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Orientation Variance as a Quantifier of Structure in Texture
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Abstract - | consider how structure is derived from texture containing changes in orientation over
space, and propose that multi-local orientation variance (the average orientation variance
across a series of discrete images locales) is an estimate of the degree of organization that is
useful both for spatial scale selection and for discriminating structure from noise. The oriented
textures used in this paper are Glass patterns, which contain structure at a narrow range of
scales. The effect of adding noise to Glass patterns, on a structure versus noise task (Maloney,
Mitchison & Barlow, 1987), is compared to discrimination based on orientation variance and
template matching (i.e. having prior knowledge of the target’s orientation structure). At all but
very low densities, the variance model accounts well for human data. Next, both models’
estimates of tolerable orientation variance are shown to be broadly consistent with human
discrimination of texture from noise. However, neither model can account for subjects’ lower
tolerance to noise for translational patterns than other (e.g. rotational) patterns. Finally, to
investigate how well these structural measures preserve local orientation discontinuities, |
show that the presence of a patch of unstructured dots embedded in a Glass pattern produces a
change in multi-local orientation variance that is sufficient to account for human detection (Hel
Or & Zucker, 1989) . Together, these data suggest that simple orientation statistics could drive
a range of “texture tasks”, although the dependency of noise resistance on the pattern type
(rotation, translation, etc.) remains to be accounted for.
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FIGURE 1. Image of lava flow illustrating complex orientation structure.

1. INTRODUCTION

1.1 Constraints on the representation of orientation

Because the physical processes underlying the formation of texture are subject to complex
interactions, the orientation structure of surfaces in natural scenes is often complex. Consider the
image of lava flow shown in Figure 1. The patterns of ripples in the rock are due to differences
in the speed of the magma flow at the time of formation. Many possible factors contribute to
these differences (irregularities in the underlying surface, etc.) and their effects are recorded in
such complex flow patterns. Notice that, although the orientation structure is complex,
orientation within small areas is relatively uni-directional. This suggests a constraint on what
is meant by a “globally organized” orientation field: a set of regions may be defined such that a
single orientation is representative of the orientation of features within each region. More
formally we would expect that the local orientation variance of texture elements within each
region will be low for a smooth orientation field. We refer to the average of those variance
estimates as the multi-local orientation variance.

In attempting to derive structure from such images, the visual system’s spatial
representation of local orientation is constrained in two ways. First, it must assign a
representative orientation to each of a number of regions. This reduces the redundancy and
complexity of the representation and allows for the effects of noise. This constraint maintains
smooth changes of local orientation in space. The presence ofabrupt changes in local
orientation, e.g. at the edges of the smooth region in the centre of Figure 1, should also be
maintained. Such texture boundaries , which have been very intensively studied
psychophysically (for review see Bergen, 1991)*, in analogy with luminance, are thought to
signal surface discontinuities. How true this is for natural images has yet to be demonstrated.

To summarize: spatial averaging of local orientation that occurs during visual processing is
constrained to maximize confidence in estimated local orientation while retaining interesting
discontinuities. Satisfying both constraints significantly restricts the scale of integration. Too
fine a scale will result in vulnerability to noise, but too coarse a scale will “smooth out”
orientation discontinuities. Multi-local orientation variance is a simple measure of the
smoothness of the orientation field.

! This is due to the influence of Julesz (e.g. Julesz, 1981). and Marr, who proposed a map of local surface
discontinuities, based on various visual cues, as the basis of the 2.5D sketch (Marr, 1976; Marr, 1982).
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1.2 Glass Patterns

Evidence for the utility of local orientation statistics in texture processing comes from studies
of Glass patterns (Glass, 1969). These textures are composed of a set of randomly positioned dots
with a geometrical transformation of the same dot set superimposed upon it. The resulting
stimulus yields a striking percept of global structure based on the matching of dots to their
transformed counterparts (Figure 2d). Grouping of dots with their correspondents (collectively
known as dipoles) can be achieved using spatial filters (e.g. Zucker 1982; Dakin, 1997a,b).
However in Glass patterns, spatial frequency bands adjacent to informative frequencies contain
high-energy noise making this matching process critically dependent on filter size (Prazdny,
1986; Dakin 1997a). The judgment of the mean orientation of translational Glass patterns is
well predicted using “adaptively” selected oriented filters whose spatial scale is set by
minimising the orientation variance of features in the filter-output (Dakin, 1997a).

For translational textures orientation variance may be computed from the entire pattern.
The goal of this paper is to define simple local orientation statistics and to test their general
usefulness as a measurement of local “structure” in Glass patterns both computationally and
psychophysically. Experiments 1 and 2 consider the utility of a multi-local orientation
variance measure, both as a scale selection criterion and as a discriminator of structure-from-
noise. Discrimination based on orientation variance is compared to an intuitively appealing
alternative: the template matching model. The latter has a priori knowledge of the structure
of the target and makes an explicit comparison of local orientation estimates to the expected
orientation at each position. In Experiment 3, | investigate how well these models capture the
disruption to orientation structure caused by the presence of orientation discontinuities.
Specifically the problem of detecting anomalous patches embedded in oriented textures is
considered. A modification of the paradigm presented by Hel Or & Zucker (1989) is presented,
and data are simulated using multi-local orientation variance and template models.
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FIGURE 2. Estimating local orientation using adaptive filtering. (a) Fingerprint image, and (d) Glass
pattern; both images contain complex orientation structure. (b,e) Adaptive filter output, (c,f) flow
fields derived using the scheme described in Appendix 1.
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2. MEASURING THE DEGREE OF STRUCTURE

For simple translational textures, | have previously used a filter-based procedure to estimate

the global smoothness of the orientation field (Dakin, 1997a). This model consists of:

1. “Adaptive” filtering at multiple spatial scales: convolution with a bank of oriented filters
followed by pixel-wise selection of the output of the most active filter across orientation.

