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Abstract. The relative contrast of features is known to be important in determining if they can 
be grouped. Two manipulations of feature contrast have previously been used to criticise models 
of visual grouping based on spatial filtering: high-pass filtering and reversal of contrast polarity. The 
effects of these manipulations are considered in the context of the perception of Glass patterns. It is 
shown that high-pass filtering elements, whilst destroying structure in the output of low-pass filters, 
do not significantly disrupt the output of locally band-pass filters. The finding that subjects can 
perceive structure in Glass patterns composed of high-pass features therefore offers no evidence 
against such spatial filtering mechanisms. Band-pass filtering models are shown to explain the 
rotation of perceived structure in Glass patterns composed of opposite contrast features. However, 
structure is correctly perceived in patterns composed of two 'interleaved' opposite contrast patterns, 
which is problematic for oriented filtering mechanisms. Two possible explanations are considered: 
nonlinear contrast transduction prior to filtering, and integration of local orientation estimates 
from first-order and second-order mechanisms. 

1 Introduction 
The spatial filters at the core of most models of early visual processing are linear; 
they transform the image intensity at a point into a weighted linear combination of 
neighbouring values. The view that the visual system decomposes the complex two-
dimensional signal from an image into a linear sum of terms in the frequency domain 
is convenient for two reasons. First, the assumption of linearity allows the study of the 
visual system psychophysical^ through the presentation of patterns that contain only a 
small number of those frequency terms (eg Campbell and Robson 1968). Second, it allows 
for computationally efficient simulations of visual processing by Fourier techniques— 
efficient methods for moving between spatial and frequency based representations. 

It has been proposed that spatial filters provide a natural mechanism for visual 
grouping (eg Watt 1988). If two features fall into the excitatory field of a filter, then its 
response will be significantly increased or decreased (depending on the polarity of 
the features). A cluster of such responses, extending between the positions of the two 
features, signals a group. However, if the average luminance of the two components is 
close to the mean luminance, they will not produce an elevated response. Since it is 
the response of these filters that is proposed as a mechanism for grouping spatially 
distinct features, this suggests a weakness of the mechanism. It should be possible to 
construct stimuli for which grouping will be eradicated when the contrast of the 
components is altered in such a way as to destroy the structured output of filters. If 
the breakdown of grouping predicted by a purely linear system does not correspond 
to human performance, then a reassessment of the model would be required. 

In this paper the problem of grouping is considered in the context of one class of 
stimuli: Glass patterns (Glass 1969). These textures, an example of which can be seen 
in figures la and lb, are generated by taking one spatially randomly distributed set of 
dots (or any other small feature), and superimposing a geometrically transformed 
copy of the set. These textures are perceived as having compelling orientation structure 
and of being composed of dot pairs (or dipoles) locally aligned in the direction of the 
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Figure 1. Examples of Glass patterns with (a) translational and (b) rotational structure, (c) - (h) show 
filtered and thresholded versions of (a), (b). For the purpose of highlighting the resultant structure, 
grey levels above or below threshold have been replaced with white or black pixels, respectively. 
The filtering used to generate these patterns was: (c), (d) isotropic, Laplacian-of-Gaussian (LoG); 
(e), (f) oriented, Difference-of-Gaussian (DoG); (g), (h) 'adaptive', ie point-by-point selection of 
the most active oriented DoG filter. 
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geometric transformation used to generate them. In order to perceive structure in 
these patterns one must be solving a form of correspondence problem, grouping indi­
vidual dots into dipoles. 

A simple way of performing this grouping operation is through the application of 
spatial filters (Kass and Witkin 1985; Zucker 1982). Figures lc and Id show convolu­
tions of Glass patterns with isotropic Laplacian-of-Gaussian (LoG) filters (followed 
by thresholding at one grey-level standard deviation above and below the mean). 
Note that the dark 'blobs' often correspond to grouped collections of dipoles; their 
orientation reflects the local orientation of the pattern. Another possible filtering 
mechanism is oriented, Difference-of-Gaussians (DoG) filtering (figures le and If). 
Two-dimensional DoG filters are composed of a band-pass Difference-of-Gaussians in 
one direction, and a low-pass Gaussian in the orthogonal direction. 

