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Detection of bilateral symmetry using spatial filters
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Abstract-When bilaterally symmetric images are spatially filtered and thresholded, a subset of the
resultant ‘blobs’ cluster around the axis of symmetry. Consequently, a quantitative measure of blob
alignment can be used to code the degree of symmetry and to locate the axis of symmetry. Four alternative
models were tested to examine which components of this scheme might be involved in human detection
of symmetry. Two used a blob-aligmnent measure, operating on the output of either isotropic or oriented
filters. The other two used similar filtering schemes, but measured symmetry by calculating the correlation
of one half of the pattern with a reflection of the other. Simulations compared the effect of spatial jitter,
proportion of matched to unmatched dots and width or location of embedded symmetrical regions, on
models’ detection of symmetry. Only the performance of the oriented filter + blob-aligmnent model
was consistent with human performance in all conditions. It is concluded that the degree of feature
co-alignment in the output of oriented filters is the cue used by human vision to perform these tasks.
The broader computational role that feature alignment detection could play in early vision is discussed,
particularly for object detection and image segmentation. In this framework, symmetry is a consequence
of a more general-purpose grouping scheme.

1. INTRODUCTION

The identification of bilaterally symmetric figures is thought to be, a component of
a number of basic visual tasks. It has been proposed that symmetry plays a ma-
jor role in object recognition by providing a canonical axis for the representation
of shape (Marr, 1982). When a symmetrical object is tilted, the degree of skew of
the resulting symmetry is a cue to deriving three-dimensional structure (Kanade and
Kender, 1987). It is also possible that, by identifying symmetric regions of an image,
the presence of salient objects can be detected. This is’ reflected by the use of sym-
metry, within machine-vision systems, as a cue fororienting attention (e.g. Yeshurun
et a l .  1992).

Barlow and Reeves (1979) demonstrated that human identification of symmetry is
not an ‘all-or-nothing’ process but is graded  with respect to a number of attributes
of symmetrical patterns. They showed that discrimination of symmetrical from non-
symmetrical dot textures smoothly deteriorates as the proportion of paired to unpaired
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dots in the symmetrical pattern decreases. Barlow and Reeves (1979) also showed that
symmetry detection smoothly deteriorates with perturbations in dot location. They
propose that human symmetry detection operates using a symmetrical distribution of
feature detectors sensitive to local dot densities. Assuming that the orientation and
position of the axis of symmetry are known in advance, this organisation may be
practically realised by performing a simple correlation of one half of the image with
a reflected version of the other. In order to account for our tolerance to spatial jitter
of features, Barlow and Reeves (1979) do not correlate individual image locations,
but calculate the local density of features and correlate these (coarse scale) estimates.

Jenkins (1983) noted that because a reflection is used to generate symmetrical
stimuli this does not imply that a reversed mapping must be used to detect stmcture,
especially given that this has no obvious interpretation in terms of the known structure
of the human visual system. Instead he proposed a three-stage model of symmetry
detection: detection of orientation uniformity, fusion of pairs into features, and the
detection of symmetry of the resultant feature. Symmetrical dot pairs are detected
directly by the output of receptive fields, of various sizes, oriented orthogonal to the
axis of symmetry.

Symmetry detection seems to operate at a low spatial resolution. It is resistant to
local perturbation of the position of the constituent elements of symmetrical textures
(Barlow and Reeves, 1979). If symmetric textures are composed of short oriented
lines, the orientation of lines does not greatly affect detection of symmetrically po-
sitioned features (Koeppl, 1993; Locher and Wagemans, 1993). These findings im-
plicate mechanisms sensitive to low spatial  frequencies.spatialtial equencies. This is supported by two
findings which demonstrate that the degree to which features activate filters deter-
mines their contribution to the percept of symmetry. Firstly that discrimination of
symmetry from noise is not possible, at 150 ms exposure duration, when elements on
either side of the axis of symmetry are of opposite contrast (Zhang, 1991). Secondly
that the proximity  of symmetrical features to one another is critical: the area around
the mid-line of bilaterally symmetric texture has been found to contribute more to
the perception of symmetry than other areas (Bruce and Morgan, 1975; Julesz, 1975;
Barlow and Reeves, 1979; Jenkins, 1982). Violations of symmetry are more easily
detected near the mid-line (Bruce and Morgan, 1975) and detection of symmetry is
less affected by random displacement of dots that are nearer the outskirts than the
mid-line (Barlow and Reeves, 1979; Jenkins, 1982).

