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Neighbourhood tractography

I   of communication between regions of the brain is indeed a significant factor in
cognitive impairments, as the disconnection hypothesis posits, then d and tractography

are surely apt for studying this kind of pathology. But for the potential of the technique to
be fully realised, its ability to provide proxy measures for white matter integrity such as 
will not be sufficient—it is also important that robust methods exist to compare such measures
between normal and abnormal conditions, and to spatially localise any reproducible differences
whenever possible.

In this chapter, we review the methods that have been applied to the localised study of
white matter with d, and describe a novel and automated approach to the issue. Our
method treats segmentation as an a posteriori tract matching problem. We define a reference
tract in a single brain volume, and then use a tract similarity measure to select from a number
of candidate tract segmentations based on their topological resemblance to the reference. We
demonstrate that this approach improves the consistency of segmentation results in a group
of healthy young volunteers, thus reducing the impact of one source of within-group variance
on anisotropy measurements.

6.1 Group comparison in white matter

Approaches to the identification and localisation of systematic differences between the white
matter of two or more populations fall into two broad categories. One can either use a
technique that is itself capable of highlighting local regions where differences are focussed; or
hypothesise where such regions may be, a priori, and then study those target areas specifically.
Tractography, when applied as a segmentation technique, provides a white matter-specific tool
for implementing the latter approach. However, we begin here by examining those methods
which work with the whole brain.

Voxel-Based Morphometry () is a whole brain technique which was originally conceived
to find areas of structural difference between groups (Wright et al., 1995), but has since been
generalised to voxelwise comparison of many types of medical image data (Ashburner &
Friston, 2000; Good et al., 2001). Uptake of the technique in the clinical d literature has been
significant over the past few years, particularly in the study of schizophrenia, whose effect on
the brain is thought to be diffuse (e.g. Ardekani et al., 2003; Burns et al., 2003; Park et al., 2004).
In these applications, the analysis is typically performed on  maps, and the comparison is
between patient and control groups.

A typical  pipeline involves spatially normalising the set of images by transforming
them into a common space, filtering the normalised images with a Gaussian smoothing kernel,
and then performing a statistical comparison of intensity at each voxel. The smoothing process
confers several benefits for both sensitivity and specificity: it improves the signal to noise ratio
in the data; it makes correction for multiple comparisons less onerousa; and it helps to avoid

aSmoothing with a Gaussian kernel allows one to use the theory of Gaussian random fields to perform a multiple
comparisons correction which is less conservative than a Bonferroni-type correction. However, the extent to which
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shows voxels with FA greater than 0.3 (in the actual schizophrenia
results shown later, we used a threshold of 0.2). The number of white

matter voxels (which equals the volume in mm3 at this resolution) in
the MNI152 segmentation is 455,154. The total number of skeleton
voxels is 289,562; however, the number within the MNI152 white

matter mask is 77,374, a sixfold reduction compared with the
number in the mask. This reduction reflects the aim of reducing the
FA data to being most robustly and informatively represented by just
the centres of white matter tracts (though see also the comments in

the final discussion relating to the option of also using other
measures such as integrated FA or tract width as statistics of interest).
With respect to the effect of thresholding, the number of skeleton

voxels with FA less than 0.2 is 148,218, of which 146,151 (99%) lie
outside theMNI152white matter mask. Furthermore, of the skeleton
voxels inside the MNI152 white matter mask, over 97% have a FA

greater than 0.2. These figures show clearly that the general effect of
thresholding (at, e.g., 0.2) is to distinguish between areas that are on
average grey matter and those that are on average white matter.

Fig. 11 shows the variation in aligned FA images relative to
the mean FA skeleton, from a second dataset—15 subjects who

stutter and 11 controls. It can clearly be seen that the skeleton
lies within or near WM tracts in the great majority of subjects.

Projecting individual subjects’ FA onto the skeleton

Fig. 12 shows the search results in part of an axial slice taken
from analysis of 18 normal subjects. For each subject a set of arrows
from the skeleton to that subject’s (aligned) FA image is shown. It
can be seen that where there is slight misalignment of a subject’s

warped FA image with the skeleton (derived from the mean FA
image), the search strategy appears to be correctly taking values
from the true centre of the nearest tract. (Note that the search is in 3D

so these 2D cross-sectional cuts through the image, and the search
vectors do not quite show the whole story.)