2. Extraction of texture elements/features. At each spatial scale, the combined filter outputs
are thresholded and a symbolic description of resulting “blob” attributes (orientation,
position, etc.) is computed.

3. Computation of multi-local orientation variance, and selection of the scale which
minimizes this value.

Section 1 of the Appendix contains a summary of Stages 1 and 2 of the model (described in
more detail in Dakin, 1997a) which extract oriented features (or texture elements) from the
image. Because this paper considers texture that contains complex orientation structure,
Section 2 describes a scheme for partitioning the image and Section 3 extends Stage 3 of the
model to produce three simple multi-local orientation statistics: mean orientation,
orientation variance, and deviation of local orientation from an expected value. Figure 2
illustrates the operation of the extended model for calculation of local mean orientation from
two textures. Note the highly elongated structure in the output of the adaptive filtering stage
(shown at one spatial scale, Figure 2 b,e), and that the flow-fields derived from the output of
such filters reflect local orientation (Figure 2c, f).

3. EXPERIMENT 1: EFFECT OF UNCORRELATED DOTS ON STRUCTURE DETECTION

This experiment was designed to apply the extended model to globally organized Glass
patterns, and to compare its discrimination of structure from noise, to that of human observers.
Maloney et al. (1987) present the first attempt to quantify the strength of the Glass pattern
percept (Glass, 1969) using signal detection theory. Subjects were presented with a pattern that
was either pure noise or a Glass pattern with added randomly positioned dots. They were then
required to make a forced-choice classification of the stimulus as structured or not. Data from
Maloney et al. (1987), using a dilation of 18 arc min. and a rotation of 9 arc min., are plotted in
Figures 3 and 4, respectively. Discriminability (d’) decreases with increasing noise for all dot
densities tested. Furthermore, there is a Weber law dependence of d’ on the ratio of paired to
unpaired dots (i.e. d’ is proportional to the ratio on a log-linear plot). In this section we
consider whether the model described for quantifying local orientation structure predicts such a
dependence.

3.1 Details of simulation

The adaptive filtering model was used to isolate texture elements (the “blobs” illustrated
in Figure 2e) from input patterns. Multi-local orientation variance was computed for each
spatial frequency and the model operated at the spatial frequency which minimised this
value. Given a description of local orientation, two strategies were tested for deciding whether
a pattern was an organized or a random texture (both are described in detail in Section 3 of the
Appendix). The first, multi-local orientation variance, is the same estimate used to select
spatial scale, and is expected to be lower for organized than for random patterns. The second
strategy tested was a template match: total difference between local estimates of orientation
and the expected orientation at that position, given a priori knowledge of the underlying
orientation transformation.

Simulations used stimuli similar to those from Maloney et al (1987): rotations of 9 arc min.
and translations of 18 arc min. For a pattern containing D dipoles and N noise dots, simulations
were run at D=10, 25, 50, 100 and 200. and N=D, (2D, 2D, 22D...16(2D. At each stimulus level,
32 organized and random patterns were generated, and an estimate of the magnitude of the
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variance and template-matched cues was calculated for each pattern. The 32 values for each

pattern were stored and used to calculate pattern discriminability, dd, at each stimulus level.
Given two sets of estimates of organisation, from the noise and texture images at a given

signal to noise ratio, the criterion (C) for deciding if a pattern was noise or texture was set at

the point that divides the means of the two sets of estimates (M and M) in the ratio of the
standard deviations of each set (S and S ,):

—_ S 1
c=m+—2—(m+m)
S, ts,
(1)
One thousand random selections were made from the sets of organized and random cue and

each compared to this criterion. If the cue from an organized pattern exceeded criterion this
trial was classified as a hit. If the cue from a random pattern exceeded criterion, this trial was
classified as a false alarm. Then d¢ was calculated from hr, the fraction of structured patterns
labeled as structured and fa, the fraction of random patterns labeled as structured with:

de= P(hr) + P'(fa)

(2)
where P_l(Y) is the inverse function of the Gaussian probability function:
1 y 2
P(y) === e" *"? dx
W= 725 9
(3)

Values of this function can be calculated to an arbitrary level of precision using an
approximation to the incomplete Gamma function (given in Press, Teukolsky, Vetterling &
Flannery, 1992). However, if no false alarms occur, or if the hit rate is 100%, then the value of
dd is meaningless and only related to the number of trials. To allow the assignment of some
value to d{ in these cases, the maximum hit rate was fixed at 99% and the minimum false
alarm rate fixed at 1%. In this way the maximum possible ddwas 4.653, which is the maximum
tabulated value in Swets (1964) (the source used by Maloney et al. (1987) for calculating dG).
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10 els. 25 els. 50 els. 100 els. 200 els.
Variance Translation 0.701* 0.784 0.213* 0.0242* 0.220

Rotation 1.77 0.319* | 0.325* | 0.979 0.371*
Template Translation 0.532* | 0.306* | 0.451 0.824 0.298*
Rotation 5.42 12.4 9.37 9.96 4.3

TABLE 1. Chi-squares for the fits of the variance and template models to the data from Maloney, et al (1987).
(“els” = elements”).
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Ficure 3. Discriminability of 9 arc min. rotational Glass patterns from random pattern by
human observers (unfilled circles) and two models. The lines labeled “MMB” show predictions
from the ideal observer model of Maloney et al. (1987). The other lines, marked “Var” and
“Temp”, show predictions from a field smoothness measure and a template match, respectively,
operating on the output of the adaptive filtering model.
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FIGURE4. As Figure 3, for 18 arc min. translational Glass patterns.

3.2 Simulation results

Results from the simulations are shown in Figure 3 (for rotational fields) and Figure 4 (for
translational fields). The template model performs at least as well as human subjects in the ten
conditions shown. However, as the total number of dipoles increases this model displays a
pronounced plateau around low signal-to-noise ratios (SNRs) indicating perfect discrimination.
Note that neither model shows a pure linear dependence on the ratio of added dots to paired
dots - as predicted by Maloney et al. (1987). Both models plateau for high SNRs (i.e. highest
ratios of organised to noise dots). Although no such plateau is evident in data from Maloney et

al. (1987), performance at the lowest ratio tested (1:1) often approaches dd=4.0 (indicating
near perfect discrimination), and therefore at higher SNRs performance must plateau.