These results suggest that spatial filtering-mechanisms are involved in the per-
ception of symmetry. Recently, it has been proposed that isotropic, Laplacian-of-
Gaussian (LoG) filtering might suffice for the grouping of symmetrical elements
Locher and Wagemans, 1993). However, no specific scheme has been described
for measuring symmetry from the output of LoGs, or from any other pre-processing
system.

The starting point for our study is the observation, illustrated in Fig. 1, that when
images of bilaterally symmetric objects are filtered with anisotropic filters that are
oriented orthogonal to the axis of symmetry, a striking and simple pattern of response
is found. In each of the filtered images in Fig. 1, there is a pattern of parallel
aligned stripes in the response, each stripe centred very close to the axis of symmetry.
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The      proposed       mechanism
defined by the relationship:

does not in fact detect symmetry. Bilateral symmetry is

+a, Ya) = I( - .%?, YfJ),

where X~ and y0 are positions orthogonal and parallel to the axis of symmetry, re-
spectively. Any pattern that conforms to this relationship is symmetric. To measure
whether a pattern is symmetric, it is strictly necessary to assess whether this relation-
ship holds for all (x~, y=). A simple numerical way to perform this computation is to
note that the correlation measure:

4 +m Yu)Z( - A?, Yu)

(+a, Yu) + I( - A79 Ycq2

reaches a maximum value of 1.0 when I (x~, yO) equals Z(-x~, ya). This provides a
means for calculating whether an image region is symmetric about a particular axis
by averaging this measure for all values of I (xa, yO). Since the symmetric pattern
generally would not fill the entire image, in principle this measure would need to be
assessed for all possible axes and regions. This would be achieved by applying a
family of spatial weighting functions of varying size, orientation and perhaps shape,
to correlations performed at every point in the image. Such a proposition would place
very heavy computational demands on any neural implementation.

A much simpler mechanism, but one that does not exactly calculate symmetry,
is proposed. First, we make the simplifying assumption that image values can be
represented by just two values, which for convenience,
We can then note that the measure:

we will take to be -1 and 1.

Z(&, Ya) + q -Al* Ya)

will reach an extremum value ( ° 2 )  when I (x~, yJ equals Z(-x~, ya), and will aver-
age to the value zero otherwise. We can further note that summing along a particular
row (ya) orthogonal to the axis of symmetry:

2 z(xm Yu)

produces a measure that will be more extreme the more similar all the values are to
each other along that row. The second simplifying assumption is that where bilateral
symmetry in natural images exists, it will frequently be of a form that allows this
type of summation to be used. The second assumption is not as severe as it appears
- given the spatial correlations that exist in natural images.

This proposal is equivalent to the starting observation, that parallel stripes occur in
images that have been filtered with oriented filters. The filtering process is equivalent
to some form of differentiation operation followed by an anisotropic summation.
The first component will not alter bilateral symmetry, and the second component



Detecting symmetry using spatial filters 391

effectively calculates the appropriate summation. Hence, any place in an image where
the filtered response is high could potentially be an axis of symmetry. In practice
there are many reasons why the filter response should be high. However, where
several peaks in response become aligned on a common axis that is orthogonal to the
preferred orientation of the filter, the likelihood is high that this identifies a region of
local bilateral symmetry. Note that the computational problems associated with the
correlation measure have been avoided by using the combinatorics of filtering itself.

In the study reported in this paper, implementations of the correlation measure
and the alignment measure in image processing simulations of psychophysical tasks
are compared with the performance of human subjects. All simulations were of the
same basic form. For each condition of each task, we created a sequence of pairs
of test images to be discriminated, exactly as in the real task: one member of each
pair containing more symmetric structure than the other. For each pair in turn, a
computational procedure was applied, resulting in a measure of degree of symmetry
for each of the two stimuli. A 2AFC psychophysical response could then be generated
according to the task. Four computational procedures were employed: two different
types of filter (isotropic and oriented) and the two different types of symmetry measure
(correlation and alignment).