Notice that features resulting from DoG filters in figure le are much more elon­
gated because they are sensitive to a narrower range of orientations. It would be 
desirable to retain this orientational sensitivity, but to be able to derive complex 
orientation structure, such as rotational fields (figure lb) which a single DoG filter 
cannot do (figure If). Adaptive' oriented filtering (figures lg and lh; Dakin, in press) is 
a simple scheme for combining the outputs of filters at multiple orientations. The 
filter output at each orientation is squared and a small degree of Gaussian blurring 
applied, to form an estimate of that filter's 'local power'. Finally, a single new image is 
constructed by selecting, on a pixel-by-pixel basis, the original filter output whose 
local power is greatest at that position. The blobs that result from running a rotational 
Glass pattern through the adaptive filtering scheme (figure lh) are elongated but accu­
rately reflect local orientation structure. 

In order to quantitatively assess the performance of such filtering models one 
must address two key problems: how to produce estimates of dipole orientation from 
filtered images, and how to select an appropriate filter size (Prazdny 1986). In order 
to measure dipole orientation, one must first delineate discrete features from the 
filtered image. Thresholding the image (eg figure lc) produces 'blobs' whose orienta­
tions may be measured by means of an image description scheme (Watt 1991). This 
produces a sentence-based representation reminiscent of the 'primal sketch' (Marr 
1976) in which feature orientation is explicit. With respect to the first problem, that of 
scale selection, it is known that orientation information is of primary importance in 
the perception of Glass patterns. Variation in dipole orientation, but not length, deter­
mines their discriminability from noise (Caelli and Julesz 1979). If one assumes that 
the goal of deriving structure from oriented texture, such as Glass patterns, is to 
accurately assess local orientation then one way to maximise confidence in these 
estimates is to select the spatial scale which minimises the variability of orientation 
data (Dakin, in press). Orientation variability may be assessed automatically by deriving 
an image description, in the manner described above, and estimating the variance of 
blob orientations. This criterion for scale selection is used throughout this paper to 
select filter size automatically. 

Two types of such contrast phenomena have been widely used to criticise models 
of visual grouping based on spatial filtering. The first phenomenon is the perceived 
grouping of spatially high-pass, or 'balanced' dots which (supposedly) do not contain 
the low-spatial-frequency information that filtering models are sensitive to. Stevens 
and Brookes (1978) showed that structure is correctly perceived in Glass patterns 
composed of balanced energy dots (each feature is made up of a bright centre 
surrounded by dark ring). They claim that whilst we can perceive structure in balanced 
energy patterns, models based on spatial summation will 'smooth out' individual features 
and therefore cannot explain the perceived grouping. It will be demonstrated below 
that band-pass filtering models can correctly predict perceived structure. 
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The second phenomenon is, that contrary to the prediction of filtering models, 
features of opposite contrast polarity lead to grouping under certain circumstances. If 
the correlated elements comprising a Glass pattern are of opposite contrast polarity 
then, it is claimed, orientation structure cannot be perceived (Glass and Switkes 1976; 
Prazdny 1986; Zucker and Davis 1988; Zucker et al 1983). However, Kovacs and Julesz 
(1992) presented psychophysical data showing that, for dense Glass patterns at least, 
perceived flow is not destroyed but rotated through 90°. This finding will be shown to 
be consistent with a model of grouping based on linear spatial filtering. 

More complex stimuli have been designed to 'fool' filtering models. Prazdny (1986) 
pointed out that the correct flow direction is perceived in a texture composed of two 
'interleaved' Glass patterns, each with opposite contrast polarity. Elements of these 
patterns are composed of a sequence of dots with positive, negative, positive, and 
negative contrast polarities (eg figure 8). Linear filtering of these patterns does not 
produce the correct structure at any spatial scale, and Prazdny (1986) has taken this as 
strong evidence against models employing such mechanisms. Later I shall argue that 
such demonstrations imply the presence of second-order mechanisms in the extraction 
of orientation from Glass patterns. 

