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Integration of first- and second-order orientation
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The problem of how visual information such as orientation is combined across space bears on key visual abili-
ties, such as texture perception. Orientation signals can be derived from both luminance and contrast, but it
is not well understood how such information is pooled or how these different orientation signals interact in the
integration process. We measured orientation discrimination thresholds for arrays of equivisible first-order
and second-order Gabors. Thresholds were measured as the orientation variability in the arrays increased,
and we estimated the number of samples (or efficiency) and internal noise of the mechanism being used. Ob-
servers were able to judge the mean orientation of arrays of either first- or second-order Gabors. For arrays
of first-order and arrays of second-order Gabors, estimates of the number of samples used increased as the
number of Gabors increased. When judging the orientation of arrays of either order, observers were able to
ignore randomly oriented Gabors of the opposite order. If observers did not know which Gabor type carried
the more useful orientation information, they tended to use the information from first-order Gabors (even
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when this was poorer information).

Observers were unable to combine information from first- and second-
order Gabors, though this would have improved their performance.

The visual system appears to have sepa-

rate integrators for combining local orientation across space for luminance- and contrast-defined features.
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1. INTRODUCTION

Many patterns in the visual world are primarily defined
by modulations in luminance or contrast. The response
of cells to luminance-defined patterns is typically de-
scribed by a model employing linear filters.! The re-
sponse of the visual system to contrast-defined patterns is
typically described by a model in which there is a nonlin-
earity such as rectification sandwiched between two
stages of linear filtering.2® Several models of this type
have been proposed to account for the ability of observers
to see contrast-modulated spatial structure be it static or
in motion (e.g., see Refs. 6—8). A model that estimates
the spatiotemporal gradients present in an image has
been useful in accounting for the perception of moving
second-order stimuli (e.g., see Ref. 9). A similar model is
capable of resolving static second-order structure; how-
ever, it has not been extensively applied to orientation
discrimination performance.”

If contrast-defined structure is to provide useful infor-
mation, then the visual system must be able to resolve the
precise orientation of contrast modulations. When ob-
servers are asked to discriminate the minimum orienta-
tion difference from the vertical, thresholds for contrast-
modulated patterns are higher than those for luminance
modulations.! However, these thresholds depend on the
spatial frequency of the contrast modulation and the du-
ration of presentation. When the contrast modulation is
presented at the optimum spatial frequency and for long
durations (~500 ms), thresholds for luminance and con-
trast modulations are much closer, or even the same.
The orientation of contrast-defined structure is therefore
processed accurately by the visual system in many cir-
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cumstances. However, in the natural world, to segment
texture patterns the visual system must be able to esti-
mate both average orientations and orientation changes.
This places conflicting demands on the visual system: It
must be able to factor out differences in orientation or fea-
tures, by combining them, while keeping these differences
available, e.g., to compute boundaries.

There is conflicting evidence as to whether this is pos-
sible. Second-order patterns will induce an illusionary
tilt in an adjacent pattern to a similar degree as first-
order patterns.'>®  Similarly, Smith et al.* found that
there are limited interactions between second-order tex-
tures over space. They measured the ability of observers
to judge the orientation of either luminance or contrast
modulations of binary noise and found that the perceived
orientation of a contrast modulation can be influenced by
the presence of a surrounding contrast modulation. They
also found that the perceived orientation of a central con-
trast modulation can be influenced by a surrounding lu-
minance modulation. The illusion induced by the
second-order component of a pattern is, however, robust
to many of the stimulus manipulations that destroy the
first-order illusion, suggesting that it might reflect a dif-
ferent process. Similarly, adapting to the position of a
second-order pattern will induce positional adaptation ef-
fects, as will adapting to a first-order pattern.’® Unlike
the effect of adapting to first-order patterns, the effects of
adapting to second-order patterns will occur if the pattern
is presented interocularly and decays slowly, consistent
with a later or higher process than first-order adaptation
effects.

This evidence is consistent with the idea that second-
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order orientation is resolved by a later process than first-
order structure. Both first-order and second-order pat-
terns show simple interactions over space. However,
such studies have tested only local interactions, i.e., be-
tween two abutting stimuli. These types of interaction
are insufficient to estimate the dominant orientation in a
texture or the direction of a contour. In a test of far-
reaching interactions, observers were unable to link the
orientation of multiple second-order elements into a path
or contour.'® This suggested that second-order orienta-
tion information cannot be used to understand larger,
more complex image features such as partially obscured
contours or possibly texture boundaries. Observers are
also poor at comparing multiple estimates of second-order
motion'” ¥ and stereo?® when they are presented in dif-
ferent spatial locations.

Here we used observers’ ability to judge the mean ori-
entation of an array of Gabors to investigate whether in-
formation from multiple second-order elements can ever
be combined. For first-order, luminance-defined pat-
terns, observers’ performance for discriminating the mean
orientation of arrays of Gabors has been found to be al-
most as good as their performance judging the orientation
of sine-wave gratings.2! Performance is good when the
task is to judge the orientation of a set of Gabors with
similar orientation. Performance deteriorates as the ori-
entations of Gabors are drawn from wider distributions of
orientations. The rate that sensitivity decreases allows
one to estimate the efficiency with which the observer is
able to combine such information.

