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This paper examines how observers estimate the overall orientation of spatially disorganised 
textures contahaing variable orientation. Experiments used asymmetrical distributions of 
orientations to separate the predictions from different models of average orientation estimation. 
Stimuli were composed of two spatially intermingled sets of oriented patches, each set having 
Gaussian distributed element orientation. The threshold separation of the means of the two sets was 
determined for a variety of tasks. Discrimination of these textures from a reference composed of 
two sets with the same mean orientation was well predicted by discrimination of orientation 
variability. A single interval judgement of which set contained more elements required a greater 
separation of the set orientations and suggested that the sets must be resolved in the orientation 
domain for independent representation of their properties. That resolution is required to perform 
this task further' suggests that orientational skew is not coded. Threshold offsets for judgement of 
average orientation were re-expressed as shifts of four candidate features for coding the central 
tendency of texel orientations. Comparison with similar thresholds for single distributions of 
orientations indicated that average orientation is assigned to the centroid of a set of orientation 
measures. © 19'97 Elsevier Science Ltd 

Texture Orientzttion Scale Centroid Resolution 

INTRODUCTION 

Most psychophysical .,;tudies of texture perception, 
largely influenced by the work of Julesz (e.g. Julesz, 
1981), have concentrated on the extraction of texture 
boundaries. That work presupposes that texture is 
primarily useful as a supplement to contrast information 
for the detection of surface discontinuities. Experimen- 
tally, boundaries are usually defined as rapid differences 
between attributes, such as orientation, of adjacent 
texture elements (texels). Such an approach assumes 
that, in general, textural cues will be available from local 
differences between texels. Usually, however, attribute 
information derived frown natural images is variable and 
must require spatial cornbination to be useful. 

The extraction of global texture attributes--and in 
particular, orientation--is known to be useful in estab- 
lishing a number of different surface properties. Kass and 
Witkin (1985) used such statistics to estimate the 
formative processes a texture had undergone. Similarly 
estimates of local surface shape require integration and 
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calculation of (usually second) moments of local 
orientation statistics (e.g. Blake & Marinos, 1990; 
Witkin, 1981). Additionally, segmentation might be 
achieved not only through local differences in attributes 
but also in differences between integrated attribute 
statistics (e.g. difference in local mean orientation: 
Vorhees & Poggio, 1987). Little is known of human 
perceptual performance where texture statistics are 
explicitly varied. 

Marr (1982) observed that, in order to understand a 
complex process such as texture perception, the forma- 
tion of intermediate representations is required. What are 
the primitives for representing texture orientation statis- 
tics? Recent observations suggest an analogy between the 
visual processing of luminance features and textural 
boundaries. It has been shown that texture segregation is 
sensitive to the rate of change of texel orientation across 
space (the structure gradient) at field boundaries (Landy 
& Bergen, 1991; Nothdurft, 1985a, b, 1991; Wolfson & 
Landy, 1995). Landy & Bergen (1991) used spatially 
band-pass textures to show that this effect is independent 
of the local density of texels. In addition, Sagi (1990) 
found a non-monotonic relationship between perfor- 
mance on a visual search for a vertical target and the 
number of (horizontal) distractors. Data were well 
explained using "hyper-filters", which integrate local 
orientation measures over a restricted area~ Input is 
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FIGURE 1. (a) Image of tree bark, a strongly oriented texture. (b) A set of possible texture elements. The "blobs" shown are 
derived by first convolving the image with an isotropic, Laplacian-of-Gaussian filter and then retaining only high energy regions 
(specifically, those pixels whose values are at least one standard deviation greater or less than the mean output value). (c) 

Orientation histogram of blobs derived from a symbolic description of (b) (Watt, 1991). 

independent of spatial frequency, and filters indicate 
significant changes of these measures in space (Fogel & 
Sagi, 1989; Sagi, 1990). 

These studies suggest that performance on visual 
search and texture segregation tasks, using orientation 
cues, may be well explained by mechanisms which 
extract differences between spatially integrated local 
orientation measures. Together they strongly implicate a 
further stage of combination and processing of orienta- 
tion information beyond the accepted representation at 
V1 (Hubel & Wiesel, 1967). 

Consider Fig. 1 which shows an oriented texture, along 
with a set of candidate texture elements [Fig. l(b); 
derived using the thresholded output of a Laplacian-of- 
Gaussian filter) and a histogram of the orientation of 
these blobs [Fig. l(c)]. One is capable of correctly 
estimating that the average orientation of the original 
texture is approximately vertical, even though the 
histogram shows that there is a great deal of variability 
in blob orientation. If one were interested in an 
orientation representative of the overall direction of 
surface creases (for example, to position the cutting edge 
of a tool on the surface) one would have to use some form 
of combination of measures to calculate it. Any 
individual texel would be too unreliable. The question 
that this paper addresses is this: which orientation 
statistics does the human visual system compute and 

particularly, how does it represent the central tendency of 
orientations? 

