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There is considerable interest in how humans estimate the number
of objects in a scene in the context of an extensive literature on
how we estimate the density (i.e., spacing) of objects. Here, we
show that our sense of number and our sense of density are
intertwined. Presented with two patches, observers found it more
difficult to spot differences in either density or numerosity when
those patches were mismatched in overall size, and their errors
were consistent with larger patches appearing both denser and
more numerous. We propose that density is estimated using the
relative response of mechanisms tuned to low and high spatial
frequencies (SFs), because energy at high SFs is largely determined
by the number of objects, whereas low SF energy depends more
on the area occupied by elements. This measure is biased by
overall stimulus size in the same way as human observers, and by
estimating number using the same measure scaled by relative
stimulus size, we can explain all of our results. This model is a
simple, biologically plausible common metric for perceptual num-
ber and density.
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It has long been known that observers can judge the number of
objects within a scene (1) but only recently has it been pro-

posed that this ability is directly supported by low-level visual
mechanisms. Specifically, Burr and Ross (2) report that prolonged
viewing of a dense field of elements (adaptation) causes the
number of elements in a subsequently viewed pattern to appear
drastically reduced. The notion of a visual sense of number has
generated considerable excitement, not least because, for example,
childrens’mathematical ability correlates with their ability to make
approximate estimates of number (3). However, when one varies
the number of elements within a fixed region, one also varies the
mutual separation or density of elements. Durgin (4) reported that
stronger adaptation is induced by a small-dense patch than by a
large-sparse patch (that actually contains more elements). This
result is consistent with adaptation being determined by density
and not number per se.
The notion that our sense of number might be linked to density

is intuitive when one considers that there are only two ways to
estimate number. The first is to explicitly count (item-by-item),
a strategy ruled out by the finding that number estimation does
not slow in proportion to number beyond around seven ele-
ments (5). The second way is by comparing measurements whose
product is dimensionless, e.g., density × area = number. If we
require only relative number (i.e., “Which is more numerous?”
the judgment made in forced-choice experiments), then we can
use a density estimate that need only scale with physical density
(e.g., contrast). This is the approach adopted here: We sought to
develop a computational model of approximate number estima-
tion by identifying the measures used by the visual system to
estimate density (and so encode approximate number).
A major constraint on any density estimate is whether it is de-

pendent on number. Can we determine experimentally whether
number and density estimations are independent? One approach
is to show that manipulation of the notionally irrelevant dimension

(say density) leaves estimation along the relevant dimension (say
number) unaffected. For example, doubling element size (thereby
doubling the ratio of occupied to unoccupied pixels in the pat-
tern) has no effect on number discrimination (2). However, if
one defines density not as pixels per unit area but as elements per
unit area—the latter being widely used (6)—then this result is
not diagnostic.
The most direct way to decouple number and density is to

mismatch the area over which elements are distributed within
two stimuli. Several previous studies have reported that this
manipulation does not greatly influence the precision of number
discrimination (6–8). However, in addition to expressing the
usual concern about negative results, we note first that some
studies have used relatively small numbers of elements (∼30) (6,
8), which are less effective at engaging approximate number
processing. Furthermore, the study by Ross and Burr (7) re-
quired observers to make either number or density comparisons
within different blocks of trials. In number blocks (for example)
either area or density was held constant so that in trials when the
area of the stimulus matched the standard, observers could re-
port density whereas in trials when the density was matched, they
could report area; subjects never needed to judge number.
Critically, when observers are forced to make an explicit com-
parison—as in the experiment of Tokita and Ishiguchi (8)—
a strong effect of size is evident (albeit on the appearance rather
than discriminability of the patches). Larger patches are per-
ceived as being ∼10% more numerous. Here we confirm this
effect for number, find that it is magnified for judgments of
density, and show how this result is critical for understanding
the mechanism supporting number and density judgments.
Fig. 1 A and B shows two patches containing 128 elements.