We use an equivalent noise?? technique to describe the
performance of observers when they judge the orientation
of arrays of first- and second-order Gabors. This is a
well-established technique for investigating both detec-
tion and orientation of one-dimensional and two-
dimensional signals of varying complexity (e.g., see Refs.
23-26). Dakin?? has shown that such a model describes
observers’ data well when they are performing this task.
The equivalent noise model assumes that when observers’
performance with noiseless stimuli is not ideal, internal
noise is the reason. This internal noise is a combination
of all the sources of uncertainty in making the response:
errors encoding the stimulus, errors in the retinal signals,
errors initiating a finger press, etc. When external noise
is added to the stimulus, performance will deteriorate
when the external noise exceeds the internal noise. In
the case of our mean orientation task, in which observers
are forced to average across many elements, a logical
choice for the external noise source is the variability of
the individual orientations themselves. At low levels of
external noise (i.e., narrow orientation distributions), one
need consider the orientation of only a very few elements
to successfully perform a judgment of mean orientation.
Thus performance is limited by, and therefore may be
used to quantify, internal noise (the observers’ uncer-
tainty as to the orientation of each element). As the
width of the orientation distribution increases, the orien-
tation of elements becomes more variable, and this exter-
nal noise swamps the effect of any uncertainty the ob-
server has about the orientation of any one element.
Observers are now forced to combine many orientations to
estimate the mean, and the degree to which this strategy
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overcomes the orientation variability in the stimulus al-
lows one to quantify sampling efficiency, or how many
samples the observers are using. Thus we consider a
judgment of mean orientation to be limited by two sources
of variance, that of the internal noise and that of the ex-
ternal noise moderated by sampling efficiency. The rela-
tionship among internal noise, external noise, and effi-
ciency (effective number of samples) can be expressed as

Tobs = (Uiznt + szt/n)llz, (1)
where o, is the observer’s threshold (standard devia-
tion, see Section 2), o2, is the variance of the internal
noise, o is the variance of the external noise, and n is
the number of samples. The equivalent noise model can
be used to estimate the internal noise in and the number
of samples taken by the visual system when observers are
judging mean orientation.

For first-order orientation, observers are able to effi-
ciently combine orientation information over the Gabor
array?’ and, specifically, use a sample size that scales
with the number of Gabors presented (suggesting an in-
formational limit on the integration process). In this
study we investigated whether this is also true for second-
order, contrast-defined orientation information.

If similar performance is found with first- and second-
order Gabor arrays, then it is possible that both types of
orientation are combined over space by a common inte-
grator. To investigate if combination occurs between
these two types of signal, we also measured performance
with arrays made of mixtures of first- and second-order
elements.

2. METHODS

A. Observers

There were five observers. Three of these were the au-
thors; the others were naive as to the purposes of the ex-
periment. All had normal or corrected-to-normal vision.

B. Equipment

The stimuli were presented on a Sony Trinitron 520GS
monitor, driven by an ATI Rage 128 graphics card. The
screen had a mean luminance of 33 cd/m?.  The programs
for running the experiments were written on an Apple
Macintosh G3 computer by use of the Matlab environ-
ment (MathWorks Ltd) and code from the Psychophysics
Toolbox?® and the VideoToolbox? packages. The monitor
had a resolution of 1152 X 870 pixels and had a frame
refresh rate of 75 Hz. One pixel on the screen was 0.32
mm?  The screen was viewed binocularly at 52 cm.
Pseudo-12-bit contrast accuracy was achieved by combin-
ing the RGB outputs of the graphics card by use of a video
attenuator.®® The nonlinear relationship between the
voltage sent to the display and the luminance output to
the screen was characterized with a Graseby S370 pho-
tometer and calibration routines from the VideoToolbox.
The output luminance of the screen was corrected to lin-
ear by use of a look-up table. After calibration and cor-
rection, the linearity of the screen’s output luminance was
rechecked. An equal input voltage increment sent to the
screen led to an equal luminance increment at the screen.
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C. Stimuli

The stimuli were arrays of Gabor micropatterns. The
modulation of each Gabor micropattern could be either
first or second order. For both types of micropattern, the
peak spatial frequency of the modulator (either lumi-
nance or contrast) was 0.7 cycles/deg, and the standard
deviation of the Gaussian envelope was 0.4°.

The second-order Gabor micropattern was a contrast
modulation (modulation depth 1) of a two-dimensional bi-
nary noise pattern. This noise pattern was windowed by
the Gaussian envelope and had a peak contrast of 75%.
The noise elements were 1 pixel in size. The second-
order Gabors can be described by the equation:

