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PURPOSE. AMD results in loss of central vision and a
dependence on low-resolution peripheral vision. While many
image enhancement techniques have been proposed, there is a
lack of quantitative comparison of the effectiveness of
enhancement. We developed a natural visual search task that
uses patients’ eye movements as a quantitative and functional
measure of the efficacy of image modification.

METHODS. Eye movements of 17 patients (mean age¼ 77 years)
with AMD were recorded while they searched for target
objects in natural images. Eight different image modification
methods were implemented and included manipulations of
local image or edge contrast, color, and crowding. In a
subsequent task, patients ranked their preference of the image
modifications.

RESULTS. Within individual participants, there was no significant
difference in search duration or accuracy across eight different
image manipulations. When data were collapsed across all
image modifications, a multivariate model identified six
significant predictors for normalized search duration including
scotoma size and acuity, as well as interactions among scotoma
size, age, acuity, and contrast (P < 0.05). Additionally, an
analysis of image statistics showed no correlation with search
performance across all image modifications. Rank ordering of
enhancement methods based on participants’ preference
revealed a trend that participants preferred the least modified
images (P < 0.05).

CONCLUSIONS. There was no quantitative effect of image
modification on search performance. A better understanding
of low- and high-level components of visual search in natural
scenes is necessary to improve future attempts at image
enhancement for low vision patients. Different search tasks
may require alternative image modifications to improve patient
functioning and performance. (Invest Ophthalmol Vis Sci.

2012;53:6600–6609) DOI:10.1167/iovs.12-10012

Foveal and peripheral vision serve complementary roles in
visual search. To locate a particular target within a natural

scene, the visual system is required to identify candidate
targets with low-resolution peripheral vision and then move
the fovea to the optimal target and scrutinize it with high
acuity.1 This system can be compromised if information is lost
following pathological insult in the either in the periphery2

(Wiecek E, et al. IOVS 2011;52:ARVO E-Abstract 5731) or in
the fovea.3

AMD is the leading cause of blindness for adults over the
ages of 55 years in the western world with an estimated
prevalence in the United States population of 6.5% and 30% of
the population over 74 years old.2,4 In addition to loss of
central vision, quality of life is significantly reduced by AMD.5–7

People with AMD have difficulty with tasks that depend on
high-resolution central vision, such as reading, driving, and
face recognition.8–11 However, many of these deficits are also
observed in older adults without measurable vision impair-
ments,8,12–15 so that the extent to which observed functional
deficits may be attributed to aging, rather that the visual field
loss is currently unknown.16

Several researchers have closely examined how visual
impairment affects vision related tasks. Jacko et al.16 and Kuyk
et al.17 reported that people with visual impairment were
significantly slower than normally-sighted age-matched con-
trols in visual search tasks in artificial arrays. As the size of the
central scotoma increased, there was a greater deficit in search
performance. Alternatively, a more naturalistic task involving
scene discrimination has shown only minor deficits in AMD
patients.18 Patients with AMD were better at categorizing
natural versus urban rather than indoor versus outdoor scenes,
but overall performance was comparable to controls and led
authors to conclude that peripheral vision was sufficient to
recognize the gist of the scene.

In an effort to help improve quality of life in patients with
AMD, many others have developed image enhancement
methods that aim to overcome specific visual deficits. Jacko
et al.16 found that while background color, number of
distracters, and icon size contributed to performance, magni-
fication did not assist search performance for AMD patients.
Other groups have tailored image enhancement to the contrast
sensitivity of a patient. Loss of foveal vision is associated with a
decrease in contrast sensitivity at high spatial frequencies19,20

and several engineering-based approaches selectively increase
the contrast of these almost visible components. Additionally,
in basic research, it has been demonstrated that, for foveal
vision, some object frequencies in letter and face images are
more important for identification than others.21,22 Thus,
assuming that the same frequencies are optimal for peripheral
vision, some groups have selectively increased the contrast of
these critical frequencies.

Some researchers have reported significant increases in
reading speed,23 as well as elevated subjective preferences for
custom enhanced images.24 Other groups, however, failed to
show any benefit for reading speed,25 or face recognition26
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with such methods. These custom enhanced images were not
preferred and many patients actually read enhanced text at a
significantly slower speed.25

Image enhancement has been more successful in moving
images. Al-Atabany et al.20 introduced three new image
enhancement techniques and implemented an image process-
ing model with a virtual scotoma to compare patient
performance in a face detection task. Edge overlays and tinted
reduced outlined nature (TRON) algorithms were the most
useful in dynamic scenes, while image cartoonization was
helpful for spatial feature detection. Fullerton and Peli27,28

examined the effects of a method that reweights Moving
Picture Experts Group (MPEG) contrast in different image
regions and frequency bands. Although they did not directly
compare unenhanced and enhanced movies, they reported
that in side-by-side comparisons, a moderate level of enhance-
ment was preferred over low or high enhancement levels by
low vision patients with a variety of impairments.

In summary, many studies have examined a variety of image
enhancement methods for tasks including reading, face
recognition, and simple preference; however, few, if any have
directly compared alternative enhancement methods on the
same media. We therefore implemented a range of existing and
novel image enhancement methods in order to evaluate their
utility for people with central vision loss from AMD. We used
an objective visual search task to determine the effectiveness of
these alternative methods.