The discrepancy between the template model and human data is greatest for the task
using rotational fields, shown in Figure 3. This transformation used a dipole length of 9 arc min.
compared to 18 arc min. for the translational field. This suggests that the template model is
able to make the most of low uncertainty on local orientations to produce near perfect
discrimination. The variance model on the other hand is, proportionally, less disrupted by
uncertainty on local orientation. This makes sense given that the variance operator combines
multiple orientation measures, giving resistance to local orientation uncertainty but losing
information in the process. Both the variance and template models show similar slopes to the
data for virtually all densities tested. The variance model produces closer fits to human
performance than the template model in most conditions (see Table 1), usually due to the very
high performance of the template model. The agreement of both models and data is impressive
given that no free parameters were used to fit predictions. However the variance model fails to
achieve human levels of performance on very sparse rotations (Figure 3a) and translations
(Figure 4a). There are a number of possible explanations for this failure. First, the smoothing
used to calculate the orientation field might be insufficient, leading to “holes” in the
orientation field and a deflation in the estimate of field smoothness. Second, the field might be
too sparse for a multi-local orientation variance measure to be useful. In the limit, the template
model can operate on just one orientation estimate as, given a priori knowledge of what
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transformation to expect, can the subject. The variance measure requires multiple orientation
estimates, which sparse patterns may not provide.

In conclusion, while the superior accuracy of the template matching measure is clear, the
multi-local variance model provides a generally good account of the results reported by
Maloney et al. (1987) and correctly predicts an approximately Weber law relationship between
additive noise and number of dipoles, for the range of signal to noise ratios tested. The template
model performs impressively in all conditions, producing perfect detection at SNRs up to 1.8, but
consequently often overestimating human performance. It may be that there is an attentional
component to the template matching model that limits its utility at higher densities and leads
subjects to rely more heavily on local orientation statistics. A prediction arising from this view
is that a subject's uncertainty about the transformation underlying a texture should be most
damaged at low feature densities.

4. EXPERIMENT 2: EFFECT OF ORIENTATION VARIANCE ON STRUCTURE DETECTION

The model described uses multi-local orientation variance to determine the spatial scale and it
would therefore seem sensible to compare its performance to that of human subjects for textures
with variability imposed on local orientation. In the following experiment the effect of
element length, and the addition of local orientation variance on the perception of structure in
Glass patterns, were again examined using a “structure versus noise” paradigm. Specifically
the maximum amount of tolerable orientation variance was determined using an adaptive
method, as a function of element length. This method has been applied elsewhere using mesh-
derived textures (Hallet, 1992), and vector patterns (Dodwell & Caelli, 1985).

4.1 Method

4.1.1 Subjects

Five subjects took part in the experiment. SCD, DW and SW had corrected-to-normal vision.
Subjects other than the author were naive to the purpose of the experiment and relatively
inexperienced with psychophysical procedures. A short training period (64 presentations) was
undertaken before data collection began.

4.1.2 Apparatus

An Apple Macintosh I1fx computer was used to generate and display stimuli on a Formac
ProNitron 80.21 colour monitor (frame refresh rate of 75Hz). Subjects viewed the screen
binocularly, with natural pupils at a distance of 2.0 metres. All stimuli were presented at the
centre of the screen, indicated by a pre-stimulus fixation marker. Stimulus duration was 100ms
followed by a 750ms ISI.
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FIGURE 5. Examples of the stimuli used in Experiment 2. Each row shows three Glass patterns composed of
256 dipoles of the same length: (a-c) 4 pixels, (d-f) 8 pixels, (g-i) 16 pixels. Images in each row differ in the
amount of orientation variation added to dipoles: (a, d, g) +0°, (b, e, h) +22.5°, (c, f, I) +45°.

4.1.3 Stimuli

The stimuli used were approximately circular texture fields (radii subtended 1.23 degrees)
composed of dot pairs (dipoles). Dipoles were randomly distributed in the field and appeared
white on a black background. Fields appeared within a 2.46 degree (256 pixel) square image.
The initial orientation of dipoles was set according to one of three transformations: a rotation, a
dilation or a vertical translation (examples are shown in Figure 5). Note that only orientation
was determined by the transformation; if dipoles were the result of applying a true rotation or
dilation upon a random set of dots then their length would depend on their distance from the
pattern’s focus which would have provided an additional cue to the presence of the Glass
pattern. While a similar length transformation to the random dipole pattern could have
compensated for this, it is orientation which is the primary attribute of interest in this
experiment and for this reason only the orientation components of the rotation and dilation
transformations were used.

This orientation derived from the particular transformation was then subjected to a uniform
random shift, the size of which was systematically varied. A range of dipole separations was
tested from 2-23 arc min. Conditions were not intermixed within a run.

4.1.4 Procedure

The subjects' task was a two interval, 2AFC. In one randomly selected interval the texture was a
Glass pattern, in the other a texture composed of randomly oriented dipoles. The subject
indicated which of the two textures was a Glass pattern by depressing one of two keys on the
computer keyboard. The independent variable was the amount of orientation jitter placed on
the orientations of the dipoles in the Glass pattern. APE, an adaptive method of constant
stimuli (Watt & Andrews, 1981) sampled a range of jitters from +90° (where discrimination
from the noise texture is at chance) to £0° in steps of 22.5°. The threshold orientation jitter was
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estimated from the slope of the resulting psychometric function and is equivalent to the 83%
correct point. If subjects are unable to reliably discriminate structure from noise in the absence of
orientation disruption, the threshold noise level is effectively interpolated from the
measurable portion of the psychometric function and, for that reason, can be negative.
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FIGURE 6. Results from three subjects for Experiment 2. Graphs show tolerable jitter of dipole orientation, for
a structure versus noise discrimination, as a function of dipole length. Orientation jitter is the width (in
degrees) of a uniform random orientation disruption imposed on dipole orientation. 180° on the ordinate is
equivalent to random orientations, 0° a perfectly aligned orientation field. The U-shaped function indicates
there is a narrow range of dipole lengths which produce optimal resistance to noise for this task.