Observation of how a system's performance deterio- 
rates with the addition of  noise is a powerful approach for 
understanding that system (see, e.g. Barlow, 1980). By 
employing textures composed of separable texels one 
may examine the effect of noise explicitly added to the 
orientation of components. This approach to under- 
standing the perception of average orientation of textures 
has already been applied elsewhere (Watt, 1991). When 
the orientation of texels varies around some mean value, 
judgement of  average orientation is limited only by the 
variance of texel orientations and by some constant 
internal error of representation. By further supposing that 
orientations are averaged, an estimate of the number of 
texels employed can be made. Such a model accounts for 
the data presented and suggests that the mean of a number 
of orientation measures was available to subjects. Thus, 
Watt (1991) offers preliminary evidence that integration 
of texel orientation occurs in the judgement of average 
orientation of a texture field. Furthermore, this work 
suggests that the arithmetic mean of texel orientations 
predicts thresholds well. 

The remainder of the paper explicitly compares 
alternative strategies for coding average orientation. Is 
averaging of orientations required at all or could an 
alternative feature, such as the most numerous orienta- 
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FIGURE 2. The upper row shows the retinal light distributions of typical stimuli from Watt & Morgan (1983), the lower row 
shows the second derivatives of these distributions. (a) Shows the distributions from two superimposed bright bars with 

luminance ratios of 2:1. (b-e) The effect of increasing the separation of the bars. 

tion, suffice? In addition, the representation of multiple 
oriented sets is investigated. An understanding of these 
issues will give insight into the computation of texture 
statistics. 

In the experiments reported in this paper all stimuli 
were spatially unstructured single patches of oriented 
texture. The experimental procedures and models 
employed explore an mmlogy between the processing 
of luminance features and texture. Assume that an 
estimate of the underlying orientation probability density 
function (p.d.f.) is formed llmmgh averaging of local 
texel attributes, i.e., an orientation histogram is con- 
structed. It is hypothesized that the extraction of 
statistical moments (e.g. central tendency) of this 
representation will occur in a similar way to the 
extraction of moments from retinal luminance distribu- 
tions. In the case of tl~, ~ central tendency of a retinal 
distribution two stages are involved in most models: the 
integration of luminamze values through a blurring 
function and the accentuation of some moment of the 
resulting distribution (e.g. by taking the second deriva- 
tive). It is proposed that in forming an estimate of the 
central tendency of an .orientation distribution, similar 
processes may be used. 

MK'IIIOIIS 

Rationale 

Tasks exploring the location of spatio-luminance 
distributions (Watt & Morgan, 1983), were adapted to 
look at the coding of orientation distributions. 

Watt and Morgan (1983) employed tasks using 
spatially combined bright bars to compare the predictive 
power of four visual localion models. By varying the 
relative brightness of component bars, the asymmetry of 
the compound feature presented could be varied. Using 
these stimuli the threshoM offset of the mean positions of 
the bars was determined for vernier acuity and resolution 
tasks. Figure 2 shows the retinal light distributions, and 
their second derivatives, of typical stimuli from their 
experiment. The distributions from two superimposed 
bars, with luminance ratios of 2:1, are shown in Fig. 2(a). 
Figure 2(b-e) shows the effect of increasing the 
separation of the two bars. At the resolution point [Fig. 
2(c)] the number of zero-crossings in the second 

derivative increases from two to four. A model based 
on the extraction of zero-crossings in the second 
derivative best accounted for the subjects' accuracy at 
estimating the position of these asymmetrical luminance 
distributions. A centroid model also performed well and 
has been implicated elsewhere in deriving the location of 
dot clouds (Whitaker & Walker, 1988) and flanked bars 
(Badcock & Westheimer, 1985). Peak and threshold edge 
models produced poor fits to the data. 

The approach used in Watt and Morgan' s (1983 ) paper 
was used as a framework for experimental method and 
the models they examined were adapted to process texel 
orientation distributions. Rather than using bars defined 
by two distributions of luminance added in space, the 
orientation of texels was determined by two probabilistic 
distributions. Textures will have orientation distributions 
similar to the upper row of Fig. 2. By shifting the relative 
mean orientations of the two distributions an asymmetry 
can be constructed, analogous to the spatio-luminance 
case .  