METHODS

Participants

Participants were recruited from Vision Rehabilitation Clinic at the

Massachusetts Eye and Ear Infirmary (MEEI) in Boston, MA. Seventeen

patients with AMD participated in the study. Patient information is

given in Table 1. The mean age of the patients was 77 years old. We

included patients with a wide range of acuities, contrast sensitivity, and

visual field loss. Twelve of the 17 patients had foveal sparing in at least

one eye. Visual acuity was measured with the Early Treatment Diabetic

Retinopathy Study (ETDRS) letter chart and contrast sensitivity was

measured with the Pelli-Robson chart. Values are reported only for the

better eye on the assumption that visual search was dominated by this

eye. All participants received a score of 25 or higher on the Mini Mental

Exam for Visually Impaired Outpatients (adapted from the Mini-Mental

State Examination).29 The study was approved by the institutional

review board committees of MEEI and Schepens Eye Research Institute

and adhered to the tenets of the Declaration of Helsinki.

Stimuli

Participants viewed a natural scene presented on a 27 inch iMac light-

emitting diode (LED) display (Apple, Inc., Cupertino, CA) at a

resolution of 2560 3 1440 pixels with a refresh rate of 60 Hz, which

subtended 608 by 33.58 at the viewing distance of 57 cm. The stimulus

image was presented from a collection of 90 images from the LabelMe

Database.30 The 90 scenes were selected based on content, as well as

the number and accuracy of objects labeled. This set comprised both

indoor and outdoor scenes, as well as a variety of everyday objects,

faces, persons, and buildings. The 90 images were then processed with

a series of eight different enhancement methods, resulting in a

database of 720 images (eight variations of each of the 90 scenes).

Images were scaled up or down in size to fit the full height or width of

the screen, without cropping or changing the aspect ratio of the image.

Image Manipulations

The modification methods were performed in Matlab (Mathworks, Ltd.,

Natick, MA) prior to data collection and modified images were stored in

a database accessed when running the experiment through Psychtool-

box (in the public domain, http://psychtoolbox.org/).31 The eight

variations were as follows:

1. The original image in red-green-blue (RGB) color format, scaled

to cover the full 0 to 255 look-up table (LUT) range with the

darkest and lightest image pixel;

2. The original image converted to gray scale using the Matlab

function red-green-blue to gray (rgb2gray()) and scaled to cover

the full 0 to 255 LUT range;

TABLE 1. Patient Information and Demographics

Subject Diagnosis Age Sex

Acuity

OD

Acuity

OS

Contrast

Sensitivity

Perimetry

OD

Perimetry

OS Perimetry Test

1 Wet AMD 90 M 0.398 1.602 1.05 41/52 40/52 Polar 5–21 Goldman III

2 AMD 77 F 1.079 1.301 1.05 50/52 13/52 Polar 5–21 Goldman V

3 Dry AMD 76 F 0.176 0.176 1.05 45/52 35/52 Polar 5–21 Goldman III

4 Wet AMD 87 M 1.0 0.544 0.9 24/52 32/52 Polar 5–21 Goldman III

5 Dry AMD 68 M 1.301 0.301 1.35 44/52 44/52 Polar 5–21 Goldman III

6 Dry AMD 55 F 0.544 0.602 1.05 43/52 43/52 Polar 5–21 Goldman III

7 Dry AMD 86 F 0.875 0.875 1.05 30/52 26/52 Polar 5–21 Goldman III

8 Dry AMD OD Wet AMD OS 85 F 1.0 0.602 0.6 23/25 20/25 535–9 Goldman IV

9 Wet AMD 81 F 1.0 2.114 0.75 32/52 N/A Polar 5–21 Goldman IV

10 Dry AMD OD Wet AMD OS 84 F 0.602 0.544 0.9 39/52 49/52 Polar 5–21 Goldman III

11 Dry AMD OS Wet AMD OD 75 M 0.875 0.544 1.05 43/52 50/52 Polar 5–21 Goldman IV

12 Wet AMD 64 M 0.544 0.544 1.5 39/52 50/52 Polar 5–21 Goldman III

13 Wet AMD 65 M 0.176 0.097 1.05 46/52 47/52 Polar 5–21 Goldman III

14 AMD OU 86 F 0.602 1.301 1.2 47/52 12/52 Polar 5–21 Goldman III

15 Wet AMD 84 F 0.699 0.544 1.35 49/52 44/52 Polar 5–21 Goldman IV

16 Dry AMD 84 F 0.875 0.875 1.05 38/52 24/52 Polar 5–21 Goldman IV

17 Dry AMD 79 M 0.875 0.544 1.35 42/52 45/52 Polar 5–21 Goldman III

Data were collected at the Vision Rehab Center at MEEI. Microperimetry data are displayed as a ratio of points seen over total points presented
on a microperimetry exam using the Opko SLO/OCT microperimeter. Acuity was measured using ETDRS and contrast sensitivity was measured with
Pelli-Robson charts. The highest contrast sensitivity between the two eyes was reported and used in analysis. The final column specifies the
particular microperimetry task used for each individual.
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3. An edge enhanced image, performed with a variant of a

previously published method.32 Instead of filtering with a bank

of band-pass filters and applying a threshold for like-signed

pixels across spatial scales, the image was processed with a

Laplacian of Gaussian filter (Mathworks, Ltd.) with a SD of 1

pixel, using Matlab’s fspecial (‘log’) function. This broadband

filter inherently selects pixels that are correlated across scales

and bypasses the need for filtering at multiple spatial scales. The

filtered image was then thresholded at 62 SDs of luminance to

produce black-white signed contours at the location of edges in

the image. These black-white edges were superimposed on the

original RGB image;