2 Spatially high-pass textures 
Many proposed filtering models for extracting tokens from images use mechanisms that 
are sensitive only to low spatial frequencies. Figure 2 shows (a) a typical Glass pattern, 
and (b) its power spectrum, with the boundaries of the sensitivity of a typical horizontal 

(c) 0° 

Figure 2. (a) Horizontal Glass pattern with dipole length of 8 pixels, (b) Fourier power spectrum of 
(a). On this polar plot, distance and orientation from the origin correspond to spatial frequency and 
orientation, respectively. This is illustrated in (c), which shows point A at an angle of 150° and a 
frequency of 64 cycles per image (cpi). The boundaries superimposed on (b) show the approximate 
limit of the sensitivity of a DoG filter with peak sensitivity of 41 cpi. Note that the boundaries 
capture high-energy regions of the spectrum, and that horizontal energy (the vertical column 
centred on the middle of the pattern) is spread over a large range of scales. 



Glass patterns: some contrast effects re-evaluated 257 

DoG filter superimposed. The latter image is on polar axis: the distance from the centre 
indicates scale (0-128 cycles per image), and the orientation of a point from the centre 
indicates orientation. Brightness is proportional to the power at that scale/orientation. 
The vertical stripes of high energy in figure lb are due to the dot spacing of the dipoles.(1) 

Notice that the power spectrum contains horizontal energy over a wide range of scales, 
and that that energy extends over the origin. This indicates that low-spatial-frequency 
information will signal the presence of horizontal structure in the pattern. This could be 
detected by means of a coarse-scale low-pass filter (eg a Gaussian). 

An apparently simple way of testing such models is to remove low-spatial-frequency 
information from the image by high-pass filtering it. An approximation to the high-pass 
filtered version of a dot is the 'balanced' dot (Carlson et al 1980). This consists of an 
inner area with luminance greater than the background, surrounded by a region with 
luminance less than the background. The inner and outer luminances are selected so that 
overall average luminance of the feature is equal to the background. Structure may be 
perceived in patterns composed of these high-pass features, notably for 'Gestalt' grouping 
(Janez 1984; Palmer 1992) and visual illusions (Carlson et al 1980; but see Garcia-Perez 
1991). Such work has been cited as evidence against low-pass filters as mechanisms for 
visual grouping (eg Beck et al 1987; Palmer 1992; Reed and Wechsler 1990). 

Prazdny (1986), however, generated Glass patterns composed of small Laplacian 
rings and claimed that, even at 1 s exposure duration, subjects attempting to distin­
guish between transformation types approached chance levels of performance when 
background luminance approached the same value as the mean of the Laplacian features. 
This is entirely contrary to predictions from other grouping studies in which balanced dots 
have been used and may be interpreted as evidence for a grouping process that involves 
a degree of spatial summation. It is hard for models based on matching of symbolic 
tokens (eg Stevens 1978) to accommodate such results, because all features, balanced 
or otherwise, are identical (as long as they are visible) and should be strongly matched. 

Stevens and Brookes (1978) found a result contradictory to Prazdny's (1986) using 
patterns composed of small balanced dots. Subjects were able to correctly perceive 
structure in these patterns at exposure durations of as little as 200 ms. Stevens and 
Brookes claim that the discrepancy between this and Prazdny's result is because fea­
tures in their patterns were scaled for eccentricity. In order to perceive structure in 
globally organized Glass patterns it is known that one must be able to see a suffi­
ciently large region of the pattern (Glass 1969) and it is possible that, owing to the 
effects of retinal eccentricity, the outer portions of Prazdny's fairly large (8.25 deg wide) 
patterns were not visible to subjects. Hence they could not discriminate between globally 
organized patterns. This interpretation ignores the fact that subjects in Prazdny's study 
had long enough to use eye movements. Also Stevens and Brookes present no quanti­
tative estimate of the strength of perceived structure in these patterns. These objections 
aside, the proposition that structure can be perceived in these patterns which are 
'devoid of low spatial frequencies' (Stevens and Brookes 1978), will now be considered. 

