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Experiments are reported which examine the judgement of the mean orientation of textures
composed either of short lines or dipoles (Glass patterns). The effects of element length, density, and
orientation variation are described. Psychophysical data are compared with predictions from four
schemes for extracting features from Glass patterns: token matching, isotropic filtering, oriented
filtering, and “adaptive” filtering (selection of local peak output from multiply oriented filters).
Glass patterns are spatially broadband but only contain orientation structure at a narrow range of
scales making them suitable for examining how filter size is selected for texture processing. A
criterion for scale selection is proposed: that local variation of feature orientation should be
minimized. Simulations indicate that neither models using isotropic filtering nor token matching
achieve human levels of performance on certain tasks. Adaptive filtering, operating at a scale
selected using the criterion described, provides good agreement with the psychophysical data
reported and is a practical scheme for deriving features using oriented filters. © 1997 Elsevier

Science Ltd.
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INTRODUCTION

The present study examines two issues associated with
how visual features are extracted using spatial filters. The
first is whether oriented or isotropic filters are used. The
second is how information is selected from, or combined
across, filters of different sizes and (if filters are oriented)
orientations. In this paper these problems are considered
in the context of the perception of structure in a class of
texture known as Glass patterns.

Glass patterns

Glass patterns are composed of the superimposition of
one or more copies of a field of randomly distributed
features (e.g., dots) onto the original, where the copy is a
geometric transformation of the original [Fig. 1(a); Glass,
1969; Glass & Perez, 1973). The visual impression is of a
compelling oriented structure with dot pairs (dipoles)
aligned along the direction of the local transformation.
Glass patterns are interesting for a number of reasons.
Firstly, they approximately isolate the selection of
orientation from other visual processes owing to, e.g.
contrast and size differences (Zucker, 1982). Secondly,
they contain structure at only a limited range of spatial
scales, which makes them ideal for investigating scale
selection/combination processes (see below). Finally,
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although a number of computational and psychophysical
investigations of the perception of Glass patterns have
been conducted, none of the models proposed has been
shown to be completely satisfactory.

The problem of deriving structure from Glass patterns
is closely linked to a key problem for computational
accounts of texture perception, and that is how features
from natural texture are extracted and represented.
Within the psychophysics literature, this problem is often
side-stepped by using textures composed of spatially
distinct micro-patterns, which are clearly delineated by
their brightness. However, considering Fig. 1(b), which
shows a highly oriented natural texture, no such features
present themselves. Spatial filtering has been proposed as
a computationally efficient method both for deriving
features from visual texture (Vilnrotter et al., 1986;
Vorhees & Poggio, 1987, 1988; Wen & Fryer, 1991) and
as a mechanism for grouping in Glass patterns (e.g. Kass
& Witkin, 1985; Zucker, 1982). Figure 1(c—h) shows the
thresholded response of Laplacian-of-Gaussian (LoG)
filters to the Glass pattern and the tree bark texture. It is
clear that the dark blobs in the output of the medium scale
filter [Fig. 1(e, f)] reflect the orientation of dipoles, and
the local orientation of the bark texture. This is not the
case for all scales and Prazdny (1986) has pointed out that
a particular problem for any account of grouping in Glass
patterns using filtering is just how filter size is selected. In
the past, models have either made assumptions about the
setting of filter size (Kass & Witkin, 1985; Zucker, 1982),
or neighbourhood size for token matching (Stevens,
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FIGURE 1. Locating features in Glass patterns and natural textures: (a) rotational Glass pattern; (b) tree bark (texture d72 from

Brodatz, 1966). (c—h) Response of isotropic, Laplacian-of-Gaussian filters to (a) and (b), with space constants of (c, d) 2, (e, ) 4,

and (g, h) 8 pixels. (Grey levels above or below a threshold value have been replaced with white or black pixels, respectively, to
highlight “blobs™.)
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FIGURE 2. Top row: A line texture and a Glass pattern with similar mean orientation, element length and number. Scale-length
histograms (middle row) and scale—orientation histograms (bottom row) of Laplacian-of-Gaussian features derived from the line
texture and Glass pattern. Brightness indicates the number of blobs in the output of a filter at a particular orientation or length.

1978) or cannot explain global organization effects at all
(e.g., the autocorrelation model of Maloney et al., 1987).
Prazdny (1986) concludes that there must be “an
evaluating agent” looking at the output of the filters at
various scales which, he suggests, is not unlike the
Gestalt notion of “Prignanz”.

Figure 2 further illustrates the importance of filter-size
selection for Glass patterns. It shows histograms* of a

*Histograms were derived using symbolic blob descriptions (Watt,
1991), derived from the half-wave rectified outputs of a range of
sizes of LoG filters.. For further details of this process see the
“Modeling” section below.

Glass pattern and a line texture illustrating how
orientation and length statistics change with the spatial
scale of analysis. The narrow, vertical band in the line
texture scale—orientation histogram (bottom row, left)
indicates that a wide range of fine spatial scales will give
an accurate estimate of the correct orientation of the line
texture. In contrast, the “hour-glass” shape of the
histogram derived from the Glass pattern (bottom row,
right) shows that the range of orientations present in the
pattern is determined by the filter size selected. Notice
that the length—scale histogram of the Glass pattern
indicates that mean blob length increases with scale. This
information does not appear to be useful for the selection
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of scale. Indeed the primacy of orientation information in
the processing of these patterns has been demonstrated
psychophysically by Caelli & Julesz (1979), who showed
that variance of orientation, but not length, determines
the discrimination strength of patches of dipoles.

Of course, defining the “correct” scale is not possible
in the absence of a particular visual task. Let us assume
that the goal of the process responsible for deriving
structure from oriented texture is to maximize the
accuracy of its estimates of local orientation. Statistical
wisdom indicates that the source of information it uses
should have minimal variance. This suggests a strategy
for determining any free parameters (such as filter size) of
a texture processing model; set them so that derived
features have minimal orientation variance. By examin-
ing a symbolic image description, the local orientation
variance of a given set of blobs may be calculated, and so
an estimate of the reliability of a particular spatial scale
for estimating local orientation may be assessed (see the
Appendix for details of the variance calculation).
Referring back to Fig. 2, this is equivalent to selecting
the scale at which the scale—orientation histogram is
narrowest.

