set of such regions,

varying mainly in four parameters: position, orientation, length and amplitude.
The critical part of this is that each region is determined by the image contents: its

form is a strong consequence of the structure of the image at the place where it occurs.

These regions could be the elementary features that are used for subsequent image

understanding, and so we will treat them as primitives (see Watt, 1991 for more details).

Each region is described by a set of parameters which encapsulate all that is

important and useful about that region:

i) position (centroid in two dimensions),
ii) the orientation of its longest axis (obtained by finding the best fitting straight line

through the ridge),

iii) the length of the region along that axis (spatial standard deviation of filter response

along ridge),

iv) and the overall response mass (sum of filter response within region).

These parameters are all robust in that they are not much affected by small details and

variations in the filter responses.
Figure 5 shows the regions that are found from the filtered images in Figure 3

(for simplicity, just one phase is shown). Each region is represented by a rectangular

block and the dimensions of the block correspond to the measured properties of the

region – orientation, length and width.

To render the process of generating an image description practical, we need a rule to

determine the actual boundary of each region. In a simple operational sense, we can

say that every region ends where the response reaches zero, and then use some slight

further processing to set the filter responses to zero where we don’t want them. Setting
a filter response to zero is, itself, a simple threshold operation: a filter output has to

exceed some threshold value before it can be used further. In simple terms, this could

Figure 4. This figure shows the typical spatial form found in filtered images. Vertical height shows the

mean response value around peak responses. The colouring shows the areas in that response of low

variance (blue) and high variance (red). As can be seen, the typical response is an elongated ridge - and

the highest variability is in the length of the ridge (and therefore at either end of the average ridge).
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be an image wide threshold: the same threshold is applied everywhere in the image.
There are many other alternatives, such as local thresholds related to the contrast of

the image at that point – local gain control mechanisms are effectively this (for example,

see Heeger, 1992).

Step 3: Grouping primitives
The final step is concerned with identifying which regions might belong together.

Regions tend to lie close to each other in space where they belong together. Proximity is

known to be a useful and powerful cue for grouping. Overlap – ie spatial co-incidence –

is the most extreme form of proximity. It is also the only form that does not require a

spatial metric or a critical distance. In this sense, it offers the simplest form of grouping.
Any continuous line will give rise to a series of region primitives from different

orientation filters that overlap in space at their ends and so can be grouped along the

contour. This can be seen in the responses to the edge of the petal in. The resultant

region descriptions can be grouped together. The regions in Figure 6 are the subset of

those from Figure 5 which are mutually grouped by virtue of filter response overlap.

As can be seen, this simple grouping process, using only spatial overlap between filters

of different orientations (but similar in other properties), does a reasonable job of

finding the continuous edge of the object. This is a fundamental step in visual processing
of scenes. Marr (1976) referred to the outcome as curvilinear grouping, although he was

vague on how it could be achieved.

Most objects are circumscribed by their occluding contour: their seen edge from a

particular viewpoint. However, inside the occluding contour, there may be considerable

Figure 5. A section of the example image is used for this figure. The panel shows a graphical

representation of the regions as described.
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further visual information and further image regions. This is the case for the petals of the
flower. The top panel of Figure 7 shows one of the petals (the upper left one), with all of

the associated regions. The stripes in the petal give rise to a series of parallel regions,

overlapping each other across the petal. The second panel shows a cross-section

through the filter responses across the petal, indicating in gray where the filter

responses overlap. This form of overlap can also be used for grouping – and corresponds

to what Marr (1976) called theta aggregation.

There is a good reason for doing grouping in this way, which is related to the notion

of proximity. The intensity values in images have a correlational structure which varies
with distance: intensities in neighbouring pixels tend to be highly correlated and

intensities in distant pixels tend to have a very low correlation (Baddeley, 1997). It has

long been recognized that there is an important role for proximity in grouping (for

recent work, see Claessens & Wagemans, 2005 and Kubovy, Holcombe, & Wagemans,

1998). The scheme we use here can be thought of as an extreme version of grouping by

proximity: overlap is proximity over a distance of zero.

Using image descriptions in an example domain: Printed text

We have described a simple process that leads to a description of an image in terms of

elongated structures with measuredmass, length, orientation, position. This process can
be applied to any image and although it has a number of design decisions, the only free

parameter that remains is the threshold level used to delimit regions. We will now

explore a specific domain with the image description concept: the printed page.

Although this seems like a long way from the normal types of image that vision deals with

Figure 6. Regions from different orientation filters that are joined because the underlying filter

responses overlap. This form of overlap is a simple way to do curvilinear grouping of contour segments

into complete curves.
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and therefore not an obvious example, the printed page has two significant benefits: (i)

we can be definite what a successful outcome for the performance of a model of visual

perception should be; and (ii) there is a body of research which has established

experimentally what the limits on successful performance are for human observers.