4.2 Results

Results with two subjects for three transformation types are shown in Figure 6. Data show a U-
shape trend: for all transformation types tested there are a small range of dipole separations at
which the subject can withstand the most orientation jitter, typically at dipole lengths of 4-8
arc min. At this separation, subjects can reliably discriminate between noise and Glass patterns
which are composed of dipoles which have local orientations jittered by +56°.

A decrease in tolerable orientation variance as length increases is to be expected. As
matching uncertainty increases the effect of orientation variability will be more disruptive.
The poor performance exhibited with textures composed of very short elements could be due to a
number of factors. Even though there is little uncertainty as to the matching of the components
of dot pairs, subjects are poorer at estimating the orientation of features with small aspect
ratios (Westheimer, 1981). This is confirmed by data from Experiment 1 of Dakin (1997a)
which showed that subjects are optimal at estimating the mean orientation of translational
Glass patters at dipole separations of around 4-5 arc min. One complication, however, is in the
use of the threshold orientation variance as a measure of performance. Because dots are
sampled from a pixel array, variance might be expected to have an unpredictable effect on
performance at very low separations. Pixelation effectively quantises the orientations that can
be displayed so that the effect of variability could be amplified as orientations are forced into
the next “bin”. A final possible reason for reduced performance at small dipole separations, is
that the spatial frequency of mechanisms sensitive to such dipoles is very high. Poor
performance may be attributable to dipoles failing to exceed the contrast threshold of such
filters.

10
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A second feature of the data is the poorer resistance to noise for translational Glass patterns
compared to either of the globally organized patterns. t-tests indicate significant differences
between data for the translational case and data from both rotational and dilational patterns
(p<0.05, 6 d.f.). Differences between performance with rotational and dilational patterns is not
significantly different. Similarly, Wilson, Wilkinson & Asaad (1997) have reported that
translational Glass patterns are less resistant to the intrusion of noise (in the form of added
uncorrelated dots) than rotational patterns. They interpret this result as an advantage for
rotational patterns implicating concentric structure detectors (identified with the operation of
cells in V4).

4.3 Details of simulation

The two measures of pattern structure, field smoothness and template match (described above)
were compared to the task described. Simulations were run using identical stimuli to the
psychophysical experiment; the same range of dipole lengths and the same transformations
were simulated. However, the full version of the adaptive filtering model uses 7 spatial scales
and 12 filter orientations. Even using fast Fourier techniques it was not feasible to simulate 50
psychometric functions using 96 separate convolutions for every image. To avoid this problem a
simplified version of the model was used. At the beginning of each new run, at each dipole
length, the average optimal spatial scale was calculated over 16 Glass patterns and subsequent
convolutions were only performed at this scale.

[1=1] b1 {e)

1.0
o0 [

o

Plir+)

T naf

oz

: 0.0
B E-4 20 2 46 R B-64£-202 46 B

Shmudus ey Shmulus ke Slimubss level

FIGURE 7. Typical psychometric functions from the simulation. These figures show the performance of the
variance discriminator for dipole separations of 4.0, 8.0 and 16.0 arc min.

4.4 Simulation results

Psychometric functions were calculated at each dipole length condition by generating a set of 32
organized textures at each of the nine stimulus levels £0° to £90° in steps of 22.5° as used in the
psychophysical experiment. The variance and template-matched estimates were calculated
for the pattern and these 32 values for the patterns were stored. A similar procedure was used to
generate structure estimates for a reference/disorganized Glass pattern. The psychometric
function could then be generated by sampling a pair of values from a file derived from cued
stimuli and from one derived from the reference stimuli. The proportion of times one was greater
than the other represents the probability that the model would discriminate a stimulus with a
particular cue from the reference. Examples of psychometric functions derived in this way are
given in Figure 7. Note that they are well fitted by the standard cumulative Gaussian model:

a
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FIGURE 8. Simulation of Experiment 2 using the variance and template models. Note that the performance of
both models deteriorates as a function of increasing, but not decreasing, dipole length.

The standard deviations of each psychometric function from the simulation are
superimposed on human data in Figure 8. Firstly notice that the template model is very noise-
resistant. Discrimination at separations of around 2.5 to 10 arc min. was achieved when up to
+75° of variation was present. The best performance of the variance model was discrimination
with approximately +65° of variation, at separations of 2.5 to 6 arc min. The second point of
interest is that the models show similar deterioration in performance to human subjects as
dipole separations exceed around 8.0 arc min. No fitting is applied to the predictions, but the
agreement between the variance model, in particular, and human data is good. The final
observation is that neither of the models show any deterioration in performance at very short
dipole lengths. In other words, human observers are unable to make use of the orientation
information that is present in patterns containing very short dipoles. This suggests that subjects'
performance is not due to pixelation effects, since both human subjects and models were given
the same stimuli. Approximating a dipole with 1.5 cycles of a square wave, the mechanisms
sensitive to a pattern with a dot separation of 4.0 arc min. are operating at about 23 cycles per
degree. Such mechanisms are known to have much lower contrast sensitivity than mechanisms
operating within the middle spatial frequency bands (e.g. using 6 Hz temporally modulated
gratings, contrast sensitivity at 1 c.p.d. is ten times higher than for 20 c.p.d. stimuli; Robson,
1966). Given the limited spatial extent of the stimuli, it is possible that poor performance on
this task is due to a failure of elements to consistently exceed the contrast threshold of the
mechanisms necessary to process them.