The psychophysical task used in this paper is the
judgement of the mean orientation of oriented texture
patterns. The more common “structure vs no-structure”
task was not used because it does not sufficiently
constrain the source of information used by the subject
(they could use any form of regularity in the patterns).
The requirement of an accurate estimate of mean
orientation constrains the subjects’ behaviour in a way
that may be built into a model directly, in the manner
described in the preceding paragraph. The remainder of
this paper presents three experiments examining the
extraction of the mean orientation of Glass patterns as a
function of a number of stimulus parameters. In order to
isolate how the grouping of dots into dipoles affects the
task, performance with textures composed of lines is also
measured. Differences between line and dipole textures
should be attributable to grouping uncertainty. Finally,
four models are used to simulate performance on these
tasks. Three used spatial filtering in conjunction with
thresholding and symbolic feature description. The
filtering used was either Laplacian-of-Gaussian, oriented
Difference-of-Gaussian (DoG), or “adaptive” which
combined the outputs of DoGs at multiple orientations.
In each case, filter size was selected by minimizing the
variability of the orientation of derived features. The final
model was a token matching scheme specifically
designed to derive dipoles from Glass patterns by
maximizing the parallelism of local dot matches within
a local neighbourhood (Stevens, 1978).

GENERAL METHODS

The following three experiments manipulated different
parameters of the line and dipole textures but used the
same basic method. The independent variables examined
were the length of elements (Experiment 1), the standard
deviation (SD) of the orientation of elements (Experi-
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ment 2) and the density/number of elements (Experiment
3). Experiments 1 and 2 compare data from tasks using
line and Glass pattern textures, while Experiment 3
examines only Glass patterns. The subjects’ task in all
experiments was to judge the mean orientation of the
texture presented.

Subjects

Three subjects served as subjects in the experiments.
All were experienced in psychophysical procedure, and
FIM and RAO were naive to the purpose of the
experiments. All subjects had normal or corrected-to-
normal vision and undertook sufficient practice to reach
asymptotic performance before threshold measurement
began.

Apparatus

The generation and presentation of stimuli, and the
recording of subject responses was carried out on a
Macintosh IIfx microcomputer. The display was a
Formac ProNitron 80.21 colour monitor with a frame
refresh rate of 75 Hz. The screen was viewed binocularly
with natural pupils at a distance of 2 m.

Stimuli

All stimuli used in the experiments were approxi-
mately circular texture fields, with radii subtending
1.23 deg (128 pixels), of either lines or dot pairs
(dipoles). These fields appeared within a 2.46 deg (256
pixel) square image. Lines or dipoles appeared white on a
black background, and were distributed randomly
throughout the field.

Line elements were anti-aliased, using 16 grey levels.
Component dots of the dipoles were individual pixels
which subtended approximately 35 arc sec. No anti-
aliasing of dipoles was used. If the orientation of a
dipole required that one of the component dots be placed
in a position between the discrete pixel locations
available, the nearest pixel location was used. As a
consequence, in the experiments employing a constant
dipole length (Experiments 2-3), a relatively large value
of 8 arc min (approximately 14 pixels) was used (see Fig.
4 for examples). At this length, cues as small as 4 deg
may be presented.

The orientation of elements of both line and dipole
textures were drawn from Gaussian random distributions
(clipped at +6¢). Apart from Experiment 2, where the
effect of orientation variation was investigated, distribu-
tions had a SD of 8 deg. This value was used because
pilot studies indicated that such a level of variability, with
textures composed of 8 arc min long dipoles, reduced
performance (by around 50% from conditions with no
variation in element orientation), bringing thresholds
closer to the minimum cue which could be reliably
presented. Vertical patterns were chosen to avoid
problems due to the well known oblique effect (e.g.
Appelle, 1970), and because of the established advantage
for vertical over horizontal Glass patterns (Jenkins,
1985).
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Textures in Experiments 1 and 3 were composed of
512 lines or dipoles, corresponding to an average density
of 89.4 elements/degree” (Experiment 3 explicitly
investigated the effect of element number/density). A
pilot study indicated only a small effect of element
density on thresholds for the line and dipole textures.
Relatively dense patterns were used because theories
based on symbolic matching of tokens (Stevens, 1978)
predict that performance should be poor under these
conditions.

Procedure

Stimuli were presented in the centre of the screen,
which was indicated by a pre-stimulus marker, for
100 msec. An ISI of 750 msec followed each response.

The subjects’ task was a single interval, two-alter-
native forced-choice, and was to report whether the
texture presented had an orientation clockwise or anti-
clockwise of vertical. No reference orientation was
presented to subjects. Subjects indicated their response
by depressing one of two keys on the computer keyboard.

An adaptive method of constant stimuli, APE (Watt &
Andrews, 1981), was used to sample a range of mean
orientations around vertical. Three runs of 64 trials were
undertaken for each data point presented. Conditions
were not interleaved. The psychometric functions
measured were the probability of reporting a clockwise
orientation as a function of the cue added to the mean
orientation (i.e., they measured performance between 0
and 100%). At the end of a block, probit analysis was
used to estimate the SD of the psychometric function for
each run. The data points plotted are the arithmetic mean
of these values, and the error bars show +1 SE.

EXPERIMENT 1: EFFECT OF ELEMENT LENGTH ON
THE JUDGEMENT OF MEAN ORIENTATION

The first experiment investigated the effect of element
length on the judgement of the mean orientation of
translational line textures and Glass patterns. Variation of
dipole length effectively varies the level of noise in the
matching of dipole elements owing to the proximity of
other, uncorrelated dots. Subjects’ thresholds for line
textures give an estimate of the absolute limits on the
estimation of the mean of a set of oriented elements in the
absence of matching uncertainty.

Previous work examining the effect of dipole length on
the perception of Glass patterns has used rating judge-
ments (Caelli & Julesz, 1979) or discrimination of
structure from noise (Jenkins, 1983; Wagemans et al.,
1993). Caelli & Julesz (1979) used true rotational Glass
patterns, i.e., dipole length increases with distance from
the centre, and asked subjects to rate how far from the
centre they could see structure. They found these
estimates of “perceived extent” fall steadily as a function
of increasing angle of rotation. Jenkins (1983) deter-
mined that discrimination of Glass patterns from noise
falls as dipole length is increased and quotes a limit of
1.4 deg for 50% correct discrimination of signal from
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noise. Similarly, Wagemans et al. (1993) measured the
discriminability of Glass patterns, composed of 16
dipoles, from noise patterns as a function of dot
separation. It was found that increasing dipole separation
produces worse discrimination and that length variation
was also found to have a detrimental effect on signal
detection.

Wagemans et al. (1993) and Jenkins (1983) have both
interpreted their data as evidence for the models proposed
in each. The finding of Jenkins (1983), that there is a
critical dipole length for perception of structure, seems to
support a matching mechanism using spatial correlation;
although virtually any grouping model would also predict
such a limit. Wagemans et al. (1993) report that the
efficiency of subjects at performing the discrimination
task (d' as high as 4.6, i.e., 100% correct discrimination)
is not matched by the simulated annealing model
proposed (maximum of around 85% correct discrimina-
tion). Although the model produces “the same rank
ordering of performance levels” (Wagemans et al., 1993)
this is a weak criterion for assessing the validity of a
model. In short, there have been no wholly convincing
quantitative explanations of the effect of dipole length on
the perception of structure in Glass patterns.