Vision should deliver a description of a printed page that has one group for each

word; those groups should each have information that allows the direct identification of

Figure 7. Grouping by overlap is illustrated. Where filter responses overlap (marked dark grey in the

middle panel of this figure), the regions can be grouped together. The lower panel shows the set of

regions that become grouped together in this way.
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the word. The identification step is a powerful one: the proposal is that there should be

a dictionary of image descriptions, so that given the description, the identity of the word

can be looked up. This provides the means to quantify the performance of a visual

model, without having to inspect its output. That quantified behaviour can then be

compared directly with data from real observers. In principle, one could do exactly the

same thing for images of flowers (and it should be done).
Typography, at its crudest, is a design process that selects where on a page to place

fixed forms: letters. The letters are placed with some obvious and easily understood

constraints. They don’t overlap, for example, and in fact they don’t usually touch each

other (the exceptions, which are less obvious in computer typeset material, are for

certain combinations of letters, such as ‘tt’ and ‘fi’). Presumably this constraint relates to

the mechanics of typesetting – letters starting out as forms in enclosing rectangles – and

also relates to the visual process – which is particularly adept at isolating mutually inter-

connected regions of ink.
Centuries of typography have presumably refined practice so that current practice

will be close to the optimum: maximum legibility and minimum cost. The optimum will

depend on various factors, but a very significant one is the cost of paper and so we can

expect that the amount of white space adopted by typographers will tend to be as small

as convenient. However, the constraint of legibility works in the opposite direction. It is

clear that too little white space makes reading a piece of text difficult to read (see for

example, Hartley & Burnhill, 1977).

The essence of reading a paragraph of text lies in selective grouping: the letters of a
word need to be grouped together, but not with letters of other words. It is trivial to see

that the use of white space is the cue to this.

There is a considerable literature on the psychology of reading, and in two areas

there are results that are of direct significance for vision. There has been considerable

research into the effects of letter and word spacing on efficient reading. Studies of the

effect of word spacing have tended to study the consequences of reduced word spacing

for eye-movement patterns whilst a reader follows a page of text (Morris et al., 1991;

Epelboim et al., 1994; Rayner et al., 1998). Reduced word spacing has consequences for
where the eye will be moved to next.

A word provides several sources of information about its identity: the sequence of

letters; the overall shape defined by the sequence of letter shape variations; even the

length of the word alone is informative. There is a large literature on this that has

typically involved disrupting one or other cue to identity. An early claim was that word

length and shape (defined as the locations of ascenders and descenders in a word) did

not provide much actual information because they are highly ambiguous (Groff, 1975).

This was corrected by Haber and Haber (1981a, 1981b) who showed that taking word
syntax into account could reduce massively the ambiguity. Subsequent studies have

either favoured the idea that word shape is useful (e.g. Haber et al., 1983) or have

reached a contrary view (e.g. Paap et al., 1984). Underwood and Bargh (1982) argued

that the consequences of altering word shape were ameliorated because other routes to

word identification were available and switched to. A detailed study in which words

were created variously in mixed case, with mixed letter size and mixed letter spacing

helped to clarify the effects (Mayall et al., 1997). Their main conclusion is that the word

shape effects tend to arise when they lead to either inappropriate grouping of letters or
when they disrupt trans-letter features.

We now explore the visual consequences, at the level of image descriptions,

of various typographical practices. The results will be related to this literature.
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In discussion after the exploration, we will consider some further recent studies from a

perspective of visual perception of words.

Images of printed text
To help in exploring this domain, we have obtained 150 images of printed text. The

images are photographs of pages of books, fiction and non-fiction, from a broad range

of publication dates (1950–present), and paperback and hardback. Each photograph
was processed so that the horizontal width of the character ‘n’ was a standard size.

In all that follows, this dimension (referred to as n-size) is the unit of distance.

Figure 8 shows a sample printed text image. It has beenmarked up into the rectangles

enclosing characters (in green), the spaces within a word (blue) and the spaces between

words (yellow). Although it is an unremarkable example of typography, it has several

remarkable features, treating it simply as an image from a visual point of view.

For example, inspection of the marked-up text image at the top of Figure 8, shows

that the word spaces (yellow) are much wider than the character spaces (blue). In fact,
the ratio of the width of spaces within words to the width of spaces between words

(or between lines) is about 7 for this example. This is enormous: a ratio of 1.1

Figure 8. Some spatial properties of printed text. An example image of a page is shown at the top of

the figure. Beneath this are drawn graphs showing the distribution of white space parameters (red –

character spaces; blue – word spaces; black – line spaces). Note that the inter-character spaces are

much smaller than the other two distributions. Alongside is a 2D histogram of character heights versus

widths. Note. This shows a small number of distinct clusters.
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(10% difference) would be discriminable with some effort, and a ratio of 2 would be

discriminable without any effort at all. Similar considerations apply to the space left

between lines. On the face of it, the use of white space is extravagant. Figure 8

(bottom left) shows the distributions of character spaces, word spaces and line spaces

from our set of 150 images of text. This property of relatively large spaces between

words is quite general.
Examination of the form of printed characters reveals more interesting features. One

would suppose that printed characters were to be as discriminable from each other

as possible. Figure 8 (bottom right) shows the joint distribution of character height

and width across the sample of 150 pages. There are clear clusters: heights of around

1.5 and 2.5, with a few between (heights less than 1 are due to punctuation marks); and

widths of 1, 1.5 and 2 (widths greater than this are due to characters joined together).