4. An image with segmented objects. Image areas labeled by users

of the Labelme project30 were classed as objects; areas not

labeled were classed as background. There was a range of 2 to 58

objects labeled in the set of 90 images with a mean of 16 labeled

objects in each image. It is important to note that the images

varied in scale and included photographs of outdoor and indoor

scenes, thus, creating large differences in the size of the labeled

objects. For target objects (those that were searched in the

experiment), the mean labeled object occupied 0.85% (SD 0.93)

of the total image area. The total area of the image that consisted

of labeled objects was 57.91% (SD 49.57). Object areas were

presented at their original contrast, and background areas were

set at mean luminance (82 cd/m2). This process served to reduce

crowding between background and objects that might impair the

visibility of objects in the peripheral visual field;

5. An image with a 50% contrast masked background and

segmented objects. As in (4), except that background areas

were presented at 50% contrast. This method attempted to

reduce crowding of objects by the background, but to leave

intact information about scene layout or gist;

6. Local root mean square (RMS) contrast enhanced RGB image.

Local RMS contrast was computed using the method described

in our previous work.33 In brief, local RMS contrast is computed

as the local, Gaussian weighted SD of luminance divided by the

local mean luminance. In the present method, luminance and

color were extracted with Matlab’s function rgb2yuv( ).

Contrast operations were performed on the luminance (y

plane) image. Local mean luminance (rx,y¼ 18) was subtracted

from the image and local SD was computed for all pixels. Each

pixel was then divided by the local SD, which relatively

increased the absolute values of pixels in areas of low RMS

contrast and relatively decreased the absolute values of pixels in

areas of high RMS contrast. This process produces an image

with a flat distribution of local contrast. Color was restored to

the image with Matlab’s function yuv2rgb( ) and the final image

was scaled to the cover the full 0 to 255 LUT range. This method

maximized image contrast at all locations in the image, avoiding

global saturation by the lightest and darkest pixels;

7. A local contrast enhanced gray scale image. The same as (6),

except a gray scale image was created by omitting the stage of

color conversion; and

8. A within-band local contrast enhancement. The same as (6),

except that local contrast normalization was performed

separately on a set of narrow spatial scales within the image.

Each image was filtered with log-cosine band-pass filters with a

1-octave bandwidth.

AðxÞ�
0:5ðcosð1þ x� log2 xpeakÞ

0;x> log2 xpeak þ 1

0;x< log2 xpeak � 1

8<
:

9=
; ð1Þ

where A is the amplitude, x is spatial or temporal frequency,

and xpeak is the peak frequency. These filters have the desirable

property of summing to unity, so that the sum of all band-pass

images reproduces the original. Local RMS contrast normaliza-

tion was applied to each band-pass filtered image, and then the

summed image was converted to RGB and scaled cover the full

0 to 255 LUT range.

Figure 1 depicts examples of the eight different versions of image

modification for a single experimental image.

Procedure

Observers completed a total of 80 search trials, 10 trials for each

modification method, in random order. The assigned object label from

the LabelMe database was used as the identity of target objects. At the

start of each trial, a computer generated voice (‘‘Alex,’’ a voice option

built in to the Mac OSX, the operating system native to Apple

computers; Apple, Inc.) spoke the identity of the search target in the

image. Participants were then required to freely view the search image

with the goal of locating the announced target. The targets ranged in

size and location across the 80 different trials. Figure 2 shows a heat

map of spatial distribution of targets over the entire database of 90

images. Participants were instructed to use a mouse controlled pointer

to indicate the position of the target within the image. The pointer was

displayed as a large red dot (diameter of 1.58, 64 pixels), easily visible to

participant with limited acuity. The participant’s response initiated the

next trial. No time constraint was enforced during the task; instead

participants were encouraged to continue to search the image until

they were confident they had located the target. The time duration to

locate the target and use the mouse to click on the location of the

target was recorded.

After each subject had completed 80 trials of the visual search task,

they were asked to rank enhancements in order of preference. Eight

versions of the same image were presented in each cell of a 3 3 3 grid

that filled the screen with the center grid left empty. One scene was

randomly selected from the database and each of the eight modification

methods was applied to it. Observers were asked to consider which

image they thought was ‘‘most aesthetically pleasing’’ as well as ‘‘of

most functional value for performing an everyday task like watching

television.’’ The subject was asked to click a mouse pointer on their

preferred image. The selected image was then removed and the

observer was required to click on the preferred image from the

remaining images. This process was repeated until all images had been

selected. Each subject repeated this ranking task for six different

scenes.

RESULTS

Image Enhancements

Figure 3 shows the mean search time in seconds for each
scene, averaged across all observers and all modification
methods, error bars show 95% confidence intervals (CIs).
Based on the observed variability in search duration across
scenes, we further examined specific image features that may
be correlated with this measure. We considered the total
number of objects labeled in the scene, target area, and edge
density. The number of objects labeled in the scene was
extracted from the LabelMe database and varied across the 90
scenes (2–58 objects; mean of 16 objects). Target area was
taken as the total number of pixels that made up the instructed
search target. Finally, edge density was a measure of the total
number of edges in the scene (found using the Canny edge
detector in Matlab) over the total number of pixels in the
scene.34 The mean normalized search duration across all
observers for a particular image was used as a measure of
performance (duration was first normalized to individual
performance based on each participant’s mean across all 80
trials). An average of 13 observers viewed each scene
(including all modified versions of the scene). We found a
significant correlation between target size and normalized
search duration (r ¼ �0.34; P ¼ 0.001), but no significant
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FIGURE 1. Example of eight different image modifications in one particular scene. Participant was asked to locate the salt shaker.
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relationship between number of objects in the scene and
duration or edge density and duration. Subsequently, we
attempted to fit the search duration data with a generalized
linear model, including the above mentioned image features
and interaction terms, but none of the predictors were
significant.