Stimuli

The textures used were composed of 512 lines or
dipoles, their orientations drawn from Gaussian random
distributions with a SD of 8.0 deg. A range of dipole/line
lengths was tested from 1.41 to 32.0 arc min in multi-
plicative steps of /2, and examples of the stimuli are
shown in Fig. 3.

Results

Threshold offsets for the mean orientation judgement
as a function of element length are shown for three
subjects in the lower panel of Fig. 3. The accuracy of
judging the mean orientation of line and dipole textures
improves rapidly with element length up to 4-5 arc min.
This improvement could be due to two factors. Firstly the
dependence of the accuracy of orientation estimates on
the aspect ratio of the figure (Vassilev et al., 1981;
Westheimer, 1981). Secondly, when dipole separation is
small the cue has to be relatively large to overcome the
problem of the discrete location of pixels comprising
each dipole. However this factor does not appear to be a
major contributor to poor performance at small element
lengths because performance using the line textures,
which are anti-aliased and so do not suffer from this
problem, closely follow that of the dot textures at short
element lengths.

As element length increases above 4-5 arc min,
accuracy for judgement of line texture orientation
improves until it asymptotes at around 2.0 deg. Judge-
ment of the orientation of Glass patterns, however,
quickly breaks down as dipole length increases beyond
8 arc min because of uncertainty in matching the dipole
components. The task becomes impossible with dipole
textures at around 23-32 arc min for this dot density.
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FIGURE 3. (a-c) Examples of the stimuli used in Experiment 1. The patterns shown have dipole lengths of (a) 2.8; (b) 5.6; and
(c) 11.3 arc min. (d—f) Threshold mean orientation offsets for judgement of the orientation of line and dipole textures as a
function of element length. Results from three subjects are shown.
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This deterioration in performance as dipole length
increases, confirms the general finding of Wagemans et
al. (1993) and Jenkins (1983). Experiment 1’s estimate of
the distance at which orientation estimates break down is
23-32 arc min, at a viewing distance of 2.0 m. Jenkins
(1983) estimate of the maximum dipole length facilitat-
ing a structure-vs-noise task is 1.4 deg measured at
57.3 cm. Scaling Jenkins’ estimate (i.e., making the
strong assumption that viewing distance will have little
effect on performance) produces an estimate of 24.0 arc
min: in agreement with the result of this experiment.

EXPERIMENT 2: EFFECT OF ORIENTATION
VARIABILITY ON THE JUDGEMENT OF MEAN
ORIENTATION

The aim of this experiment was to determine the effect
of adding local orientation jitter on the judgement of the
mean orientation of a Glass pattern. This form of noise
maintains a constant distance between corresponding
dots but adds uncertainty as to which direction a dot’s
correspondent lies in. This form of noise is important
because one would expect that models relying on local
orientation statistics will be critically affected by changes
in these statistics.

The effect of adding small random rotations to dipole
orientations was first observed by Glass & Switkes
(1976), who informally demonstrated that such noise
degraded perception of structure. This, they claimed, was
consistent with the physiological model described by
Glass (1969): the range of dipole directions now exceeds
the specificity of a single orientation column and the
excitation required to perceive structure is not achieved.
Maloney et al. (1987) indicated that this range must be
less than + 11 deg because such a range of orientations
does not significantly affect perception of structure.

Stimuli

Line and dipole textures similar to those used in the
previous experiment were used, except that the length of
elements was fixed at 8.0 arc min and the local orienta-
tion standard deviation (SD) of elements was system-
atically varied. Dipoles had Gaussian-distributed
orientations with a SD of from 1.41 to 32.0 deg, sampled
in multiplicative steps of /2. Examples are shown in
Fig. 4.

Results

Threshold offsets for mean orientation judgement as a
function of dipole orientation SD are shown for three
subjects in the lower part of Fig. 4. Subjects typically
achieve thresholds as low as 3.0deg for the dipole
textures and 2.0 deg for the line textures: an impressive
level of performance given the large separation of dots
and high density of dots. The pattern of results for the line
and dipole textures are similar except that there is an
approximately uniform shift (on logarithmic axes) of the
functions from the lines to the dipoles. This indicates a
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multiplicative effect of matching uncertainty in the Glass
patterns.

It is clear that there is little effect of adding orientation
jitter on either the line or dipole textures until the SD
exceeds about 8.0 deg. This figure is in accord with the
value of +11.0deg quoted in Maloney et al. (1987),
which is equivalent to Gaussian-distributed orientations
with a SD of 7.8 deg. Such a figure seems to indicate that
there is inherent noise on the system which limits the
accuracy of estimating mean orientation at very low
levels of jitter. It is quite possible that this noise is due to
the orientational bandwidth of the filters employed to
extract structure. Beyond this level of orientation
variation, performance deteriorates in an approximately
power law relationship with orientation SD.

EXPERIMENT 3: EFFECT OF NUMBER OF
ELEMENTS ON THE JUDGEMENT OF MEAN
ORIENTATION

The aim of this experiment was to determine the effect
that the number of elements making up a Glass pattern
has on the accuracy of judging the mean orientation. A
lack of effect of element number/density has been shown
in the detection of bilateral symmetry in dot patterns
(Jenkins, 1985), and in displacement limits for detection
of motion in random binary luminance patterns (Morgan
& Fahle, 1992) so one might expect Glass patterns to be
similarly insensitive to density.

Stevens (1978) used patterns composed of dipoles
located on a perturbed grid, which were not permitted to
fall in such a way that alignment with nearby dipoles
could cause “chains” of multiple elements. A rating
judgement of “pairedness” was used to determine the
maximum dipole separation for which structure was rated
to be present. Dot density varied from 0.5 to 44 points/
deg2 (from 65 to 580 total dots) and the results indicated
that, regardless of pattern type, if more than 2 or 3 points
lay closer to a dot than its corresponding dot, then
structure was not rated as present. Jenkins (1983),
measuring the discriminability of Glass patterns from
noise, produced results contradictory to Stevens’, show-
ing that there was no effect of altering dot density over
the range 6.5 to 26.0 points/degz. Jenkins (1983) accounts
for Steven’s low estimate of tolerable noise by assuming
that his subjects were conservative in their subjective
rating of “pairedness”. Another explanation for this
inconsistency of findings is that it is the presence of low
spatial frequency features like dipole “chains”, which
were eliminated from Stevens’ stimuli, that indicates
structure when dipole separation becomes large. Jenkins
(1983) goes on to claim that stimulus field diameter is the
critical factor in perceiving these patterns, independent of
viewing distance.