2. 1. Filtering

There is accumulating evidence that the early visual system consists of mechanisms
selective for certain spatial frequencies in the input (e.g. Campbell and Robson, 1968;
Sachs et ul., 1971). Models that have been proposed to describe the exact point-
spread function of cells in visual cortex include Gabors (e.g. Daugman, 1985) and
Difference-of-Gaussians (DoGS) (e.g. Wilson and Gelb, 1984). Similarly, it has been
proposed that retinal ganglion or LGN cells can be described by the Laplacian-of-
Gaussian (e.g. Marr, 1976). The principal functional difference between these models
is whether filters are oriented or isotropic. In the present study both isotropic and
oriented filters are examined.

The isotropic filter used was the Laplacian-of-Gaussian with a point-spread function
defined as:

where s is the space constant of the filter.
For the oriented filter the point-spread function used was an elongated, horizontal

DOG filter:

f (X, y, X) = e-Y21a2 - &e ,
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where s is the space constant of the filter. The ratio of the amplitudes of the positive
and negative parts of the DoG and the aspect ratio of the filter are based on those de-
rived by Wilson and co-workers (Phillips and Wilson, 1983; Wilson and Gelb, 1984).
Because only vertical bilateral symmetry is under consideration, only horizontally
oriented filters are considered.

Seven sizes of LoGs were used: s = 2.00-16.00 pixels, in multiplicative steps
of a. Seven sizes of horizontal DoG  filter were used: s = a-8& pixels, in
multiplicative steps of fi. Both sets of filters had peak spatial-frequency sensitivities
of between 28.8 and 3.5 cycles per image, respectively.

2.2. Primitive extraction

The result of the filtering is divided into positive and negative signals, by thresholding
the image. Grey levels less than one standard deviation greater or less than the mean
grey level are set to zero. This non-linearity is introduced as a way of delineating
individual image features.

Filter output images are then converted into a symbolic or ‘primal sketch’ type
representation (Marr, 1976). Blobs from the filtering/thresholding stage are described
using measurements of their centroids, lengths, etc. Such schemes have previously
been proposed as practical methods for deriving texture statistics (e.g. Voorhees and
Poggio, 1987). Watt’s (1991) image description scheme was used to describe each
zero-bounded region blob in the form:

where (cx, cy) is the centroid, /L is the mass, A is the length, and B is the orientation of
the blob. (Details of how these parameters are derived are described in Watt (1991),
pp. 114-120.)

2.3. Measuring alignment

Consider the alignment, A(x), of all blobs which intersect a particular image col-
umn, x. A simple measure of blob alignment is to calculate the distance from x to
the centroid of the blob:

A(x) = i $exp [ - (x2iT)]/.Q,

where Iv1 is the number of blobs intersecting the xth image column, and M is their
total mass. Deviation of the blob centroid from x is weighted in inverse proportion
to the length of the blob, Ai, and in direct proportion to the mass of the blob, pi.
Normalization by M means the alignment measure falls in the range 0.0-1.0. The
maximum value of A for the image, maxX(A), is used as a measure of the symmetry
of the pattern. The location at which the maximum occurs x~= is used to indicate
the axis of symmetry. Figure 1 demonstrates the application of this technique to axis
location in natural and artificial symmetrical images.



Detecting symmetry using spatial filters 3w

2.4. Correlation

Equation (1) was used to calculate an image correlation for each image.

2.5. Estimating discriminability

Given two sets of measurements from each model, one of the reference set and one of
a particular level of the cue, these sets will have means of pmf and /.L~“~, respectively,
and standard deviations of qef and D~,,~. Typically, the cue and reference sets had
unequal variance, suggesting an appropriate criterion as:

c=/-hf+ a ( h e  - bf) * (3)
re
fyfc”e

Values from the reference and cue files were randomly selected and compared to the
criterion to establish probability of detecting a cued stimulus (hit), versus probability
of falsely identifying a reference stimulus as the cue (false alarm). From these two
values d’ was calculated as:

d’ c Pm1 (hit) - P-l (false alarm),

where Pm1 (y) is the inverse function of the Gaussian probability function:

Y

P(y) = &m e(-X21z)ti.
s

This function can be calculated to an arbitrary level of precision using an approxima-
tion to the incomplete Gamma function (Press et aZ., 1992).