The observed interscene search duration variation could
mask differences between modification methods. In order to
correct for this variation, search duration was normalized to
the average search duration for that scene. For each trial, the
search duration was divided by the mean duration for that
scene across all participants and trials. This correction
minimized the possibility that a particularly difficult search
scene could bias the results (recall that all participants did not
search all scenes with all modification methods). We took an
additional step to normalize search duration to the individual
participant’s own mean in order to isolate the effect of our
image manipulations. There were differences in mean duration
between participants, which may be attributed to differences
in age, visual function, reaction times, and mouse control.
Normalizing the duration to each individual’s mean duration
across all trials accounted for these differences. An ANOVA
showed that there was no significant difference in the

normalized search duration across the eight different image
modification methods, for each individual participant as well as
when collapsed across all participants (P ¼ 0.96; n ¼ 17).
Additionally, subjects were divided into a younger (mean age¼
73.12 years) and older cohort (mean age ¼ 85.75 years) to
examine the interaction of age on the eight different image
enhancements. We excluded patient six in this analysis due to
a significant difference in age (greater than two SDs). A two-
way ANOVA showed no effect of age on search duration (P ¼
0.93, n¼ 16) over the eight different modifications. The mean
search duration across all participants for each modification
method is displayed in box and whisker plots in Figure 4A. The
normalization correction did not change the results, there was
no significant difference in the individually normalized search
duration across modification methods, as shown in Figure 4B.

We also evaluated search performance with error rates. Any
trial in which the observer clicked the cursor on a background
area or object other than the search target was classified as an
error trial. An ANOVA showed that there was no significant
difference in the total number error trials across the eight
different image modifications within a single subject. Addition-
ally, when data were collapsed across all subjects, there was no
significant difference across image modifications, as shown in
Figure 4C (Note: Participants 1 and 2 were not included in the
analysis for number of error trials because the location of the
cursor was not successfully recorded for these two partici-
pants, thus, n ¼ 15 for this analysis). A two-way ANOVA
showed no effect of age on number of error trials (P¼0.92; n¼
14) over the eight different modifications.

Intersubject Parameters

Next we used regression analysis to examine how intersubject
differences, including patient age, visual acuity, and contrast
sensitivity in the better eye, as well as the scotoma size in the
better eye contributed to performance. Table 1 shows
information for each patient. Although the patient completed
the task binocularly, acuity, contrast sensitivity, and scotoma
size of the better eye were used under the assumption that the
better eye dominates visual function.35,36 Scotoma size was
included as a ratio of points seen over total points presented
on a microperimetry exam using the Opko Scanning Laser
Ophthalmoloscope/Optical Coherence Tomography (SLO/
OCT) microperimeter (Opko Health, Inc., Miami, FL). Sixteen
out of 17 participants completed the 58 to 218 polar exam,
which tested a total of 52 points in the central 218 visual field.
The other patient completed a 535-98 degree square grid that
tested 25 points within the central 98 visual field. The display
of the dot stimuli ranged from Goldman III to Goldman V, with
the majority of the patients tested on the Goldman III (Table 1).
To address any discrepancy between differently sized targets in
the microperimetry data, we completed all of the following
analysis including only those participants tested with the
Goldman III sized target (n ¼ 11), but found no difference in
any of the reported results, as compared with the entire sample
of subjects (n¼ 17).

Univariate analysis showed a significant positive correlation
between acuity and search duration, and between age and
search duration (R ¼ 0.62, P ¼ 0.007, and R ¼ 0.55, P ¼ 0.02,
respectively); however, all other variables failed to show any
significant correlation (Fig. 5). To further examine the
contribution of these variables and their interactions on
performance (i.e., duration and number of error trials) we
used multivariate regression analysis.

Multivariate regression produced a predictive model for
search duration. Stepwise regression analysis identified six
significant predictors for normalized search duration including
scotoma size and acuity, as well as interaction terms between

FIGURE 2. Spatial heat map of target object distribution across 90
different scenes used in the search task. Target pixel density was
measured as the total number of occurrences of a target object at each
pixel location in the display. Red, ‘‘hotter’’ areas depict regions of the
display that more frequently contained a target object.

FIGURE 3. Mean search duration in seconds for each of the 90 scenes
in the database. Duration was averaged across all observers and all
modification methods for a particular scene. Error bars depict 95% CIs.
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scotoma size and age, age and acuity, contrast sensitivity and
acuity, and contrast sensitivity and scotoma size (Table 2). The
model fit the data with an adjusted R2 of 0.822 (P < 0.001).
The model without the interaction terms resulted in an
adjusted R2 of 0.47 (P¼0.01). The other performance variable,
total number of error trials, could not be predicted by the
linear model (R2 ¼ 0.41, P ¼ 0.03).