L(x,y) = L(mean) + [1 + COS(CV& + ¢)]RC(x7y)enV, (2)

where 6 is the spatial frequency of the oriented modula-
tion, « is the orientation, ¢ is the phase (randomized),
L (1ean) 1s the mean luminance of the screen, RC is a ran-
dom distribution of *L 4 y.y/2, and env is the Gaussian
envelope (0—1). Luminance profiles of the stimuli can be
seen in Fig. 1 below. With narrowband carriers, an ori-
ented contrast modulation can cause a change in the first-
order orientation content,?! however; this is the case only
when the ratio of the spatial frequencies of the carrier
and modulation are within approximately an octave. Al-
though the carriers used here are binary and therefore
spatially broadband, they have a white power spectrum
and as such are perceptually dominated by their high-
spatial-frequency structure. Because any first-order ar-
tifacts (also known as sidebands) must be affecting the
low-spatial-frequency aspects of the carrier, they will be
very low contrast and are likely to be invisible to observ-
ers. Dakin and Mareschal®! proposed that the simplest
way to confirm that no useful (i.e., oriented) first-order ar-
tifacts are introduced is to generate a phase-randomized
version of the second-order stimulus. This has an iden-
tical power spectrum, and therefore sideband structure,
but no useful contrast structure. We phase scrambled
typical stimuli from the experiment and confirmed that
no useful orientation information was present. This con-
firms that it is only second-order structure that carries
useful orientation information in our stimulus. Finally,
some authors have proposed that contrast modulations
should be presented only with dynamic carriers; however,
for orientation judgments, performance is the same for
static and dynamic carriers.?

The first-order Gabor micropatterns were presented in
the presence of a 75% contrast mask, to match the con-
trast of the carrier component of the second-order pat-
terns. The first-order Gabors can be described by the
equation:

L(x,y) = L(mean) + [R(x,y) + CCOS(CY@ + ¢)]enV, (3)

where 6, a, ¢, L(yean), and env have the same meanings
as above, R is a random distribution of increases and de-
creases (with equal probability) in the noise contrast, and
C is the contrast of the luminance modulation.

In each trial, typically, 16 micropatterns were ran-
domly positioned in a circular array within the stimulus
area. The contrast values of overlapping patches were
summed. Gray levels falling outside the permissible
range of the screen were clipped at the maximum or mini-
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mum gray level appropriately. Since patterns contained
a high-contrast carrier, high-density textures would have
a large number of clipped regions. For this reason, we
limited the density with which the Gabor patches could be
placed. The center of the distribution was the center of
the screen, and the stimulus area was between 6° and 24°
wide.

The orientation of the modulation in each Gabor micro-
pattern was selected from a Gaussian distribution with a
mean equal to the cued orientated (i.e., 90°* the cue gen-
erated by the adaptive probit estimation procedure, see
below) and a variable bandwidth. The bandwidth stan-
dard deviation, o, was varied from 0 (all elements
aligned) to 32° (high orientation variability or noise).
Figure 1 shows examples of first- and second-order
stimuli with bandwidths ¢=0°, 8°, and 24°.

D. Procedure
The experiments measured the ability of observers to dis-
criminate whether the mean orientation of an array of

Second-order

First-order

Fig. 1. Examples of stimuli: (a)-(c) Typical arrays of first-
order and (d)—(f) second-order Gabors are shown. The orienta-
tion of each Gabor is drawn from a Gaussian distribution with
standard deviation as shown in the leftmost column. Observers
judged whether the mean orientation of all the Gabors in the ar-
ray was tilted left or right of vertical.
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Gabors was clockwise or counterclockwise of vertical.
Prior to commencing the experiment, all observers were
trained on the task until their performance reached a
stable level (two or three runs).

The observers’ task was a single-interval binary-forced
choice. An array of Gabors was presented in the center
of the display for 500 ms, and the observers were asked to
judge whether the overall orientation of the texture was
tilted right or left compared with their internal standard
for vertical. Observers signaled their response with a
key press. No feedback was given.

Performance was measured as the mean orientation of
the generating orientation distribution of the micropat-
tern array was varied around vertical. Adaptive probit
estimation, an adaptive method of constant stimuli, was
used to sample a range of mean orientations appropriate
to each observer’s performance.?® A session consisted of
up to 9 interleaved runs of 64 trials, one run for each of
the orientation bandwidths tested. At least three runs
were undertaken for each data point plotted. Data were
pooled across all runs with each stimulus configuration
and orientation bandwidth, and a bootstrapping proce-
dure was used to fit a cumulative Gaussian function to
the data. This procedure yielded estimates of the stan-
dard deviation (reciprocal of slope) and bias parameters of
the fitting function. The term orientation threshold is
used throughout to refer to the standard deviation of the
best-fitting psychometric function. Estimates of the as-
sociated 95% confidence intervals were derived by using a
bootstrapping procedure that pooled data across separate
runs for a given observer.3*

Observers showed little systematic bias on the task,
and the data reported are based on the orientation
thresholds with their 95% confidence intervals. The
thresholds for each observer with each stimulus were fit-
ted with an equivalent noise model to estimate the ob-
servers’ internal noise and the number of information
samples that they used for each task. Separate esti-
mates of both internal noise and number of samples were
made for each condition (radius, density, and combination
of Gabor type). 95% confidence intervals for the model
parameters were estimated from 1000 bootstrap replica-
tions. The reported 95% confidence intervals are the
range containing 95% of the distribution of the replicated
parameters (i.e., we did not assume a Gaussian distribu-
tion). Where parameters are described as significantly
or not significantly different reflects a comparison of the
appropriate confidence intervals.