The difference in patch size makes this equivalence difficult to
confirm, and in Results, we show that this difference interferes
with observers’ precision at discriminating number. Note that
this result is contrary to the notion of a sense of number that
operates independently of stimulus size or density. Fig. 1C fur-
ther illustrates that density estimation is not immune to a similar
manipulation of size or number. Fig. 1C has the same physical
density as Fig. 1A but appears considerably denser. Fig. 1D is
a typical perceptual match for the density of Fig. 1A and illus-
trates the results of our experiment. We show that observers
typically require around a factor of 1.4 reduction in density
(100%/1.4 = 71%) to achieve a reliable perceptual match for
density across this difference in number or size.
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We experimentally quantified the impact of mismatching patch
size on observers’ ability to discriminate which member of a pair
of stimuli (a test and a reference, the latter containing 128 ele-
ments) was either more numerous or more dense. We did this
using a 3 × 3 design measuring observers’ performance with all
possible pairings of patches with radii of 2.0°, 2.8°, or 4.0° of
visual angle.

Results
Analysis. For density discrimination, responses were first plotted
(Fig. 2A) as the proportion of times subjects said the test was
denser than the reference, as a function of the ratio of the
densities of the test and reference. Data were fitted with cu-
mulative Gaussian functions (gray lines in Fig. 2A) to derive (i)
bias (offset: the proportion of test density required to produce
a subjective match between test and reference; i.e., so that the
subject was 50% likely to say the test was denser than the ref-
erence) and (ii) threshold (the proportion of extra density re-
quired to raise performance from 50% to 82%). An analogous
procedure was applied to number data (the full dataset is shown
in Fig. S1).

Average Bias/Thresholds. Fig. 2C shows how density bias varies
with patch-size mismatch. Consider the small red symbols:
Moving from left to right, they show that for a small test patch to
be perceptually matched to a variable-size reference the test’s
density must increase as the reference grows. Conversely, a large
test paired with a small reference (leftmost blue point) can be
sparser (i.e., fall below the dashed horizontal line) and still be
perceptually matched. Essentially these data indicate that larger/
more-numerous patches appear denser than they are and that
perception of number and density is veridical (i.e., points fall on
the dashed horizontal line) only when test and reference are
matched in size.

Fig. 2E indicates that number matching across differences in
patch size is less biased than density matching (the slopes of data
in Fig. 2E are shallower than the slopes of data in Fig. 2C), but
that observers still make systematic errors such that larger test
patches appear more numerous (replicating ref. 8). Thresholds
for the two tasks are shown in Fig. 2 D and F. Observers require
∼40% difference in number or density to make a reliable dis-
crimination between a test and a reference patch. This result is
somewhat higher than previous estimates of Weber fractions for
number discrimination (∼25%) (2) that we have identified (in
control experiments) as being due to a combination of the larger
element size and parafoveal presentation used here. We note

Fig. 1. Our sense of number and sense of density (element spacing) are
entangled. (A) The small reference patch contains 128 elements. (B) Dou-
bling the radius of the patch makes it difficult to tell that A and B contain
the same numbers of elements. The size change disrupts our sense of
number. (C) This patch has the same physical density as A, but the elements
typically appear more closely spaced. D is perceptually matched to the
density of A but has a much lower physical density—it contains 365 elements
(i.e., 147 fewer than the physical match; C). Size change disrupts our sense of
both density and number.

TR

2.0 2.8 4.0

50

71

100

141

200

Ref radius (deg.)

M
at

ch
in

g 
te

st
-d

en
si

ty
 (%

)  Density bias

 Density versus numerosity bias

2.0 2.8 4.0
Ref radius (deg.)

2.0 2.8 4.0
Ref radius (deg.)

2.0 2.8 4.0
Ref radius (deg.)

100

141

200

Th
re

sh
ol

d 
te

st
-d

en
si

ty
 (%

)  Density threshold

50

71

100

141

200
M

at
ch

in
g 

te
st

-n
um

be
r (

%
)  Number bias

100

141

200

Th
re

sh
ol

d 
te

st
-n

um
be

r (
%

)  Number threshold

2.0 2.8 4.0

Test radius (deg.)