Modification Preference

Within an individual subject, image preference data showed no
direct correlation with performance measurements; however,
there was a trend for participants to choose the most modified
images as least preferred. A nonparametric Freidman test
showed that there was a significant difference in rankings
across the eight different modifications (P < 0.001), and a
follow up multiple comparison test showed that both image
modifications 1 and 3 (the original image and the edge
enhanced image) were significantly more preferred than the
image modifications 4, 5, 6, and 7. Additionally, image
modification 8 (within band local contrast enhancement) was
significantly more preferred than image modifications 4 and 7.
Image modification 2 was not significantly different from any
other modification in post hoc analysis. The cumulative
rankings are shown in Figure 6, with error bars depicting the
variability (SD) across patients. The Freidman test accounted
for within patient variance from repeated measures. Thus,
images that subjectively minimally changed the original image
were most preferred, even though visual search was unaffected
by any image manipulation.

DISCUSSION

Our data suggest that the image modification methods
developed in this study may not be a useful method of
improving visual search behavior in patients with central vision
loss. We found no significant difference in search duration or
total number of errors across eight different manipulations of
natural image contrast. We cannot rule out the possibility that
image modification may assist tasks other than visual search. In
a subjective comparison of rankings there was a modest trend
for patients to prefer the original, local band limited RMS and
edge enhanced image over other image modifications. Across
all methods, a multivariate model revealed six significant
predictors for normalized search duration including scotoma
size and acuity as well as interactions among scotoma size, age,
acuity, and contrast. Our experimental setup employed a
variety of modification techniques, some of which have
previously been used in the literature. Why then was image
modification not more helpful?

Three of the eight image manipulations increased local
contrast. The objective of these methods was to maximize the
visibility of all areas of the image. However, instead of
improving image appearance, this technique may have
worsened the patient’s subjective assessment of the image by
increasing the incidence of crowding. Crowding is an
impairment in identification of objects and letters when they
are surrounded by other features, and it is particularly
problematic in the periphery. The area over which crowding
impairs identification increases with eccentricity37 and with
contrast,38 for a recent review see Whitney and Levi (2011).39

Because patients with AMD rely on peripheral vision, crowding
is a fundamental problem and any increase in contrast may
have caused elevated levels of crowding.40 With our normal-
ized images, the contrast was higher and more homogeneous
than in the original images. While this potential elevation in

crowding did not measurably affect search duration or error
rates, it may have contributed to lower preference ratings.

Two other image manipulations directly tested the effect of
crowding on the patient’s ability to search the visual scene.

FIGURE 4. Mean search duration and error trials across eight different
image modification methods. Mean search duration for a particular
modification from each individual participant was used to compare
across different modification methods. The red line depicts the median
of the distribution of the participant means. (A) compares normalized
duration calculated from the mean duration for each image across all
subjects. (B) shows the individually normalized data. Total number of
error trials for each modification method from individual participants
make up the distributions depicted in (C). The black lines depict the
median error rate for each modification method across all participants.
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Previous research in normally-sighted observers has shown
that search times in cluttered scenes are longer than in non
cluttered scenes.41,42 Ho et al.43 that found search performance
declined with increase in both age and clutter in a naturalistic
search task. Additionally, other work has shown that back-
ground provides little information to low-vision patients in
object recognition, and patients perform better with isolated
objects.44 We, therefore, included masked images in which
only objects that were identified and segmented in the scene
by LabelMe users were fully visible. The rest of the image was
classed as background and was reduced in contrast. The
segmented images produced a surprising result since partici-
pants did not show a shortened search duration for these
images even though they contained a small number of clearly
segmented objects (between 2–10 objects per image) on a
relatively uncluttered gray or 50% contrast background. We
hypothesized that this segmentation would assist peripheral
vision by lessening the effect of crowding, making the scene

less cluttered and easier to search. However, the results did not
support this hypothesis. In addition to being unhelpful for
visual search, both segmented images were also ranked lowest
for subjective preference.

It is possible that the lack of improvement in visual search
with segmented scenes may be attributed to a decrease in
contextual information about the target object when it is
removed from its background. Several groups have shown that
context can be useful during visual search in artificial45,46 and
natural scenes.47–51 Interestingly, the number of error trials
was lower for the segmented condition with 50% contrast
background, allowing for some contextual information about
the scene, but search duration was longer than for the fully
segmented images, with 0% contrast background.

Although there was no significant difference in search
duration between color versus gray scale images, color images
were subjectively ranked higher. The naturalistic search task
we employed allowed for semantic and contextual cues to

FIGURE 5. Significant univariate correlations considering age and acuity with search duration. Different colors represent the eight different image
modification methods used. Each point represents the mean duration for a particular modification method within a single participant.

TABLE 2. Intersubject Parameters

Considered

Predictors

Univariate Analysis

R Coefficient

Univariate Analysis

P Value

Multiple Linear Regression

Model Coefficient

Multiple Linear Regression

P Value

Age 0.5472 0.0230* 0.000684 0.6996

Acuity 0.6239 0.007* �10.83 0.0005*

Scotoma size 0.02 0.9119 28.10 0.0019*

Contrast �0.1824 0.4835 �0.452 0.6206

Interaction terms

Age*acuity 0.6960 0.0019 0.1249 0.0001*

Age*scotoma size 0.0770 0.7688 �0.27896 0.0015*

Age*contrast 0.1792 0.4914 �0.002826 0.7819

Acuity*scotoma size 0.3105 0.2251 2.542 0.1685

Acuity*contrast 0.5363 0.0265 1.96554 0.0153*

Scotoma size*contrast �0.0358 0.8914 �6.48805 0.0285*

Age, acuity, scotoma size, and contrast were all considered to be predictors for search duration. The table displays values for both univariate
correlation and multiple linear regression. In the multiple linear regression model, the significant predictors for search duration were scotoma size,
acuity, and interaction terms between scotoma size and age, age and acuity, contrast sensitivity and acuity, and contrast sensitivity and scotoma size.