Notice that slightly poorer performance with translational patterns is reflected by the
poorer fit of the variance model at short dipole lengths. This is interesting because it suggests
that performance differences with transformation type reflect not an advantage for global
organization per se, butadisadvantage for translational patterns. The present model, based on
local orientation statistics is unable to account for such a disadvantage (albeit a small one).
Although performance is better with rotational and dilational patterns, a finding that is
consistent with Wilson et al. (1997)’s proposed role for IT, it is interesting to note that subjects’
performance does not exceed the performance of a model using local orientation statistics but
merely approaches it. Thus, our data are equally consistent with the presence of some form of
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low-level interference on the processing of translational patterns as they are with “top-
down” facilitation of rotational or dilational Glass pattern structure.

To summarise, this experiment suggests that the representation scheme proposed retains the
global orientation structure of texture in the presence of noise, in a manner broadly consistent
with human performance. However, the reduced performance of subjects when dealing with
orientation structure confined to very high spatial frequency bands (> 23 cycles per degree) is
not predicted by the model. This could be corrected by the addition of noise at high spatial
frequencies. Both the variance and the template model are unable to account for small observed
disadvantage for translational patterns compared to globally organized patterns.

5. EXPERIMENT 3: DETECTION OF ORIENTATION DISRUPTIONS IN GLASS PATTERNS

In forming a smooth orientation field, some averaging of orientation estimates over space must
occur. At first sight it would seem easy to ensure that a orientation field were always smooth by
picking very large local regions of integration. This would have two unfortunate side-effects.
The first, which was considered above, concerns the smoothing out of structure in globally
organized orientation fields. The second is that any local discontinuities in the orientation
field would also be smoothed out. Such discontinuities are almost certainly interesting to the
visual system as they can signal the occlusion of two surfaces or a surface edge (Hel Or &
Zucker, 1989). The questions that this section addresses are: can the proposed model retain
interesting discontinuities, and how does it compare to human performance at detecting
disruptions to local orientation? In order to establish how accurately discontinuities are
retained in human vision, a psychophysical experiment is reported that examines disruptions
to local orientation in Glass patterns.

Moraglia (1989) showed that detecting a horizontal line element within a circular
orientation field is easiest when that element maximally disrupts local orientation.
Experiment 3 of Nothdurft (1992) used textures composed of short lines, containing single target
lines which differed in orientation to the local orientation of the background field. The
required orientation shift, for discrimination of the target from the background, increased as a
function of the orientation variation of background elements. Nothdurft (1992) proposes that
the detection of anomalous elements is not attributable to the use of feature alignment cues, but
instead to the presence of local orientation contrast at the border.

The psychophysical procedure used in this section to investigate the detection of
orientation discontinuities is an adaptation of a paradigm described in Hel Or & Zucker (1989).
They used Glass patterns, as examples of typical densely organized oriented texture, which
had small holes inserted in them. These holes were filled with unstructured dots. The
threshold size of such embedded patches was determined for discrimination of these textures
from ones which did not contain patches. The density of Glass patterns and the “path-length”
of each texture element (the number of “overlays” used to generate the pattern) were
systematically varied. Hel Or & Zucker (1989) found that the ability to detect anomalous
patches was largely independent of the overall density of the pattern. Their claim was that it
was primarily path length that determined performance. The explanation offered, in terms of
curvature constraints on matching, is considered below.

There are a number of problems with the psychophysical data presented in Hel Or &
Zucker (1989), the main one being that thresholds for 50% correct performance are given. This
measure makes the assumption that subjects’ behaviour will approach chance before the
stimulus contains no cue patch, i.e. the psychometric functions will have a measurable “step”
around the chance level. In addition, data are only presented for one subject. For these reasons a
replication of the original study was performed. The only major change was the use of an
adaptive procedure to sample the cue.
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FIGURE 9. Examples of the stimuli used in Experiment 3. The three columns (from left to right) show textures
with a path length of 2, 3 and 6 dots, respectively. Textures in the top row contain patches of unoriented noise
with radii of 32 pixels, the maximum cue size tested in the experiment. The embedded patch in the bottom row
has a radius of 16 pixels. Note that the embedded patch becomes progressively easier to detect as the path
length increases.

5.1 Method

The procedure used was similar to the one used in Hel Or & Zucker (1989), except that an
adaptive method was used for data collection, making more efficient use of subjects. Unless
stated otherwise, stimulus parameters were set to agree with Hel Or & Zucker (1989).

5.1.1 Subjects

Two subjects were used in this experiment. One (FJIM) was naive to the purpose of the experiment
and had normal vision. The other was the author (SCD) who had corrected-to-normal vision.

5.1.2 Apparatus

All stimuli were presented using the same equipment as described in the Methods section above.
Subjects were seated in a dimly lit room, 55 cm. away from the monitor.

5.1.3 Stimuli

The stimuli were translational Glass patterns, created by randomly distributing texture
elements, composed of collinear equally spaced dots, within a square field. As the number of
dots making up the element (the path length ) increases, the overall orientation of the pattern
becomes progressively clearer (see Figure 9). Dots were composed of single pixels, subtending 2.0
arc min., and appeared white on a black background. The overall orientation of patches was
randomised from trial to trial. The separation of dots within each texture element was also
randomised within the range 2-4 dot widths (4-8 arc min.). Patterns were presented within 256
by 256 pixel images which were 87 mm square. At the viewing distance of 58 cm, images
subtended 8.53 degrees square. Cued textures contained an anomalous embedded field of
unoriented dots. This was created by allowing oriented texture elements to fall anywhere
within the image except a circular region, with radius r°, creating Glass patterns with small
holes. These holes were filled with non-oriented random dot fields, the density of which was
identical to the background density of the Glass pattern (precluding the use of a local luminance
cue to perform the task). Examples of the stimuli are shown in Figure 9. In order to control for
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the effects of retinal eccentricity the centre of the anomalous patch was randomly located on an
annulus around the centre of the pattern, with radius (r+2)°.