R=0.637 p=0.0001

Density task: matching density (%)
50

50

71

71

100

100

141

141

200

200

N
um

be
r t

as
k:

 m
at

ch
in

g 
de

ns
ity

 (%
)

SCD

JAG

TR

NS

MST

Model

veridical

 Typical psychometric functions

1.0

P
ro

po
rti

on
 “T

es
t>

R
ef

er
en

ce
” 

Test/Reference

0.5

0.82

0.0
1.00.7 1.28 1.67 2.00.5

bias

threshold

bias=128%
[100*1.28]

threshold=130%
[100*(1.67/1.28)]

A

C

E

B

D

F

Fig. 2. (A) Psychometric functions for number and density discrimination.
Symbols plot average proportion of times observers categorized a test as
denser (green) or more numerous (red) than the reference as a function
of the number of elements in the test compared with the reference. Gray
lines are the best-fitting cumulative Gaussian functions, with the stimulus
levels producing a perceptual match (bias) or a just noticeable difference
(threshold) overlaid for the density task. Dashed colored lines are the pre-
dictions of the model using the relative activity (response ratio) of two filters
tuned to low and high spatial frequencies. (B) Individual observers’ bias on
number vs. density discrimination on comparable size-mismatched condi-
tions. Note that bias is greater for density judgments and is correlated with
bias on the number judgments in a manner predicted by the model (olive
green line). (C–F) Matching (C and E) and discrimination (D and F) perfor-
mance for density (C and D) and number (E and F). Biases indicate that
subjects see larger objects as (C) denser and (E) more numerous. (D and F)
Discrimination is broadly similar for both tasks [observers can spot a differ-
ence of ∼40% (i.e., ×140%) in either number or density], with both tasks
being compromised by mismatching stimuli sizes. Solid lines are the pre-
dictions of the response ratio model.
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that the largest size mismatches substantially elevate thresholds
(e.g., circled data point in Fig. 2F).

Modeling. We propose that shared effects on bias and precision
arise from the use of a common metric for both number and
density judgments. The colored lines in Fig. 2 are predictions
from a model that estimates density and number using a pair of
filters tuned to high and low spatial frequencies, specifically re-
lying on the ratio of their responses to a full-wave rectified ver-
sion of the stimulus. We predict density discrimination thresholds
using these response ratios corrupted by multiplicative noise.
Discrimination of number requires this estimate be scaled in
proportion to the relative area of stimuli: To this end, we simply
multiply a given response ratio by the ratio of the low spatial
frequency (SF) filter responses (from the stimulus pair). This
number estimate is corrupted by a second larger noise term (that
we suppose originates from having to compare low SF response
across space). Note that whereas number could be estimated
directly from the output of high-spatial frequency filters, this
method would fail to produce the moderate bias evident in Fig.
2E. Given the small number of free parameters (one for density
and one for number), the model does a remarkably good job of
capturing our main effects including the strong and weak non-
veridical matching of density and number, respectively, and
Weber fractions for discrimination.

Individual Differences. Individual differences in bias provide an
independent source of evidence that density and number use a
common perceptual metric. Fig. 2B plots observer bias (per-
centage of reference number or density required for a match,
where 100% is veridical/unbiased performance) on the density
vs. the number task, for comparable size-mismatched conditions.
Data from five observers indicate that these two biases are highly
correlated (R = 0.64, P < 0.0001), but that the density bias is
consistently higher than the number bias. The level of correlation
and good agreement with the prediction of the model (olive-

colored line) again suggests that the two tasks are tapping into a
common mechanism.