The textures that were used consisted of two 
intermingled sets of spatially band-pass, oriented texels 
(see Fig. 3 for examples). The orientations of elements 
were randomly drawn from gaussian distributions (SD of 
6 deg) and the relative number of texels in each set was 
systematically varied. Using an adaptive psychophysical 
procedure the threshold offset of the mean orientations of 
the two sets was determined for three tasks. They were: 

A resolution judgement: subjects identified the 
patch that was composed of sets with different 
mean orientations. 

• A judgement of which set within one texture patch 
was more numerous. 

• A comparison of the average orientation of the 
patch with vertical. 

Several models were compared to determine the cues 
used to make the judgements. 

Performance for judging the average orientation of 
asymmetrical distributions (Experiments 3 and 4) was 
used to separate predictions from the models, as was the 
case in Watt and Morgan (1983). 
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FIGURE 3. Example stimuli from Experiments 1-4 (contrast-enhanced for reproduction). All textures contain 64 elements and 
the orientation of the more numerous set is 90 deg. (a) shows the reference stimulus, containing two superimposed texel sets 
(i.e., the cue 60 = 0 deg). (b, d, f) Two intermingled textures: each set has the same number of  elements (nl = n2). The relative 
offset of the two sets, 30, is (b) 0 deg, (d), 8 deg, (f) 16 deg. (c, e, g) As above, but for a texture where one set has 16-times as 
many elements as the other (hi = 16n2). Relative offsets are (c) 0 deg, (e) 8 deg, (g) 16 deg. Graphs show the p.d.f.s for the 

adjacent texture. 
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Subjects 
The first author and five observers naive to the 

purposes of the experiments served as subjects. Three 
(SCD, PMC and DFS) were experienced psychophysical 
observers, while the others had limited experience. 
DFS and SCD were corrected-to-normal myopes and 
DFS also had a slight (less than 0.5 D) corrected 
astigmatism. 

Apparatus 
All stimuli were presented on a Formac ProNitron 

80.21 colour monitor with a frame refresh rate of  80 Hz, 
and gamma corrected. The screen was viewed binocu- 
larly with natural pupils at a distance of 49 cm, and had a 
mean luminance of 26 cd/m 2. Subjects fixated the centre 
of the display, indicated using a pre-stimulus fixation 
marker. 

Stimuli 
In order to restrict orientation information to an 

individual spatial scale, textures with relatively narrow- 
band spatial frequency characteristics were used. Tex- 
tures were composed of small patches with luminance 
modulated by a Difference-of-Gaussian (DOG) function. 
Many of these DoG elements were randomly distributed 
throughout the image and added together. They appeared 
on a mid-grey background. The DoGs making up the 
textures had a luminance profile given by: 

L(x,y) : :  Loll + W(x,y)] 
where: 

W (xt, Yt) = A [e-X~ /2cr ~ - ( 2-~ e-X~t /2(223a z) ) ] e-y~ /2(32a 2) 

a = 3.48 rain arc and A is a scaling constant, xt and yt are 
the translated and rotated coordinates: 

xt = (x - #x)cos 6 + (Y - #y)sin ~ 

Yt = (Y - ]Zy)COS (~ -t- ( x  - re)sin ~b 

#x, #y represent the translation and q5 the rotation of the 
function. This is an adapted sensitivity profile given by 
Wilson and co-workers (Phillips & Wilson, 1983; Wilson 
& Gelb, 1984) for the 4 c/deg channel. The DoGs were 
clipped at ±3.0  standa:rd deviations from their centres. 
Overlapping patches were numerically added. The whole 
image was stored with floating point precision before 
being normalized to a range appropriate to the display 
hardware for presentation. Differing degrees of overlap 
between texels effectively randomized the contrast range 
from trial to trial. 

The texture patch contained a Gaussian random spatial 
distribution of texels (a = 50 pixels), centred on the 
middle of the display. The texture fitted into a central 
window of 256 pixels square (10.0 deg square). 

The orientation p.d.f.s used to generate the orientation 
of DoGs were typicality composed of  the sum of  two 
Gaussians with differing offsets and relative heights, but 
with consistent standard deviations of 6 deg. Two effects 

determined this choice. Firstly, aliasing of the probabiIity 
distribution due to pregeneration of DoGs in 1 deg steps 
becomes problematic at very small standard deviations. 
Secondly, a small number of elements poorly character- 
ize a Gaussian distribution at very large standard 
deviations. 