* indicates P values < 0.05 and a significant predictor for search duration.
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contribute to performance (i.e., patients were instructed to
locate a recognizable object within a recognizable scene).
Consequently, we hypothesized that knowledge about the
likely color of a given target object may have been a useful tool
when completing the task (e.g., a red fire hydrant would be
easier to locate in a colored image). Previous work has
demonstrated color enhances visual memory and recognition
in natural scenes.52,53 More specifically, other groups have
examined the effect of color on object recognition in low-
vision patients and found that colored images improved
performance.44,54 However, we found no evidence of this
benefit for patients with central vision loss, perhaps because
chromatic sensitivity is reduced in the peripheral visual field.55

Due to the small sample size of this study, one may question
the power of the null result. However, even though there were
only 17 patients, the results clearly demonstrate that a large
benefit of image modification cannot be expected and may not
be clinically useful. Nevertheless, it is interesting to note that
the qualitative preference data mirrored the search data. There
was a trend for participants to prefer the original images and
dislike the most clearly modified images, especially ones in
which the image statistics were most changed (i.e., manipula-
tions 4, 5, 6, and 7). These results suggest that visual
processing does not adapt to visual impairment. Some have
argued that the visual system is optimized to the natural
statistics of images through evolution and development;
perhaps these entrenched preferences and selectivity for
natural image statistics persist following visual impairment.56

It is possible that low-vision patients may only benefit from
enhanced/modified images following a period of rehabilitation
training while the patient learns to use the new sources of
visual information.

Although this study found no significant effect of image
modification on performance, as quantified by search duration
and error, none of the manipulations made performance
significantly worse. After collapsing data across all eight image
modifications, we found a significant correlation between age
and duration, consistent with previous research.15,43,57–59 We
also found a significant correlation between acuity and

duration, which has not been found to be correlated with
search performance in normally-sighted observers.60 Surpris-
ingly though, there was no significant correlation between
total scotoma size and search duration. This may be attributed
to the fact that we had patients complete the task binocularly,
and 12 out of the 17 patients had foveal sparing in at least one
eye. However, further analysis showed that there was no
significant correlation between scotoma size and search
duration with the group of patients that had no foveal sparing.
A two-sample t-test showed that acuity, search duration, and
error rate were not significantly different between the non-
foveal and foveal sparing group.

Our multivariate model identified six significant predictors
for normalized search duration including scotoma size and
acuity, as well as interactions among scotoma size, age, acuity,
and contrast. It is likely that this interaction may have been
attributed to the univariate findings in acuity and duration. We
note that neither our univariate nor multivariate analysis was
predictive of total number of error trials. It is possible that
error rates reflect additional non-visual factors such as
perseverance that are not directly related to early visual
parameters.

In addition to examining patient factors that may have
affected performance across the different parameters, we also
examined image features that may have contributed to the
observed variability in search duration across different image
scenes (Fig. 3). The selected target size varied in size across the
90 difference scenes (Fig. 2). Previous work has provided
mixed evidence for an effect of target size on search
duration.61–63 We found a significant correlation between
target area and search duration.

As mentioned above, there was no significant effect for the
modified version of segmented objects; however, there is a
possibility that differences in clutter across the individual scenes
may have confounded the results across modifications. Search
duration has been known to increase proportionally with the
number of objects in a search scene.61,64 We further examined
this possibility by looking at the correlation between number of
objects labeled in the scene and search duration across all image
modifications, but found no significant relationship. This result
may be due to our use of the LabelMe online database object
count (i.e., some scenes were more accurately and completely
labeled than others). In another attempt to assess the effect of
clutter in scenes, we also considered edge density of the scene.
We measured edge density (of the original image) and found
only a slight positive correlation with the average search
duration for a particular scene.

In order to improve the ability for AMD patients to interact
with their environments, a more complete understanding of
visual search in natural environments is needed. We believe
that the negligible impact of the image modification techniques
on patients’ search performance primarily stems from our poor
understanding of search under such conditions. A clearer
understanding of the multiple sources of information used by
observers when performing naturalistic search, and how they
are combined, must inform the development of enhancement.
For example, knowing that observers rely heavily on contrast
differences to identify potential targets, tells us both that
contrast enhancement may be useful, but also that, for
example, isolation of all elements (e.g., to minimize crowding)
may actively hamper search by presenting a potentially large
number of artificially isolated, salient targets. Evaluating these
considerations is difficult, but considerably more tractable in
the context of a particular task like visual search. It may be that
a ‘‘one size fits all’’ approach will not work for enhancement,
and different tasks may rely on different forms of visual
manipulation to optimize patient performance.

FIGURE 6. Image preference data. Image rankings were given a score
of 0 to 8, based on the order in which the image was selected. Data
displayed are the mean ranking score across all participants. Higher
scores indicate a higher preference for that particular manipulation.
Error bars depict the SD of the ranking across all participants.