There are perhaps just 4 or 5 different clusters in this diagram, which does not suggest

high discriminability.
Figure 9 (top) shows the distribution of ink across all the words (top 3 panels) and

characters (bottom panel) of our sample of text images. For the words, the three panels

show the left edge of the words (aligned at their left edge), the body of words (aligned at

their centre) and the right edge of words (aligned at their right edge). Each character is

aligned at its left edge and the baseline of the line of text. In terms of generating highest

discriminability, one would expect these distributions to be uniform. Where they are

very high or very low, they show a feature common to all stimuli which therefore does

not provide differential information. In both cases, words and characters, the use of ink
does not suggest the best strategy for creating discriminable stimuli.

The actual patterns are also interesting. For words, there is a striking periodic pattern

of vertical lines. This periodicity has been observed before (Wilkins, Smith, Willison, &

Beare, 2008), but has not been explained. Note also that this pattern is superimposed

on, and obliterates any indication of the boundaries between letters. For characters, the

area with highest probability of ink is a vertical line running down the left of the area.

Nearly all characters have some ink in this area. There is a second vertical line running

down the right of the area, where 50–60% of characters have some ink. In between is an
area with much less ink. On either edge – left and right – there are also areas above and

beneath the main body where some characters have ink.

So this brief and incomplete exploration of printed text as images has revealed

several features that are worth explaining. The use of white space is curious, not least in

that the amount used seems to be excessive, given the cost of paper. The use of ink is

similarly curious. Ink appears to be applied in very regular structures that are not

optimum for discriminability.

Image descriptions of printed text
We now turn to apply the image description model to one of these images of printed

text. Figure 10 shows a small section of such an image, the filter responses (just for one

orientation) and the image description that is produced. Inspection suggests these

properties:

(1) The regions produced by the page of text tend to be longer, and more uniform in

length, than those in the scene image.

(2) The grouping of regions for the text is substantially higher and more simply

organized than for the scene.
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Figure 9. The top 3 panels show the mean image for words. All the words in the sample of 150 images

were isolated and added after being aligned at (i) their left edge, (ii) their centre and (iii) their right edge.

The pattern revealed shows that a major structure of the printed word is a periodic vertical pattern.

The bottom panel shows the same analysis for individual characters.
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Figure 10 (bottom left) shows the distributions of region length for natural images

(black) and text images (red), confirming the first observation. The text images have a

very marked peak of lengths at a value of 2. Next, if we take a single region, and then

find the positions of all the regions that are grouped with it, we can mark out a zone of

space that shows something of the spatial organization of the group. Figure 10 (bottom

right) shows the average zone spatial grouped regions: the lines circumscribe the

positions of grouped regions. The zones for text images spread laterally much further

and are more constrained vertically. This shows that the grouped regions produced by
text form along the length of words.

Quantitative analysis of images of text

We now turn to look in some detail at the specifics of the image description produced by

pages. For this part of the analysis, we use synthetic images of words generated by

placing characters in an image with Times Roman font at 48 point font size. In this way,

we can control exactly the spatial relations between characters and words. The words

Figure 10. The top shows an example image of text, with a filter response pattern (for just vertical

filters) and the image description that is produced (for all orientations). The lower left panel shows the

distributions of region length for the natural images of scenes (black curve) and text images (red curve).

The text images have a distinctive distribution of lengths that is longer and more uniform. The lower

right panel compares the same two types of image for the relative positions of grouped regions. The

lines circumscribe the places, relative to a given region, within which the other regions in the group will

lie, on average. The text images show much more constrained structure.
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were the 10,000 most frequently used words in written English (Leech, Rayson, &

Wilson, 2001). This set accounts for 93% of all written words.

Analysis 1: Filter parameters for grouping, segmentation and recognition
Our analysis starts with isolated words and the issue of grouping filter responses into a

single entity. Figure 11 shows an image and the image description for a single word.

The dark lines joining the regions indicate that they are joined together according to
the overlap rule. In this case, with this particular value for spatial scale and threshold,

the regions are all grouped together so that the whole word is represented as a

single group.

For the first analysis, the single word stimuli were processed as the example above,

except that spatial scale and threshold level were varied. For each combination of scale

and threshold, the success of the grouping was established. Correct grouping is defined

as grouping of all the regions produced by the word image that lie between the leftmost

and rightmost extremities of the word in the image. Figure 12 (top left) shows the
proportion of words that are correctly grouped, as a function of spatial scale and

threshold level. As can be seen, there is a substantial region of this space where words

are correctly grouped.