In order to show qualitatively an example relationship between

tractography output and a mean FA skeleton, we took the
reproducibility data (see later) and derived several tracts for a single
subject (note: not the same subject as that used as the nonlinear

registration target). The tractography was run using FDT (Behrens et
al., 2003b; Smith et al., 2004); two masks were defined such that
(tract-following) samples were seeded from each mask and accepted
only if they passed through the other. After passing through the

second mask, the tract following was terminated for clarity of
display. Masks were placed by hand in the left and right upper
cingulum, optic radiation, cortico-spinal tract and in the genu of the

corpus callosum. Fig. 13 shows the 8-subject group mean FA
skeleton underneath the tractography output from one of the
subjects. On the basis of these images, one would be fairly confident

that a perpendicular search from the skeleton voxels will intersect the
correct tract appropriately, and it is also clear that the search is
necessary to correct the slight misalignment between the tract centre
and the skeleton, in several places.

Testing for Gaussianity

As discussed above, it is of interest to test whether projecting
data onto the mean FA skeleton improves the Gaussianity of the
cross-subject distribution of FA values. In Jones et al. (2005), it

was shown that there was a large number of voxels whose cross-

Fig. 9. FA skeletons created using 3 different target subjects for nonlinear registration. (A) All 3 skeletons overlaid. (B) target subject from all 33 subjects. (C)

Target subject from just the 20 controls. (D) Target subject from just the 13 ALS patients. All colour maps show FA values from 0.3:1.

Fig. 10. Mean FA skeleton from 36 controls and 33 schizophrenics,

thresholded into three ranges: green = 0:0.2, red = 0.2:0.3, blue = 0.3:1.

Underneath is the tissue-type segmentation (into grey,white andCSF) derived

from the population-average segmentation priors used by SPM and FSL.
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(a) (b)

Figure 6.1: A typical FA skeleton created by
the TBSS technique with data from 10 healthy
subjects. The skeleton and underlying standard
brain image are shown in axial (a) and coronal
(b) planes. Reproduced from Smith et al. (2006).

false positives due to misregistration between images (Ashburner & Friston, 2001). However,
the choice of filter size is a problematic issue. Ideally the full width at half maximum ()
for the filter should be approximately equal to the size of features of interest, but the spatial
extent of population differences in anisotropy is usually not known in advance; and no other
principled method for choosing the filter size has been established for d data. As a result,
kernels with s of between 3 mm and 16 mm have been applied to maps, usually without
any explicit justification; but it has been shown that the eventual conclusion drawn from a data
set can depend directly on this choice (Jones et al., 2005a). Moreover, even when smoothing
is applied, spurious “results” due to registration errors persist to some extent. Unfortunately,
these two drawbacks represent significant limitations to the method.

The difficulty of choosing a filter  illustrates an important general point. If one
is interested in contrasting one group of subjects against another, at whatever scale, one
must compare like with like. Consistency is a crucial prerequisite. But for findings to be
meaningful and reproducible, the techniques they employ must additionally be robust. A
strong dependency of a result on the value of any methodological parameter is strongly
undesirable, particularly if there is no principled way to choose that parameter.

Concern over the limitations of , as well as its lack of specificity to diffusion data,
motivated the recent development of another whole brain method called tract-based spatial
statistics (; see Smith et al., 2006), which is just beginning to be applied to clinical data
(Anjari et al., 2007; Kochunov et al., 2007; Rouw & Scholte, 2007).

The key innovation of the  method is its use of an anisotropy “skeleton”—a ridge of
locally maximal  running through the brain’s white matter structures—to establish voxel
homology for comparison (see Fig. 6.1). This approach allows one to perform voxelwise
statistics without relying on the accuracy of image registration methods alone. By focussing on
areas of the brain which can be confidently classified as white matter, the method additionally
reduces the number of comparisons that need to be performed, thus improving the statistical
power of any given data set. It is assumed that local variation in anisotropy across a tract is
entirely attributable to partial volume effects.

Given a suitably preprocessed d data set, the full  pipeline consists of the following
four steps.

