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What causes non-
monotonic tuning
of fMRI response
to noisy images?

S.C. Dakinl, R.F. Hess, T.
Ledgeway? and R.L. Achtman

Although images are defined both
by the amplitude and phase of their
Fourier components, it is phase
structure that is the major
determinant of their appearance
[1-3]. Rainer et al. [4] recently
examined how phase structure
impacts on cortical activity by
measuring the BOLD fMRI signal in
anaesthetized monkeys that were
shown stimuli containing a blend of
phases from images and noise.
They showed that cells in V1
respond most strongly to natural
images, most weakly to 50:50
image-noise blends, and then
recovered for pure noise images.
Given the strict monotonic
dependence of psychophysical
detectability on signal-to-noise
ratio, this non-monotonicity was
surprising and generated some
excitement [5]. The authors’
interpretation centres around the
notion that sparseness is a
desirable property of a cortical
visual code [6-8]. They reasoned
that the non-monotonicity is a
trade-off between a few V1 cells
responding vigorously to natural
images versus many V1 cells
responding weakly to noise
images. Here, we offer another
explanation: Rainer et al.’s phase
blending fails to consider the
directional nature of phase which
leads to an over-representation of
near-0° phase-components in their
stimuli. This has the side-effect of
altering the second-order (contrast)
and fourth-order (kurtosis/sparse-
ness) statistics of stimuli in a
manner broadly consistent with
observed changes in the BOLD
signal. These changes do not
inevitably arise from phase
blending: using the weighted mean
phase (WMP) produces monotonic
changes in all of these statistics.

We conclude that one cannot rule
out an explanation of BOLD non-
monotonicity based on simple
image statistics rather than a
cortical trade-off.

We used a subset of eight of the
images used in the original study;
all had identical amplitude
spectra, and were zero-mean in
the range (-127,127). We
estimated image phase ((p,mage)
and the phase of uniform random
noise images (@,ise) Using the
Fast Fourier transform. Two ways
of combining (@mage) and (Pnoise)
were compared (see text box
below). For both techniques w =1
indicates full signal and w = 0
indicates full noise. The difference
between the techniques lies in
what phase distributions result at
intermediate values of w. Equation
(1) fails to take into account the
directional nature of phase, and
using it to combine large numbers
of phases will systematically over-
represent angles close to 0°
simply because there are many
more ways for two arithmetically
weighted directions to sum to 0°
than to any other direction.

Figure 1B shows that the over-
representation of 0° phase
introduces bright blobs at the
corners of the images blended
with the Rainer et al. technique.
Although these were not visible in
their study [4], as images were
spatially vignetted prior to
presentation, they substantially
reduce the contrast of the central
portion of the image compared to
the equivalent WMP blended
stimulus (Figure 1C). We
wondered if such blending might
alter not only second-order

statistics, such as contrast, but
fourth-order statistics such as
kurtosis — important for the
representation of phase structure
[9]. To look at changes in such
statistical properties we generated
100 sequences from each of the
eight images, with each sequence
progressing from 0-100% phase
coherence in 12.5% phase
coherence increments, using
Rainer and WMP blending
techniques (14400 images in total).
Images were spatially vignetted,
but, as in the original paper not re-
normalised, and we computed:

1. The grey-level standard
deviation or RMS contrast;

2. The sample-corrected
phase-only kurtosis (Ak ) [9];

3. The average magnitude
of response of a Gabor model [4]
where a random selection of 500
patches were drawn from each
image and multiplied by a Gabor
filter (s.d. = 13 pixels, horizontal or
vertically oriented, random
selection).

Figure 1F shows the RMS
contrast and Gabor model
response to blended stimuli. We
replicate the non-monotonic
behaviour of the Gabor model, but
note that this is only the case for
images generated with Rainer et
al.’s blending technique.
Furthermore, Rainer et al. [4] posit
that this pattern of results reflects
a dense-low, sparse-high trade-
off. However it simply reflects the
amount of contrast energy present
which in turn fluctuates due to an
over-representation of 0° phase
combined with spatial windowing
(Figure 1F). Could this explain the
fMRI results? Figure 1E shows

Ranier et al. blend [4]

Ptinal = W®mage + (1 = W)@rise

Weighted mean phase (WMP)
tan”'(C,/S,)

Ppina =0 = tan_1(C,p/S,p) +7
tan”'(C,/S,) +2m

where:
Sp=W SiN(@image) + (1 = W)SIN(@ise)
Cp =W COS(@age) + (1 — W)COS(@0ise)
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For both techniques, w is in the range [0,1].
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Figure 1.

(A) An image from Rainer et al. [4]. (B) A 50% image-noise blend similar to the ones
used by the authors. Note the bright blobs in the corners of the image and the lower
contrast of the face compared to (C), a 50% weighted mean phase (WMP) image. (D)
Phase histograms show that Rainer et al.’s [4] phase-blending technique leads to an
over-representation of 0° phase. Although the global power spectrum is conserved,
when the FFT is back-transformed the 0° components add at the corners of the image
(where all frequencies are aligned) reducing the availability of contrast energy elsewhere
in the image. (E) Data from Rainer et al. [4]; cortical activity is reduced for intermediate
levels of phase coherence. (F) RMS contrast of images blended using the Rainer tech-
nique (open circles) also shows a non-monotonic dependence on phase coherence. An
alternative method using the WMP (filled squares), does not. The response of Rainer et
al.’s Gabor model (solid line) is largely determined by simple contrast change. (G) A sta-
tistical measure of image sparseness (sample-corrected kurtosis) estimated from the
Rainer stimuli shows a substantial non-monotonicity with degree of phase coherence

and, like the BOLD data, is higher for full-coherence images than pure noise.

original data and the expected
activity if BOLD level were a
monotonic — here, linear —
function of phase coherence.
Clearly the 50% phase coherence
level produces the largest drop in
BOLD activity (~0.5%) and a drop
in RMS contrast of around 10%
(Figure 1F). The effect of RMS
contrast on fMRI BOLD has been
considered by Achtman et al. [10]
who measured V1 response to
phase scrambled and intact two-
dimensional circumferential
gratings. In that study a 10%
reduction in RMS contrast of their
phase-scrambled stimuli reduced
activity by around 0.45% which is
not far from the 0.5% drop
observed by Rainer et al..
Although the stimuli used in these
two studies were different,
Achtman et al.’s were similar to
natural images insomuch as they
were spatially broad-band two-
dimensional patterns that
contained edges at all
orientations. Furthermore, even if
contrast reduction is not solely

responsible for observed BOLD,
it could interact with changes in
other image statistics. Figure 1G
shows the phase-only kurtosis
for the stimulus set. This statistic
is computed relative to the
expected kurtosis from phase-
scrambled versions of the
stimulus [9,11] and effectively
corrects for the fact that normal
kurtosis — the fourth moment of
the grey levels — is dominated
by the high-spatial frequency
content of images. This statistic,
important for human detection
of changes to image phase
structure [9], also shows a
strongly non-monotonic
dependence on the level of phase
coherence and, like the BOLD
signal, is also higher for pure
images than for pure noise.

In summary, we do not seek to
derive a general predictor of
cortical activation but merely
observe that the phase-blending
procedure used in Rainer et al. [4]
leads to non-monotonicities in
two simple statistics that are

already known to be linked to the
human perception of structure in
images: contrast and kurtosis. It is
an unfortunate consequence of
this that one cannot definitively
conclude which image attribute
determines cortical activity:
contrast, sparseness, or a trade-
off between the two.
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