The analysis now considers the issue of correctly segmenting separate words. For this

analysis, an image with six words was created: three each in two lines of text. Word and

line spacings were set to the mean values for a sample of 150 pages of text. The word

spacingwas set to 1.5 times the n-size of the text, and the line-spacingwas set to 4.5 times

the n-size. Word spacing is measured as the gap between the rightmost extremity of one
word and the leftmost extremity of the next word. Line spacing, on the other hand is

measured as the distance from the base of letters n (or equivalent) in one line to the base

of letters n in the next line. The distance from the base of a descender (e.g. letter y) to the

top of an ascender (e.g. letter h) on the same line is 3.3 times the n-size.

Figure 12 (top right) shows the proportion of images where the visual process

resulted in a separate grouped description for each of the six words. If any group

resulted frommore than one word, then this was counted a failure. As can be seen, there

Figure 11. This figure shows an example image of a word. Beneath the word is the image description.

The black dots indicate regions that are grouped together because the filter responses overlap in space.
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is still a substantial region of the parameter space where success is guaranteed, although

it is different from the area for grouping. This is not unexpected – larger scales and low

thresholds will tend to cause the responses to letters and to words to merge (causing

correct grouping and incorrect segmentation respectively).

Our final analysis in this section is more ambitious. Inspection of Figure 11 indicates

that the grouped description is actually a simple linear sequence of regions. Does this
sequence of regions contain enough information to specify the word? The regions vary

in all of their parameters, but we will consider only two: vertical lengths and vertical

positions.

The simplified computational question considered was this. Each word from the

dataset is processed to produce a sequence of regions. For each region, the two

dimensions are each quantized to just three categories, so that each region is

represented as one of just nine different possibilities. How many words produce unique

codes? Category boundaries on each dimension were explored using a simplex search to
find the set of boundaries that yielded the greatest number of unique codes. Figure 12

(bottom) shows the results as a proportion of words with unique codes (ie successes) as

a function of spatial scale and threshold. There is a substantial region of the parameter

space, including that range required for grouping and segmentation, where the rate of

success is very close to 1. Across this region of parameter space, the category

boundaries that the simplex found were within 1% of an equal split of the distribution of

Figure 12. These three panels show the effects of filter scale and threshold value on three measures of

performance: (i) grouping of letters into words, (ii) segmentation of words from surrounding words,

and (iii) production of unique codes for each word in a 10,000 word database. Spatial scale is given in

units of n-size to log(2), so a value of 0 on the x-axis corresponds to 1 n-size.
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lengths or vertical locations. The category boundaries for length correspond in Figure 4

above to the points along the ridge at x values of 12 and 24, nicely bracketing the area of

highest variance.

This observation, based on specific information derived from actual printed words

rather than abstract conceptualizations of word shape, illuminates the question of

whether it is possible that words could be recognized without recognizing letters (such
as by word shape). Groff (1975) claimed that word shape did not distinguish enough

words, especially short high frequency words. Haber and Haber (1981a, 1981b) claimed

the opposite. The present result suggests that words can be identified reliably without

recourse to letters, in principle if not in practice.

We must note immediately, that it would be a leap to go from observing that 99% of

the 10,000 most common words yield unique codes, to supposing that this could be a

mechanism for word recognition. These codes are inscrutable: you cannot infer the

word from the code in the same way that a sequence of identified letters usually leads to
the word. So the unique code for a new word will not be known. So, the most that can

be argued is that these unique codes are of some assistance in reading under the right

circumstances.

The more general and interesting point is to note how a powerful code can be made

from these simple regions categorized into just three clusters in each of just two

dimensions. As a demonstration that image descriptions could be useful, we believe this

is relatively convincing.

When we put these three analyses together, we note that there is an area of the scale
and threshold space towards the bottom left of the plots in Figure 12, where successful

grouping of letters into words, successful segmentation of different words and

successful recognition can all occur.

Analysis 2: White space parameters
The preceding analyses have shown that the basic requirements of intraword grouping
and simultaneous inter-word segmentation are met by our model of image description

for a range of spatial scales and thresholds, when the text is typeset according to normal

white space practice. This suggests that the fundamental purpose of white space is to

ensure an appropriate pattern of grouping in the visual description. To assess this, we

have generated synthetic paragraphs, each with six different words arranged into two

lines of three words, and measured successful grouping and segmentation as a function

of word spacing and line spacing.

Inspection of Figure 12 shows that for the given word and line spacing employed in
that data, there is a limited band of spatial scales that will lead to correct grouping and

segmentation. For a threshold value of 0.06, for example, the smallest spatial scale that

reliably leads to 90% successful performance is about 0.5 n-units (set by grouping limits)

and the largest is about 1 n-unit (set by segmentation limits). So the range of spatial

scales that generates good performance for these word and line space values is about

1 octave. This measure, can be interpreted as a measure of how likely the visual system

is to have exactly the right filter to do the processing. A bandwidth of an octave is a

comfortable outcome, as the visual system is almost certain to have at least one filter
with a spatial scale somewhere inside that range.