E. Equating the Visibility of First- and Second-Order
Gabors

Since we were interested in comparing the integration of
local first-order signals with that of local second-order sig-
nals, we first ensured that performance levels were
equivalent for isolated first- and second-order elements.
We reduced the contrast of the first-order elements until
orientation discrimination performance was equal to that
found for isolated second-order elements. In so doing, we
assumed that any loss of orientation resolution sensitivity
that might occur with our isolated Gabors would not dis-
advantage our main task that exclusively involves inte-
gration of orientation. To achieve this, before the main
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experiment, we measured each observer’s threshold for
discriminating the orientation of an individual Gabor.
The first- and second-order Gabors were as described
above. One Gabor was presented in a random position
within the stimulus area. The orientation of the Gabor
was rotated clockwise or anticlockwise of vertical and was
under control of adaptive probit estimation, as in the
main experiment. The observers indicated with a key
press whether the Gabor was oriented to the left or right
of vertical, and an orientation threshold was estimated
from the best-fitting psychometric function from their
data.

The orientation discrimination threshold for second-
order Gabors was measured at the maximum modulation
depth. Orientation discrimination thresholds were mea-
sured for a range of luminance-modulation contrasts of
first-order Gabors. As expected, for first-order Gabors,
orientation discrimination thresholds increased with de-
creasing contrast. Figure 2 shows example data from
one observer, with 95% confidence intervals (vertical
bars). In the main experiment, second-order Gabors
were always presented at their maximum modulation
depth. The contrast of the first-order Gabors was ad-
justed to match orientation discrimination performance
for second-order Gabors (25% or lower contrast).

3. RESULTS

Observers were always required to judge the mean orien-
tation of arrays of first-order or second-order Gabor
patches. In experiment 1, we varied the density and ra-
dius of the arrays of Gabors. In experiment 2, we inves-
tigated whether observers could ignore randomly oriented
Gabors presented at the same time as the Gabors to be
judged. Experiment 3 investigated what information the
visual system uses by examining the effect of mixing first-
order and second-order Gabors. The results of each ex-
periment are now described in turn.

A. Experiment 1: Varying Density and Radius
For first-order Gabors, it has previously been found that
increasing the density of Gabors within a fixed stimulus

20
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x second order
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N 2O

Threshold orientation offset (deg})
o

N A~ O O

10 10°

Contrast
Fig. 2. Orientation discrimination thresholds for one Gabor.
Data are shown for one observer, HAA. The discrimination
thresholds for a range of contrasts of first-order Gabors are
shown compared with the discrimination threshold for a second-
order Gabor at maximum modulation depth.
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radius leads to increasing estimates of internal noise and
of the number of samples taken by the observer.?
Dakin?” also found that when the density of first-order
Gabors was fixed and the radius of the array was in-
creased (thus increasing the number of samples present),
observers performed as if they were using more samples.
The aim of this first experiment was to investigate
whether observers could combine orientation information
from multiple second-order Gabors. To provide a com-
parison, we compared performance for multiple arrays of
either first-order or second-order Gabors, equated for ori-
entation discrimination performance at the single-
element level.

Figure 3 summarizes the estimated parameters from
the equivalent noise model. Each plot represents aver-
aged and individual data from five observers. Each sub-
plot plots the model parameter against the number of Ga-
bor patches presented. Figures 3(a) and 3(b) summarize
data from the conditions under which the radius of the ar-
ray was constant; so as more Gabors were presented, the
density increased. For both first-order (solid symbols
and curves) and second-order (open symbols, dashed

curves) Gabors, the estimate of internal noise [Fig. 3(a)]
remains approximately constant. The estimated number
of samples used by the observers increases with the num-
ber of patches presented [Fig. 3(b)]. Although the num-
ber of samples used is higher for first order than for sec-
ond order and, as with previous studies, there are some
interobserver differences, the difference between esti-
mates for the two types of pattern is not significant.
Figures 3(c) and 3(d) summarize the results from the
conditions under which the density was fixed; as more Ga-
bor patches were presented, the radius of the array was
also increased. The estimated internal noise [Fig. 3(c)]
remained approximately constant for first-order Gabors
(solid symbols). For second-order Gabors the internal
noise was also approximately constant. For both first-
order and second-order Gabors, the estimated number of
samples [Fig. 3(d)] increases with increasing number of
Gabor patches presented. The estimated number of
samples is lower for second-order Gabors than for first-
order Gabors, but, again, this difference is not significant.
For first-order Gabors, our results replicate those of
previous research except that we find that, when the ar-
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ray radius is fixed, only the estimated number of samples
increased. This discrepancy could be due to the fact that
we used an added noise mask, and, as a consequence (to
avoid clipping), we were restricted to lower densities than
previously investigated. Observers are able to combine
information from multiple second-order Gabor patches;
furthermore, observers’ ability to discriminate the mean
orientation of arrays of second-order Gabors is similar to
their ability to discriminate the mean orientation of ar-
rays of first-order Gabors.

B. Experiment 2: Ignoring Randomly Oriented Gabors
Observers can judge the mean orientation of arrays of ex-
clusively first-order or exclusively second-order Gabors.
It is possible that the same, common integrator acts on
both first-order and second-order patterns. It may be
beneficial to combine estimates from the two types of pat-
tern to achieve a more robust estimate of image proper-
ties. The next experiment was conducted to investigate
whether this is the case. We compared performance in
three different conditions:

1. Signal alone. Arrays (diameter 12.5°) of 32 signal
Gabors. The orientation of signal Gabors was drawn
from a Gaussian distribution centered on the mean orien-
tation, exactly as described in Section 2 and used in ex-
periment 1.