Procedure 
A Macintosh IIfx microcomputer generated and 

presented the stimuli, and recorded subjects' responses. 
The subjects' task was always a binary decision involving 
one (Experiments 2, 3 and 4) or two (Experiment 1) 
intervals. Unless stated otherwise, textures were pre- 
sented for 100 msec. For the two interval experiments, 
the first texture was presented in the centre of the display, 
followed by a 750 msec delay, followed by the second 
texture. In the single interval experiments the texture was 
presented, followed by a 750 msec delay. Subjects 
indicated their decisions by depressing one of two keys 
on the computer keyboard. APE, an adaptive method of 
constant stimuli (Watt & Andrews, 1981), was used to 
sample a representative range of relative numerosities of 
the two sets.* Probit analysis was applied to the response 
data to estimate the standard deviation of the psycho- 
metric function. Three runs of 64 trials each were 
undertaken for all conditions, unless stated otherwise. 
The data points presented are the arithmetic mean of 
thresholds from the three runs and error bars are an 
estimate of the standard error of these data. 

EXPERIMENT 1: SEPARATING MIXED TEXEL SETS 

Stimuli were composed of two intermingled sets of 
DoG patches (see Fig. 3 for examples) containing nl and 
n2 elements, respectively and with the same orientation 
standard deviation (a = 6 deg). The p.d.f, to produce this 
distribution of orientations was the sum of two gaussians 
with means of 0 and 0 + 60. The orientation p.d.f, for the 
stimulus is then defined as: 

p(O) c r y / ~  l e x p  

+(1 - -p l )exp  

(0 - 0) 2] 

J 

(1) 

Where Pl = nl/(nl + n2). In the reference stimulus the 
means of the two distributions were identical (60 = 
0 deg). In the comparison stimulus a non-zero increment 
was added to one of the means. The threshold 60 was 
determined for the task of reporting which of the fields 
had orientations drawn from distinct distributions. 

*The version of APE used differed slightly from the procedure 
described in this reference. The fitting of the response distribution 
with the cumulative normal error model was performed every trial, 
and not after each block of trials, as described in the Watt and 
Andrews (1981) paper. This addition only serves to increase the 
efficiency of the algorithm. 
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FIGURE 4. Results for three subjects from Experiment 1 with a total of (a) 64; and (b) 256 texels. The abscissa represents the 
relative number of texels in the two sets (n~/n2); the ordinate represents the threshold offset of means in degrees. Predictions 
from a judgement of the degree of orientation variability and the theoretical resolution limit of the distributions (as defined in the 

text) are also shown. 

Specifically, subjects were asked to discriminate which 
texture was composed of two sets of  elements, with 
different overall orientations, from the texture which only 
contained one set. 

In order to prevent subjects from using mean 
orientation cues 0 was randomized from trial to trial. 
The total number of DoG patches, nl + n2, remained the 
same within a condition. Thresholds (as defined above) 
were determined at relative numerosities ranging from 
1:1 to 1:64 evenly spaced on log axes. All subjects were 
run with 64 and 256 total DoGs. 

Results are shown in Fig. 4. Thresholds are lowest with 
equal number of elements drawn from both sets and 
increase with relative difference in number. There is little 
difference between the results from the conditions with 
64 and 256 total elements. 

Figure 4 also shows the theoretical resolution limit for 
the stimuli employed in Experiment 1. In the spatio- 
luminance case, Watt and Morgan (1983) define this as 
the point at which the number of stationary points in the 
first derivative of  the luminance profile changes from one 
to three. If it is assumed that the observed distribution of 
element orientations will approach the probability 
density functions used to generate them, then the 
orientation distribution of the patterns may be treated 
analogously to the spatial case and resolution limits 
calculated. For low ratios of  texel number ( < 1:8) all 
subjects perform below this resolution limit for the two 
distributions. This is in agreement with the findings of 
Watt and Morgan (1983). They suggested that because 
performance was not limited by resolution, the task 
amounted to discrimination of the width of luminance 
distributions. Similarly, the conclusion here is that 
subjects used a measure of the orientational variability 
in the texture patch to perform the task at offsets below 

the theoretical resolution limit. In other words, this task 
does not require the detection of bimodality but can be 
performed using a simple population statistic: orientation 
variability. 

To investigate this more thoroughly, the data were 
fitted with predictions derived from an orientation 
variability discrimination task. In this task subjects 
reported which of  two patches, each composed of a 
single set of DoG patches, had the greater orientation 
standard deviation. The reference set had orientations 
drawn from a distribution with tr= 6deg,  and the 
comparison set had a larger standard deviation. The 
threshold increase in standard deviation was determined 
for discrimination. Textures had randomized mean 
orientation: other experimental details were identical to 
those described in the Methods section. 

