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isual Perception and Its Impairment in Schizophrenia
amela D. Butler, Steven M. Silverstein, and Steven C. Dakin

uch work in the cognitive neuroscience of schizophrenia has focused on attention, memory, and executive functioning. To date, less work
as focused on perceptual processing. However, perceptual functions are frequently disrupted in schizophrenia, and thus this domain has
een included in the CNTRICS (Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia) project. In this article,
e describe the basic science presentation and the breakout group discussion on the topic of perception from the first CNTRICS meeting,
eld in Bethesda, Maryland on February 26 and 27, 2007. The importance of perceptual dysfunction in schizophrenia, the nature of
erceptual abnormalities in this disorder, and the critical need to develop perceptual tests appropriate for future clinical trials were
iscussed. Although deficits are also seen in auditory, olfactory, and somatosensory processing in schizophrenia, the first CNTRICS meeting

ocused on visual processing deficits. Key concepts of gain control and integration in visual perception were introduced. Definitions and
xamples of these concepts are provided in this article. Use of visual gain control and integration fit a number of the criteria suggested by the
NTRICS committee, provide fundamental constructs for understanding the visual system in schizophrenia, and are inclusive of both
ower-level and higher-level perceptual deficits.
ey Words: Contrast, form, gain control, magnocellular, motion,
isual integration

uch work in the cognitive neuroscience of schizophre-
nia has focused on attention, memory, and executive
functioning. Less work has focused on perceptual pro-

essing. Indeed, during the National Institute of Mental Health
ATRICS (Measurement and Treatment Research to Improve
ognition in Schizophrenia) consensus process, perception was
ot identified as one of the core cognitive domains relevant to
chizophrenia or its treatment (1). This omission is in one sense
ppropriate, because a goal of MATRICS was to identify existing
europsychological tests that are useful for clinical trials of
chizophrenia, and tests of perception are not widely used by
europsychologists. In contrast, as we demonstrate in the fol-
owing text, the omission of assessment of perceptual function
rom the MATRICS battery means that a set of functions that are
requently disrupted in schizophrenia are not being routinely
ssessed in clinical trials. This situation is likely to be remedied
hrough the CNTRICS (Cognitive Neuroscience Treatment Re-
earch to Improve Cognition in Schizophrenia) project. In the
ollowing sections, we describe the outcome of presentations
nd breakout groups on the topic of perception from the first
NTRICS meeting. These recognize the importance of perceptual
ysfunction in schizophrenia, the nature of perceptual abnormal-
ties associated with this disorder, and the critical need to
evelop perceptual tests for future clinical trials. Although there
re also auditory, olfactory, and somatosensory deficits in schizo-
hrenia, the CNTRICS meeting focused on visual processing. A
reat deal of work has been done on visual processing in
chizophrenia, and the visual system is well-characterized from a
hysiological point of view in normal subjects and is a useful
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system for evaluating basic concepts of perceptual dysfunction in
schizophrenia.

Basic Science of Perceptual Processing

Visual System Basics
Our current view of the architecture of the early visual system

and cortical processing streams is given in Figure 1. The visual
system consists of several different pathways, including the
magnocellular (M) and parvocellular (P) pathways beginning in
the retina and projecting, via the lateral geniculate nucleus (LGN)
of the thalamus, to different layers of primary visual cortex (V1).

The M system is driven by neurons in the LGN with large cell
bodies and, in general, conducts low-resolution visual informa-
tion rapidly to cortex and is involved in initial attentional capture
(typically by stimulus onset/offset and/or movement) and pro-
cessing of overall stimulus organization (2–5). The P system
originates with LGN neurons with smaller cell bodies and, in
contrast, conducts high-resolution visual information to cortex
and is involved in processing of fine-grained stimulus details and
object identification (2,6). Specific properties of the M and P
pathways give rise to these functions. For instance, the M
pathway has low spatial resolution, detects low contrast and
motion, is color-blind, and has a fast response (7,8). The P
pathway has high spatial resolution, does not respond to low
contrast, is color tuned, and has a slow response1.