5.1.4 Procedure

A two alternative forced choice task was used. This was to decide which of two sequentially
presented Glass patterns contained an anomalous field. The two stimuli were both preceded by
a fixation marker which was presented in the centre of the screen for 500 ms. An additional 250
ms of delay followed the offset of the first pattern, making a total ISI of 750 ms. Subjects
indicated their choice on the computer keyboard. APE (Watt & Andrews, 1981), an adaptive
method of constant stimuli, was used to determine the threshold patch size for discrimination.
A range of patch radii from 0.0 to 32.0 pixels (64 arc min.), were adaptively sampled in steps of
4.0 pixels (8 arc min.). Runs of 64 trials were used with no interleaving. Dot densities of 2, 4, 6, 8
and 10% were used and the path lengths tested were 2, 3, 4, 6 and 8 dots. Conditions were
blocked separately in all cases.

g.d.=Ird. gd.=260 ph. g.d.=43.0 ph.
L] p=2, d=2% L) p=2, d=6% » p=2, d=1Fa
. . . e
»
: "
o +
i
1 - "

-2 -18 0 tB 32

Patch mad. (pl.)

g.d.=1 2.0 ph. ad.=T45 ph. a.d.=138 ph.
] Fl—l'l: 2% ] p=d, d=0% * p=d, d=10%%
g.d.=7.4 ph. gd.=7.5ph.
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FIGURE 10. Typical psychometric functions for the anomalous patch detection task. Axes legends are shown in
the top left-hand graph. In the legend boxes p refers to the patch length and d the flow density. The sign of the
abscissa, the patch size, indicates whether the cued texture was presented in the first interval (negative) or
the second interval (positive). The ordinate shows the probability that the response was that the cued texture
was in the first interval. Note that fits to the data shown, using the standard cumulative Gaussian
psychometric function, provides a reasonable fit to most of the data and that there is no sign of a plateau in
performance around the 50% level (as presumed in Hel Or & Zucker, 1989)
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FIGURE 11. Data from Experiment 3. (a-b) Threshold patch radius for detection of an anomalous patch for two
subjects (FIM and SCD respectively) as a function of path length. Note that data from all densities shows the
same trend. (c) Data from both subjects averaged across densities. Note the steady decrease in required patch
size as patch length increases. (d) Comparison of subjects detection of anomalous patches from this and Hel Or
& Zucker (1989). Data are re-expressed as 50% thresholds and averaged over all density conditions. The
agreement is fairly good for thresholds greater than 8.0 pixels. The lower thresholds in this study are
probably due to the fact that adaptive sampling of patch sizes below 8.0 pixels was used.

5.2 Results

The major difference between this and the Hel Or & Zucker (1989) study is the use of an
adaptive procedure, rather than a method of constant stimuli, and subsequent measurement of
thresholds at the 83% and not the 50% level. A sample of the psychometric functions from one
subject is shown in Figure 10 along with fits from the standard cumulative Gaussian
psychometric function. Thresholds are presented for both subjects in Figure 11 as a function of
path length. The patch size required for discrimination falls steadily as a function of path
length. Density does not seem to affect the shape of this function and for this reason data are
also presented averaged across density in Figure 11c. In order to compare data from this
experiment with those from the original study, thresholds for the 50% level were also
calculated. Results from two subjects are shown in Figure 11d, along with data from Hel Or &
Zucker (1989). The first set of plots shows the minimum patch size required to perform at chance
(50%) level as a function of path length and texture density. The agreement between the
original study and this experiment seems reasonable. Both sets of data show that the minimum
patch size for performing the task depends primarily on path length and not density.
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FIGURE 12. Hel Or & Zucker (1989) curvature hypothesis, adapted from their Figure 4. (a) Shows a flow
pattern with path length two. There are many potential matches between elements near the patch and elements
in the patch because paths are not constrained by curvature. (b) A flow with path length three. Curvature
limits potential matches and increases the probability of detecting the patch.

5.3 Hel Or & Zucker (1989) interpretation

In order to propagate and smooth the orientation field given by the output of a set of receptive
fields, Hel Or and Zucker propose that an interactive, cooperative procedure is used. This
refinement occurs through inter-columnar interaction in V1 (Parent & Zucker, 1989) and operates
by modifying the firing rate of cells within a neighbourhood according to their mutual
consistency with respect to orientation. This amounts to propagating curves within the image.
However, at the border of a texture patch orientation information is ambiguous and, Hel Or and
Zucker claim, curvature information is necessary to stop the smoothing out of the discontinuity.
Figure 12 illustrates this explanation. The left hand part of the figure shows a Glass pattern
with a path length of two. At the patch border a wide range of possible matches are possible,
because matches are unconstrained with respect to curvature. There will be enough random
matches that match the background orientation to ensure that smooth patches will be
smoothed out. For the case of a Glass pattern with path length three, illustrated in Figure 12b,
matches at the border are constrained to have zero curvature and so many fewer matches are
possible. Consequently, patches are less likely to be smoothed out.

There are a number of problems with this explanation. Firstly the result that it is hard to
detect anomalous patches in textures with a path length of two does not necessarily mean that
recourse need be made to an explanation in terms of curvature. It is quite possible that an extra
dot in the path merely increases the differential output of a filter at a particular
scale/orientation and it is this increase in energy, relative to the output over the anomalous
patch, that improves performance. Since the curvature model has not been implemented its
adequacy has not been tested quantitatively. An alternative explanation using orientation
reliability is given in the next section.

4
EEVE B OB OB W R BB 8 0 B 16 B W REAE B DB G 28 W

FIGURE 13. Typical psychometric functions from the simulation. This figure shows the performance of the
discriminator using mean local orientation variance for textures with densities of 6% and path lengths of (a)
2, (b) 4 and (c) 8 dots.
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5.4 An alternative interpretation

In this experiment, anomalous patches were marked out from the background by the fact that
they were unoriented. We would expect such a patch to be signaled by a region of high local
orientation variance. It is possible this source of local orientation variance will elevate the
estimate of multi-local variance for the whole pattern sufficiently to permit detection of the
patch. Alternatively, the unstructured patch will produce a deviation from expected local
orientation which will be measurable by the template estimate. To compare these strategies
we used identical estimates of multi-local variance and template-match to those described
above.