Element Type/Arrangement. To test the wider relevance of the
model we examined its ability to predict psychophysical discrimi-
nation of stimuli composed of different elements. Starting with
a smaller number (32) of random contrast polarity Gaussian ele-
ments, as used above, we compared performance with a random
spatial arrangement (Fig. 3A) vs. one that minimized element
overlaps (Fig. 3B). We also tested single contrast-polarity elements
(Fig. 3C), as well as SF narrowband Gabor elements (Fig. 3 D–F)
with a small envelope (Fig. 3D), a large envelope (Fig. 3E), or
a medium envelope with carrier SF jittered (σ = 0.5 octaves) (Fig.
3F). We compared this result to performance with another class of
contrast-defined element (with an isotropic noise carrier) (Fig.
3G) or animal silhouettes presented against either a uniform gray
(Fig. 3H) or a fractal noise background (Fig. 3I). These conditions
challenge the model by manipulating element arrangement, cue
type (contrast or luminance), element shape, surrounding context,
and feature density within elements. Results from the experi-
ment are presented alongside predictions from the response ratio
model in Fig. 3J. Removing element overlap improves perfor-
mance considerably, whereas thresholds are remarkably stable
across variation in contrast polarity, envelope size, and envelope
shape. This result is captured well by the density estimate from the
response ratio model using the same filters as before, with only
a single (multiplicative-noise) parameter varying (being set once
for each of the three classes of stimuli). We note here that the
connectedness of elements can also influence numerosity judg-
ments (9, 10); in Fig. S2, we show that the response ratio model
also predicts performance with such stimuli.

Discussion
We have shown that observers’ difficulty in matching and dis-
criminating both number and density across differences in stim-
ulus size and element type is consistent with their using a simple

Fig. 3. Manipulation of element type and configuration. (A–C) Gaussian elements of either (A and B) mixed or (C) single contrast polarity positioned either
(A and C) randomly or (B) to avoid overlaps. (D–F) Gabor elements with (D) small, (E) large, or (F) medium envelopes and a (D and E) fixed or (F) variable
carrier spatial frequency. (G–I) Complex elements made up of (G) patches of isotropic noise or (H and I) animal silhouettes in (H) isolation or (I) embedded in
fractal noise. (J) Psychophysical discrimination performance (colored symbols) for the nine conditions compared with predictions of the simple filter model
(solid line) described above.

19554 | www.pnas.org/cgi/doi/10.1073/pnas.1113195108 Dakin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113195108/-/DCSupplemental/pnas.201113195SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1113195108


perceptual metric based on the relative response of a pair of
spatial-frequency tuned filters.
We note that our approach has something in common with

Allik’s “occupancy” model of numerosity (11), a major differ-
ence being that our model operates not on abstracted object
locations but on raw images. That our model knows nothing of
objects is critical because it predicts that systematic mismatching
of element size should affect both number and density judg-
ments, whereas contrast (and contrast polarity) should not (be-
cause response ratios do not change with overall contrast level).
These predictions are broadly supported by existing literature;
substantial differences in element size disrupt numerosity judg-
ments (12, 13), whereas contrast manipulations do not (2, 13).
The predictions for density discrimination are based directly on

noisy response ratios whereas for number discrimination these
values were scaled by the ratio of low SF outputs, to compensate
for the effect of difference in region size on response ratio. We do
not suggest that this approach means density estimation can
never compensate for size, but merely that this task did not pro-
mote such a strategy. It may be that, for density, a more natural
compensation is for element size (which would give a scale-in-
variant representation of density; i.e., one that does not change
with viewing distance). We suggest that such a computation could
be achieved using the ratio of responses from a different (in-
termediate SF) filter pair. Because our experiment did not alter
element size, it may not have revealed the behavioral conse-
quences of such a computation.
Why then should judgments of number and density be so biased

by stimulus size? Consider a comparison with the visual coding of
luminance. For humans it is luminance difference (contrast) and
not absolute luminance that drives our visually guided behavior.
A predominantly contrast-based code might sacrifice veridical
representation of luminance (e.g., through a center-surround re-
ceptive-field organization) to detect image structure under wild
fluctuations in overall luminance. The price we pay is that our
judgment of absolute luminance can be biased by context, a fact
that is exploited by a variety of impressive brightness illusions. In
analogy to luminance, we suggest that the visual system makes a
similar sacrifice of accuracy for absolute number/density to pre-
serve our sensitivity to relative number and relative density under
fluctuation in absolute levels of these visual attributes. Producing
estimates of number/density that are biased by overall size may be