Stevens and Brookes (1978) claim that, since balanced dots provide negligible input 
to a simple cell whose excitatory receptive field they lie within, the addition of an early 
nonlinearity in intensity transduction is necessary. Figure 3a shows a typical balanced 
pattern and figure 3b its convolution with a LoG filter. The LoG produces poorly 
oriented blobs but does seem to reflect the circular structure. Figure 3c shows the 
adaptively filtered image, and figure 3d the flow field derived from it. In contradiction 
to Stevens and Brookes's prediction, band-pass filter outputs do accurately reflect dipole 
orientation. The adaptive filtering model does nonlinearly combine filter outputs (a peak 
(1) If we approximate the bright-dark-bright luminance profile of a dipole with 1.5 cycles of a 
square-wave grating, then we would expect that, as the scale of analysis of this pattern changed, 
the energy of this feature would vary periodically. 
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selection process is used). However, this is not the reason why it correctly extracts dipole 
orientation. Figure 4b shows that while low spatial frequencies are not present in bal­
anced Glass patterns (indicated by the 'hole' at the origin of the power spectrum— 
compare to figure 2b) structure persists at higher spatial scales. The intersection of 
the sensitivity boundary of the DoG filter with regions of high energy indicates that 
such structure is readily detectable with an appropriately oriented filter. The adaptive 
mechanism simply selects the DoG filter which derives the correct orientation structure. 

Figure 3. (a) A balanced Glass pattern (contrast enhanced for the purpose of reproduction), 
(b) LoG filtering poorly enhances orientation structure but output of the adaptive filtering 
model, (c), does much better. Note highly oriented features and derived flow field (d). 

Figure 4. (a) High-pass-filtered horizontal Glass pattern, (b) Fourier power spectrum of (a). Super­
imposed boundaries show the approximate limit of the sensitivity of a DoG filter with peak sensitivity 
of 41 cycles per image. Note that the boundaries capture high energy regions of the spectrum. 
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To summarise, balanced features specifically disrupt the output of low-pass filtering 
mechanisms, but models using spatially band-pass filtering have no such problems 
grouping these features. I conclude that human perception of structure in these patterns 
offers no evidence against models of visual grouping based on band-pass (oriented or 
isotropic) filters. Prazdny's (1986) finding that subjects could not see structure in these 
patterns seems likely to be due to the artifacts pointed out by Stevens and Brookes (1978). 

3 Opposite-contrast Glass patterns 
An opposite-contrast Glass pattern is produced in the same way as an ordinary 
pattern except that one set of randomly distributed features is of opposite contrast 
polarity to the second, transformed set.(2) An example is shown in figure 5a. The failure 
to see horizontal structure in this pattern is explicable in terms of the Fourier power 
spectrum presented in figure 5b. There is very little horizontal energy at any spatial 
scale, indicated by the dark vertical strip centred on the origin. 

Figure 5 Hoi lzont il Glass pattei n with dipole length of 8 pixels, composed of opposite contrast 
dots, (b) Fourier power spectrum of (a). Superimposed boundaries show the approximate limit 
of the sensitivity of a DoG filter with peak sensitivity of 41 cycles per image. Note that the 
boundaries do not capture high-energy regions of the spectrum. 

Prazdny (1986) has claimed that correct structure cannot be seen in opposite-contrast 
Glass patterns, but the impression gained, from a dilational pattern for example 
(figure 6b), is usually of a 'petal' or 'spiral' pattern (Glass and Switkes 1976).(3) Glass 
and Switkes (1976) have stated that this percept is inconsistent with a physiological 
model based on summation of inputs from Kuffler-type receptive fields. This is because 
simple cells sum the input from either on-centre or off-centre fields but not from both 
(Hubel and Wiesel 1967; Tolhurst and Thompson 1975). Thus opposite-contrast dots 
should not activate simple cells sensitive to the orientation of the dipole and so, 
according to Glass and Switkes (1976), "the hypothesized physiological mechanism 
does not appear to explain the observation of spiral-like patterns" (page 71). 