1. Perform nonlinear registration of each individual  map to the most typical one—that
is, the one requiring the smallest average displacement. Resample each registered map
to a standard resolution of 1×1×1 mm.

2. Average the registered maps and generate an  skeleton for this average map, by finding
the voxel with maximal  along lines perpendicular to local tract directions. Threshold
this skeleton at an  value of around 0.2 to 0.3.

3. Search each individual  map for locally maximal values in the same way, and project
each separate skeleton onto the average one, thus establishing voxel homology.

4. Perform voxelwise comparisons within the skeleton.

the assumptions of this approach are met in  images may be limited (for details see Jones et al., 2005a).
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Note that there is no direct spatial smoothing involved in this process—although the average 
map used for step 2 will be implicitly smoothed to some degree by registration inaccuracies—so
the problem of choosing a filter width does not occur.

The capacity of whole brain analysis techniques like  and  to obviate the need for
predefined brain areas of interest can be an invaluable one, particularly for exploratory studies
where detailed a priori information is simply not available. However, just as the increased
specificity of  provides gains in statistical power over , the advantage of making
more detailed hypotheses is that subtler effects can be found more easily. Hence, when prior
information regarding the likely location of interesting effects is at hand, methods for studying
a particular fasciculus come into their own.

6.2 Tract-specific comparison

Perhaps the simplest method for searching for tract-specific differences between populations
involves manually superimposing regions of interest (s) with fixed dimensions onto an 
image with high grey matter–white matter contrast. Indices of white matter integrity such as
 can then be averaged within these regions and compared between the subject groups of
interest. This practice was employed in many of the first clinical comparative studies that used
 (e.g. Ellis et al., 1999; Jones et al., 1999), and it is still far from obsolete.

Manual placement of s has several advantages, many of which stem from its simplicity.
Computational run time is trivial. There is no complex relationship between the “original”
(i.e. native space)  data and those values which are used for comparison, as there is in
the common-space comparisons of  and . Depending on the level of specificity of
the hypothesis, it may not be necessary to find congruent regions in each brain—placing an
 in the correct structure with high confidence is often sufficient. Smoothing and multiple
comparisons correction are typically minimal or unnecessary; and averaging within each region
reduces the effects of noise. On the other hand, the method is not without its limitations. The
choice of  size is arbitrary—too large and partial volume effects will be considerable; too
small and noise will be a problem—although the relationship between this choice and the
results is likely to be less complex than that of ’s filter width. Study of any given fasciculus
is limited to a very small and arbitrary portion of its length, and the region of the tract in which
the  is placed will tend to depend on where it is most easy to fit it. Consequently, some
tracts may be wholly excluded from this type of study because they are never wide enough to
receive an  of the chosen size.

Probably the biggest drawback of manual -based comparison, though, is its subjectivity.
Although it requires almost no computational effort, the number of man-hours required to place
the required regions in a typical data set is considerable; and it is hard to justify the particular
placement choices made by any given observer. The related approach of segmenting an entire
white matter structure by hand is not only time consuming; it is also extremely difficult to do
well, since tracts are three-dimensional and can have highly irregular shapes.

Tractography provides an alternative. It is both objective and specific to white matter;
and it lends itself directly to the segmentation of whole tracts, thus minimising noise issues
whilst still focussing on a single fasciculus. The complex shape of white matter structures
is not a problem. Of course, the caveats that apply to fibre tracking in general also apply to
this application, but as problems such as crossing fibre degeneracy are handled better by new
algorithms, so segmentation accuracy can be expected to improve.