the price the visual system pays to preserve discriminability of
visual attributes that are likely more functionally important.
Our work broadly fits with several recent suggestions that the

representation of number is linked to other visual attributes (e.g.,
coding of duration) (14). It is inconsistent with the notion of a
dedicated visual mechanism for approximate number (indepen-
dent of density) as has been claimed (e.g., on the basis of psy-
chophysical evidence from adaptation) (2). In terms of physiologi-
cal mechanisms we note that the great majority of studies have
used low numbers of elements (typically 1–7, never higher than 32).
Although it is assumed that such mechanisms could deal with
larger numbers, this assumption has not been explicitly demon-
strated. In terms of modeling, the details of number channels (i.e.,
how one moves from images to predicted behavior) have yet to be
described. That neural mechanisms tuned for small numbers have
been located in parietal cortex (15–18) suggests that they may rely
on resources such as attentional pointers. This result in turn is
consistent with low-number discrimination (subitizing) placing a
heavier attentional load on observers than estimation of larger
numbers, suggesting that different mechanisms exist for both (19,
20). This result squares with earlier adaptation findings that the
critical switch at higher numbers is toward a more density-de-
pendent measure (21). The general idea is that statistical mecha-
nisms like the response ratio are always available but that at lower
numbers they may be unreliable compared with strategies that
engage more attentional resources (like pointers).
We started out by pointing out several flaws in earlier studies of

the influence of relative size on number/density judgment. Al-
though the behavioral evidence relating to numerical cognition is
frequently contentious, we believe our findings will generalize.
First, we note that, because we are reporting a positive effect of our
manipulation, we cannot have made a type II error. Second, since
conducting these experiments, we have measured larger biases on
both number and density discrimination under conditions of higher
uncertainty and have further evidence for a close correspondence
between these tasks under a wide range ofmanipulations (including
variable attentional load, contrast manipulation, and element-size
manipulation) (22). Finally, we have shown that the model can
predict performance with other classes of stimuli (Fig. 3).
Inspecting Fig. 1, one could argue that it should come as no

surprise that number and density are supported by a common
mechanism, because both code the degree to which space is oc-
cupied. What is striking about our findings is that our sense of

Fig. 4. (A–D) Original images and (E–H) heat maps of local response ratio (blue, low response ratio; red, high response ratio). (A and B) Both images contain
similar numbers of elements but lack of “clustering” in B increases its perceived number by ∼8%. (E and F) Local response ratio reflects this difference. (C and
D) Response ratio can also be mapped onto images as an estimate of (C and G) local size and (D and H) local surface gradient.
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density (or feature spacing) is inconsistent with an explicit code
for spatial position, beyond the influence that feature arrange-
ment has on the spatial frequency structure of an image. We must
be surprisingly poor at judging average feature spacing (which
would unambiguously code density in our experiment) for us to
rely on a measure that was so vulnerable to a simple manipula-
tion of overall size. The idea that feature density might always be
derived from filter activities (in a manner that is more akin to the
processing of contrast) runs contrary to the notion that an explicit
code for token position—the cornerstone of the primal sketch
(23, 24)—is preserved throughout visual processing. Instead, ei-
ther token positions are pooled or undersampled within clusters
(25) in a manner consistent with some form of local spatial
compression or the tokens did not exist in the first place. The
latter view would be consistent with our sense of relative spatial
position of features being illusory, manufactured after the fact on
the basis of the spatial frequency structure of the scene.
The model we have described computes a response ratio esti-

mate at every location and then pools over the entire image. We
now briefly consider the advantages of an explicit representation
of local response ratio. We have already shown that element
clustering increases overlaps and leads to poorer performance
(Fig. 3) but it is also known that clustering reduces perceived
number and/or density (26). Fig. 4 A and B shows an example of
this phenomenon; note that more regularly spaced elements (Fig.
4B) appear more numerous, despite having the same number as
the clustered stimulus (Fig. 4A). Below each image (Fig. 4 E and
F) are response ratio maps based on the (Gaussian smoothed)
local filter ratios. Note that the warmer/denser response to the
more evenly spaced pattern predicts an ∼8% elevation in per-
ceived number (in line with psychophysical estimates) (26).