Maloney et al. (1987) also measured the discrimin-
ability of Glass patterns from patterns of randomly
oriented dipoles, but varied the number of unpaired noise
dots added to the original pattern. Using two dot
separations and a number of dot densities, they showed
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FIGURE 4. (a—) Examples of the stimuli used in Experiment 2. The patterns have orientation variability with SD of (a) 1.0; (b)
4.0; and (c) 16.0 deg. (d-f) Threshold mean orientation offsets from three subjects as a function of element orientation
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a Weber law relationship between the number of dipoles
in the pattern and the maximum number of unstructured
dots which could be tolerated at a particular level of
performance. Their data show that detection at a level of
d’'=1.0 is possible with more than six noise dots closer to a
dot than its partner. They suggest that this result argues
against the neighbourhood approach of Stevens (1978)
but, again, it probably indicates that comparison of these
findings with Stevens’ are precluded by differences
between experimental procedures.

Pilot trials indicated that number/density had little
effect with either the line or dipole textures, so this
experiment was carried out only using Glass patterns.

Stimuli

All stimuli were Glass patterns with a dipole separation
of 8 arc min, a value sufficiently large that any effects of
neighbours should become apparent as density is
increased. No dipole orientation variation was added.
The number of dipoles in each pattern was varied from 8
to 1024 in one octave steps. Examples are shown in Fig.
5. Since constant field size and viewing distance were
empzloyed, dot density varied from 1.68 to 215 elements/
deg”.

Results

Threshold offsets for the mean orientation judgement
as a function of the number of dipoles are shown for three
subjects in Fig. 5. The accuracy of judging orientation is
slightly poorer for very sparse patterns, but rapidly
improves with increasing number of elements and
performance asymptotes for patterns containing 32-64
elements. There also appears to be a slight dip in the
function for all three subjects around 32—64 dipoles. The
basic pattern of the data shows that there is little effect of
stimulus density above about 64 dipoles. These data are
in accord with performance on a structure detection task,
reported in Jenkins (1983).

That subjects are relatively insensitive to pattern
density does seem to be inconsistent with models based
on neighbourhood matching. The performance of all
three subjects is as good with patterns containing 1024
elements as with those containing 64. These patterns
have, respectively, an average of 0.5 and 8.0 dots lying
closer to each dot than its correspondent. This is in
agreement with data from Maloney et al. (1987) which
showed that structure vs no-structure judgements were
possible when dots had more than six other dots closer to
them than their correspondent.

TABLE 1. The stimulus parameters for Experiments 1-3

Number Length (arc min)  Orient. SD (deg)
Experiment 1 512 1.41-32.0 8.0
Experiment 2 512 8.0 1.41-32.0
Experiment 3 8-1024 8.0 8.0

S. C. DAKIN

SUMMARY—PSYCHOPHYSICS

To summarize the preceding experiments, the stimulus
parameters are shown in Table 1.
The main results are as follows:

e Subjects are highly accurate at performing mean
orientation judgements with thresholds which
asymptote at around 1.5 deg for line textures, and
2.5 deg for Glass patterns.

e Estimating the mean orientation of a Glass pattern
becomes easier as dipole separation is increased up
to a critical separation, of around 5 arc min, beyond
which performance rapidly deteriorates. For line
textures there is a consistent improvement with
increasing line length.

e Local orientation variation has little effect on
judging the mean orientation of line textures or
Glass patterns until a SD of around 8 deg is reached.
A similar pattern of deterioration is observed with
line and dipole textures, except that performance
with Glass patterns is uniformly poorer.

e The accuracy of judging the mean orientation of a
Glass pattern, within the limits tested, appears to be
largely independent of the number of dipoles used.

MODELING OF MEAN ORIENTATION JUDGEMENTS

Four models for extracting features from texture are
described: symbolic matching of tokens (Stevens, 1978),
isotropic (Laplacian-of-Gaussian) filtering, oriented (Dif-
ference-of-Gaussian) filtering and “adaptive” oriented
filtering. The performance of these models was compared
with human data from the three conditions described.
Versions of both the isotropic and adaptive filtering
models incorporating a scale selection criterion, based on
minimizing the SD of texture element orientation, are
also described.

Isotropic filtering model

A model for texel extraction and mean orientation
judgement was implemented using Laplacian-of-Gaus-
sian filtering. It had five stages:

e Filtering with LoG at multiple spatial scales.
e Thresholding of filter responses.

e Symbolic description of resultant blobs.

e Calculation of mean blob orientation.

e Psychophysical decision.
The LoG is defined as:

x? +y2 24 2) /202
- —(x /20°
LoG(x,y,0) = (1 Ty )e (+y7)

where ¢ refers to the space constant of the filter. The
model was run using values of ¢ of 1.0 to 16,/2 pixels
(0.57-12.9 arc min) in half-octave steps.
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FIGURE 6. Operation of three pre-processing filtering schemes on two Glass patterns with (a) translational or (b) rotational
structure. (c, d) LoG filtered and thresholded; (e, f) DoG filtered and thresholded; (g, h) adaptively filtered, at the same scale as
(e, f), and thresholded.
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Filter outputs were then doubly half-wave rectified,
i.e., both positive and negative portions of the output
were retained. The positive and negative blobs which
result have previously been proposed as texture elements
(Vorhees & Poggio, 1987, 1988), and more generally as
the basic perceptual primitives of the raw primal sketch
(Watt, 1988). The model described differs from the
Vorhees & Poggio (1987) model in a number of minor
ways. Firstly, this model has no gain control applied prior
to filtering. Secondly, this model always thresholds at
+1.0 SD of the filter output, rather than using
histogrammed local intensity gradients. Generally the
setting of the threshold is not critical; pilot simulations
indicated that a threshold of anywhere between 0.75 and
2.0 SD is optimal for estimating local orientation. For this
reason one would expect the predictions of this and
Vorhees & Poggio’s (1987) model to be broadly similar.

Zero-bounded regions in the thresholded image were
then characterized using the image description scheme of
Watt (1991). This produces compact “sentences” de-
scribing each blob in terms of its principal axis, centroid
position, area, etc. Three features of each blob were used
to calculate the mean orientation and the orientation
variability of the set: orientation, mass and aspect ratio.
The blob aspect ratio, and mass were used as a measure of
the reliability of the orientation of each blob; large,
elongated blobs are more reliable than small, near-
circular blobs. Calculation of the mean orientation and
orientation variability at each spatial scale is described in
the Appendix.

Finally, the psychophysical decision was made by
classifying orientations between 0 and 90 deg as clock-
wise of vertical, and those between 90 and 180 deg as
anticlockwise of vertical.

The model described so far makes a decision based on
information present at any one spatial scale. A version of
the model was implemented which automatically
selected filter size by minimizing blob orientation
variability.