IOVS, September 2012, Vol. 53, No. 10 Visual Search in AMD 6607



References

1. Hayhoe M, Ballard D. Eye movements in natural behavior.
Trends Cogn Sci. 2005;9:188–194.

2. Querques G, Avellis FO, Querques L, Bandello F, Souied EH.
Age-related macular degeneration. Clin Ophthalmol. 2011;5:
593–601.

3. Cheung S-H, Legge GE. Functional and cortical adaptations to
central vision loss. Vis Neurosci. 2005;22:187–201.

4. Klein R, Chou C-F, Klein BEK, et al. Prevalence of age-related
macular degeneration in the US population. Arch Ophthalmol.
2011;129:75–80.

5. Hassell JB, Lamoureux EL, Keeffe JE. Impact of age related
macular degeneration on quality of life. Br J Ophthalmol.
2006;90:593–596.

6. Cahill MT, Banks AD, Stinnett SS, Toth CA. Vision-related
quality of life in patients with bilateral severe age-related
macular degeneration. Ophthalmology. 2005;112:152–158.

7. Stevenson MR, Hart PM, Montgomery A-M, McCulloch DW,
Chakravarthy U. Reduced vision in older adults with age
related macular degeneration interferes with ability to care for
self and impairs role as carer. Br J Ophthalmol. 2004;88:1125–
1130.

8. Ergun E, Maár N, Radner W, et al. Scotoma size and reading
speed in patients with subfoveal occult choroidal neovascu-
larization in age-related macular degeneration. Ophthalmolo-

gy. 2003;110:65–69.

9. Owsley C, McGwin G Jr. Driving and age-related macular
degeneration. J Vis Impair Blind. 2008;102:621–635.

10. Bullimore MA, Bailey IL, Wacker RT. Face recognition in age-
related maculopathy. Invest Ophthalmol Vis Sci. 1991;32:
2020–2029.

11. Barnes CS, De l’Aune W, Schuchard RA. A test of face
discrimination ability in aging and vision loss. Optom Vis Sci.
2011;88:188–199.

12. Lott LA, Schneck ME, Haegerström-Portnoy G, et al. Reading
performance in older adults with good acuity. Optom Vis Sci.
2001;78:316–324.

13. Anstey KJ, Wood J, Lord S, Walker JG. Cognitive, sensory and
physical factors enabling driving safety in older adults. Clin

Psychol Rev. 2005;25:45–65.

14. Firestone A, Turk-Browne NB, Ryan JD. Age-related deficits in
face recognition are related to underlying changes in scanning
behavior. Neuropsychol Dev Cogn B Aging Neuropsychol

Cogn. 2007;14:594–607.

15. Ball KK, Beard BL, Roenker DL, Miller RL, Griggs DS. Age and
visual search: expanding the useful field of view. J Opt Soc Am

A. 1988;5:2210–2219.

16. Jacko JA, Barreto AB, Scott IU, et al. Macular degeneration and
visual icon use: deriving guidelines for improved access.
Universal Access in the Information Society. 2002;1:197–206.

17. Kuyk TK, Liu L, Fuhr PSW. Feature search in persons with
severe visual impairment. Vision Res. 2005;45:3224–3234.

18. Tran THC, Rambaud C, Despretz P, Boucart M. Scene
perception in age-related macular degeneration. Invest Oph-

thalmol Vis Sci. 2010;51:6868–6874.

19. Peli E, Goldstein RB, Young GM, Trempe CL, Buzney SM.
Image enhancement for the visually impaired. Simulations and
experimental results. Invest Ophthalmol Vis Sci. 1991;32:
2337–2350.

20. Al-Atabany WI, Memon MA, Downes SM, Degenaar PA.
Designing and testing scene enhancement algorithms for
patients with retina degenerative disorders. Biomed Eng

Online. 2010;9:27.

21. Solomon JA, Pelli DG. The visual filter mediating letter
identification. Nature. 1994;369:395–397.

22. Gold J, Bennett PJ, Sekuler AB. Identification of band-pass
filtered letters and faces by human and ideal observers. Vision

Res. 1999;39:3537–3560.

23. Lawton TA, Sebag J, Sadun AA, Castleman KR. Image
enhancement improves reading performance in age-related
macular degeneration patients. Vision Res. 1998;38:153–162.

24. Leat SJ, Mei M. Custom-devised and generic digital enhance-
ment of images for people with maculopathy. Ophthalmic

Physiol Opt. 2009;29:397–415.

25. Fine EM, Peli E. Enhancement of text for the visually impaired.
J Opt Soc Am A. 1995;12:1439–1447.

26. Peli E, Lee E, Trempe CL, Buzney S. Image enhancement for
the visually impaired: the effects of enhancement on face
recognition. J Opt Soc Am A. 1994;11:1929–1939.

27. Fullerton M, Peli E. Post transmission digital video enhance-
ment for people with visual impairments. J Soc Inf Disp. 2006;
14:15–24.

28. Peli E. Recognition performance and perceived quality of
video enhanced for the visually impaired. Ophthalmic Physiol

Opt. 2005;25:543–555.

29. Cockrell JR, Folstein MF. Mini-Mental State Examination
(MMSE). Psychopharmacol Bull. 1988;24:689–692.

30. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: A
Database and Web-Based Tool for Image Annotation. Int J

Comput Vis. 2007;77:157–173.

31. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:
433–436.

32. Peli E, Kim J, Yitzhaky Y, Goldstein RB, Woods RL. Wideband
enhancement of television images for people with visual
impairments. J Opt Soc Am A Opt Image Sci Vis. 2004;21:937–
950.