It is known that the visual system has access to statistical
attributes such as mean element orientation (27) and element
size (28), and although there is a candidate neural mechanism
for orientation averaging (a population code based on the re-
sponse of V1 neurons), the mechanism for size averaging is
currently unclear. Fig. 4C shows a typical stimulus containing
size-varying elements, and Fig. 4G shows how the corresponding
response ratio map reflects local feature density. A pooled re-
sponse ratio for this image could be used as a reliable proxy for
mean-size estimation. We have noted that a curious feature of
size averaging is that performance seems to depend on neither
the diameter nor the area of stimuli, but on a measure closer to
R∼1.4 (29). We propose that this outcome arises from observers
relying on a cue from a response ratio that rises slower than
density with increasing stimulus diameter (Fig. 5C).
Finally, it is known that element size/density is a useful cue to

surface shape. Fig. 4 D and H shows, respectively, a textured
figure and a version of the same that has been labeled using local
response ratio to indicate local surface density. Note how ele-
ment color now reflects size/density of elements and that hot-
spots indicate regions of surface discontinuity.
In summary, our psychophysical evidence indicates that the

abilities to judge number and density are both influenced by the
size of stimuli in a manner that suggests they rely on a common
visual mechanism. This mechanism, we propose, is based on the
relative response of spatial filters tuned to high and low spatial
frequencies. Such a simple mechanism may prove useful in un-
covering the operation of a variety of additional tasks including
size averaging and texture processing. Furthermore, we speculate
that ratios of filter responses are the common currency of visual
magnitude estimation (14). For example, duration estimation
could similarly be based on the ratio of responses from a transient
and sustained filter mechanism, a notion that squares with recent
suggestions that our visual clock continuously compares the output
of magnocellular and parvocellular channels (30) or is sensitive to
the second-order temporal statistics of natural visual stimuli (31).

Materials and Methods
Stimulus and Task. We presented pairs of stimuli (±6.0° left/right of central
fixation)—a test and a reference patch—for 250 ms. Observers reported
which patch was either more numerous or more dense (in separate blocks).
No feedbackwas given. Patches were composed of a variable number of small
2D Gaussian patches (σ = 3.8 arc min; 50% contrast, random contrast polarity)
falling within a circular region.We used a 3 × 3 design, independently varying
the size of the test and reference patches (radii: 2.0°, 2.8°, or 4.0°). The
(variable-size) reference always contained 128 elements (e.g., Fig. 1A is the
smallest reference). The density or number of the (variable-size) test (e.g., Fig.
1B is the largest test patch) was set using a method of constant stimuli and
varied over a range of 50–200% in seven steps (centered on 100%, i.e., a
physical match to the density or number of the reference, according to run).
Thus, for “number” runs, tests contained 64, 81, 102, 128, 162, 203, or 256
elements. For “density” runs, tests were 50, 63, 79, 100, 126, 159, or 200% of
reference density (2.5, 5.2, or 10.4 elements per degree squared depending
on reference size). Each run consisted of 112 trials (16 trials at seven stimulus
levels) and five observers (two naive, all experienced in psychophysics, with
normal or corrected-to-normal vision) performed one to two runs of each
judgment type (number or density discrimination).

Modeling. To reliably discriminate number (N) and density (D = N/A, where A
is area) the visual system requires estimates (n and d) such that n ∝ N and d ∝
D. We propose that the responses of known visual mechanisms—SF band-
pass filters—are combined to make these estimates. Specifically, we con-
volve stimuli with Laplacian of Gaussian, center-surround filters constructed
from the combination of a Gaussian filter and a second derivative (Eq. 1),