These spirals may simply be considered as partial rotations of perceived local 
orientation. This phenomenon is readily explained by a band-pass spatial filtering 
mechanism such as the adaptive filtering scheme described. Figures 6a and 6b show 
two Glass patterns, composed of dot pairs made up of elements of (a) the same and 
(b) opposite contrast. The operation of an adaptive, oriented filtering mechanism 
(figures 6c and 6d) and the derived flow fields (figures 6e and 60 are also shown. Scale 
was selected by using the criterion of minimal orientation variance, as described above 

(2) In the examples shown the order of the opposite contrast elements is also randomised within 
each dipole. 
(3) Anstis (1970) has shown an analogous phenomenon with random dot cinematograms. 
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Figure 6. The effect of reversing contrast polarity on the model, (a) - (b) Same-contrast-polarity 
and opposite-contrast-polarity Glass patterns, (c) - (d) Above patterns filtered at the optimal spatial 
scale selected by the model, (e)-(f) The derived flow fields. Note that the model predicts a 90° 
rotation of local flow in (b). 

(Dakin, in press). Note that the spatial scale of figure 6d is coarser than for figure 6c. This 
scale seems to depend on the density of the reverse polarity pattern: the denser the 
pattern, the finer the scale selected and the stronger the impression of 90° rotated 
structure. Figures 6e and 6f show the flow fields derived from figures 6c and 6d, 
respectively. The local orientation of figure 6f is clearly locally orthogonal to figure 6e 
in all regions of the texture (which is in accord with one's perception of structure in 
figure 6b). This is not surprising when considering how the presence of a dipole 
affects the local statistics of a texture. A same-polarity dipole increases the probability 
that in moving in the direction of the dipole orientation one will encounter an element 
of the same brightness, and it is this correlation that a DoG filter highlights. In the 
case of opposite contrast pairs, the probability of encountering elements of similar 
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brightness in the direction of dipole orientation has been greatly reduced. Thus the 
probability of encountering elements of similar brightness in all other directions is 
increased. It is this correlation which produces an increase in energy at low spatial 
frequencies, specifically at orientations orthogonal to the dipole orientation. 

Kovacs and Julesz (1992) have examined the conditions under which perception of 
orthogonal local orientation occurs for Glass patterns. They systematically varied the 
background luminance of horizontal and vertical translational Glass patterns, as a 
function of the mean luminance of the dots making up each dipole. Given a pair of 
dots with luminances Lpos and Lneg (where Lneg < Lpos), there are three critical ranges 
of the background luminance, Lback: 

1. Lneg > Lback or Lpos < Lback (a similar-contrast-polarity pattern); 
2. Lneg = Lback or Lpos = Lback (a random pattern, since only one feature set is visible); 
3. Lneg < Lback < Lpos (a reversed-contrast-polarity pattern). 
Kovacs and Julesz (1992) measured subjects' accuracy of reporting whether Glass 

patterns were horizontal or vertical. Data from two subjects and two dot luminances 
figure 7) show that performance approached 100% correct for background contrasts 
producing features of the same polarity (range 1). As background luminance approached 
the luminance of one dot set (ie only one set was visible—range 2), performance fell to the 
50% level, as expected. However, as background luminance approached the mean of the 
feature luminances (ie opposite-contrast patterns—range 3), performance fell below the 
50% level, indicating a perception of orientation orthogonal to the true structure 
(henceforth termed orthogonal-flow perception). Kovacs and Julesz (1992) went on to 
show that, unlike analogously constructed random-dot cinematograms, this phenom­
enon cannot be overridden by chromatic cues. Patterns constructed of red dipoles 
produce the same percept of orthogonal flow when dipoles contain one dot brighter, 
and the other dimmer, than a green background. Kovacs and Julesz (1992) conclude 
that it is specifically form perception which is damaged by the lack of luminance cues 
offered by these patterns. 