Increasing word or line spacing does not change the probability of correct grouping

performance, and hence does not change the smallest spatial scale that can support

successful performance. However increasing word or line spacing increases the
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probability of correct segmentation, and hence increases the largest spatial scale that

can achieve good performance. So, for any combination of word and line spacing, we

can calculate the range of spatial scales that can support good performance.

Figure 13 (left panel) shows the range of spatial scales, calculated as a bandwidth in

octaves, that can support performance at 90% correctly grouped and segmented words,

as a function of both word spacing and line spacing. As can be seen, the effects of line
spacing and word spacing are almost independent of each other. A word spacing of

1.5 n-units, and a line spacing of 4.5 n-units is required to provide optimum bandwidth

of just about 1 octave.

Figure 13 (right panel) shows a simple efficiency analysis. We define efficiency here

as the number of correctly grouped and segmented words per unit area, divided by the

maximum possible number of densely packed words in the same unit area. The highest

efficiency is of the order of 45%, which occurs for small but not negligible word and line

spaces. The consequence of making either line or word spacing smaller than the optimal
(for the model) is to lose nearly all efficiency because words merge together. The

consequence of making either white space parameter larger is just to waste some paper

with a smaller drop in efficiency.

It is of interest to compare this result with the analysis of real paragraphs from books.

These parameters were measured from the sample set of images of pages of books,

described above. The joint distribution of word and line spaces from that sample is

shown as black dots on the efficiency figure. It is quite tightly constrained. The fit

between the efficiency implications of the visual model and typographical practice is
very close indeed.

Figure 13. This figure shows an analysis of the effects of white space parameters on visual

performance. On the left, the measure of performance is the range of filter scales (in octaves) that will

successfully group letters and segment words. As can be seen, that range is 1 octave for word spacing

greater than 1 n-size and line spacings greater than 4.5 n-size. The panel on the right shows an efficiency

analysis: Efficiency is defined as the number of correctly grouped and segmented words divided by the

maximum possible number of words per unit area. This panel also shows the actual values for white

space employed in our sample of text images. As can be seen, efficiency is best at around 45%, and most

examples of printed text use parameters that will yield efficiency close to this.
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It is alsoof interest to compare this resultwith theexistingempirical literature.Adequate

word spacing has been established as important for reading. The present results simply

add flesh to that finding by showing how grouping and more importantly segmentation

break down when there is not adequate word spacing. The finding of Mayall et al. (1997)

that some changes in word shape result in inappropriate letter grouping and loss of trans-

letter patterns is also worth exploring further in the light of the behaviour of this model.

Closing observations about pages of text

There is a great deal more could be said about typography as it relates to vision.

However, for present purposes, typography has been a vehicle for illustrating a notion of

image description, not an end in its own right. That we have a couple of novel
explanations for features of typography is a welcome bonus.

This analysis has demonstrated two fundamental properties of printed text, as it

relates to image descriptions.

(1) The grouping and segmentation of a paragraph can be accomplished readily by

using filter response overlap provided white space parameters are not less than a

critical value. This explains why the amount of white space required is so high,

resulting in an efficiency of under 50%.

Our starting inspection of white space in printed text in Figure 8 noted that the use of

white space in printed text was highly wasteful. Whilst this results in a low efficiency for

the use of paper, it does result in a readily readable layout which uses properties of this

model of the visual system to achieve letter to letter grouping and word from word

segmentation. The explanation of the large amounts of white space in a page relates to

the nature of the filters that respond to pages of text.

(2) Words can be recognized effectively by sub-letter features. These features seem to

bridge the gap between word letter sequence and word shape cues.

Our starting inspection of words in Figure 9 identified regular vertical periodic

structure. According to our analysis, this regular structure is important for grouping a

word. Our analysis of unique codes for words has utilised this structure, treating it as a

1D bar-code in which the bars vary in vertical position and vertical length (but not in

horizontal separation). The use of 1D bar-code descriptions has powerful computational
benefits, but also costs. The benefits are that they are very robust in an unpredictable

environment, they can be very easily adjusted to suit a new typeface, and they are

computationally simple to compute. The costs are that a 1D sequence has inherent

limitations such as it is not robust to reflection (making a mirror image), inversion

(turning upside down) or a combination of the two. It requires letters to be highly

constrained in how they are formed and how they are placed. They have to be formed

out of principally vertical strokes of a small number of uniform sizes. They have to be

placed so that they are aligned vertically, parallel in orientation.

Closing observations about image descriptions

We finish by emphasizing some aspects of our image description model. We start this by

looking at what the notion adds to the existing literature on visual aspects of reading.