∇2Gsðx; yÞ ¼ 1
πs 4

�
1−

x2 þ y2

2s2

�
exp

�
−
x2 + y2

2s2

�
; [1]

to estimate the filter response to a rectified version of a given image (In; this
nonlinear transform of the image confers subsequent filtering with
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Fig. 5. Stimuli with one parameter fixed—(A) number, (B) density, or (C)
radius—and the other two allowed to covary. (Upper, row 1) Example stimuli
and (Upper, row 2) high-SF and (Upper, row 3) low-SF filtered versions of
rectified versions of the stimuli. (Lower) Graphs plot pooled energy from the
high (purple circles) and low (blue circles) filters under conditions of fixed
number, density, and radius, along with the estimated density (green dashed
lines) and number (red dashed lines) based on response ratio. Units are
a proportion relative to the value derived from the midvalue stimulus (so all
lines pass through 1.0). An ideal estimate of number and density is shown as
the solid red and green lines, respectively.
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sensitivity to second order or contrast-defined image structure) pooled
across all image locations (Eq. 2):

Rσ ¼
X
x;y

���∇2Gσ⊗
��I�����: [2]

Fig. 5 illustrates the logic of using this filter response to estimate density
and number. Fig. 5, Upper presents stimuli similar to those used in our
experiment and looks at the effects of number, density, and radius by fixing
one of these parameters (Fig. 5 A, B, and C, Lower, respectively) and
allowing the other two to covary. The example stimuli are from the
extremes of the range tested and beneath each is the result of filtering
a rectified version of it at two different scales. The graphs in Fig. 5 A–C plot
the response from the high- and low-frequency filters (purple and blue
symbols, respectively), averaged across all pixels in 32 image examples. For
the purpose of illustration (and because we are interested in discrimination)
we have normalized responses relative to the response to the midrange
stimulus. Solid green and red lines show the ideal (normalized) responses of
a mechanism tuned for density and number, respectively. Note that the
purple symbols (high-frequency response) closely follow the pure number
prediction (solid red line). That Rhi ∝ N should be unsurprising because small
filters generate isolated responses to individual elements. Looking at blue
symbols (low-frequency response), we note that although this measure rises
as a function of (Fig. 5 B and C) number it also rises as a function of (Fig. 5A)
patch radius when number is fixed. That Rlo ∝ A is a consequence of large
filters responding to clusters of elements and their response ultimately
being limited by the patch size elements fall within. On the basis of this
observation, we propose that the ratio of two filter responses might be
a useful correlate of density and number (Eq. 3),

C ¼ 2γσ
Rhi

Rlo
; [3]

a measure that we call response ratio (where γn is Gaussian random noise so
that 2γσ is a multiplicative noise term). Response ratio is plotted as the green
dashed line in Fig. 5 A–C. The slope of straight-line fits to response ratio is
around (Fig. 5A) −0.30 and (Fig. 5C) +0.4 when density changes (with either
fixed number or radius) but only (Fig. 5B) +0.08 when density is fixed. We
selected the filters to use in this and the following simulations by averaging
the magnitude of the slopes of the functions in Fig. 5 A and C for all possible
pairings of filter spatial frequencies, selecting the filter pair that maximized
the slope of the functions (i.e., maximizing sensitivity to density change). We
then ran Monte Carlo simulations of our experimental procedure, generat-
ing stimulus image pairs (Fig. 5 A and B) the same way as in the real ex-
periment, and then computed an estimate of relative density as (Eq. 4)

da;b ¼ Ca

Cb
: [4]

The denser stimulus was selected on the basis of whether da,b was less than or
greater than 1.0, and this selection was used to derive psychometric functions.
Because filter sizes had been set by the earlier simulation, this model has only
one free parameter (the multiplicative noise level in Eq. 3 that was set to
σ = 0.1).