3. SIMULATION PROCEDURE

For each image, symmetry measures were derived using four models. The first two
models used the alignment measure in conjunction with oriented or isotropic filters
(the ‘I + A’ and ‘0 + A’ models, respectively). Alignment estimates were made, as
described above, and these values placed in files.

The third and fourth models were correlators, operating on the output of similar
oriented and isotropic filters. The convolved images were divided at the axis of
symmetry, correlated with a reflected version of the other half, and the degree of
correlation recorded. These are referred to as the ‘I + C’ and the ‘0 + C’ models,
according to the type of pre-processing used.

All models had prior knowledge of the location of the axis of symmetry. This
meant that the degree of alignment or correlation was calculated only around the
central image column. Uncertainty on axis location/orientation is known to reduce
performance of human subjects on this task (Barlow and Reeves, 1979) and similarly
affects the output of the models.
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4. SIMULATIONS 1 AND 2 EFFECT OF SIGNAL-TO-NOISE RATIO AND POSITIONAL

Barlow and Reeves (1979) measured the discriminability of symmetric from non-
symmetric random-dot textures as a function of the ratio of paired to unpaired dots
in the symmetric texture. The ratio of paired to unpaired dots (the signal-to-noise
ratio, SNR) was varied and discrimination from pure noise and pure symmetry was
measured. As the number of paired dots in the stimulus decreases (a) discrimination
from noise deteriorates and (b) discrimination from pure symmetry improves.

Barlow and Reeves (1979) also showed that discrimination of symmetry from noise
deteriorates as jitter on the position of symmetrical elements increases. The second
simulation in this section is to investigate if operation of the models at coarse spatial
scales can explain subjects’ performance in this condition.

4. 1  Stimuli

The stimuli were textures composed of 100 dots spatially randomly distributed in a
centrally-positioned circular region, with radius 128 pixels. Each dot was composed
of a square of four individual pixels and appeared black on a white background.

In generating noise stimuli, dots were allowed to fall randomly in the circular
field. The symmetrical patterns were generated by dropping a fixed proportion of
dots randomly in the circular field and then reflecting each of their positions around a
vertical, centrally positioned axis of symmetry and placing a corresponding dot there.
In the second simulation, dot locations were generated as above and then each was
subjected to a random shift.

4.2. Procedure

For Simulation 1, 128 stimuli were generated at each of eleven ratios of paired to
unpaired elements (0.0-1.0, in steps of 0.1). For Simulation 2, 128 stimuli were
generated with between zt4.06 and zt65.02 pixels of positional jitter in multiplicative
steps of fi pixels (corresponding to shifts of ~t2 to &32 arcmin, at the viewing
distance quoted in the original paper). For each stimulus level, and for each model, d’
was measured in a procedure exactly analogous to that employed in the original
experiments.

4.3. Simulation results and discussion

Results from Simulation 1 are presented in Fig. 2. The left half of the figure shows
results for discrimination of an increasing proportion of symmetry from noise. In
accord with human data, all four models predict a gradual improvement in perfor-
mance with increasing proportion of symmetry. As the spatial scale is increased, the
predictions of the 0 + C model match human data more closely. Note that both of
the alignment models are less sensitive to the scale of filter selected.

The right half of the figure shows the predicted discriminability of pure symmetry
from increasing proportions of symmetry. The correlation models overestimate perfor-
mance, typically because their estimates of pure symmetry show little or no variation



Detecting symmetry using spatial filters 401

7.0

6.0

5.0
b

!I 4.0

i 3.0

2.0

1.0

0.0 I,,.,,.,,,,,,,.,,

0 0.2 0.4 0.3 0.3 1

P~not~mamcdm

lsoiro@c+Aligm~
7.0 c

6.0 :