Oriented filtering models

Motivated by the presence of cells in V1 which are not
only sensitive to the spatial scale of a pattern, but also to
its orientation, a number of models have been proposed
for deriving local orientation estimates using oriented
filtering. Zucker (1982) has proposed a model which
estimates image “flow” direction using the identity of the
most locally active oriented Difference-of-Gaussian
filter, in conjunction with a relaxation algorithm which
maximizes orientation consistency (i.e., co-linearity)
within a neighbourhood.

The two models described in this section also use
DoGs but differ fundamentally from the model described
in Zucker (1982). Firstly, they use not the identity of a
filter to estimate orientation but the filter output (and
subsequently a symbolic description) from which or-
ientation estimates are made. Secondly these models do
not incorporate iterative post filtering. The first uses
convolution with individual DoG filters, the second
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ensures local orientation consistency by picking the peak
filter output, on a point-by-point basis, at the convolution
stage.

The first model operates on a DoG filter centred on the
orientation which patterns varied around from trial to trial
(i.e., vertical), thereby assuming prior knowledge of the
pattern orientation. The two-dimensional (2D) DoG is
composed of a DoG in the x-direction multiplied by a
Gaussian in the y-direction:

W(x,y,) = (e—xf/zf _ (1/2.23)6—)(%/2(2‘230):)e—yf/2(3n')

where ¢ refers to the SD of the positive Gaussian
function. x, and y, are co-ordinates rotated by angle ¢:

2

X; = XCos¢ + ysing

Vi = Y COS¢p — xsing

The ratio of the amplitudes of the positive and negative
parts of the DoG and the aspect ratio are based on those
derived by Wilson and co-workers using a variety of
psychophysical paradigms (Phillips & Wilson, 1983;
Wilson & Gelb, 1984). A range of filter sizes was
employed with ¢ varying from 1.0 to 8./2 pixels (0.57-
6.46 arc min) in half-octave steps. Examples illustrating
convolution of a DoG filter with a Glass pattern are given
in Fig. 6.

The problem with using the output of a single DoG
filter is how to deal with images that contain more
complex orientation structure. How are filter outputs
integrated across orientation? Inspired by the presence of
intra-orientation inhibition between cells with similar
orientation selectivity (Morrone & Burr, 1986; Morrone
et al., 1982; Tsumoto et al., 1979), the second oriented
filtering model uses point-by-point selection of the most
active DoG filter. This was assessed by computing the
squared filter output across 12 orientations, at each spatial
scale, and adding a small amount of Gaussian blur to each
of these local energy representations. At each point in the
image, local energy is compared across orientation and
the (unsquared) output of the filter with greatest energy
selected. This is a simpler version of Malik & Perona’s
(1990) “leaders-take-all” system. It may also be con-
sidered a type of “steerable” filter as described by
Freeman & Adelson (1991). However, in order to avoid
the restrictions on the aspect ratio of a mechanism
derived by summation of a small set of basis filters
(Freeman & Adelson, 1991) the steering is performed
explicitly on the output of oriented filters. This is
computationally inefficient but apparently unavoidable
if one is to model the known characteristics (i.e., aspect
ratios around 1:3) of orientationally tuned mechanisms in
human vision. Examples of the operation of this
mechanism, here termed “adaptive” filtering, are shown
in Fig. 6(g, h). Note that the model produces highly
oriented blobs compared with the LoG [Fig. 6(c, d)]
although they have more complex shape than the single
DoG output [Fig. 6(e, f)].

Beyond the initial filtering stage, the details of both
models are identical to the LoG model. A symbolic
description of thresholded blobs is constructed, mean
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orientation estimated, and the psychophysical decision
made.

Token matching algorithm

A token matching model described in Stevens (1978)
was implemented. The model calculates all possible
pairings of a single dot to other dots in a surrounding
neighbourhood, and all possible pairings of those dots in
similar sized regions around them. All matches have a
corresponding orientation by which they are histo-
grammed (weighted by the proximity of the matched
dot to the original dot). Smoothing of the local histogram
is performed by using a relatively small numbers of
“buckets”, and the peak orientation is then selected. Since
correctly paired dots will form dipoles which are locally
parallel, the peak orientation should match the orientation
of the correct pairing. So the corresponding dot is
determined by selecting the virtual line whose orientation
most closely matches the peak orientation. If no line can
be found within 15deg of the peak, no solution is
returned for the dot. So far, this is a direct implementation
of the model described in Stevens (1978). Having derived
a set of virtual lines and their orientations, the model is
extended to estimate the mean and makes a decision as to
whether the texture is clockwise or anticlockwise.

Proximity weighting in Stevens’ model is relative to
the neighbourhood size. The weighting of a virtual line’s
contribution to a local orientation histogram is either 1,
2/3 or 1/3 depending on whether neighbouring dots are
less than 1/4, less than 1/2 or greater than 1/2 a neigh-
bourhood radius apart, respectively.

In the simulations described, two methods of setting
the neighbourhood size were examined. The first set the
radius equal to the dot separation, i.e., the optimal size for
discounting unmatched dots. Stevens (1978) claims that,
since subjects cannot see structure when more than two or
three dots lie closer to a dot than its correspondent, such a
small region will not tend to give enough samples to
allow the reliable extraction of a peak orientation.
Stevens claims that a neighbourhood which contains six
or seven dots closely emulates human performance on the
psychophysical tasks he describes. This was tested in the
simulation which follows by setting the size of a
neighbourhood so that it would contain, on average, 6.5
dots.

Simulation method

To compare model predictions to psychophysical data,
simulations of Experiments 1-3 were performed. In order
to generate a mean orientation threshold a method of
constant stimuli was used. Sixty-four stimuli were
generated at each of 17 stimulus levels (which were
adaptively sampled in the psychophysical experiments).
Each stimulus image was processed using one of the four
models described, an estimate of the mean orientation
extracted, and the model’s response recorded. The SD of
the resultant psychometric function was then calculated.

Because of processing time constraints, the scale of
analysis was chosen, for models incorporating a scale
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selection criterion, using the first six stimuli at the
beginning of a run and that filter size employed during the
rest of the run. Thus, each time that the independent
variable was changed (e.g., dipole length) the choice of
scale was made again by running the full model over the
first six stimuli and using the mean spatial scale that the
criterion specified. The neighbourhood size parameter of
the Stevens’ model was set by hand at the beginning of
each run.

Simulation results: isotropic filter model

Figure 7(a) shows the SD of the mean orientation
estimate as a function of dipole length for individual LoG
filters. It is clear that for progressively larger dipole
lengths, coarser scale filters give the best estimates of
mean orientation. It is also apparent that no response
from any one filter can explain the variation in subjects’
performance on this task. The solid line shows predic-
tions of a model incorporating the scale selection
criterion. Note that the overall pattern of responses is
broadly similar to subjects. The primary difference is that
the best performance of the model occurs around a
narrow range of dipole separations about 2.5 arc min,
whereas human performance is best around a broader
range (2.5-5 arc min) of separations.