33. Bex PJ, Solomon SG, Dakin SC. Contrast sensitivity in natural
scenes depends on edge as well as spatial frequency structure.
J Vis. 2009;9:1–19.

34. Canny J. A computational approach to edge detection. IEEE T

Pattern Anal. 1986;PAMI-8:679–698.

35. Fosse P, Valberg A. Contrast sensitivity and reading in subjects
with age-related macular degeneration. Visual Impairment

Research. 2001;3:111–124.

36. Faubert J, Overbury O. Binocular vision in older people with
adventitious visual impairment: sometimes one eye is better
than two. J Am Geriatr Soc. 2000;48:375–380.

37. Levi DM. Crowding–an essential bottleneck for object
recognition: a mini-review. Vision Res. 2008;48:635–654.

38. Chung STL, Levi DM, Legge GE. Spatial-frequency and contrast
properties of crowding. Vision Res. 2001;41:1833–1850.

39. Whitney D, Levi DM. Visual crowding: a fundamental limit on
conscious perception and object recognition. Trends Cogn

Sci. 2011;15:160–168.

40. Vlaskamp BNS, Hooge ITC. Crowding degrades saccadic
search performance. Vision Res. 2006;46:417–425.

41. Wolfe JM, Oliva A, Horowitz TS, Butcher SJ, Bompas A.
Segmentation of objects from backgrounds in visual search
tasks. Vision Res. 2002;42:2985–3004.

42. Bravo MJ, Farid H. Search for a category target in clutter.
Perception. 2004;33:643–652.

43. Ho G, Scialfa CT, Caird JK, Graw T. Visual search for traffic
signs: the effects of clutter, luminance, and aging. Hum

Factors. 2001;43:194 �207.

44. Boucart M, Despretz P, Hladiuk K, Desmettre T. Does context
or color improve object recognition in patients with low
vision? Vis Neurosci. 2008;25:685–691.

45. Chun MM, Jiang Y. Contextual cueing: implicit learning and
memory of visual context guides spatial attention. Cog

Psychol. 1998;36:28–71.

6608 Wiecek et al. IOVS, September 2012, Vol. 53, No. 10



46. Biederman I, Blickle TW, Teitelbaum RC, Klatsky GJ. Object
search in nonscene displays. J Exp Psychol Learn Mem Cogn.
1988;14:456–467.

47. Neider MB, Zelinsky GJ. Scene context guides eye movements
during visual search. Vision Res. 2006;46:614–621.

48. Palmer SE. The effects of contextual scenes on the identifica-
tion of objects. Mem Cognit. 1975;3:519–526.

49. Mandler JM, Johnson NS. Some of the thousand words a
picture is worth. J Exp Psychol Hum Learn. 1976;2:529–540.

50. Boyce SJ, Pollatsek A, Rayner K. Effect of background
information on object identification. J Exp Psychol Hum

Percept and Perform. 1989;15:556–566.

51. Biederman I, Mezzanotte RJ, Rabinowitz JC. Scene perception:
detecting and judging objects undergoing relational violations.
Cogn Psychol. 1982;14:143–177.

52. Gegenfurtner KR, Rieger J. Sensory and cognitive contribu-
tions of color to the recognition of natural scenes. Current

Biology. 2000;10:805–808.

53. Wichmann FA, Sharpe LT, Gegenfurtner KR. The contributions
of color to recognition memory for natural scenes. J Exp

Psychol Learn Mem Cogn. 2002;28:509–520.

54. Wurm LH, Legge GE, Isenberg LM, Luebker A. Color improves
object recognition in normal and low vision. J Exp Psychol

Hum Percept Perform. 1993;19:899–911.

55. Johnson MA. Color vision in the peripheral retina. Am J

Optom Physiol Opt. 1986;63:97–103.

56. Geisler WS. Visual perception and the statistical properties of
natural scenes. Ann Rev Psychol. 2008;59:167–192.

57. Madden DJ. Aging and distraction by highly familiar stimuli
during visual search. Dev Psychol. 1983;19:499–507.

58. Foster JK, Behrmann M, Stuss DT. Aging and visual search:
generalized cognitive slowing or selective deficit in attention?
Aging Neuropsychol Cogn. 1995;2:279–299.

59. Owsley C, Burton-Danner K, Jackson GR. Aging and spatial
localization during feature search. Gerontology. 2000;46:300–
305.

60. Eriuckson RA. Relation between visual search time and
peripheral visual acuity. Hum Factors. 1964;6:165–177.

61. Williams LG. The effect of target specification on objects
fixated during visual search. Percept Psychophys. 1966;1:315–
318.

62. Over EAB, Hooge ITC, Vlaskamp BNS, Erkelens CJ. Coarse-to-
fine eye movement strategy in visual search. Vision Res. 2007;
47:2272–2280.

63. Steedman WC, Baker CA. Target size and visual recognition.
Hum Factors. 1960;2:120–127.

64. Alvarez GA, Cavanagh P. The capacity of visual short-term
memory is set both by visual information load and by number
of objects. Psychol Sci. 2004;15:106–111.

IOVS, September 2012, Vol. 53, No. 10 Visual Search in AMD 6609


	t01
	f01
	f02
	f03
	f04
	f05
	t02
	f06
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51
	b52
	b53
	b54
	b55
	b56
	b57
	b58
	b59
	b60
	b61
	b62
	b63
	b64