The M and P pathways project mainly to the dorsal (“where,”
parieto-occipital) and ventral (“what,” tempero-occipital)
streams, respectively, although there is significant interaction
between these streams. Functions of the dorsal stream include
eye movement control, action guidance, initial attention modu-
lation, motion perception, and visual/somatosensory integration.
In the parietal/occipital region, the dorsal stream incorporates
areas V3 and middle temporal/medial superior temporal area
(MT/MST). As information moves up the hierarchy, more com-
plex processing is achieved. For instance, while V1 is involved
with measuring local motion (of small objects), as signals move
to higher cortical areas, processing of greater areas of visual
space become possible such that V3 is involved in global motion
(of larger, more complex objects), and MT/MST mediate global

1There is also evidence (reviewed in Hendry and Reid [86]) for a third
class of “koniocellular” neurons in LGN with very small cell bodies.
These cells are thought to drive a third visual pathway that remains
poorly understood but is thought to be involved in integration of

somatosensory-proprioceptive information.
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otion and eye movements. The function of the ventral stream is
bject recognition. It is also modulated by attention due to inputs
rom frontal cortex and dorsal stream. Again, as information moves
p the hierarchy, more complex processing is achieved. The ventral
tream processes orientation and size (V1), contour and form (V2),
hen shape (V4), and finally objects and faces (IT) (9,10).

A central concept in understanding how neurons respond to
isual information is that, when stimuli fall in a region of space
nown as the receptive field, they induce neurons to fire. For
xample, ganglion cells in the retina do not respond well to
niform fields of light but do respond to spots of light (11). Some
eurons in the LGN respond to larger spots of light (i.e., have
arger receptive fields), and others respond to smaller spots of
ight (i.e., have smaller receptive fields). Light around the spot,
uch as occurs when a uniform field of light is presented, will
nhibit neurons from firing. This confers on the neuron the ability
o signal change in luminance. The size and complexity of
eceptive fields increases as one progresses through the visual
ierarchy: in the retina/LGN receptive fields respond preferen-
ially to spots of light, in V1 they are tuned for orientation
preferring lines or bars) (12), and in area V2 they respond
referentially to corners or junctions (13), whereas in V4 they
refer more complex feature arrangements (14).

unctional Concepts: Definitions of Gain Control and
ntegration

Visual processing involves several types of neural interac-
ions, including lateral excitatory facilitation, inhibition, and
op-down feedback. We divide these interactions into two
lasses, on the basis of their effects: the first is concerned with
ptimization of response levels (gain control), and the second is
oncerned with grouping of neural responses through enhanced
eural co-activation (integration).

Gain Control. Gain control refers to processes that allow

igure 1. (A) Architecture of the early visual system [left part adapted by p
007 (87); (B) Visual cortical processing streams. LGN, lateral geniculate nuc
ensory systems to adapt and optimize their responses to
stimuli within a particular surrounding context. Gain control is
primarily concerned with controlling the dynamic range of
neural response and can in that sense be considered a
lower-level class of process than other modulatory processes
(such as integration), even though it is likely that it operates at
all levels of the visual system. Gain control mechanisms might
reflect both intrinsic neuronal properties and lateral interac-
tions between neurons. These processes permit sensory sub-
systems to modulate their response levels to take into account
spatial and temporal context. Gain control processes also
assist sensory subsystems in optimizing overall response
levels within a limited dynamic signaling range and in increas-
ing contrast between adjacent and successive stimuli. These
interactions amplify or attenuate the signal and thus affect
integrity of sensory registration.

Gain control in the visual system has been largely studied in
early stages of processing such as at the level of the LGN or
primary visual cortex. There are a number of ways in which
neurons can be influenced by their neighbors in order to control
the signaling range and/or indicate salience. These include
intracellular mechanisms, direct excitatory and inhibitory con-
nections between neurons, and feedback.