Accuracy of the LoG model compared with human
subjects, as a function of additional orientation jitter, is
shown in Fig. 7(b). Again the model produces the same
pattern of responses as human observers, but this time
does not approach their best performance on this task at
low levels of orientation SD. Human subjects consis-
tently achieve thresholds of around 3.0 deg, compared
with the model whose best performance is around
5.0 deg. Although this is a small difference it is important
because it suggests that a model based on the Laplacian-
of-Gaussian cannot explain the basic level of perfor-
mance in this task. Deviations of a model from data
which are due to the model exceeding human perfor-
mance can be explained in terms of noise on the system.
This type of deviation cannot. Figure 7(b) also shows that
the critical level of orientation SD, beyond which
performance deteriorates, for the model (around
20.0 deg) is greater than for human observers (around
8.0 deg).

It is possible that the failure of the model on this
condition is due to the setting of certain parameters of the
model, such as the degree of thresholding, the use of a
single spatial scale, etc. To try and at least partially take
this into account, simulations of Experiment 2 were re-
run, with three different levels of thresholding (0.5, 1.0
and 2.0 grey-level SDs), and incorporating four different
levels of integration across scale (average across blob
orientations from +1 or +2 octaves of spatial scale).
These variations did not produce any improvement in
performance beyond that presented in Fig. 7(b).

While this does not preclude the possibility that some
other treatment of the LoG output might produce better
results, it does at least suggest that the result is not an
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FIGURE 7. Threshold offset for LoG estimates of mean orientation of dipole textures, as a function of (a) dipole length; (b)
dipole orientation SD; and (c) dipole number. Thin lines are the predictions from LoGs operating at a single scale, thick lines the
prediction of a filter operating at the scale minimizing element orientation SD.

artifact of the setting of some individual variable within
the model as described.

Finally, Fig. 7(c) compares predictions from the LoG
model and data from the density condition, Experiment 3.
There is a reasonable match between human data and the
predictions from the model incorporating automatic scale
selection, although the basic level of performance of the
model is again slightly worse than data.

In summary, this section has suggested that a model

which uses LoG filtering, to extract and describe texture
primitives, shows a similar pattern of results to the data
from Experiments 1 and 3. However, this model fails to
explain the performance of subjects in Experiment 2.

Simulation results: oriented filter models

The result of the simulation of the mean orientation
judgement as a function of dipole length, using the two
oriented filter models, is shown in Fig. 8(a). Filled
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standard

symbols represent the mean performance of the three
subjects from Experiment 1, fine lines the predictions of
individual DoG filters, and the coarse line the prediction
of the adaptive filtering model. It is clear that no one DoG
filter can explain subjects’ performance on this task. If
filter size is too small, or large, compared with the
separation of the dipoles, only uniformly poor estimates
can be made of mean orientation. The performance of

deviation.

these filters declines suddenly as the length of dipoles
exceeds the size of the excitatory zone of the oriented
filter; there is a small range of lengths for which a
particular filter is optimally tuned.

Predictions from the adaptive filtering model, operat-
ing at a scale determined by minimizing texel orientation
variation, are uniformly poorer than the single DoG
models but closely match the performance of subjects.
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Note that no fitting has been applied to the model
predictions.

The mean performance of the three subjects from
Experiment 2 is shown in Fig. 8(b) along with predictions
from the single DoG and adaptive filtering models.
Results suggest that the output of single DoG filters show
the same pattern of deterioration in estimates of mean
orientation, as a function of local orientation SD, as the
human subjects. Furthermore, the output of a single DoG
with o between 4.90 and 9.8 arc min fits subjects’

(a)
60
I
% 10»_—- {{
£ [\&
et

o
+—0-—
——t

S. C. DAKIN

performance well. Predictions from the adaptive model,
shown as the heavy line, again match subjects’ data well.
Because dipole length was constant, the adaptive filtering
model behaves very much like a single DoG model in this
condition.

Figure 8(c) shows the simulation results for the task
from Experiment 3. Results are similar to those from the
last simulation: a single DoG filter with a SD between
4.90 and 9.8 arc min shows the same trend as human data,
as does the adaptive filtering model.
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FIGURE 9. Threshold offset for token matching model estimates of mean orientation of dipole textures, as a function of (a)
dipole length; (b) dipole orientation SD; and (c) dipole density.
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Simulation results: token matching model

Predictions from the token matching model on the
three tasks are compared with human data in Fig. 9. Even
though the predictions shown are for the model operating
using the optimal neighbourhood size for the pattern, they
are uniformly worse than both human subjects and the
other models described.

Predictions from the model using the pattern density to
set neighbourhood size are uniformly poor and are not
presented. Given the way this model operates, this
strongly suggests that in detecting structure in Glass
patterns subjects make use of the low spatial frequency
information which arises from accidental co-alignments
of dipoles. Stevens’ model can only use individual dipole
orientations and when dipole separation is large in
relation to dot density, as was the case in our
experiments, matching of individual dipoles breaks
down. It is concluded that this model can provide an
explanation for the perception of structure in Glass
patterns in only the most limited of cases.

SUMMARY-—SIMULATIONS

Weighted chi-squares of the fits of the three models to
the subjects’ data, from the three tasks using dipole
textures, are given in Table 2. The token matching model
is rejected in all conditions. The LoG model is not
rejected for the orientation variability and dipole density
conditions but is for the length condition. This failure,
along with the failures of Stevens’ model, are important
because both models’ performance in these cases was
worse than that of human subjects. The adaptive filtering
model is not rejected in any condition, its chi-square
values being (ordered by condition) 55, 27 and 7% of
values associated with the next-best fit. On the grounds of
parsimony it is accepted as the best model of subjects’
performance in the experiments.

GENERAL DISCUSSION

Grouping stimuli, such as Glass patterns, allow the
study of feature extraction from texture because they
isolate orientation as a useful source of information at a
narrow range of spatial scales. Judgement of the mean
orientation of these patterns as a function of dipole
length, orientation jitter, and number suggests that the
visual system accurately selects the correct filter size
which gives the best estimate of mean orientation. An
appropriate spatial scale of analysis minimizes the
orientation SD of resultant features. When combined

TABLE 2. Weighted chi-squares of the fits of the three models to the
subjects’ data from the three tasks using dipole textures

d.f. Auto Adaptive Auto LoG Token matching

Experiment 1 8 0.90* 1.65* 7.71
Experiment 2 9 1.31* 4.87 5.31
Experiment 3 7 0.15% 2.02* 4.83

*Goodness-of-fit measure fails to reject the model at the 0.05 level.