5.5 Details of simulation

A simplified version of the model was again used, due to processing time restrictions. The
average optimal spatial scale was calculated over 32 Glass patterns at the beginning of a run
and subsequent convolutions were only performed at this scale?. The same five dot densities
(2%, 4%, 6%, 8% and 10%) and path lengths (2, 3, 4, 6 and 8 dots) were used as in the
psychophysical experiments, giving a total of 25 psychometric functions to generate. For each
run, 32 stimuli were generated at each of nine different patch radii from 0.0 to 32.0 pixels.
Having collected measurements of structure from the model at each of the cue levels, a
psychometric function was calculated by sampling at each stimulus level and calculating the
probability of discrimination given the models’ output from a cued pattern compared to the
output given a reference pattern.
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FIGURE 14. Results from the simulations of the task from Experiment 3. Predictions from the variance and
template models are consistent with human subjects.

5.6 Simulation results

Figure 14 shows predictions from the variance and template model for this task. The fit to
human data is remarkably good given that each point represents the standard deviation of an
entire psychometric function and that no fitting has been applied.

The success of the variance model strongly suggests that this task may not require any kind
of boundary detection as supposed. On inspection, boundaries can be detected within the image,
but the overall smoothness of the texture proves to be an adequate indicator of the presence of a
patch. In order to preclude the use of simple global statistics in performing segmentation tasks,
some authors (e.g. Landy & Bergen, 1991; Nothdurft, 1985) use patch shape discrimination
tasks, and a thorough comparison of these models for texture segmentation would certainly
have to use data from studies such as these.

These simulation results are in broad agreement with those of Nothdurft (1992), since the
variance model would also predict that background orientation variation will critically affect

2 Even using this simplification, the simulation described required approximately 92000 convolutions
which took 15 days on a Hewlett Packard series 700 Apollo work station.
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detection of anomalous elements. Nothdurft suggests that texture disruption is not detected by
breaks in the co-aligned texture elements but in local orientation contrast at the anomalous
region. Using the pre-processing stage proposed here, breaks in local feature alignment would be
coded by a failure to coalesce into single elements at coarser spatial scales. Pilot trials
demonstrated that this was not a reliable cue to the presence of an anomalous patch. Instead
the proposed (variance) model codes the sum of local orientation variance. This measure co-
varies with the degree of local orientation contrast.

6. GENERAL DISCUSSION

This paper has reported a comparison of an adaptive filtering model combined with a measure
of mean local orientation variance, to one using a measure of the degree of local orientation
matching to a template. The intention was to test the spatial aspects of the model by
considering how globally organized patterns are coded. It has been shown that when these
measures are treated as discriminators they approach and exceed human levels performance on
three different psychophysical tasks, involving the perception of structure in Glass patterns.
As is often the case however, the model’s failures prove to be more illuminating than its
successes.

Data from Maloney et al. (1987) (Experiment 1) demonstrated that while a measure of
multi-local orientation variance could predict the discriminability of Glass patterns in the
presence of extra noise dots there had to be sufficient texels present for the measure to be of any
use. At low texel densities it was suggested that subjects make use of more detailed knowledge
about the underlying transform. This suggests that local feature density may prove to be a
critical determinant of the type of texture processing that an image undergoes.

Experiment 2 demonstrated that rotational textures are less vulnerable to the intrusion of
orientation noise than translational textures. This is consistent with a recent report by Wilson
et al. (1997) who attribute this phenomenon to the operation of concentric structure detectors in
IT. The simulation data reported suggest that what is happening is that higher-level structure
is providing access to exactly the levels of performance that would be predicted from the use of
local orientation statistics. It seems that what we are observing is a translational
disadvantage rather than a concentric advantage; how this can be reconciled with either
global or local models has yet to be determined.

The Hel Or & Zucker (1989) task replicated and modeled in Experiment 3, is closely related
to a variety of texture segmentation tasks. The success of the orientation variance model at
accounting for human performance suggests that this task does not require the explicit coding of
the position of texture boundaries at all, and that instead local orientation statistics suffice. |
consider that this is illustrative of a general problem with texture segmentation tasks - the
information that subjects can use is often insufficiently constrained. In fact, the location of
texture boundaries may ultimately prove to be a visual strategy that is little more than a
byproduct of a texture processing scheme intended primarily to guide which filters are used for
what.
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10. APPENDIX: A MODEL FOR ESTIMATING MULTI-LOCAL ORIENTATION STATISTICS

This appendix describes a model for extracting and representing the orientation of features
derived from texture. Table 2 summarises the models parameters and the values used in the
simulations reported.

Parameter Symbol Value
No. of scales 7
Filter size s 1-8 pixels in 0.5 octave steps
(spatial frequency) (40.7-5.0 cycles per image)
No. of filter orientations 12
Filter orientations f 0°-135° in 15° steps
Gaussian smoothing parameter 25
Threshold to demarcate blobs 1 grey-level standard deviation
Neighbourhood sampling rate r 32/s
(Sampling grid sizes) S
(32X32 to 4X4)

Neighbourhood size R, r . pixels

S

TABLE 2. Summary of model parameters.

10.1 Estimation of feature orientation

Pre-processing consists of convolution with a bank of 2D, oriented, Difference-of-Gaussian
(DoG) filters. This filter is composed of a DoG in the x-direction multiplied by a Gaussian in
the y-direction:
e ®x'g 1 @ x U @ y ¢
W, (X, Y) = @XP§- =7 = expl- ———= T exps- ———~
' € e X°g 223 "¢ 222%)d € 2(X)e
(5)
where S refers to the standard deviation of the positive Gaussian function and (Xt 1yt) are
co-ordinates rotated by angle f.
X, = xcosf +ysinf
_ (6)
y; =ycosf - xsinf
(7)
Parameters of the DoG are based on those derived by Wilson and co-workers (e.g. Phillips &
Wilson, 1983). The model uses filter sizes of S = Qlkniz pixels, K =1,2,---,7, and orientations
of I =0-165°in steps of 15°.
Next, the squared filter output is computed across all orientations for each spatial scale,
and a small amount of Gaussian blur is applied to each of these “local energy” representations.
A new image is constructed by comparing, pixel by pixel, local energy across orientation and
assigning a value to the pixel equal to the original output of the filter who’s energy is maximal
(see Figure 2b for examples). Thus the system selects the most appropriate filter based on local
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image structure. Although implemented in a quite different manner it is in this regard similar
to a “steerable” filter system (Freeman & Adelson, 1991).