5.0 - ,

0 0.2 0.4 0.0 0.3 1

Proportion of symmetric dots

ofisnmd + colmlation
7.0

0 0.2 0.4 0.6 0.3 1

Proportion of aymmabk &t8

1.0

0.0

0 0.2 0.4 0.0 0.8 1

Proportion of symmetric dots

Figure 2. (Top part) Examples of the stimuli used in Simulation 1. Patterns have the following propor-
tions of paired dots: (a) 1.0, (b) 0.75, and (c) 0.5. (Bottom part) Solid symbols show data from Barlow
and Reeves (1979), for discrimination from (this page) noise and (next page) pure symmetry patterns,
as a function of the proportion of paired to unpaired dots in the stimulus. Lines show predictions from
models using filters with space constants given in the legend (in arcmin).
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(around l.O), so d’ measures tend to be very high. Predictions from the alignment
models, however, do show the same gradual deterioration as human subjects. These
models introduce variability in the representation of pure symmetry that is consistent
with human performance on this task.

Simulation results for structure discrimination in the presence of positional jitter
are plotted alongside human data in Fig. 3. All models produce a gradual drop-off
in discrimination of symmetry from noise, as positional jitter increases. However,
both correlation models overestimate performance at very low levels of jitter. The
I + A model fails to achieve human levels of performance in all but the extremely per-
turbed patterns. A failure to fit because of overly high performance can be accounted
for by the assumption of additional noise in a system, but a failure to achieve human
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Figure 3. (Top part) Examples of the stimuli used in Simulation 2. Patterns have positional jitter of
. (a) h4.0, (b) M.0, and (c) Al6 pixels. (Bottom part) Solid symbols are psychophysical data from

Barlow and Reeves (1979), for discriminating symmetrical patterns from noise in the presence of spatial
jitter. Lines represent the predictions from the models at a number of spatial scales.
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levels of performance must be taken as very strong evidence against the model. The
agreement of the 0 + A with human data models is extremely good, especially given
that no fitting of the model to the data has been used. Note that the 0 + A model
predicts similar performance across two octaves of filter sizes.

All of the proposed models produce a graded response to symmetry in the presence
of unpaired dots, but the I + C model, consistently overestimates performance. In the
presence of spatial perturbation of elements, the I + A model fails to perform as well
as humans and for that reason can be rejected. The correlators’ behaviour is broadly
in accord with human data, but the fits of the 0 + A model are consistently better.

5. SIMULATIONS 3-5: EFFECT OF LOCATION OF SYMMETRY WITHIN A TEXTURE

A pattern containing a set of symmetrical dots embedded in a background composed of
noise dots is most effectively discriminated from noise patterns when the symmetrical
region is located around the axis of symmetry (Barlow and Reeves, 1979). However,
the next most discriminable region is at the outer boundaries of the pattern. The
region producing lowest discriminability is located between the axis and boundary. If
any model using filtering predicts that symmetry is simply related to the proximity of
the closest matched pairs then there should be no such advantage for structure around
the boundary. In this section we simulate three psychophysical tasks examining the
role of the locution of the symmetrical features within the pattern.

Jenkins (I 983) measured the effect of the spatial location of a symmetrical region
embedded in noise. The tasks measured discriminability of patterns (from noise or
pure symmetry) as a function of the width of the embedded symmetrical region.
The tasks were discrimination of: (a) noise patterns from noise containing symmetry
around the axis, (b) perfect symmetry from symmetrical patterns with noise encroach-
ing from the boundary, and (c) noise patterns from symmetrical patterns containing
noise around the axis of symmetry.

5.1. Stimuli

Stimuli were generated in approximate accord with those described in Jenkins (1983).’
Textures contained 650 dots, where each dot was an individual pixel, appearing white
on a black background.

The stimuli for Simulations 3 and 4 were noise textures with a strip of symmetrical
dots around the axis of symmetry. Dots were randomly positioned throughout the
image, except for a region around the axis of symmetry. A proportion of the total
number of dots was then placed in the central strip, and reflected around the axis.
The number of dots in the central region was proportional to the area of the strip,
so that there was no difference in density across the pattern. The reference stimuli
for Simulation 3 were noise textures (i.e. the task was to detect the pattern which
contained a strip of symmetry), and the references for Simulation 4 were purely
symmetrical patterns (i.e. the task was to detect which pattern had noise encroaching
from the boundaries).
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The stimuli for Simulation 5 were generated in a similar way to above, except
that textures were symmetrical but contained a strip of randomly positioned elements
around the axis of symmetry. The reference stimuli used were pure noise patterns
(i.e. the task was to detect which patterns had symmetry at the boundaries).