2243

with an estimate of local orientation, measured using a
form of oriented filtering, this criterion proved to account
adequately for the data from the three conditions. From
the experiments reported we conclude that, in order to
derive Glass pattern structure with sufficient accuracy,
spatial filtering accounts of feature extraction from
texture are constrained in two ways. Firstly, an isotropic,
Laplacian-of-Gaussian mechanism does not suffice.
Secondly, because Glass patterns are spatially broad-
band stimuli containing structure only at a narrow range
of spatial scales, the output of a narrow range of filters
must be available. How do these findings fit in with
established models of visual processing?

Oriented rather than isotropic mechanisms

Our sensitivity to the orientation structure of Glass
patterns exceeds the predictions of at least one class of
isotropic filter. This is clearly problematic for models
using LoGs to derive features (Vilnrotter et al., 1986;
Vorhees & Poggio, 1987, 1988; Wen & Fryer, 1991) or
more generally for construction of the “primal sketch”
(e.g. Marr, 1976, 1982), but is consistent with the
presence of orientationally selective channels in human
vision (e.g. Hubel & Wiesel, 1967). However, because
isotropic filtering schemes require only one convolution
per spatial scale they are not only an efficient way of
deriving local features but have also avoided the question
of how the outputs of channels at different orientations
are combined. The failure of the LoG model discounts at
least one combination rule: linear summation (which
would equate to isotropic DoG filtering), although there
may be circumstances in which this rule does hold (e.g.,
for the judgement of appearance, Georgeson, 1992). The
results presented here suggest that the combination rule is
probably nonlinear allowing the output of more active
channels to dominate. This is necessary if one is to retain
the orientational resolution provided by oriented filters.
The nonlinear combination rule (peak selection) used in
the adaptive filtering scheme is one possible rule. Others,
such as the “leader-takes-all” scheme of Malik & Perona
(1990), are equally plausible.

Selection of spatial scale

It is a general, and largely unaddressed, problem of
computational visual processing to select the appropriate
spatial scale of analysis for a task. Scale-space filtering
(Witkin, 1983), proposes that features such as zero-
crossings (ZCs) are “tracked” through spatial scale and
their persistence used to judge their utility. However, this
approach has not been expanded from one- to two-
dimensional signals. The scale space approach constructs
tree-like maps of ZCs and relies on the fact that as one
proceeds to lower frequencies features can only ever
merge and new ones never appear. While this is proven
for Gaussian-filtered one-dimensional signals (Babaud et
al., 1986), it has been shown that is not the case for two
dimensions (Yuille & Poggio, 1986). Thus, a more
complex representation is required.

It almost certainly over-ambitious to propose that
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FIGURE 10. Grouping properties of the adaptive filtering model. (a) Haystack image and blobs derived using (b) LoG and (c)

adaptive filters. Note that the features derived in (c) are much more oriented than those in (b). (d) Typical stimuli from Field et

al. (1993). A “path”, with successive elements differing in orientation by +45 deg, is embedded in a field of randomly oriented

elements. (¢) The adaptively filtered version of (d) showing aggregation of the elements in the patch. (f) By generating a
symbolic description of (e), the path may be derived automatically by isolating the longest feature.

information at a range of scales is collapsed into a single
description that will be useful for everything. I suggest
that “task constraints” critically influence spatial scale
selection for visual processing. The scale selection
criterion described (minimization of local orientation
variability) is a useful one for deriving reliable estimates
of local orientation. However, the visual system un-
doubtedly has a number of ways of determining the
appropriate spatial scale depending on what is to be done
with the information derived. For example, Elder &
Zucker (1996) have proposed the use of the “minimum
reliable scale” for detecting edges, using local estimates
of the likelihood of error due to sensor noise. It may be
that these various criteria for maximizing reliability of
information are all fundamentally statistical. Human
visual processing of texture disregards precise spatial
localization of elements, and concentrates on represent-
ing trends in populations of features (e.g. texture edges).
It may be that a major role of texture processing is the
estimation of image statistics for scale selection.

Texture perception and contour integration

Figure 10(a) shows an oriented texture filtered with (b)
LoG and (c) adaptive filters with similar peak spatial
frequency sensitivities. Because the adaptive filtering
model integrates in the direction of local contour
orientation it produces accurate estimates of local

orientation from such natural images. The output of the
LoG is much more sensitive to local noise. Clearly the
processes involved in the extraction of tokens from
texture are implicated in contour integration, an area of
increasing interest within psychophysics (e.g. Field et al.,
1993; Hess & Field, 1995) The results reported here
suggest that measurement of local contour orientation
must be made using oriented filters. More specifically,
Fig. 10(e) demonstrates that the path integration process
itself might be achieved by the adaptive filtering
mechanism described here. Contours within the stimuli
used by Field et al. (1993) are readily grouped by the
adaptive filtering process. Furthermore by constructing a
symbolic description and simply selecting the longest
feature in the image, the path may be automatically
extracted [Fig. 10(f)]. Note that the adaptive filtering
model relies only on local excitation of similarly oriented
filters. No inhibition between orientations that are
mutually inconsistent with the presence of a contour [a
component of the “association field” model proposed by
Field et al., (1993)] is necessary.

REFERENCES

Appelle, S. (1970). Perception and discrimination as a function of
stimulus orientation: the “oblique” effect in man and animals.
Psychological Bulletin, 78, 266-278.



DETECTION OF STRUCTURE IN GLASS PATTERNS

Babaud, J., Witkin, A. & Duda, R. (1986). Uniqueness of the Gaussian
kernel for scale-space filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8, 26-33.

Brodatz, P. (1966). Textures: a photographic album for artists and
designers. Toronto, Canada: Dover.

Caelli, T. & Julesz, B. (1979). Psychophysical evidence for global
feature processing in visual texture discrimination. Journal of the
Optical Society of America, A69, 675-678.

Elder, J. H., & Zucker, S. W. (1996). Local scale control for edge
detection and blur estimation. In Lecfure Notes in Computer
Science: Proceedings of the 4th ECCV 96, (Vol. 1064, pp. 57—
69). New York: Springer.

Field, D. J.,, Hayes, A. & Hess, R. F. (1993). Contour integration by the
human visual system: evidence for a local “association field”. Vision
Research, 33, 173-193.

Freeman, W. H. & Adelson, E. H. (1991). The design and use of
steerable filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13, 891-906.

Georgeson, M. A. (1992). Human vision combines oriented filters to
compute edges. Proceedings of the Royal Society of London B, 249,
235-245,

Glass, L. (1969). Moiré effects from random dots. Nature, 243, 578—
580.

Glass, L. & Perez, R. (1973). Perception of random dot interference
patterns. Nature, 246, 360-362.

Glass, L. & Switkes, E. (1976). Pattern recognition in humans:
correlations which cannot be perceived. Perception, 5, 67-72.