The threshold difference in standard deviation of 
orientation (6o.) was determined for each subject. The 
average threshold across subjects was 6o- = 2.0 deg. The 
offset of means producing this rise in the standard 
deviation of the combined distribution was calculated for 
each of the numerosity ratios from Experiment 2. The 
mean (0c) and variance (O~c) of two combined distribu- 
tions is given by: 

nlOl + n202 
0c -- U (2) 

= + + nl(O  - Oc) + n (02 - Oo) 2 13) 
N 

where nl and n2 are the number of  elements in two sets, 
and N is the total number of elements (hi + n2). Sets have 
means of 01 and 02 and standard deviations of o.l and 0-2. 
Given that the standard deviations of sets are equal, 
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FIGURE 5. The effect of the tot~l number of texels on the task used in 
Experiment 2. The abscissa represents the total number of texels; the 
ordinate represents the threshold separation of the set means (in 
degrees) for discrimination of textures composed of two texel sets from 

those composed of one. 

Substituting ~ - 0 -2 in Eq. (5) with the discrimination 
threshold standard deviation of a single set gives a 
prediction of the mean offset of  two sets which produces 
this cue in standard deviation. These predictions are 
plotted for a variety of  relative set numerosities in Fig. 4. 
Note that no further fitting has been used. Performance in 
this condition is consistent with subjects using variability 
of orientation to perform the task. 

The analysis above assumes that it is the relative 
number of  elements in each set which determines 
subjects' performance on the task. To determine whether 
this is correct, a control condition was run. In the stimuli 
used, each set contained equal numbers but the total 
number varied from 16 to 512 texels. Data in Fig. 5 show 
that within the range tested, total number has no 
appreciable effect on performance. For all subsequent 
experiments a total of 64 texture elements was employed 
and pilot studies indicated that there was little difference 
in performance on any of the tasks when using 256 
elements. 

tr = trl = o'2 is substituted in Eq. (3), and combined with 

Eq. (2) to give: 

- 

lot - 021 =: V ~V-~ ~ ~~ " (4) 

Finally recall ~ a t  p~ = nllN, so ~ a t  substituting w i ~  

nl = p~N gives: 

10 ,  - = ( 5 )  

which does not depend on N. 

Experiment 2: Judging the relative orientations of mixed 
texel sets 

Subjects could perform the task in Experiment 1 based 
purely on the degree of orientational variability. How can 
one measure the minimum separation of sets in the 
orientation domain at which they are resolved? One 
method is to use a similar task to that used in Experiment 
1 but to match the perceived orientation variability. This 
may not be straightforward if perceived variability is not 
directly related to a simple orientation statistic such as 
orientation standard deviation. In this experiment we use 
a different approach by getting subjects to make a 
judgement about the relative position, in the orientation 
domain, of  the two sets. 
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FIGURE 6. Threshold offsets for reporting the orientation of the less numerous set relative to the more numerous set, as a 
function of relative number. Note that all thresholds exceed the theoretical resolution limit. (b) Psychometric function for the 

same judgement with a fixed offset of set means (30 = 45 deg). 
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FIGURE 7. Threshold offset of means for three subjects from (a) Experiment 3; and (b) Experiment 4. The unfilled data points 
are the threshold mean offsets for judgement of average orientation of a single-set texture. 

A texture patch composed of two sets containing 
unequal numbers of texels was presented. Subjects 
reported whether the less numerous set of texels was 
clockwise or anti-clockwise to the other set. This is a 
numerosity asymmetry task. This task used a single 
interval and to prevent the subjects exploiting the mean 
of the distributions as a cue, the mean orientation of the 
more numerous set was randomized over a 180 deg 
range. Other experimental details were identical to those 
given in the Methods section, with the exception that a 
longer exposure duration of 500 msec was used, since 
pilot trials indicated that subjects were unable to obtain 
reliable thresholds at shorter exposure times. Subjects 
were given considerable practice on this task before data 
collection commenced. 

The results [shown in Fig. 6(a)] showed that subjects 
appear to require resolution of  distributions to perform 
the task. This suggests that relative numerosity informa- 
tion about distributions is only derived if those distribu- 
tions are distinct perceptual entities separated by at least 
the resolution limit. The only way subjects could have 
performed this task without resolving the components 
would be if they could determine the degree of skewness 
of the texture orientation distribution. The fact that they 
cannot suggests that although subjects can accurately 
assess the first and second moments of orientation 
distributions they cannot assess the third moment. 