How then to estimate number? The first possibility is that the visual system
directly accesses Rhi (useful because Rhi ∝ N). This possibility is unlikely for
two reasons: First, if this information were available, then mismatching re-
gion size would have little or no effect on performance (which it demon-
strably does). For example, the purple symbols in Fig. 5A would indicate that
density and radius have no effect of perceived number whereas our own
bias data indicate that they do. Second, it would predict that observers’
estimate of number would increase with increasing contrast; if anything, the
opposite is true. Instead we propose that number is derived from response
ratio and that an explicit weighting for degree of size mismatch is applied
to recover the high spatial frequency component. Because low spatial fre-
quency is used as a proxy for area in computing density, the scaling is based
on the ratio of the low SF response from the two stimuli (Eq. 5),

na;b ¼
 
2γσ aRlo

bRlo

!2γs

da;b; [5]

which includes a second noise term (S = 1.9 in the simulations). In Fig. 5, the
dashed red lines plot estimated number n and show that (Fig. 5A) the esti-
mate is essentially flat when number is unchanging and increases with
number at about the same rate when density is fixed (Fig. 5B) or increases
(Fig. 5C), closely mirroring the predictions from high SF energy. Given that
the slope of these functions indicates discriminability, it is interesting to note
that reweighting of the response ratio estimates leads to similar slopes with
either pure-number change or when number changes with density. Ross and
Burr (3) took their finding that subjects could discriminate number equally
well under both of these conditions as an indicator that number could not
be mediated by density. This simulation shows that such performance does
not rule out reliance on a common mechanism (based on neither number
nor density but on a simple statistic based on the SF structure of the image).

Fig. S1 plots individual psychometric functions from the five observers
for both tasks (red, density; green, number) along with the predictions of
the model described above (solid lines) fitted to the mean psychometric
function.
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SI Materials and Methods
Fig. S1 shows the full dataset for the experiment examining the
effect of size mismatch on number and density judgments. Shown
are the raw data that were fit with cumulative Gaussian psy-
chometric functions to derive the summary in Fig. 2C–F. Now the
model predictions (Fig. S1, solid lines) are proportions of re-
sponses for which the test was judged more numerous or more
dense than the reference as a function of the difference (in
number or density) between the test and reference stimuli. The
fit is generally good.
He et al. (1) showed that connecting pairs of elements within

a pattern reduces its perceived numerosity. In a matching task
they had observers judge whether a reference (12 elements, 4
lines, 0 pairs connected) or a test (9–15 elements, 4 lines, 0–2
pairs connected) was more numerous. When the lines connected

at least one pair of elements within the test pattern, the test
needed to contain >12 elements to perceptually match the 12-
element reference pattern. Fig. S2 Inset shows typical stimuli
from this experiment (all containing 12 elements) and the re-
duction in perceived numerosity as one connects elements (from
left to right) is clear. The main plot of Fig. S2 replots psycho-
physical data from this experiment (symbols). We ran a Monte
Carlo simulation of the experiment, applying the response ratio
model to a set of stimuli generated in a similar way. No noise was
added to the model output and filter parameters (s in Eq. 1) were
set to 2 and 23 pixels for the high and low spatial frequency fil-
ters, respectively. The good fit of the model prediction (Fig. S2,
solid lines) we obtain indicates that the response ratio model is
able to capture the influence of connecting elements on perceived
numerosity without recourse to any notion of segmentation (2).
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Fig. S2. Solid symbols are data replotted from He et al. (1) indicating the number of times an observer reported that a test pattern (containing a variable
number of circles) was more numerous than a reference containing 12 circles. All test stimuli contained four lines that could join (red) no pairs, (green) one pair,
or (blue) two pairs of circles (example stimuli are given in the Inset). We generated stimuli using a similar method to the original study (1) and used the density
measure (Eq. 4) to generate predicted performance (solid lines). The model provides an excellent fit to the data.

Fig. S1. (A–I) Full datasets for the nine conditions of the main experiment, showing the five observers’ performance on density or number judgments (green
or red symbols, respectively) along with predictions from the response ratio model (solid lines) fit to the mean performance level. Gray circles (Inset) indicate
schematically the size of reference (R) and test (T) stimuli. Blue lines show the point at which stimuli were physically matched (for number or density): Shifts of
the psychometric functions away from this point indicate bias. The boxed percentage values quantify bias (μd and μ#) and threshold (σd and σ#) using the mean
parameters from the cumulative Gaussian functions that best fit the individuals’ raw data.
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