Then we conclude with a more general point about visual perception.
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Image descriptions of text
The starting-point for creating an image description is a filter. A number of empirical

psychophysical studies have identified important characteristics of the filter or filters

that underlie the recognition of letters and words. Legge, Pelli, Rubin, and Schleske

(1985) showed that the critical band of spatial frequencies for reading is around two

cycles per character. That corresponds very close to the spatial scale that we have found
to be optimum for grouping, segmentation and recognition. Our best filter has a scale of

0.6 n-size (see Figure 12), which when expressed in cycles per character becomes

2.1 cycles per character (character size is approximately 1.25 times n-size).

Solomon and Pelli (1994) have shown that letter identification is accomplished by

the use of a single visual filter, also finding a centre frequency of around 2–4 cycles per

character. Our data in Figure 13 show that the bandwidth of the range of filters that can

do the task is quite narrow (around 1 octave), which also suggests that a single filter

would be involved. Majaj, Pelli, Kurshan, and Palomares (2002) extended the analysis of
filters and letter identification, confirming the Solomon and Pelli finding for a wider

range of typefaces. They also found that when the text was made larger, there was a

tendency for the filter used to be at a higher frequency, when expressed as cycles per

character, implying that finer detail is used. Chung, Legge, and Tjan (2002) found similar

results. Our data in Figure 12 show that there is little if any theoretical cost in using a

smaller scale (ie higher frequency) filter, at least over the range we tested.

Chung and Tjan (2007) have qualified this by showing that when one adds further

letters into the display (but still only requiring the identification of a single letter), there
is a tendency to uniformly use finer scale filters. In this case of letter identification in the

presence of other letters, there is a potential cost associated with grouping. Although

grouping all the image primitives for a word together (or a single isolated letter) is a good

principle for word recognition, grouping could make the identification of individual

letters more difficult. Using finer scales will tend to result in less grouping.

There has been little attention paid to stages in the process that would correspond to

our image primitives and the general notion of image description. However, Pelli, Burns,

Farell, and Moore-Page (2006) studied psychophysically some of the properties of the
visual processes that achieve the detection and identification of letters in the presence

of visual noise. They found that the successful identification of a letter is based on the

detection and subsequent combination of a small number (around 7) of component

features, not on the detection and identification of the letter as a whole form.

Subsequently, Pelli and Tillman (2007) have shown that the recognition of a word in turn

depends in large measure on letter identification. In both cases, the alternative

hypothesis was that the identification was achieved by the application of a whole object

(letters or words respectively) template. A whole object template would provide better
performance for detection and identification in high visual noise, and so the failure to

show whole object templates is significant.

These authors did not make the step of identifying the features involved. Their

notion of feature based recognition and our image descriptions share a number of

common properties. The manner in which they use the term feature and we use the

term image primitive differs fundamentally, however. Pelli et al. (2006) use the term

feature to refer to a piece of the image, whereas we use the term image primitive to refer

to an internal description of a variable piece of image. It may well be that our image
primitives are indeed descriptions of the image features that Pelli et al. refer to.

The final stage in our model is the grouping stage. That is the stage which, in our

formulation, determines the consequences of white space. There have been a few
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studies of the role of white space in word recognition and reading, and these are all

consistent with the typographical convention of using quite large amounts of white

space. Rayner, Fischer, and Pollatsek (1998) found that the absence of word spaces has

strong interfering effects on word identification and eye-movement control. Chung

(2004) has found a drop in reading speed for smaller than normal line spacing in text.

Our analysis of white space is in line with these findings.

Image descriptions
The main purpose of this paper is not to explore or explain typography, and certainly

not to stray into the minefield of research into word recognition and reading. Instead,

the paper simply hijacks that area of research to illustrate a more general point about

research into vision concerning the importance and utility of image descriptions in

low-level vision.
It is necessary to distinguish between making information about the stimulus

available, and making information about the stimulus explicit. In crude terms, it is one

thing to show that a series of neural processing operations results in a neurone

responding differently to two types of stimulus (that the information is available) – but it

is quite another to show how the rest of the brain would know which neurone was

carrying that information (making it explicit).

Image descriptions are not mental pictures because they make image structure

explicit. It is perhaps a commonplace, but one that should be reiterated frequently, that
the outcome of visual perception is not a mental picture. This seems completely

uncontroversial because a mental picture would require a perceiver, opening up an

infinite regression. There certainly are picture-in-the-head stages in vision and in fact

much of the detailed neurophysiological and psychophysical knowledge of vision

relates to stages that are essentially of this form. Pictures-in-the-head, images, make

information about stimuli available but not explicit. Image descriptions are required to

do that.

Despite the fact thatwehaveused imagedescriptions to achieveword recognition, they
are not image recognition. This is important because the outcome of visual perception is

not just a set of recognitions – assignations of stimuli into predefined categories. This also

seems completely uncontroversial: I can see completely novel squiggles on a pagewithout

recognizing them. A description stage can be flexible to deal sensibly with novel stimuli

(see Watt and Phillips, 2000 for a more detailed account of this).

Our model is able to do things like word grouping and segmentation, and perhaps

even word recognition, because it moves away from the data format of images, and

employs a language-like descriptive stage. The limitations on how successfully it can do
it are certainly limitations in the image, but the processes involved are not image-based

processes.