2. Signal plus random, different orders. Thirty-two
signal Gabors were presented, as in condition 1, plus 32
random Gabors. The orientation of every random Gabor

JHD

— o =3.59,8=7.08
--- Gint=2.93,8=5.94
...... it =9.04,5=3.93

RH

—om=11.3,8=1.24

weee Ot =12.1,8=2.87

10°} ... G =41.5,5=2.5
o]

Orientation Threshold (deg)

10’

10°

(b)
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was reselected on each trial. When the signal Gabors
were first order, the random Gabors were second order
and vice versa.

3. Signal plus random, same order. Thirty-two signal
Gabors plus 32 random Gabors, as in condition 2 except
that the signal and random Gabors were either both first
order or both second order.

Conditions were not interleaved so observers always
knew whether the signal was carried by first- or second-
order Gabors. If the visual system combines the infor-
mation from signal and random Gabors, the estimated
number of samples will fall. If some elements are ran-
domly oriented and are combined to estimate mean orien-
tation, there will be a decrease in the estimated number
of samples, since only half (on average) the samples used
actually contain orientation information. If the visual
system is able to segment the pattern on the basis of Ga-
bor type, then the estimated number of samples is ex-
pected to be the same with, or without, randomly oriented
Gabors of a different order.

The results for these conditions are shown in Figs. 4
and 5. Figures 4 and 5 show the results when the signal
was first order or second order, respectively. Each sub-
plot shows orientation discrimination thresholds plotted
for each width, o, of the distribution of orientations in the
signal distribution. The error bars are 95% confidence
intervals. Also shown on each subplot are the estimated
parameters for the equivalent noise model for each case.

... FO Sig
__ O FOSig+SORand
_...O... FO Sig + FO Rand

HAA
—om=3.48,5=7.27
- Ot =3.54,8=5.93
...... oin=9.33,8=3.94
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— ont=1.87,8=15.9
- oint=1.69,8=14.5
...... ont=2.92,8=1.85

(d)

Orientation s.d. (deg)

Fig. 4. Graphs comparing observers’ performance judging the mean orientation of arrays of first-order Gabors with, or without, inter-

mixed randomly oriented Gabors.

Orientation thresholds were measured as the standard deviation of the distribution of orientations in

the signal population increased. Each plot shows thresholds and the fitted equivalent noise model for performance when there were 32
first-order signal Gabors (dashed curves, diamonds) and 32 first-order signal Gabors and 32 second-order random Gabors (solid curves,

triangles).
(dotted curves, circles).
tion.

JHD: naive observer.

The data from the case with 32 first-order signal plus 32 random first-order Gabors are summarized by the fitted function
RH, HAA, and BM:

authors. FO, first order; SO, second order; s.d., standard devia-
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Fig. 5. Graphs comparing observers’ performance judging the mean orientation of arrays of second-order Gabors either with or without

intermixed randomly oriented Gabors.

Orientation thresholds were measured as the standard deviation of the distribution of orienta-

tions in the signal population increased. Each plot shows thresholds and the fitted model for performance when there were 32 second-
order signal Gabors (dashed curves, diamonds) and 32 second-order signal Gabors and 32 first-order random Gabors (solid curves, tri-

angles).
(dotted curves, circles).

Adding randomly oriented second-order Gabors to first-
order signal Gabors does not affect observers’ ability to
discriminate the mean orientation of the first-order Ga-
bors (see Fig. 4). Performance with first-order signal
plus random second-order Gabors (solid curve, triangles)
is the same as performance with first-order signal Gabors
alone (dashed curve, diamonds). If the visual system
were unable to segment the image on the basis of type of
Gabor or if there were some effect of the additional (non-
oriented) first-order information in the random second-
order Gabors, then we would predict that performance
with first-order signal and random second-order Gabors
would be similar to performance with both signal and
random Gabors being first order (dotted curves, circles),
since these also contain the nonoriented first-order noise.
This is not the case.

When the signal Gabors were second order, the results
are not so clear (see Fig. 5). Observers have the lowest
estimated internal noise and highest number of samples
when they judge the mean orientation of second-order sig-
nal Gabors alone (dashed curve, diamonds). When ran-
domly oriented first-order Gabors are also presented
(solid curve, triangles), the estimated number of samples
decreases but is still greater than when both the signal
and random Gabors are second order (dotted curves,
circles).

The visual system seems able to judge the mean orien-
tation of first-order Gabors in the presence of second-
order Gabors. Our observers were less able to discrimi-
nate the mean orientation of second-order Gabors in the

The data from the case with 32 second-order signal plus 32 random second-order Gabors are summarized by the fitted function

presence of first-order Gabors. This may reflect asym-
metric interactions between two mechanisms or an inter-
action between first-order and second-order stages in one
mechanism.