One example in which gain control likely plays a role is in the
signaling of salience within a “pop-out” phenomenon (Figure 2).
Let us suppose we are interested in signaling the presence of the
orientation discrepancy in the lower right corner of the texture.
We further suppose the visual system achieves this by pooling
responses across a population of orientation-tuned neurons in
V1. The top row shows the “raw” neural response where gain
control is not operating; the pooled response is uniform—all
neurons are responding equally. In the bottom row, divisive gain
control is operating. Now the large number of neighboring
neurons that receive the same horizontal stimulation inhibit each
other and decrease signaling, allowing the response arising from

sion from Macmillan Publishers Ltd: Nat Rev Neurosci 8:276 –286, copyright
Pulv, pulvinar; SC, superior colliculus.
ermis
the small diagonally textured patch to “pop out.”

www.sobp.org/journal
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Another example of gain control involves the M pathway
here neurons show a steeply rising increase in response to

ow-contrast stimuli, which reaches a saturation-level once lumi-
ance contrast reaches approximately 16% (7). This leads to a
haracteristic S-shaped, nonlinear contrast gain control curve
Figure 3A). The initial steeply rising part of the curve reflects
ubstantial amplification of low-contrast stimuli, permitting
-pathway neurons to respond robustly even at low contrasts.
he nonlinear gain control mechanisms, however, result in
aturating responses at higher contrasts. Neurons in the
-pathway exhibit less gain control than M-pathway neurons.
hus, they are less responsive at lower contrasts, but their
esponses do not saturate at higher contrasts. In construction
f future tasks to study gain control, including behavioral
asks, it is important to include both low- and high-contrast stimuli
o demonstrate how perceptual responses change in patients when
timulus contrast changes from low to high levels.

Visual pathways within the brain use glutamate as their
rimary neurotransmitter, and N-methyl d-aspartate (NMDA)
eems to have a central role in gain control. For instance, NMDA
eceptors amplify responses to isolated stimuli as well as ampli-
ying the effects of lateral inhibition (e.g., increase surround
ntagonism of center receptive field responses) (15). Thus, an
MDA deficit would result in decreased amplification and less

ateral inhibition. Indeed, NMDA antagonists produce shallower
ain at low contrast and a much lower plateau indicating
ecreased signal amplification (16,17) (Figure 3A).

Integration. Integration refers to processing one step be-
ond the registration of brightness, color, orientation, motion,
nd depth cues. Integration is the process linking the output of
eurons that individually code local (often small) attributes of a
cene into global (typically larger) complex structure, more
uitable for the guidance of behavior. Recurrent innervation of

igure 3. Contrast response functions and N-methyl d-
spartate (NMDA) effects ([A]. Adapted from Kwon et al.
16], used with permission; [B and C] adapted from Butler
t al. Arch Gen Psychiatry, May 2005, 62, 495–504, copy-
ight © 2005, American Medical Association, all rights
eserved [22]). The NMDA antagonists produce shal-
ower gain at low contrast and a much lower plateau in
isual evoked potential responses indicating de-
reased signal amplification. The patient visual evoked
otential contrast response curve in the magnocellular
ondition shows similar decreased gain at low lumi-
ance contrast and a lower plateau, indicating de-

reased signal amplification.

ww.sobp.org/journal
primary cortex by higher levels leads to recurrent interaction
between regions that can further increase the salience of
grouped stimuli. Integration underpins Gestalt grouping phe-
nomena and object recognition. Cells in later visual areas code
more global/complex properties by integrating the response of
neurons with smaller receptive fields that code, for example,
(local) form and motion. Mechanisms of integration include
direct connectivity between neurons (e.g., excitation/inhibition
and synchronization) as well as feedback (18). In V1, there are
contextual influences on local processing, and at higher levels,
possibly as early as V2, integration occurs in terms of global
grouping of contextual structure (e.g., contours) (Figure 4).

Implications. Gain control and integration are both involved
in the perception of complex stimuli. Sensory systems use gain
control to adapt and optimize responses so that they can then be
successfully integrated at higher levels of the visual system via
recurrent interactions between areas.

Gain Control in Schizophrenia

Gain control plays an important role in our perception of
contrast and motion in that it allows sensory subsystems to
maximize the response-difference arising from different stimuli.
Several methods have been used for assessing contrast detection
in schizophrenia. First, patients with schizophrenia show de-
creased contrast sensitivity (i.e., need more contrast to detect a
grating) across a range of grating-sizes in behavioral studies
(19,20). Second, patients show reduced amplitude responses to
simple visual stimuli with steady-state or transient electrophysi-
ological techniques (21,22), indicating deficits in contrast gain
control within the early visual system.