After the initial filtering stage a symbolic, “primal sketch” description of thresholded
blobs is constructed. Filter outputs are doubly half-wave rectified, and positive and negative
zero-bounded regions (or “blobs™) characterized using the image description scheme of Watt
(1991). This produces “sentences” describing blobs in terms of their principal axis, centroid
position, area, etc. The orientations of these blobs serve as input to the next stage of processing.
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FIGURE 15. Image partitioning scheme used for calculation of local orientation statistics.

10.2 Partitioning the image

Given a set of orientation estimates at scale S , denote the image lattice (the set of all pixel
positions) as:

| ={Gi,j):1£i,j£ N}

. (8)
The resolution of analysis determines the sampling rate of a sublattice of points I | | :
[ . . X-1 . Y-10
I, =1((i-05)r (j-05r ):1£i £ AE | E Y
i 2 ro b
(9)
Now let N, (X Y) define a circular neighbourhood, radius R, , around each point on the
sublattice, | , (see Figure 15):
N, (xy) ={(0,): (x- i) +(y- i) £R}
(10)

where (X, y)T . This defines a set of circular neighbourhoods distributed throughout the
image on a grid. The two parameters used in this section are ', the sampling rate of the
sublattice, and R, the radius of the local region of integration. The values of these parameters

are constrained firstly by the size of the filters measuring local orientation estimates and
secondly by the requirement of the model to be scale-invariant.

The first constraint is that it is meaningless to use a sampling rate or a neighbourhood size
which is too small in comparison to the filter size S . The maximum sampling rate was set to be

S.0=8.0 pixels (i.e. a 32 X 32 sublattice) at the finest spatial scale (S =1.0 pixel)and R =T
as neighbourhood size.

The second constraint, scale invariance, has been demonstrated psychophysically by Nothdurft

(1985). Subjects’ discrimination of texture pairs is impaired if the spacing of elements is
increased but micro-pattern size remains constant. If both are increased proportionally
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segregation is not affected. In effect this requires that the sampling rate be reduced in
proportion to the spatial scale of analysis:

-
s H S
(11)
And | used:
32
ro =—
S
(12)

Features in the image are partitioned using their “blob” characteristics from the sentence based
description produced by earlier processing (see Section 8.1). Blob position is given by:

C ={{ox, 0oy, J1EKEB)
(13)

where (CX, ,,CY, ) is the centroid of the kth blob, and B; is the total number of blobs at scale
S . The set of all blobs falling in a neighbourhood around (X, Y) is:

G xY)=NXyCC
(14)

This defines the sets of blobs that are used to calculate local texture statistics. The following
two sections describe how the mean and variance of blob orientations are calculated.

10.3 Multi-local orientation statistics

10.3.1 Local mean orientation

The orientation of a blob with centroid (X, Y) is denotedq (X, y) . The basic expression for
estimating the mean orientation of the set of blobs falling in C, (X,Y):

- 1, & o . - o ... 0
d,(xy)=>tan’¢ @ sin2q, (i,j)/ @ cos2q, (i,j)*
2 €iiia (xy) (L.DTC; (x.y) 2
(15)
This expression is ambiguous; the result is either the mean, or the mean offset by 90°. To resolve
this ambiguity we assess the second derivative of the underlying error function:

d’E

o7 =2 & co2(a,6.0)- a (x)
q (i, DTCq (%)
(16)
To give the final expression:
- D gy it <o
qs(xay):i_ qs y dq2
10 (X,y)+90°  otherwise
(17)

With as (X Y) being coded between 0 and 180°(For derivation see Dakin, 1997)
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10.3.2 Local orientation variance

A useful measure of orientation smoothness is the mean of a set of estimates of local orientation

variance:
2

r o ..
Y, =— I,
ST %Y, f';)llly s (1)
(18)
Where X and Y are the image dimensions, I is the sampling rate , and y ¢ (X Y) is a measure
of the orientation variance in subregion C, (X,Y), atscale S :

1 o . I
y.(xy)=——— asinf(adi,j)- q(xy))
Us (XY) a.iic, ()
(19)
where U (X,Y) is the number of blobs in each subregion.

While this scheme produces an estimate of the smoothness of the orientation field it gives
no indication of the global organisation of the underlying field, i.e. it cannot be used to
distinguish a rotational field from a translational one. Presumably this is a natural task for
subjects, and for that reason we consider a second measurement of image structure: a template
match.

10.3.3 Local template matching

If one has prior knowledge of the possible underlying orientation structure of an image a
simplest method to assess the “degree of structure” is to calculate the deviation of local mean

orientations g (X, ) from the expected orientation at that position, T(X, Y):
2

r o - . . ..
D =— aq (I’J)' T('!J)
° XY(i,j)i I °
(20)
and to sum over all regions in the image:
For a rotation (centre (Xc, yc)), for example, the expected value is defined as:
. - yo ,
To(xy) =tan 0¥ g9
ex - Xg
(21)
for a dilations as:
: - yo
Ty (X)) = tan 188% Yo
ex. - Xg
(22)
and for a translation, angle A as:
Ttrans(x’y) = A
(23)

The obvious disadvantage to this method is that the underlying transformation must be
known a priori in order to calculate T(X,Y). However, given that for many psychophysical

tasks different types of patterns are not interleaved in a single run, it may be assumed that
subjects often have this information.
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