Comparison with the last experiment is difficult. In 
Experiment 2 subjects determined which set was which 
(according to the number of texels in each) and judged 
the mean orientation of one in relation to the other. The 
fact that performance in this task approaches the 
resolution limit suggests that elevation of thresholds, 
compared with Experiment 1, is due to the offset of the 
means of the two orientation distributions. However, it is 

possible that the increased complexity of the numerosity 
judgement was responsible for poorer performance. To 
confirm that it is the offset of mean orientations which 
determine performance, a control experiment was 
performed. The task was a numerosity judgement at a 
fixed offset of mean orientations (60 = 45 deg, the 
maximum cue size) for different ratios of numerosity. 
This experiment will show the subjects' performance as a 
function of the difference in number between the two 
sets, but in the absence of any interference due to 
orientation. 

Results as a function of relative numerosity of sets are 
shown in Fig. 6(b), where a psychometric function for the 
first author is given. The abscissa is the ratio of the 
number of elements in the two sets. Asymmetries from 
16:1 to 1.4:1 indicate that the mean orientation of the set 
with more elements was clockwise of the other set. 
Asymmetries from 1:1.4 to 1:16 indicate that the mean 
orientation of the set with more elements was anti- 
clockwise of the other set. Data from this control were 
collected using a method of constant stimuli (1024 
presentations) and fitted with a cumulative Gaussian. It is 
clear that any effects of absolute difficulty of the 
numerosity judgement (in isolation from orientation 
interference) should be insignificant for ratios greater 
than 1:4 [the standard deviation of the psychometric 
function shown in Fig. 6(b) is 1:2.1]. 

E X P E R I M E N T S  3 A N D  4: J U D G I N G  THE O V E R A L L  
O R I E N T A T I O N S  OF M I X E D  TEXEL SETS 

The next two experiments investigated the extraction 
of average orientation from texture and tested the 
predictions of a number of localization models, adapted 
from the spatio-luminance to the orientation domain. 
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Subjects were presented with one texture field and 
asked to indicate whether the average orientation was 
clockwise or anti-clockwise relative to vertical. In 
Experiment 3 the field was composed of two sets with 
mean orientations of 90 deg and 90 deg + fi0, respec- 
tively. The offset of the means of the two sets (fi0) was 
systematically varied. Additionally, thresholds were 
determined for comparing the mean orientation of a 
single set with vertical. All textures were presented for 
100 msec. 

Figure 7(a) shows the data from this experiment. 
Thresholds increased with the ratio of the number of 
elements in the two sets and were consistently lower than 
thresholds from the resolution and asymmetry tasks. The 
thresholds for the single set stimuli are shown as unfilled 
data points. Notice that thresholds for the single set 
stimuli are all between 1.2 and 2.5 deg. These values are 
not much higher than orientation thresholds reported for 
line and grating stimuli (0.47-1.5deg, Heeley & 
Buchanan-Smith, 1990; Heeley & Timney, 1988; Matin 
& Drivas, 1979; Matin et al., 1987; Vogels & Orban, 
1985). This is surprising given that they are composed of 
spatially disorganised patches with an orientation stan- 
dard deviation of 6.0 deg, but is consistent with earlier 
work on orientation discrimination of DoG patches in the 
presence of orientation perturbation (threshold of 
0.78 deg for a perturbation of 3 deg; Paradiso et al., 
1989). 

In order to better separate the predictions of the models 
described in the next section a larger asymmetry was set 
up in Experiment 4, using three distributions. This 
experiment should also verify that whatever statistic 
was being used to pelfform the task, generalizes to 
textures composed of more than two resolvable distribu- 
tions. The probability of a particular orientation was: 

[ p ( O ) - - ~ v / ~  ~exp - 2~ ~ j 

[ ~ - + p z e x p  - 20.2 j j  

where p~ = (1 -p~) /2  and all other variables are identical 
to those given for Eq. (l). Again the threshold 60 is for 
the discrimination of average orientation of a texture 
from vertical. 

Threshold mean orientation offsets are shown in Fig. 
7(b). Note that the numerosity ratios shown are based on 
the ratio of the number of elements in one of the flanking 
distributions to the number in the more numerous set 
(p~/P2). Unfilled symbols show the thresholds for the 
orientation judgement of a single set, as described above. 
Thresholds show the same monotonic dependence on 
numerosity ratio and are again lower than thresholds 
from the asymmetry and resolution tasks. 

COMPARISON OF FEATURES FOR CODING MEAN 
ORIENTATION 

In this section four schemes for coding the central 

tendency of an orientation distribution are examined. 
Consider a compound distribution of texel orientations 
with a particular ratio of the number of elements in each 
set, and an offset of component sets equal to the threshold 
value for that stimulus (as determined from Experiments 
3 and 4). Features of this distribution, e.g. the mean and 
the peak, will not coincide. The difference between the 
orientation of the candidate feature and vertical is 
assumed to be the cue that the subject uses. The threshold 
shift to judge the average orientation of a single set 
provides a comparison. If subjects use a particular cue 
to judge average orientation of the compound textures, 
then the threshold shift of this cue should equal the 
average orientation threshold for the single set judge- 
ment. 