C. Experiment 3: Signal Choice

In the previous experiment, observers knew which type of
Gabor contained the signal. In principal, they were able
to use top-down processes to select the useful signal from
the array. It is not clear, however, whether the selection
was automatic and occurring at a low level or whether
top-down processes were needed to segment the image.
In this experiment, as in experiment 2, the arrays con-
tained a signal distribution plus randomly oriented Ga-
bors. When the signal Gabors were first order, the ran-
dom Gabors were second order and vice versa. However,
conditions with a first-order signal were randomly inter-
leaved with conditions with second-order signal Gabors.
All arrays contained the same number of both types of
Gabor (32 of each), but which type contained the signal
was randomly chosen on each trial (each with arrange-
ment with p = 0.5). The observer did not know which
type of Gabor contained the signal and which signals
were randomly oriented; however, data from the two sig-
nal types were separated for analysis. Figures 6(a)—6(c)
compare performance with 32 first-order signal Gabors
(dashed curves, triangles) with performance with 32 first-
order signal Gabors plus 32 random second-order Gabors
(solid curves, diamonds). The presence of the random
Gabors does slightly change the estimates of internal
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noise and number of samples, but this is not a significant
change (p < 0.05, from comparison of the confidence in-
tervals for the model parameters). Figures 6(d)—6(f)
compare performance with 32 signal second-order Gabors
alone (dashed curves, triangles) with performance with 32
second-order Gabors plus 32 random first-order Gabors
(solid curves, diamonds). When the random Gabors are
present, orientation discrimination thresholds are much
higher than those for when the signal is presented alone.
Estimates of internal noise are also much higher, and the
estimated number of samples is much lower.

When observers do not know which order of Gabor is
signal and which is randomly oriented noise, estimates of
first-order mean orientation still seem immune to added
second-order orientation (and its carrier). Observers do
not seem, in this condition, as able to select only second-
order orientation without top-down processes. This sug-
gests that there is either a mismatch in the strength of
the two signals or a bias toward one type of signal.

D. Experiment 4:
Gabors

The visual system is able to estimate the mean orienta-
tion of arrays of both first- and second-order Gabors.
This experiment was designed to investigate whether in-
formation from first- and second-order Gabors can ever be
combined. In some situations it is to be expected that
first- and second-order information provide similar infor-

Mixing First- and Second-Order
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mation about a surface and combining information from
the two sources would be advantageous. Recall that re-
sults from experiment 1 indicated substantial changes in
sampling when the number of elements changed from 32
to 64 [see Figs. 3(b) and 3(d)] so that we could be confident
that if subjects were combining across both first- and
second-order patches then this would show up clearly in
the parameters derived from the equivalent noise model.
Observers judged the mean orientation of arrays contain-
ing 32 first-order plus 32 second-order Gabors, and the
orientations of all the Gabors were drawn from the signal
distribution as described in Section 2. If the visual sys-
tem is not able to combine the first- and second-order Ga-
bors, then the estimated number of samples from the
combined array will be similar to the estimated number of
samples from 32 first-order or second-order Gabors alone.
Figure 7 shows the mean orientation discrimination
thresholds for each o of the distribution of Gabor orienta-
tions. Performance when there were first- and second-
order Gabors combined (solid curves, diamonds) was close
to performance with either the first-order or the second-
order Gabors alone (dashed curves, triangles). It seems
that the observers were unable to combine the informa-
tion from first- and second-order Gabors, even though
that would have improved their performance.

It is reasonable to ask what would be predicted if first-
and second-order information was combined. One pre-
diction is that the observer would produce the same per-
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Fig. 6. Graphs comparing observers’ performance judging the mean orientation of arrays of Gabors with, or without, randomly oriented

noise Gabors of the opposite order being present.
signal Gabors.

Observers did not know whether the first-order or second-order Gabors were the
Orientation thresholds were measured as the standard deviation of the distribution of orientations in the signal popu-

lation increased. Each plot shows thresholds and the fitted model for performance when there were 32 signal Gabors (dashed curve,

triangles) compared with 32 signal Gabors plus 32 noise Gabors (solid curves, diamonds).

order (noise was second order).

(a)—(c) Conditions when the signal was first

(d)—(f) Conditions when the signal was second order (noise was first order).
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formance as when they had 64 Gabors of one order. To
make this assumption, one has to assume that there are
both a perfect combination and an equal quality of infor-
mation from both types of Gabor. Since we found that in-
dividuals had slightly different mean orientation perfor-
mance for first- and second-order arrays of Gabors, these
did not seem valid assumptions. From experiment 1 we
do know, however, that for both first- and second-order
Gabor arrays, as the number of Gabors increases from 32
to 64, the effective number of samples used by the visual
system also increases. So, if the visual system were able
to combine the mean orientation of first-order and second-
order Gabors, we would expect the estimated number
of samples to be greater for the mixed arrays than for
32 Gabors alone. We find that only one observer’s (JHD)
estimated number of samples is significantly greater
(p < 0.05) for the mixed stimulus than for 32 Gabors
alone (indicated by an asterisk on Fig. 7).

A second, related argument also supports the argument
that the visual system is not combining the information
from first- and second-order Gabors. The estimated in-
ternal noise of the observer reflects observers’ perfor-
mance with stimuli in the absence of external noise. Es-
timated internal noise is different for arrays of first- and
second-order Gabors, although which one provides a
lower estimate depends on the observer. If the visual
system uses one type of Gabor, then we might expect that,

given a combined stimulus, each observer should use the
order of Gabors that gives the lower estimate of internal
noise. Figure 7 plots thresholds and a fitted equivalent
noise model for the combined stimulus with data from ar-
rays of either 32 first-order or 32 second-order Gabors,
whichever had the lower estimated internal noise. The
estimated internal noise from the combined array is the
same as the estimated internal noise from the array with
only one order of Gabors. Furthermore, the estimated
number of samples is also the same in these two condi-
tions.