In order to compare these data to the performance of the adaptive filtering 
model, a Monte Carlo simulation of the Kovacs and Julesz (1992) task was performed. 
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Figure 7. Unfilled symbols show the percentage of Glass patterns classified as horizontal as a 
function of background luminance, for two subjects, at two levels of mean luminance of corre­
lated features (data are taken from Kovacs and Julesz 1992). The solid lines are predictions 
from the adaptive filtering model described in the text. 
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Glass patterns were generated which were similar to their stimuli; each pattern was a 
90 x 90 pixels, 256 grey-level image. All patterns were composed of a two-pixel horizontal 
translation (ie the distance from the centre of an original pixel to the centre of a translated 
pixel was three pixels). One hundred patterns were generated at 40 levels of back­
ground luminance, which ranged from -2Lneg to 2Lpos in steps of (Lpos - Lneg)/20. The 
adaptive filtering model(4) was used to make an estimate of the mean orientation of 
each pattern, in the range 0°-180°. If the reported orientation was between 45° and 
135°, the pattern was classified as vertical, otherwise it was classified as horizontal. 

The solid lines in figure 7 show the percentage of patterns classified as horizontal, 
as a function of the background luminance, compared to human performance (unfilled 
symbols). Predictions from a single simulation have been matched to data from the 
two dot luminance conditions by scaling the physical luminances used in the simula­
tions to the appropriate units used in Kovacs and Julesz (1992), but no fitting has 
been applied to the data. Note that the model shows good agreement with the human 
subjects at the three contrast ranges of primary interest {j2 measures of the fit are 
not reported because the standard errors of human data were not available). The model 
reports 100% correct for same-polarity patterns, around 50% when only one feature 
set is visible, and 0% correct (ie orthogonal flow; the estimated orientation is consis­
tently 90° from the true dipole orientation) when pure opposite contrast patterns are 
presented. The reported perceived rotation of pattern direction seems to be quantita­
tively explicable in terms of the filtering model described. 

4 Interleaved opposite contrast patterns 
As noted previously, Prazdny (1986) has made two criticisms of explanations of group­
ing in Glass patterns based on spatial filtering. The first relates to how filter size is 
automatically selected, which has been considered elsewhere (Dakin, in press). The 
second is how to deal with a specific type of Glass pattern, composed of two 'inter­
leaved' patterns of opposite contrast. Figure 8a shows such a pattern where each texture 
element is composed of four dots with alternating contrast polarity. Subjectively, such 
textures appear oriented in the direction of dot displacement and do not produce the 
pattern rotation shown for ordinary opposite-contrast Glass patterns. Prazdny (1986) 

Figure 8. (a) Horizontal Glass pattern, composed of alternating opposite-contrast dots, with a 
dot separation of two pixels, (b) Fourier power spectrum of (a). Superimposed boundaries show 
the approximate limit of the sensitivity of a DoG filter with peak sensitivity of 41 cycles per 
image. Note that the boundaries capture low-energy portions of the spectrum. 
(4) The model produced an estimate of mean orientation by thresholding filter outputs at one 
grey-level standard deviation above and below the mean, constructing a description of each 'blob' 
by an image description scheme (Watt, 1991), and then averaging blob orientation (allowing for 
orientational wrap-around). Scale was selected by minimising blob orientation variance. 
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states that the only structure visible in band-pass filtered versions of such patterns lies in 
a direction orthogonal to the perceived direction of flow, which makes explanation of 
the correctly perceived structure, in terms of linear filtering, problematic. The power 
spectrum of an interleaved pattern, shown in figure 8b, confirms that there is very little 
energy in the horizontal direction across scale, indicated by the faint vertical stripes 
around the image origin. Figures 9b and 9c confirm that the adaptive filtering model 
does indeed produce a rotation of flow direction when presented with such a pattern. 
These patterns can be thought of as balanced patterns that have been specifically 
formulated to disrupt oriented filtering mechanisms. 

The explanation for our veridical perception of structure in these patterns requires 
a nonlinear transformation of image luminance at some point in processing. Two 
types of nonlinearity are now considered: an early contrast transduction nonlinearity 
prior to filtering, and a system combining first-order and second-order estimates of 
orientation. 

Figure 9. (a) An 'interleaved' opposite-contrast Glass pattern; (b) and (c) the result of running it 
through the adaptive filtering model. The derived flow field does not correspond to our percep­
tion of structure in this pattern. 