5.2. Procedure

128 stimuli were generated at each width of symmetrical/noise strip. The width
of strips used were: for Simulation 3, 0-24 pixels, in steps of 4 pixels (i.e. from
O-O.468 deg. assuming a 5 deg wide display), for Simulation 4, 0-72 pixels, in steps
of 8 pixels (i.e. from O-l.41 deg), and for Simulation 50-24 pixels, in steps of 4 pix-
els. Measurements of symmetry were made using the same models described in the
previous simulation, and percent correct results were generated as in Jenkins (1983).

5.3. Simulation results and discussion

Figure 4 shows that humans show a steady increase in the discrimination of an ex-
panding symmetrical strip from noise, as the width of symmetrical strip increases,
with performance levelling off at around 0.22 deg. All of the models approximately
show this behaviour but their predictions do not deteriorate as sharply as human data:
humans are very poor when strip width falls to around 0.1 deg. This discrepancy
is probably due to two characteristics of the alignment models’ operation. Firstly it
is noise-free with respect to the number and position of blobs. One might expect
that smaller samples of tiny blobs would give worse estimates of alignment, either
because blobs would fail to be registered, or because any noise on the alignment
measurement would become large in relation to the width of the blobs. Secondly,
there is no uncertainty of the location of the axis - all models know exactly which
image column to use. Human subjects, even given that the axis did not shift between
stimuli, probably have some error on locating the axis from trial-to-trial.

Figure 5 shows that as the width of a symmetrical strip increases (to a maximum
value of only 20% of the total pattern width) subjects find it increasingly hard to
discriminate patterns from pure symmetry. At the point where subjects can no longer
discriminate, however, 80% of the pattern is symmetrical. Consequently, the corre-
lators predict perfect discrimination for the widths tested. The alignment models, on
the other hand, predict the steady decrease in discrimination performance. The fit of
the 0 + A model is the closest.

The final simulation was of human discrimination of symmetrical textures containing
strips of noise around the axis, from noise textures (Fig. 6). Our ability to perform
this discrimination deteriorates with increasing width of the strip, and at a noise
width of around 1.0 arcmin subjects are approaching chance performance. Again
the correlators predict no change in performance because patterns contain so much
symmetry. The alignment models’ sensitivity to the location of the symmetry is
again shown in the collapse of performance as noise width increases. Interestingly,
however, the I + A model collapses too quickly; isotropic filtering mechanisms are
insufficiently sensitive to the structure when the noise strip becomes wide. The
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Figure 4. (Top part) Schematic representation of the task in Simulation 3. ‘S’ indicates symmetry,
‘N’ represents noise. (Bottom part) Solid symbols show human discrimination of such textures from pure
noise. All models produce improved behaviour as a function of the width of the band.



Detecting symmetry using spatial filters

Sbnulation 4

F1jT-j

*

O.QO -

i
0.60 - f

4
!8 0.70 -
n.

1
0.60 -

0 Jenkins
- 2.24’
- - - .4.ew
- a.371

OtiSOtSd+-

I
E8 0.50
ry - - - ~ a31

- 6.63

1 0.70

a
0.60
~ 1

I
0.50

0 0.5 1 1.5

Orlsnted + Allgnmenl
1.0

~of-swm!&~ ~~of-*wQ.)

FIgure 5. (Top part) Schematic representation  of the task in Simulation 4. (Bottom part) Human per-
* formance for discrimination of an embedded band of symmetry from pure symmetry is represented by

solid symbols. Only the performance of the alignment models show a dependence on the widtb of the
symmetrical strip.



408 S. C. Dakin and R. J Watt

Simulation 5

lsotmpic + Corralafion
1.0

0 0.5 1 1.5

WM of noise sMp (deg.) Wkfth of noise sMp (de9.)

1 . 0

0.90

i!8 0.60

.g

i
0.70

a.