Stimulus response properties of M- and P-neurons overlap
significantly, making differentiation difficult, particularly in be-

Figure 2. Gain control can contribute to orientation “pop-
out.” In this example, the top row of the right side of the
figure shows the “raw” neural response where gain con-
trol is not operating. In the bottom row, divisive gain
control is operating and the large number of neighboring
neurons that receive the same horizontal stimulus inhibit
each other and decrease signaling, allowing the response
from the small diagonally textured patch to “pop out.”
Under this view the visual system operates as a cascaded
gain-control/integration system, deriving increasingly
complex types of salience.
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avioral studies. Nevertheless, features that bias stimuli toward
he M-pathway include high temporal frequency, low spatial
requency, low absolute luminance, and low contrast. Although
ehavioral studies have found contrast sensitivity deficits across
patial frequencies, often thresholds are relatively low (e.g., �
0% contrast; [20]), limiting P-pathway involvement. In one study
n which thresholds were higher (e.g., � 16% contrast), relative
reservation at high spatial frequencies was observed (22).
imilarly, larger contrast sensitivity deficits were found when
timuli were presented dynamically rather than statically, also
uggesting greater M-pathway, than P-pathway, impairment (19).

In steady-state evoked potential studies, stimuli have been
iased toward M- versus P-pathways with different standing
evels of luminance contrast (“pedestals”). Under such condi-
ions, differential M- versus P-pathway biased responses have
een observed (22) (Figure 3B and 3C). To the extent that

igure 4. Contextual effects on orientation (reprinted from Neuron, 48,
akin S and Frith U, Vagaries of visual perception in autism, 497–507, copy-

ight 2005, with permission from Elsevier [88]). Oriented structure within our
omplex visual environment leads to various types of interactions between
etectors in V1 (blue region), including integration (“�” connections) and
ain control (“�” connections).
P-pathway dysfunction occurs, patient curves show decreased
gain at low luminance contrast and a lower plateau, indicating
decreased signal amplification, as in the M-pathway. The de-
creased slope at low contrast and decreased plateau in patients
closely resembles results seen after microinfusion of an NDMA
antagonist into cat LGN and visual cortex (16,17) (Figure 3A and
3B), consistent with glutamatergic theories of schizophrenia
(23–25).

A third approach uses an illusion in which the contrast of a
small textured disk appears reduced when presented within a
high-contrast surround compared with when it is presented in
isolation (26) (Figure 5). Note that stimuli used in this study were
presented greatly above their contrast detection threshold. Pa-
tients with schizophrenia were much less susceptible to the
illusion, with 12 of 15 patients being more accurate (less biased)
than the most accurate control (27). These results are consistent
with decreased center-surround antagonism and hence de-
creased contrast gain control in schizophrenia patients. Gain
control in this illusion might be due to short-range lateral
interactions (e.g., �-aminobutyric acid [GABA]-ergic projections).

A large number of studies have reported motion processing
deficits in schizophrenia (28–32). Motion is signaled by direc-
tion-sensitive cells in V1 and then pooled by MT neurons with: 1)
larger receptive fields, and 2) center-surround antagonism (as a
likely substrate for gain control). A recent study (33) provides
evidence for decreased gain control in schizophrenia in a motion
discrimination task. Whereas center-surround antagonism in
control subjects resulted in reduced ability to perceive motion of
a high-contrast stimulus as its size increased, patients with
schizophrenia did not show this reduction in motion perception.
Importantly, like Dakin et al. (27), these authors find that a
disruptive context has less influence on patients than on controls,
arguing against nonspecific deficits or lack of attention as an
underlying cause of differences. Increased center-surround an-
tagonism, indicative of increased gain control, has also been
found in motion studies in schizophrenia (34).