In its essence, the image description we have explored here is a language to describe

useful patterns in images. At the same time, it can be seen that the image descriptions

that we present here have the additional feature of equally being a language in which a

wide range of visual tasks can be described. In that sense, image descriptions become

a common interface between optical information, which is image based, and task

demands which are typically propositional. In theory, this common stage could be at a
range of different levels.

It is possible although computationally complex, to specify most visual tasks in terms

of image and pixel operations. At this level, there is only one type of descriptor, the

pixel, and it has only one property, a scalar value. Any image can be described as a list of
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pixels, although the length of the sentence would be enormous. Similarly, any visual task

can be specified as a set of operations on a list of pixels: once again the sentence

length would be enormous. Equally, it is possible to create a descriptive language

that is very high level, has multiple different types of image primitive, each with its own

set of properties, and multiple different types of relation between them. Such a

descriptive language would have very short sentences, but would not naturally deal
with novel images. The level we have chosen, which corresponds broadly to local

elongated structures, seems like a compromise between ability to deal with novelty and

sentence length.

Closing observation about the model

We conclude with one observation about the enterprise described here. We have

described a model that is an actual software system which takes an actual gray-scale

image (photograph) as its input and produces a symbolic description as its output.

That output can be used to make decisions about the contents of the image: we have

shown how it can be used to segment and then identify words. The model is unusual

in this respect.

There is not yet enough hard evidence to fully justify many features of the model, but

summarizing existing evidence is not its primary function. The model exists to explore
ways in which studies of visual tasks can be modelled in concrete, computable terms

from a gray-scale image to a modelled response in a visual task. The range of applications

of such a type of model is large. A few examples would include: visual contrast

detection; contour shape analysis; face recognition and related tasks; and scene salience

computation.

Acknowledgements

RJW acknowledges the support of a Leverhulme Research Fellowship.

References

Baddeley, R. J. (1997). The correlational structure of natural images and the calibration of spatial

representations. Cognitive Science, 21, 351–372.

Campbell, F. W., & Robson, J. G. (1968). Application of fourier analysis to the visibility of gratings.

The Journal of Physiology, 197, 551–566.

Chung, S. T. L. (2004). Reading speed benefits from increased vertical word spacing in normal

peripheral vision. Optometry and Vision Science, 81, 525–535.

Chung, S. T. L., Legge, G. E., & Tjan, B. S. (2002). Spatial-frequency characteristics of letter

identification in central and peripheral vision. Vision Research, 42, 2137–2152.

Chung, S. T. L., & Tjan, B. S. (2007). Shift on spatial scale in identifying crowded letters. Vision

Research, 47, 437–451.

Claessens, P. M., & Wagemans, J. (2005). Perceptual grouping in Gabor lattices: Proximity and

alignment. Perception and Psychophysics, 67, 1446–1459.

Epelboim, J., Booth, J. R., & Steinman, R. M. (1994). Reading unspaced text: Implications for

theories of reading eye movements. Vision Research, 34, 1735–1766.

Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual

Review of Psychology, 59, 101–1026.

Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (2007). From filters to features:

Scale-space analysis of edge and blur coding in human vision. Journal of Vision, 7(13), 1–21.

The utility of image descriptions 23



Groff, P. (1975). Research in brief: Shapes as cues to word recognition. Visible Language, 9(1),

67–71.

Haber, R. N., & Haber, L. R. (1981a). The shape of a word can specify its meaning. Reading

Research Quarterly, 16, 334–345.

Haber, R. N., & Haber, L. R. (1981b). Visual components of the Reading Process. Visible Language,

15, 147–182.

Haber, L. R., Haber, R. N., & Furlin, K. R. (1983). Word length and word shape as sources of

information in reading. Reading Research Quarterly, 18, 165–189.

Hartley, J., & Burnhill, P. (1977). Fifty guide-lines for improving instructional text. Innovations in

Education and Teaching International, 14, 65–73.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9,

181–197.

Hubel, D. H., &Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate

cortex. Journal of Physiology, 195, 215–243.

Hubel, D. H., &Wiesel, T. N. (1977). Functional architecture of the macaque monkey visual cortex.

Ferrier Lecture, Proceedings of the Royal Society of London B, 198, 1–59.

Kubovy, M., Holcombe, A. O., &Wagemans, J. (1998). On the lawfulness of grouping by proximity.

Cognitive Psychology, 35, 71–98.

Leech, G., Rayson, A., & Wilson, A. (2001). Word frequencies in written and spoken English:

Based on the British National Corpus. London: Longman, http://www.comp.lancs.ac.uk/

ucrel/bncfreq/

Legge, G. E. (2007). Psychophysics of reading in normal and low vision. Mahwah, NJ/London:

Lawrence Erlbaum Associates.

Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading I. Normal

vision. Vision Research, 25, 239–252.