0.60

0.50

isotropk + Alignment
0

\h *

\
\ i rT-T%-j

0 0 . 5 1 1.5

Wm of noise sMp (de9.) Widih of Ike &rip (de9.)

P
5 0.60

0.60
I

0 Jenkins

F&III? 6. (Top part) Schematic representation of the task in Simulation 5. (Bottom part) Human dis-
crimination of such textures from pure noise. Although all models are capable of detecting symmetry in
these patterns, only the alignment models’ performance breaks down, with increasing width of the noise
strip, in accord with human data.



Detecting symmetry using spatial filters 409

0 + A model captures the best of both models. It can overperform, but certain
scales (s.d. = 3.31 arcmin) produce patterns of discrimination which match human
data. It is interesting, and somewhat counterintuitive, that an alignment model can
detect correlation when the area around the axis of symmetry is pure noise. Note
however that the filter size producing the best predictions are larger than those used
in the previous two simulations. This also suggests an explanation for why structure
at the periphery is more efficiently detected than structure embedded between axis
and boundary (Barlow and Reeves, 1979). Small filters are responsible for detecting
structure at the axis, large filters are responsible for structure at the boundaries. (We
return to this point in the Conclusion section.)

To summarise: results from Simulation 4 indicated that correlators overestimate dis-
crimination of symmetrical strips embedded in noise from pure symmetry. Alignment
models account for human data well. Simulation 5 showed that only the 0 + A model
could account for the deterioration shown by human subjects in discriminating sym-
metrical textures containing an expanding strip of noise around the axis from noise.
The correlators again systematically overestimate, and the I + A model systematically
under-estimates, human performance. Only the 0 + A model provides consistently
good fits to the data across all simulations.

6. CONCLUSIONS

The results of the simulations presented in this paper lead to a number of tentative
conclusions. First, we have shown the adequacy of the alignment measure for detect-
ing symmetry. Second, we have shown that a model based on alignment but using
an isotropic filter is inadequate, especially since it fails to reach the human levels
of performance. Third, we have shown that the correlation measure of symmetry
does not match human data closely with either form of filter, in several cases being
much better in its performance than are the subjects. Fourth, we have shown that an
alignment measure, after filtering with oriented filters, produces data that is in close
agreement with subjects for all tasks considered.

For each simulation, results from a range of different spatial scales are reported.
In every case the output of a single filter is used to reach a psychophysical decision
and hence a psychometric function. It might be thought that combining information
from the outputs of different filters would be a way of improving performance, for
example through probability summation. In practice, this is not found to be the case.
The reasoning is as follows. In reaching a psychophysical decision, the main causes
of an incorrect response are ‘spurious’ near-symmetry responses in the noise targets.
These are most awkward in filters that are not well matched, spatially, to the spatial
structure of the target. Thus combining responses from different filters increases the
probability of detecting the symmetry, but also increases the probability of detecting
spurious symmetry. Probability summation therefore would not improve performance.

To conclude, we shall discuss why the alignment model with oriented filters succeeds
when the others do not and then we shall go on to place the model in the context
of a general-purpose visual process. Our claim is that symmetry detection, when
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The second and third columns show fine and coarse-scale filtered versions of each
image. There are two types of alignment pattern revealed in the filtered images: one is
related to the ‘vase profile’ (Fig. 7c) and one is related to the ‘face profiles’ (Fig. 7b,
e, h). The vase case can be regarded as representing symmetry detection, but the
second cannot. They both, however, can be regarded as alignment detection. In this
sense, symmetry can be seen to be a special case of a more general-purpose structure
detection.

Finally, Fig. 8 shows the results of filtering a real image with horizontal and vertical
oriented filters. Note that the responses have aligned stripes along salient objects,
man-made and natural. This point is elaborated in Watt (1994).
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NOTES

, Jenkins used dynamic dot displays. Each dot was sequentially generated (every 122 ,XS) and very
briefly displayed (1.5 KS). Thus 16446 points per set were generated and plotted although, at any one
moment, there was only one dot pair on the screen. In the simulation described, static patterns were used
and matched for perceived density: reported as 26 points per deg2.
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