Significant correlations between impaired motion perception
and M-pathway dysfunction also point to motion processing
deficits in schizophrenia resulting from impaired gain control
(28). Patients with schizophrenia show preferential M-pathway
dysfunction (21,22,28,35–38), although deficits have also been
observed in parvocellular processing (19,20). The M-pathway
has several properties (speed of processing, low spatial resolu-
tion) that make it a suitable physiological substrate for gain
control (39). The P-pathway also exhibits nonlinear gain charac-
teristics, although less so than the M-pathway. Mechanisms of

Figure 5. The “contrast-contrast” illusion reveals contrast
gain control deficits in schizophrenia (reprinted from Curr
Biol, 15, Dakin S, Carlin P, Hemsley D, Weak suppression of
visual context in chronic schizophrenia, R822– 824, copy-
right 2005, with permission from Elsevier [27]). (A) The
small region at the center of the large circular patch is
physically identical to the small patch at the top left but
generally seems to be of much lower contrast as a conse-
quence of contrast gain control. (B) One can quantify this
effect by plotting the probability that subjects said the
central patch was higher contrast than a matching vari-
able contrast reference patch. A typical control subject
(green line) indicated that the central patch had a sub-
stantially lower contrast than it actually did (indicated by
the shift in the green curve to lower reference contrasts).
Data from a representative patient with schizophrenia
(red line) indicated that they were not susceptible to the

illusion and matched the contrast largely correctly.

www.sobp.org/journal
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ain control dysfunction include NMDA and GABA-ergic dys-
unction. Indeed, NMDA dysfunction seems to be linked to gain
ontrol in the M-pathway. Other neurotransmitters (e.g., 40),
hich are also implicated in schizophrenia, also modulate visual
rocessing. For example, dopamine deficiency has been linked
o impaired perceptual and electrophysiological response to
ontrast signals including those presented in a center surround
aradigm (41,42). A recent neurophysiological study suggests
hat nicotine increases gain control in the visual cortex (43). This
ight be important in understanding “self-medication” with

moking and strengthens the hypothesis of weak gain control in
chizophrenia. It is a challenge to understand and reconcile the
nvolvement of different types of neurotransmitters in visual
erception. It is also unclear whether perceptual deficits exhib-

ted by people with schizophrenia for the processing of transient
moving/flickering) stimuli arise from intrinsic dorsal stream
ysfunction or from aberrant M-pathway input (21,44).

In summary, gain control studies in schizophrenia clearly
how that patients have difficulty modulating neuronal responses
o take advantage of the surrounding context. There is also
vidence that gain control deficits, seen in contrast detection and
-pathway deficits, are important in predicting outcome (22,45),

nd are related to higher-level problems in perceptual organiza-
ion (28,46) and to symptomatology (20,47–51).

ntegration in Schizophrenia
Visual integration deficits are seen in contrast, contour, form,

nd motion processing in schizophrenia. For example, in the last
0 years the connectivity supporting the integration of orienta-
ion across space (into extended visual contours) has been
tudied psychophysically with so-called “flank facilitation” para-
igms (52). Here one measures the detectability of a low-contrast
riented target in the presence of two similar higher-contrast
lanking patches arranged so the triplet forms an elongated
ontour. With some target-flank separations control subjects find
t easier to detect the central element when the flanks are present
han when they are absent (facilitation). Patients with schizo-
hrenia do not exhibit such a difference, suggesting a failure in
bility to integrate the collinear flankers (53). This would seem to
mplicate weaker interactions between orientation detectors pos-
ibly mediated by abnormal long-range horizontal connectivity
n V1.

There are numerous examples of poor form processing in
chizophrenia that would seem to directly implicate integration
eficits. These include deficits in object recognition, grouping,
erceptual closure, face processing, and reading (54–62). Classic