4.1 Nonlinear contrast transduction 
There is considerable evidence from psychophysics (eg Legge and Kersten 1983; 
Morgan et al 1984) and neurophysiology (eg Naka and Rushton 1966; Shapley and 
Victor 1979) for a compressive nonlinearity modifying luminance prior to filtering. 
Indeed the utility of an early nonlinearity has already been recognised in a number of 
models of texture segregation motivated by human psychophysical performance (Graham 
et al 1992). Different types of nonlinearity have been proposed, such as the sigmoid 
(Gelb and Wilson 1983), but a particularly computationally simple formulation is the 
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H-transform (Morgan et al 1984; Naka and Rushton 1966; Watt 1991), which has the form: 

R(x,y) = L(x,y) 
R™ 

H+L(x9y)9 

where L(x,y) is the image intensity at position (x,y), R(x,y) is the output of the H 
transform at that point, Rm.dX is the maximum response, and H is the semisaturation 
luminance at which R = 0.5Rmax. 
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Figure 10. The H transform. The x-axis shows the image luminance and the j-axis the output of 
the H transform. The transform responses have been normalised to the (original) 0 -128 range. 
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Figure 11. The effect of the H transform on the processing of interleaved patterns by the adaptive 
filtering model, (a) The H-transformed version of figure 9a for H = 0.5Rm.dX. The operation of 
the model on the output of the transformation (b), shown in the right half of the figure, produces the 
correct flow field (c). 
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The operation of the H transform is shown in figure 10 which illustrates its effect 
of compressing high image intensities into a smaller band of responses leaving a larger 
range for the lower intensities. The result of applying such a nonlinearity to the inter­
leaved patterns described above is to shift the luminance of the background towards 
that of the bright-feature set. Thus the bright features will interfere less with the filters' 
grouping of the dark set. Figure 11 shows the result of running the adaptive filtering 
procedure on an interleaved pattern which has been H transformed with values of 
H = 0.50 (the maximum value of H producing a veridical flow field). It is clear that, 
for this pattern at least, values of H around 0.50 produce correctly oriented structure 
from the model. This implies that a rather severe nonlinearity is preceding filtering. 

Perceived flow switches abruptly as the severity of the nonlinearity is changed; 
there is no intermediate flow between a rotational and a dilational field. According to 
Prazdny (1986), bistability is a necessary feature of a model of these phenomena and 
is one that purely linear filtering models do not have. This demonstration suggests 
that the bistability of these patterns, reported by some observers, is the result of change 
in this early nonlinearity This, in turn, could be due to something as basic as retinal 
adaptation, depending on where one locates this nonlinearity in the visual system. 
Comparing figures 9 and 11 shows that it is very-coarse-scale filters which are used to 
calculate the correct orientation structure of these patterns. This allows the clear 
prediction that perception of structure should be significantly impaired, compared to 
perception of structure in single-contrast patterns, in the presence of a spatially low-
pass mask, since intermediate scales are of no use for deriving orientation structure. 

4.2 A second-order' mechanism? 
Recently there has been increasing interest in our ability to see structure in textures 
which cannot be detected by (first-order) linear filtering mechanisms ('second-order' 
texture perception; Sutter et al 1995). Sutter et al used a carrier consisting of spatially 
band-pass random noise which was contrast-modulated by a Gabor envelope. Their 
proposed mechanism for detecting structure in these patterns are second-order filters, 
operating on the rectified output of a linear filter. Sutter et al (1995) showed that such 
mechanisms appear to be tuned to frequencies roughly 8-16 times lower than the carrier. 