When presented with arrays of both first-order and
second-order Gabors, where all the Gabors contain useful
information, the visual system does not use information
from both types of Gabor. The visual system may even
estimate mean orientation from the order of Gabor that
produces the lower internal noise.

4. DISCUSSION

We investigated whether observers could judge the mean
orientation of arrays of Gabors, a task requiring that the
visual system combine local estimates of orientation
across space. Observers were able to judge the mean ori-
entation of arrays of either first-order or second-order Ga-
bors. When presented with arrays containing both first-
order and second-order Gabors, observers were able to
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estimate the mean orientation of either first order or, to a
lesser extent, second order, ignoring the other order. Ob-
servers seemed unable to effectively combine information
from first- and second-order Gabors or to automatically
select the Gabor type that contained the signal informa-
tion.

Figure 8 shows four possible schema of how first- and
second-order mean orientation could be estimated by the
visual system. Each possible arrangement begins with
filters tuned to the local first-order orientation, and the
second-order channel also has filters tuned to the local
second-order orientation (local processing). The last
stage of each model is always an estimate of mean orien-
tation. The right column of Fig. 8 summarizes whether
this model is plausible given our data. First-order-only
processing, suggested by the noncombination of informa-
tion from multiple patches of second-order motion [Fig.
8(a)] and blind combination [Fig. 8(b)] are easily ruled out
by our data. Observers can discriminate the mean orien-
tation of arrays of first- and second-order Gabors [Fig.
8(a)] and can base their judgments on either order selec-
tively [Fig. 8(b)l. Observers can use either first- or
second-order Gabors but do not completely ignore first-
order Gabors. This result seems inconsistent with an

Local Processing

(a) First order only

First order

Stimulus

Second
order

First
order

A

(b) Blind Combination

First order

Stimulus

Second
order

A

(c) Strict either/or
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either—or process [described by Fig. 8(c)] by which the
mean orientation of either first-order or second-order lo-
cal information is computed; however, the second-order
channel does also process first-order information (the car-
rier), which could explain this result. However, since the
strength of the local signal was matched (in terms of the
orientation discrimination of individual Gabor elements)
for first and second orders, it is not clear on what basis
the visual system would choose to use either first- or
second-order local information.

Figure 8(d) shows separate first-order and second-order
integrators for mean orientation. This allows the
strength of the mean orientation output signal to be dif-
ferent for first- and second-order patterns. The two
mean orientation estimates are subject to an OR combina-
tion before the final estimate of mean orientation. Which
of the two mean orientation signals is used is controlled
by the relative strengths of the outputs from first- and
second-order integrators and by top-down modulating
processes. Normally, the output of the first-order inte-
grator is stronger or preferred. This scheme accounts for
observers’ ability to judge the mean orientation of arrays
of either first- or second-order Gabors and to selectively
exclude information from one or the other type of Gabor.

Possible Model?

Observers can

discriminate mean
orientation of second-

Mean Orientation J N o

order arrays
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Mean Orientation J selectively ignore

first or second order
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Fig. 8. Summary of possible mechanisms underlying the judgment of mean orientation.
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Because the output of the first-order mean orientation
unit is stronger or preferred, this accounts for observers’
tendency to use only first-order Gabors when they did not
know which order of Gabor carried the useful informa-
tion. Furthermore, when observers were asked to ignore
the first-order Gabors, they did this imperfectly because
of the stronger signal or preference from the first-order
mean orientation integrator and the processing of first-
order structure by the first stage of the second-order
channel. Similarly, when both first- and second-order
Gabors signal the same mean orientation, performance is
based on one type of Gabor, but it is possible that some
information from the other type of Gabor can be accessed.

These results are relevant to three questions; each will
be discussed in turn. First: Can second-order informa-
tion be combined over space? Second: Is information
from first-order and second-order stimuli analyzed sepa-
rately by the visual system? Third: Does the visual sys-
tem segment the image on the basis of the order of the
signal?

A. Spatial Interactions between Second-Order Stimuli
It is clear from our results that second-order information
from multiple patches can be combined over space.
Smith and colleagues!* have previously shown that the
mechanism that processes second-order (contrast-defined)
stimuli is capable of producing the same repulsion- and
attraction-tilt illusions found for first-order stimuli.
They proposed that the mechanism that processes second-
order orientation, although being slightly higher in the
processing stream, is of the same type of mechanism as
the mechanism for first-order stimuli.

The tilt illusion is likely to be due to horizontal, inhibi-
tory connections between orientation-selective cells.?>=37
The estimation of mean orientation may not involve in-
hibitory connections but is likely to involve lateral con-
nections between multiple cells. It has been shown that
there are considerable excitatory and inhibitory connec-
tions between orientation-selective cells. Furthermore,
the nature of the interactions can depend to a large part
on the exact properties of the stimulus.?” Thus it seems
likely that these same connections exist between cells re-
sponsive to second-order contrast-defined structure.