tudies show that there is less influence of global on local

ww.sobp.org/journal
processing (54,58). Indeed, patients perform better than control
subjects under conditions when global integration would nor-
mally interfere with responses to individual elements (54,56,58).
A number of studies have used a psychophysically rigorous
contour integration paradigm (63). This task examines the ability
to perceive a contour made up of separate elements within a
background of noise elements. Both the contour segments, and
background noise elements are small oriented Gabor elements,
which are designed to be well-matched to the spatial frequency
processing characteristics of orientation-selective simple cells in
primary visual cortex (V1); therefore they are ideal for the
examination of these features and their integration. Embedded
contours constructed from such elements cannot be detected by
purely local feature detectors or by the known types of orienta-
tion-tuned neurons with large receptive fields (e.g., 64); their
detection requires the integration of local orientation measure-
ments (Figure 6). Deficits in contour integration have been
extensively documented in schizophrenia (57,65–67). This is
thought to result from decreased NMDA-modulated lateral exci-
tation among the spatial filters signaling these elements and the
consequent reduction in synchronization of this neural activity
([68]; see also for reviews [69,70]). Simpler Gestalt tasks, involv-
ing perception of basic shapes with nonfragmented contours, are
not affected in schizophrenia, however (71).

Interactions between dorsal and ventral streams and frontal
cortex provide one model for how form integration deficits might
arise in schizophrenia. Processing is substantially faster via the
dorsal stream, which would permit it to prime ventral stream
areas (72–74). A fundamental role of the M system/dorsal stream
might be to produce a low-resolution template of the visual
scene that influences perceptual processes, such as categoriza-
tion of natural images, object recognition, and perceptual group-
ing in the ventral occipito-temporal cortex, by allowing P path-
way fine-detailed input to be used more effectively (3,75–80).
With a perceptual closure paradigm Doniger et al. (59) found
that patients had impaired ability to recognize fragmented pic-
tures. Patients also had decreased amplitude of the dorsal
stream-generated P100-evoked potential component, which oc-
curred earlier in time than impairment in the ventral stream-
generated closure negativity (Ncl) component associated with
object recognition. Initial P input to the ventral stream was
normal as indicated by an intact N1 component. Thus, the
impaired behavioral closure and decreased Ncl seem to be due to
lack of interactions between dorsal and ventral stream areas

Figure 6. Performance of the schizophrenia group
(dashed line) and healthy control group (solid line) across
six conditions of contour element jitter manipulation. The
subject’s task was to indicate, with a two-button response
device, on each trial, whether the narrow part of the egg-
shaped contour is pointing to the left or the right. With
increasing element jitter (� the number of degrees noted
on the x axis), the correlations between adjacent contour
elements decrease, and perception of the contour amidst
dense background noise becomes more difficult. The left-
hand side shows the increasing element jitter of the adja-
cent contours amidst the background noise. Schizophre-
nia patients were not able to perform at above chance
levels in the two most difficult conditions (reprinted from
Computers in Human Behavior, 22, Kozma-Wiebe P, et al.,
Development of a world-wide web based contour inte-
gration test, 971–980, 2006, with permission from Elsevier
[65]).
leading to decreased priming of ventral stream. This provides an
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xample of integration deficits due to lack of recurrent interac-
ions in schizophrenia.

As discussed in the preceding text, numerous studies have
hown motion processing deficits in schizophrenia (28,30–32,81).
hereas gain control is involved in motion deficits (e.g., 33),

rocessing of motion also clearly involves integration, because
otion is signaled by direction-sensitive cells in V1 whose re-

ponses are then pooled by MT neurons with larger receptive fields
o signal complex motion.

In summary, there are numerous examples of integration
eficits in schizophrenia. Impairments in visual integration have
een linked to increases in disorganized symptoms (57,66,67),
oorer premorbid social functioning (82), presence of childhood
rauma in schizophrenia (83), and illness severity and chronicity
84).

ow the Constructs Fit the Criteria

ain Control
First, this construct is readily measured in humans with such

asks as contrast sensitivity, contrast illusions, visual evoked
otential contrast paradigms activating the M pathway, and
op-out stimuli. Second, there is strong evidence of impairment

n schizophrenia. Third, there is relatively strong clarity of the
ink to neural circuitry. In vision, gain control is generally related
o mechanisms in the LGN and visual cortex, and deficits have
een found in these areas in diffusion tensor imaging, functional
agnetic resonance imaging, and post-mortem anatomical stud-

es. Fourth, there is a moderate amount of clarity of the under-
tanding of the mechanisms. Use of the construct of gain control
ith the concomitant emphasis on short-term lateral interactions,

enter-surround mechanisms, and intrinsic neuronal properties
pecified in the definition provide mechanisms known to be
nvolved and that need further testing. Fifth, there are explicit
nimal models that include recording of evoked potentials in cats
nd monkeys, particularly after NMDA antagonist infusion. Fur-
her models need to be developed. Sixth, there are strong links to
eural systems through neuropsychopharmacology. Links have
een found to NMDA, GABA-ergic, and nicotine function. Sev-
nth, measures are highly amenable for use in human imaging
tudies. Finally, there are moderate links to functional outcome,
nd more work is needed in this area.