Consider the elements comprising an interleaved Glass pattern, such as figure 8a, 
as being approximated by two cycles of a vertical sinusoid modulated by a highly 
elongated horizontal contrast envelope. This is illustrated in figure 12a, which shows a 
pattern composed of sinusoidal carrier patches, oriented orthogonal to a rotational 
flow field, and each modulated by a Gaussian contrast envelope oriented parallel to 
the flow field. The impression of orientation structure is dominated by the envelope 
orientation. What appears to be happening is that the visual system is getting two 
sources of local orientation information: first-order information about the carrier, and 
second-order information about the envelope. In order to make sense of these two 
sources of orientation information it is likely that those estimates are accompanied by 
an estimate of their reliability (which equates to orientational bandwidth). For the 
carrier in figure 12a reliability is low (ie bandwidth is high), but for the envelope 
reliability is high. Thus the visual system weights the contribution of the envelope more 
heavily and it dominates the percept of flow. How the envelope of these elements is 
extracted is debatable, although popular mechanisms are to half-wave or full-wave 
rectify filter outputs and then feed this into another bank of filters. 

If the visual system is weighing up the contribution of first-order and second-order 
information to estimate local orientation, it might be possible to see interactions 
between the two as their relative bandwidths change. The simplest way to do this, for 
the patterns shown, is to rotate the carrier relative to the envelope orientation which 
will steadily increase the relative reliability of the carrier, as well as its consistency 
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Figure 12. (a) Texture composed of envelopes, oriented according to a rotational flow field, 
modulating sinusoidal carriers oriented orthogonal to the local orientation of the flow field. 
(b)-(g) Effect of rotating the carrier towards the envelope orientation. 
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with the envelope. The remainder of figure 12 shows the effect of doing this. As the 
carrier rotates, the two sources of information are combined, skewing local orientation 
estimates and producing a percept of a spiral (figures 12c, 12d, and 12e). As the two 
come into registration (figures 12f and 12g) the correct rotational structure is again 
perceived. This demonstration suggests that local orientation estimates may be formed 
by the weighted vector sum of first-order and second-order estimates. 

This demonstration is clearly closely related to the Fraser 'twisted cord' illusion 
(Fraser 1908; Morgan and Moulden 1986). Indeed, a proposed explanation for the 
Fraser effect is in terms of 'collector units' which receive inputs from similarly oriented 
receptive fields lying along a path roughly consistent with their preferred orientation/ 
position (Morgan and Moulden 1986). This is effectively a second-order orientation 
mechanism. The degree of similarity between the orientation of subunits and the 
orientation of the path over which they are integrated effectively determines a weight­
ing function for the contribution of the first-order input to the estimated orientation. 

5 Discussion 
The purpose of this paper has been to show that criticisms of spatial-filtering models 
of grouping using contrast phenomena tend to be based on one of two tenuous 
suppositions: that all visual processing preceding filtering is entirely linear, or that the 
grouping is achieved by means of low-pass filtering. It has been shown that spatially 
band-pass mechanisms are capable of deriving structure from 'balanced' Glass patterns. 
The adaptive filtering model correctly predicts that, for dense patterns composed 
of opposite contrast pairs, local flow direction will be rotated by 90°. Psychophysical 
data from a study by Kovacs and Julesz (1992), quantifying this effect, have also been 
shown to be consistent with this model. 

The most problematic, and consequently the most interesting, phenomenon associ­
ated with Glass patterns remains the veridical perception of structure in interleaved 
opposite-contrast patterns. I have described two mechanisms for deriving structure 
from these patterns: through the addition to the adaptive filtering model of an early 
(albeit fairly severe) nonlinearity, and through the addition of a second stage of filter­
ing operating on the rectified output of first-order mechanisms. 

With respect to nonlinear contrast transduction, a comprehensive explanation of 
how such a nonlinearity might be incorporated into the model has not been provided, 
since it has been suggested that the severity of this function may be affected by retinal 
adaptation (Morgan et al 1984) and by local mean luminance (Watt 1991). The problems 
of dealing with these factors go beyond the scope of this paper. The second possibility, 
that the visual system has continuous access to first-order and second-order estimates of 
orientation, leads to the question of how those estimates might be combined. The 
demonstration illustrated in figure 12 suggests that some form of vector summation, 
weighted by estimates of local orientational bandwidth, might suffice. Given that little 
is at present known about how first-order and second-order information is combined, 
the use of textures composed of independently oriented carriers and envelopes may be 
a useful way of examining this problem. 
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