One finding seems to conflict with the idea that second-
order orientation information is combined over space, and
that is the failure of observers to identify contours of
second-order elements.’® It has been proposed that con-
tours are analyzed by “association fields.”® It is possible
that association fields represent a process different from
the lateral interactions involved in mean orientation esti-
mation or the tilt illusion. Contour integration is sensi-
tive to increasing levels of position uncertainty,®® whereas
judging mean orientation, almost by definition, discards
information about the position of pattern elements. Fur-
thermore, orientation is averaged over pattern elements,
irrespective of polarity,*’ whereas previous studies found
that elements of alternate polarity do not form contours
as well as elements of the same polarity.**? It is clear
from the present findings that the visual system’s failure
to link oriented second-order elements into contours rep-
resents a special case failure of second-order processing
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rather than a general failure to undertake global opera-
tions on the orientation of spatially distributed elements.
From a functional perspective, it may be that contour
structure in natural images is largely conveyed by lumi-
nance information, whereas texture could be conveyed by
a variety of cues including, but not limited to, contrast-
defined and luminance-defined form.

B. Combination of First- and Second-Order
Orientations

We also find that information from first-order and second-
order patterns is available separately to the decision pro-
cesses. Models of the first- and second-order visual
mechanisms usually assume that information from the
two types of stimulus is combined. For moving patterns,
for example, when information from first- and second-
order structures is low quality, the two sources can com-
bine to improve spatial-frequency discrimination.*?
However, in other circumstances, such as when there is
global motion of first- and second-order structures, the
two sources of information do not combine to improve
performance.**

For static patterns, several authors have shown that
first-order and second-order orientation information in-
teracts. These studies can be divided into two camps.
First, there are studies that have investigated the inter-
action between luminance-defined and contrast-defined
components of the same object, which might be considered
to be interactions between the two stages of a filter-
rectify-filter-type model. Second, there are investiga-
tions of interactions across space between separate first-
and second-order contours. We will deal with these in
turn.

First, the perceived orientation of a second-order enve-
lope in a pattern is influenced by the orientation of its
carrier.*>*% In these studies, observers judged the orien-
tation of the high-spatial-frequency first-order compo-
nents or the low-spatial-frequency second-order compo-
nent of the same patch. First- and second-order
orientation information is not kept separate; indeed, it is
inextricably connected, and it is unsurprising that there
are interactions. The experiments reported here, how-
ever, addressed the interactions between first- and
second-order patterns of the same spatial frequency but
at different visual field loci, after the orientation of local
second-order structure has been resolved.

When first-order and second-order modulations of the
same spatial frequency are presented at the same visual
field locus, second-order modulations will mask first-order
modulations.*” Similarly, both first-order and second-
order modulations will bias the perceived orientation of
the other type of modulation.'* To account for the mask-
ing data, Schofield and Georgeson*’ proposed a two-
pathway model with energy summation between separate
first- and second-order pathways. A two-pathway model
followed by a combination process also accounts for the
tilt illusion between first- and second-order patterns'*;
one pathway processes only first-order information, and
the other pathway processes first- and second-order infor-
mation. Consistent with this, we find that observers are
sometimes unable to completely ignore first-order random
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Gabors when they are judging the orientation of second-
order Gabors. Both first-order and second-order Gabors
contain binary noise, which may be processed by the early
stage of the pathway that processes second-order struc-
ture, adding to its internal noise. There are likely to be
horizontal connections between cells in each pathway, as
described above, but the two mechanisms may not be in-
terconnected. Possible reasons for this are discussed in
the Subsection 4.C.

C. Does Order Segment the Image?

Our results show that estimates of mean orientation seem
to keep first- and second-order information separate.
Even when it would be advantageous to do so, the observ-
ers do not fully combine the two sets of information.

The tilt illusion is reduced when the inducing and test
patterns are clearly segregated.*® This suggests that the
segmentation of the image influences how orientation sig-
nals are combined. Taken with our results, this might
suggest that the visual system has a tendency to segment
first-order from second-order information.

It must also be considered that first- and second-order
information may be segmented not because of specific pro-
cesses for these types of pattern. Rather, this might
arise from other processes. Patterns of different spatial
frequencies are easily segmented. In our stimulus, only
the first-order stimulus contained a low-frequency
(luminance-defined)-oriented contour. Simple linear fil-
ters could easily discriminate between the two stimuli (al-
though not resolve an oriented signal from the second-
order stimuli). The output of these early filters could be
used to determine whether orientation signals are treated
as if they come from one object or are assigned to different
objects. This would lead to the two types of pattern being
treated as if they were separate image objects. The cur-
rent experiments cannot distinguish between whether
segmentation occurs on the basis of order directly or as a
by-product of another stimulus attribute.

The fact that first- and second-order orientation signals
are not combined across space with a common integrator
may, however, follow from the statistics of natural images.
Only if there is a strong correlation between like orienta-
tions of luminance- and contrast-defined features within
the same region of the image would it be useful to com-
bine such estimates.

D. Conclusion
We find that observers are able to judge the mean orien-
tation of arrays of contrast-defined, second-order Gabors.
It is likely that similar, but separate, processes underlie
the estimation of mean orientation for first- and second-
order patterns.
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