The problem is then one of choosing seed points. Since the output of tractography algo-
rithms is usually highly sensitive to the particular choice of starting location, care must be
taken to ensure that a study is truly comparing like with like. Indeed, however sophisticated
tractography algorithms become, the question of how best to initialise the tract reconstruction
process is likely to remain an important one, especially in segmentation applications where
consistency is important. Nevertheless, relatively little work has been done to date towards
a principled and practical approach to seed point placement. Seeds are sometimes placed by
hand, but average  measured in tracts segmented in this way has been shown to vary quite
widely between observers, and particularly between scans, even for a single subject (Ciccarelli
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Figure 6.2: The two regions of interest constraint
can separate disparate tracts which pass close to
one another, in this case in the corpus callosum
splenium. (a,b) Two and three-dimensional illus-
trations of the two tract trajectories, the former
in axial projection. (c) The location of subfigure
(a) in the brain. Reproduced from Conturo et al.
(1999).

points in the absence of noise) (23–25, 29). Associated with a
given ellipsoid is a symmetric 3 ! 3 diffusion tensor (D) having
three eigenvectors (the ellipsoid axes) and three eigenvalues
(D along these axes). The eigenvector corresponding to the
largest eigenvalue is the direction of fastest diffusion and
indicates fiber direction.

DT-MRI and Anatomical MRI. Single-shot echo-planar
(30) imaging pulse sequences with diffusion tensor encoding
were implemented on a Siemens Vision 1.5 Tesla MR system

(Erlangen, Germany). We applied Stejskal–Tanner diffusion-
sensitizing gradients (31) along four tetrahedral and three
orthogonal directions (25, 26) and acquired contiguous mul-
tislice images (45–51 slices, 2.5-mm isotropic voxels recon-
structed to 1.25 ! 1.25 ! 2.5-mm pixels) in four normal male
human subjects (24–49 yr). Image acquisition was repeated up
to 10 times in each subject for averaging (29-min total scan
time). Anatomical images weighted by the longitudinal relax-
ation time (T1) were also acquired (2-hr total session, includ-
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FIG. 1. Diffusion tracking of commissural fibers. 3D projection views (a and b) of diffusion tracks (red and blue) in the splenium of the corpus
callosum selected with ellipsoid filtering volumes (black). Tracks are viewed from above (a) and from the anterior-right direction (b). In c, the general
anatomical location of tracks and ellipsoids is shown in 2D overlay (see Methods) on a brain slice that cuts through the splenium (T1-weighted slice
156). Magnified 2D overlays (d) of tracks and ellipsoids onto selected slices (interpolated slices numbered superior-to-inferior with 24 slices/cm).
The green boxed region surrounding the 3D projections (a and b) corresponds to the green squared regions on 2D anatomical overlays (c and d).
Tracks were selected by ellipsoid filtration of whole-brain diffusion data (computed at an anisotropy threshold of A! " 0.19). Tracks that passed
through the splenium were observed to divide into two groups laterally and were color coded based on passage into lateral ellipsoids (black circles
on all images). Tracks projected to the occipital lobes (red tracks) and parietal lobes (blue tracks), and had a topological relation within the splenium
best seen in a and slice 156 in d. The oblique 3D view (b) shows the more superior projection of the parietal tracks (blue). Tracks were thinned
by a factor of 8 for 3D display.

Neurobiology, Applied Physical Sciences: Conturo et al. Proc. Natl. Acad. Sci. USA 96 (1999) 10423

et al., 2003a). Some of this variation will be due to noise, but subjectivity remains a major
confound if one is looking for group differences.

Seed points can be placed in some standard space and then transferred to each subject’s
native space using an image registration algorithm. The assumption is that if the transformation
between spaces is accurate then the seed points are congruous, and so the same fasciculus will
be segmented in each brain volume. There is a very real risk, however, that registration errors
and anatomical variation between subjects will make this assumption unsafe. Performance
can be improved by weighting the registration cost function so as to maximise the importance
of aligning white matter regions well, but we will see that this approach, which we will refer to
as the registration method, still has problems. On the other hand, it has the advantage of being
semiautomatic, and so reducing the effect of observer bias—although the choice of registration
algorithm and its parameters will of course affect the outcome.

Choosing a single seed point a priori is not the only way to use tractography for white matter
segmentation. One could instead seed at a number of voxels, which raises the questions of
which seeds in particular to use and what to do with the multiple tracts that result.