ntegration
First, integration is readily measured in humans with group-

ng, perceptual closure, face processing, and contour integration
asks. Second, there is strong evidence of impairment in schizo-
hrenia. Third, there is moderate evidence of a link to neural
ircuitry. Integration involves V2 and higher areas. There is much
vidence for this in healthy subjects, but less evidence for actual
isturbance in these specific circuits in schizophrenia, because
ost studies have been behavioral. Fourth, there is a relatively

trong amount of clarity of the mechanisms. Mechanisms include
ong-range lateral interactions and recurrent processing. Deficits
n paradigms such as contour integration are thought to be
elated to NMDA-modulated lateral excitation among the spatial
ilters signaling these elements as well as GABA-related inhibi-
ion of noise. Fifth, animal models of integration deficits have not
een developed. Sixth, link to neural systems through neuropsy-
hopharmacology is not well developed. Giersch et al. (85) have
emonstrated effects of lorazepam and other benzodiazepines
n GABA inhibitory activity on a visual closure task, but further

ork needs to be done. Seventh, measures are highly amenable
for use in human imaging studies. Eighth, there is a moderately
strong link to functional outcome in schizophrenia. For instance,
there is high face validity regarding functional outcome for
deficits in gestalt processing, perceptual closure, face processing,
reading, and contour integration. In addition, there is evidence
that perceptual organization deficits are linked to poorer premor-
bid social functioning (which is associated with poor outcome)
and at least one study linking these deficits with longer stays in
state hospitals.

Other Perceptual Constructs Discussed at the Meeting

In addition to visual gain control and integration, a number
of other constructs were discussed during the Perceptual
Breakout Session at the meeting and were also felt to be
potential candidates for consideration. These included: 1)
early auditory processing that can be assessed with tone
matching and auditory event-related potential paradigms; 2)
auditory integration that can be assessed with phonemic/
linguistic processing, prosody, auditory object processing,
streaming/cocktail party, and reafferentation paradigms; 3)
olfactory processing; 4) somatosensory processing/reafferen-
tation; and 5) cross-modal integration.

Conclusions

Gain control and integration are readily measured in humans,
and there is strong evidence of their impairment in schizophre-
nia. A strength of both constructs is that they are grounded in
both computational and cognitive theory and known brain
function in humans and animals. Both constructs have been
reliably measured with a range of paradigms. Both constructs are
essential for perceptual function. Further study of these con-
structs in schizophrenia will be helpful in understanding the
substrates of perceptual deficits in schizophrenia and the contri-
bution of perceptual deficits to higher-level dysfunction. How-
ever, it is important to note that both gain control and integration
are complicated constructs.

There are a number of practical advantages of these con-
structs: 1) testing is straightforward (cards/computers); 2) behav-
ioral tests can elicit superior performance in schizophrenia,
ruling out attentional/top down effects; 3) the underlying neural
circuitry is becoming clearer; 4) imaging visual areas is straight-
forward, because they are large and many of them are located
near the cortical surface; and 5) drug models (e.g., ketamine) and
animal models (macaque) are established.

In conclusion, consistent deficits in visual processing are
observed in schizophrenia. Reductions in gain control and
integration can account for findings from a number of exper-
imental paradigms (including contrast detection, gestalt pro-
cessing, motion perception, and eye-movement control). The
neurophysiology of both processes is likely to involve effects
of glutamatergic activity at NMDA receptors and interactions
between M- and P-pathways. Moreover, some tasks have been
designed so that reduced gain control or integration leads to
superior performance compared with control subjects, ruling
out the possibility that the impairment reflects a generalized
deficit.
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