Hess, R. F. & Field, D. J. (1995). Contour integration across depth.
Vision Research, 35, 1699-1711.

Hubel, D. & Wiesel, T. (1967). Receptive fields, binocular interaction
and functional architecture in the cats’ visual cortex. Journal of
Physiology, 160, 106-154.

Jenkins, B. (1983). Spatial limits to the detection of transpositional
symmetry in dynamic dot textures. Journal of Experimental
Psychology: Human Perception & Performance, 9, 258-269.

Jenkins, B. (1985). Orientational anisotropies in the human visual
system. Perception and Psychophysics, 37, 125~134.

Kass, M. & Witkin, A. (1985). Analyzing oriented patterns. In
Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (pp. 944-952). Los Angeles, CA.

Malik, J. & Perona, P. (1990). Preattentive texture discrimination with
early visual mechanisms. Journal of the Optical Society of America
A, 7.923-932,

Maloney, R., Mitchison, G. & Barlow, H. (1987). Limit to the
detection of Glass patterns in the presence of noise. Journal of the
Optical Society of America A, 4, 2336-2341.

Marr, D. (1976). Early processing of visual information. Proceedings
of the Royal Society of London B, 275, 483-534.

Marr, D. (1982). Vision. San Francisco, CA: Freeman.

Morgan, M. J. & Fahle, M. (1992). Effect of pattern density upon
displacement limits for motion detection in random binary
luminance patterns. Proceedings of the Royal Society of London,
248, 189-198.

Morrone, M. & Burr, D. (1986). Evidence for the existence and
development of visual inhibition in humans. Nature, 321, 235-237.

Morrone, M., Burr, D. & Maffei, L. (1982). Functional implications of
cross-orientation inhibition of cortical visual cells. Proceedings of
the Royal Society of London B, 216, 335-354.

Phillips, G. & Wilson, H. (1983). Orientation bandwidths of spatial
mechanisms measured by masking. Journal of the Optical Society of
America, 62, 226-232.

Prazdny, K. (1986). Psychophysical and computational studies of
random-dot Moiré patterns. Spatial Vision, 1, 231-242.

Stevens, K. (1978). Computation of locally parallel structure.
Biological Cybernetics, 6, 19-28.

Tsumoto, T., Eckart, W. & Creutzfeldt, O. (1979). Modification of
orientation sensitivity of cat visual cortex neurons by removal of
GABA-mediated inhibition. Experimental Brain Research, 34,351~
363.

2245

Vassilev, A., Simeonova, B. & Zlatkova, M. (1981). Orientation acuity
at detection threshold. In Proceedings of the Fourth European
Conference on Visual Perception, (p. 17).

Vilnrotter, H., Nevatia, R. & Price, K. (1986). Structure analysis of
natural textures. IEEE Transactions on Pattern Analysis, and
Machine Intelligence, PAMI-8, 679-698.

Vorhees, H. & Poggio, T. (1987). Detecting textons and texture
boundaries in natural images. In Proceedings of the First
International Conference on Computer Vision, (pp. 250-258).

Vorhees, H. & Poggio, T. (1988). Computing texture boundaries from
images. Nature, 333, 364-367.

Wagemans, J., Van Gool, L., Swinnen, V. & Van Horebeek, J. (1993).
Higher-order structure in regularity detection. Vision Research, 33,
1067-1088.

Watt, R. I. (1988). Visual processing: computational, psychophysical
and cognitive research. London: Lawrence Erlbaum.

Watt, R. J. (1991). Understanding vision. London: Academic Press.

Watt, R. J. & Andrews, D. (1981). APE: adaptive probit estimation of
psychometric functions. Current Psychological Review, 1, 205-214.

Wen, W. & Fryer, R. (1991). Texture boundary detection—a structural
approach. In Mowforth, P. (Ed.), Proceedings of the British machine
vision conference (pp. 104-110).

Westheimer, G. (1981). Visual hyperacuity. Progress in Sensory
Physiology, 1, 1-20.

Wilson, H. & Gelb, D. (1984). Modified line-element theory for
spatial-frequency and width discrimination. Journal of the Optical
Society of America A, 1, 124-131.

Witkin, A. P. (1983). Scale-space filtering. In Proceedings of the 8th
International joint conference on artificial intelligence (pp. 1019—
1021). Karlsruhe, West Germany.

Yuille, A. L. & Poggio, T. (1986). Scaling theorems for zero-crossings.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8,
15-25.

Zucker, S. (1982). Early orientation selection and grouping: evidence
Jor type I and type Il processes. Montreal, Canada: McGill
University.

Acknowledgements—1 would like to thank Roger Watt and Ian
Paterson for many helpful discussions and their co-development of
much of the software used in this study. Thanks are also due to Robert
Hess and Isabelle Mareschal for their comments on earlier drafts of this
paper. This work was supported by the SERC (grant GR/H53181)
while the author was at the University of Stirling.

APPENDIX

Given a set of n estimates of orientation 6= {{6;}:1 <k <n,
0< 6 < 7}, one cannot use the arithmetic mean of the angle values
to represent the sets’ overall orientation, because orientation is a
cyclical dimension (angles can differ by a maximum of 90 deg). The
mean of a data set minimizes the difference between all members of
the data set and itself. The arithmetic mean assumes that subtraction
measures this difference; this is not the case for two angles.

Assuming a non-uniform distribution of data (i.c., one for which the
mean is defined), a set of measures has a mean orientation (#). A
measure of deviation from the mean is:

. 0. —6  if|6,—8 <
" (% — 16, — §|) otherwise
By the principles of least squares, the mean of the data set should
minimize the quantity:

E=Y2 ()
k=1

Because E is discontinuous, an analytic minimization is not possible but
it is straightforward to minimize this quantity iteratively to an arbitrary
level of precision. Given an estimate of the mean orientation, E provides
the measure of orientation variability used for the model described
above. Because of computational considerations, a differentiable
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alternative for e is also considered: the square of the vector product.
Assuming all vectors are unit length, £ is approximated by:

n
E=Y sin’(6 — 6) (2)
k=1
and the maximum/minimum of this is to be found where:
dE G -
@:; sin2(6; — 8) = 0.
It follows that:

Z sin 2(6y cos 26) = Z cos 2(8y sin 20)
3 k=1

k=1

and hence:

S. C. DAKIN

This expression gives a value which is guaranteed to yield an
extremum which may be a maximum or a minimum. In the latter case 6
will be 90 deg greater than the true mean orientation. To resolve the
ambiguity one must evaluate the second derivative which, for a
maximum, must be less than zero:

2

d°E - —
T —2; cos 2(6; — 8) < 0.

So the final expression for deriving the mean orientation is:

g+1

The orientation variance is calculated by inserting the estimated mean
into Eq. (2).

if%‘;—ko)

otherwise