Li, W., & Gilbert, C. D. (2002). Global contour saliency and local colinear interactions. Journal of

Neurophysiology, 88, 2846–2856.

Majaj, N. J., Pelli, D. G., Kurshan, P., & Palomares, M. (2002). The role of spatial-frequency channels

in letter identification. Vision Research, 42, 1165–1184.

Marr, D. (1976). Early processing of visual information. Philosophical Transactions of the Royal

Society of London B, 275, 483–524.

Marr, D. (1982). Vision: A computational investigation into the human representation and

processing of visual information. San Francisco: W.H. Freeman and Co.

Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of

London, 197, 441–475.

Mayall, K., Humphreys, G. W., & Olson, A. (1997). Disruption to word or letter processing? The

origins of case-mixing effects. Journal of Experimental Psychology: Learning, Memory, and

Cognition., 23, 1275–1286.

Morrone, M. C., & Burr, D. C. (1988). Feature detection in human vision: A phase-dependent

energy model. Proceedings of the Royal Society of London. Series B, 235, 221–245.

Paap, K. R., Newsome, S. L., & Noel, R. W. (1984). Word shape’s in poor shape for the race to the

lexicon. Journal of Experimental Psychology. Human Perception and Performance, 10,

13–28.

Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page, D. C. (2006). Detecting features and identifying

letters. Vision Research, 46(28), 4646–4674.

Pelli D.G. & Tillman K.A. (2007). Parts, wholes, and context in reading: A triple dissociation.

PLoS ONE 2(8): e680. http://www.plosone.org/doi/pone.0000680

Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and

facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.

Rayner, K., Fischer, M. H., & Pollatsek, A. (1998). Unspaced text interferes with both word

identification and eye movement control. Vision Research, 38, 1129–1144.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation.

Annual Review of Neuroscience, 24, 1193–1216.

24 Roger J. Watt and Steve C. Dakin



Solomon, J. A., & Pelli, D. G. (1994). The visual filter mediating letter identification. Nature, 369,

395–397.

Underwood, G., & Bargh, K. (1982). Word shape, orthographic regularity, and contextual

interactions in a reading task. Cognition, 12, 197–209.

Watt, R. J. (1988). Visual processing: Computational, psychological and cognitive research.

London: Lawrence Erlbaum Associates.

Watt, R. J. (1991). Understanding vision. London: Academic Press.

Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision

Research, 25, 1661–1674.

Watt, R. J., & Phillips, W. A. (2000). The function of dynamic grouping in vision. Trends in

Cognitive Sciences, 4, 447–454.

Wilkins, A. J., Smith, J., Willison, C. K., & Beare, T. (2008). Stripes within words affect reading.

Perception, 36, 1788–1803.

Wilson, H. R., & Bergen, J. R. (1979). A four mechanism model for threshold spatial vision. Vision

Research, 19, 19–32.

Yen, S., & Finkel, L. H. (1998). Extraction of perceptually salient contours by striate cortical

networks. Vision Research, 38, 719–741.

Received 4 December 2007; revised version received 3 October 2008

Appendix: Computational details of model

Images are typically made to a size of 512 pixels square. Each pixel holds a gray-level

value with up to 64-bit precision, as needed. All computations were performed

in Matlabq. Steps (1) and (2) are standard image processing operations. Step (3) is

non-standard.

Step 1: Filtering
The image is convolved with a set of filters, to produce a set of filtered images. The filters
vary in orientation in steps of 308 round the clock. The basic form of a horizontal filter is

the product of the second derivative of a Gaussian vertically and a Gaussian (of twice the

linear dimension) along the horizontal axis. This provides two of the required phases.

The other two phases are obtained from the Hilbert Transform of the filter. In the fourier

domain the two filters are easily made as real and imaginary components by setting the

negative vertical frequencies to zero.

Convolution between the image and the filter is achieved by multiplication in the

fourier domain.

Step 2: Thresholding
A simple threshold is applied to all the filtered images. All points where the absolute

value of the filtered image is less than some critical value are set to zero.

Step 3: Image description
Each zero-bounded region of pixels is extracted from each filtered image to make

a collection of items. Each item in a collection has 3 components: an x-location (x), a

y-location ( y) and a filter response value (v).
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The mass of the region is calculated as:

mass ¼ sum(v)

The position of the region is given by:

posx¼sum(x*v)/sum(v);

posy¼sum( y*v)/sum(v);

The orientation of the region is given by:

orient ¼ atan ((xycov)*2/(xvar 2 yvar))/2;

where:

xycov ¼ meanxy 2 posx*posy;

xvar ¼ meanxx 2 posx * posx;

yvar ¼ meanyy 2 posy * posy;

meanxx¼ sum(x*x*v)/sum(v);
meanyy¼ sum( y*y*v)/sum(v);

meanxy¼ sum(x*y*v)/sum(v);

The length of the region is given by:
length ¼ sqrt(xvar * cos(orient)^2 þ 2*xycovar * cos(orient) * sin(orient) þ

yvar * sin(orient).^2);
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