Four candidate features were tested: peaks, threshold 
edges, zero-crossings and centroids. All features were 
extracted from idealized orientation distributions. 

• Zero-crossing: the zero crossing model assumes 
convolution of the idealized orientation distribution 
with a smoothed second differential operator. This 
is similar to the "orientational filters", proposed by 
Keeble et al. (1995) as a mechanism for discrimi- 
nating oriented textures. It is also similar to a 
component of Paradiso's (1988) model of orienta- 
tion perception, where the output of cells within an 
orientation column are filtered with a Difference-of- 
Gaussian filter. 

In this case a Laplacian-of-Gaussian operator was 
used, of the form: 

' (  x~ ) v2a(x,0.) = ~  ~ - 1  e -~/2~2 

Because orientation is cyclical, convolution was 
wrapped around 180 deg. Location was then defined as 
the mid-point between the outermost two zero-crossings 
of the convolution about vertical. The width of filter 
employed was the value minimizing the Chi-square of the 
fit of the model to the data from Experiment 3. This value 
was a filter standard deviation of around 6deg 
(mean = 6.10 deg, SD = 0.81 deg). 

Threshold edge: two points in the distribution 
were located which were equal to some threshold 
value. Location was defined as the mid-point 
between these points. The threshold employed 
minimized the Chi-square of the fit of the model 
to the data. 

• Peak: the location of a distribution is assigned to the 
maximum of the idealized orientation distribution. 

• Centroid: the centroid was calculated using: 

/ 1 0 = 0e if - p(Oi)cos 2(0i -- Oe) ~ 0 

0e + 90 otherwise 
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where: 

180 "] 

i~l P(Oi)sin 20i I 
1 = 

0 e -~- "~ t an-1  | 1 8 - - ~ ~ - - ]  

 o,j 
(The derivations of these formulae are given in 
Dakin, 1997). Note that integration occurs over the 
full range of orientations. In practice integration 
over a restricted range of orientations can be more 
appropriate (e.g. when a distribution contains two 
resolved entities). 

Given a threshold diffe, rence in the mean orientations 
of the component sets, the size of the cue given by each of 
the candidate features may be calculated. These values 
should be equal to the size of the cue for the single-set 
texture at threshold offset. Cue sizes based on thresholds 
from Experiment 3 are s]aown in Fig. 8(a-c), and those 
based on thresholds from Experiment 4 are shown in Fig. 
8(d-f). 

Typically the models produce cues which are smaller 
than the threshold shift in central tendency, even given 
the idealized input, and can therefore be eliminated. The 
peak model in particular fails to explain the data. The best 
fit is given by the centroid model, although the threshold 
edge and zero-crossing model are also adequate. Note 
that the latter two models are fitted, whereas the centroid 
model has no free parameters. 

For the simulation of Experiment 4, the same threshold 
values and filters were used (except in the case of subject 
DFS where no data from Experiment 3 were available, 
and these values were derived using the data from this 
experiment). Figure 8(d-:f) demonstrates that the increase 
in asymmetry of the stimuli in Experiment 4 further 
separates performance of the four models. Again the 
centroid model best explains the data. 

These results suggest that the centroid of a set of 
orientation measures is the best model of human 
judgement of the central tendency of a set of orientation 
estimates made from a texture. 

DISCUSSION 

The main findings from the experiments described in 
this paper are as follows: 

Subjects can discriminate stimuli composed of two 
oriented texel sets from a field composed of one set at 
mean orientation offsets which depend on the rela- 
tive number of elements in each set (Experiment 1). 

• The global orientation variation of a stimulus can be 
used to discriminate textures composed of multiple 
sets from those containing a single set. As a 
consequence, threshold orientation offsets of multi- 
ple sets can be below the theoretical resolution limit 
(Experiment 1). 

• When the orientation variation cue is eliminated, by 
using a relative numerosity judgement, thresholds 
are elevated above the theoretical resolution limit. 
Information about the skew of orientation distribu- 
tion is therefore not available. The resolution limit 
gives a lower limit on when texel sets become 
separate, in the sense that properties of those sets 
can be measured independently (Experiment 2). 

• Subjects accuracy at estimating the orientations of 
textures composed of skewed distributions of 
orientations is best accounted for by a model 
extracting the centroid of orientations (Experiments 
3 and 4). 

The centroid model as presented makes two assump- 
tions: firstly, that orientation measures are extracted from 
the whole image and secondly, that integration over the 
whole range of orientations should be used to make the 
estimate. Both assumptions are certainly false, since we 
are quite capable of perceiving orientation structure in 
natural images, requiring multiple local orientation 
estimates, and we can perceive structure in multi-modal 
textures. In Experiment 2, subjects clearly have access to 
relative numerosity information about two texel sets and 
an orientation primitive based on some portion of the 
orientation distribution is suggested. Although the zero- 
crossing model produces a reasonable fit to the data from 
Experiments 3 and 4 it was also run (with identical filter 
characteristics) on the data from Experiment 1 to yield 
predictions of orientation variation discrimination thresh- 
olds. The model produced adequate predictions at small 
ratios but did not explain the data when the number of 
elements in one set became small. Small distributions are 
smoothed out entirely. This challenges the assumption 
that an idealized orientation distribution is available. 

In reality, the visual system estimates the orientation 
statistics of an observed texture by integrating a set of 
local estimates of orientation. This could occur through 
spatial summation of similarly oriented receptive field 
outputs within a "region of integration". Using such a 
scheme the relative output of differently oriented 
mechanisms at a point could signal the reliability of 
extracted features. What are the spatial dimensions of this 
region of integration? In order to achieve scale invariance 
one would expect its size to scale with the spatial 
frequency of filters used to derive local orientation. 
Kingdom et al. (1995) have found this to be the case for 
textures containing orientations modulated over space. 

Textures with spatially modulated orientation structure 
have been used previously to explore the analogy 
between the processing of orientation and luminance 
distributions. Keeble et al. (1995) had subjects discrimi- 
nate between sinusoidally modulated, and uniform 
orientation p.d.f.s, as a function of the amplitude and 
frequency of the sinusoid. Subjects perform optimally 
with distributions modulated at one cycle per 180 deg. 
Keeble et al. (1995) modelled the task using an 
"orientational filter" with an average half-height, full- 
width of 34 deg. This is very large compared with the 
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filter sizes der ived  f rom the average or ientat ion es t ima-  
tion task, but  is p robab ly  at t r ibutable  to task differences.  
In Keeb le  et al. (1995) subjects  had  only  to repor t  which  
texture was the more  anisotropic.  In  Exper iments  3 and 4 
the threshold mean  orientat ion offsets o f  1 .0-2.0  deg 
suggests  a much  f iner-scale filter is appropria te .  In the 
case  o f  the Keeb le  et al. (1995) task, such a filter would  
p robab ly  respond  to spurious ofientaf ional  structure, 
rather than the or ientat ional  modula t ion  subjects  were 
required to detect.  

Examin ing  a typical  s t imulus for  h igher  rat ios as 
shown in Fig.  3(d, e), it  is apparent  that, as the numeros i ty  
rat io o f  the two dis t r ibut ions increases,  the j udgemen t  
f rom Exper iment  1 becomes  c loser  to a "search"  task, as 
descr ibed  in the l i terature on visual  at tention (e.g. 
Tre i sman  & Gormican ,  1988). In Exper iment  1 it appears  
that, in the case o f  mul t ip le  targets,  threshold  or ientat ion 
di f ference be tween  target  and dis t ractor  may  be wel l  
mode l l ed  by  predic t ions  based  on change  in the 
orientat ion s tandard devia t ion  of  the texture. It is 
interest ing to note that, for example ,  such a mode l  would  
predict  a non-monoton ic  dependence  o f  per formance  
upon dis t ractor  number  (shown by, for example ,  Sagi ,  
1990; Sagi  & Julesz,  1987). F rom stat ist ical  considera-  
tions a smal l  total number  o f  texels leads to a poor  
es t imate  o f  or ientat ion s tandard deviat ion,  p roduc ing  
poor  per formance  which  improves  with increas ing texel 
number .  However ,  as number  increases,  the influence o f  a 
single dis t ractor  on the g lobal  s tandard devia t ion  es t imate  
will  decrease.  Subjects  per formance  may  be de te rmined  
by  the total  o f  these two sources of  error. The sugges t ion  
is that the under ly ing  statist ics o f  texel  or ientat ion may  
expla in  some visual  search effects wi thout  recourse  to 
specific, spatial  interact ions.  

In conclusion,  the data  repor ted  s t rongly constra in  a 
representa t ion o f  texture or ientat ion statistics. The 
var iabi l i ty  and centroid  of  an or ientat ion dis t r ibut ion 
are avai lable  to subjects,  but  skew informat ion  is not. 
Mul t ip le  sets can be perce ived  and independent  informa-  
tion about  them is represented  when they are resolved.  
These  results suggest  a para l le l  be tween  the visual  
process ing  o f  spat ia l ly  unstructured texture and spatio-  
luminance  information.  
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