There are several answers to these questions available in the literature, and the spectrum
of supported responses is still tending to enlarge rather than shrink. Probably the most
well established method is to constrain the tractography algorithm so that all reconstructed
pathways must pass through two or more “waypoint” s (Conturo et al., 1999). The use
of this constraint is illustrated in Fig. 6.2. Seeding near the middle of the corpus callosum
splenium, in this case, may produce a streamline that projects posteriorly into occipital cortex
(coloured red) or one that projects anteriorly (coloured blue). Since the pathways run very
close to one another, the reconstruction will be highly sensitive to the exact location of the seed
point. However, if one seeds in a number of locations in the splenium and then retains only
those streamlines which pass through the two posterior s, it is assured that the anterior
projection will be ignored. Although these s are often placed by hand or using registration-
based transformation, they can often be far wider than the tract of interest—unlike regions
used directly for segmentation—and their exact placement may therefore not be crucial. This
kind of method is applicable to any streamline-based tractography algorithm, deterministic or
probabilistic; and has been applied to group tractography (Abe et al., 2004). There are some
limitations, however, which we will discuss later in the chapter.

Another alternative is to seed throughout the brain. The advantages and disadvantages of
this are obvious: on the one hand, choosing seed points is no longer an issue; on the other,
a large proportion of the results are irrelevant to the study of any given fasciculus. A two
 constraint can be applied, or one can use clustering techniques to divide up a brainful of
streamlines into related bundles. Various distance metrics have been proposed for streamline
clustering (Brun et al., 2004; Corouge et al., 2006; Maddah et al., 2005; O’Donnell & Westin,
2005), but one has still to identify the bundle or bundles of interest, and the general approach
is not directly applicable to probabilistic tract representations.

The remainder of this chapter is dedicated to describing a novel perspective on the seeding
problem, and applying it to some real-world data. We then compare the new method, which
we refer to as neighbourhood tractography (), with region of interest-based alternatives.
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6.3 Similarity and matching

Rather than modify tractography output to suit a particular criterion, the aim of the follow-
ing work is to improve the consistency of tractography-based segmentation in group data by
refining the initialisation of the algorithm; i.e. the seed point. In order to eliminate observer
subjectivity, the method is to be automated. Our approach is to choose, from a group of “candi-
date” seed points, that point which produces the best output. In order to quantitatively define
what constitutes “good” or “correct” output, we develop a novel tract similarity measure,
based on the shape and length of two tracts being compared (first described in Clayden et al.,
2006a). To validate the measure, and demonstrate that it provides useful information, we use
it to quantify similarity between independently generated comparable and disparate tracts in
a group of volunteers. Finally, we define a series of reference tracts, and apply the measure to
the problem of consistent seed point placement across this subject group, and show that the
set of tracts thus derived are more visually similar to one another than the set produced by the
registration method (cf. Clayden et al., 2006b, from which Figs 6.3–6.8 are taken).

Since there is a diverse array of tractography algorithms available, and studies may wish
to use different algorithms depending on the nature of the problem or hypothesis that they are
working on, it is desirable that the process of tract matching be as independent as possible of
the choice of algorithm. However, different algorithms produce different tract representations,
as we saw in chapter 5, which creates a problem when we want to compare them using a single
method. The solution is to use a common representation for all tracts, for the purposes of
matching only. The “field of connection likelihoods” representation of a tract that is natural
for probabilistic algorithms such as /ProbTrack can easily be generated by spatial
discretisation of a deterministic streamline, so for the purposes of our tract similarity measure,
we will assume that the tractography algorithm takes as input a single seed point, and produces
voxelised, quantitative output. Hence we can define a tract r as the ordered pair

r = (ar,φr(x)) , (6.1)

where φr(x) is a discrete scalar field denoting the likelihood of a path from the seed point, ar,
running through the voxel at location x in the native acquisition space of the subject. These
two data elements are tied together because they represent both the input and output of the
tractography algorithm. If ar changes, then φr will change too.

We will work on the principle that the characteristics of interest when comparing white
matter tracts are length and shape. That is, if two tracts have the same shape and have the same
length, then they are considered identical. For the purposes of comparison, we will make a
distinction between reference and candidate tracts. There is no structural difference between
the two, with both having the form given in Eq. (6.1), but similarity is always calculated for a
candidate tract relative to a reference tract, rather than vice versa.

The following algorithm, which is based on a simplification and specialization of a general
curve alignment algorithm (Sebastian et al., 2003), provides sensitivity to the shapes of both
the reference tract, r, and the candidate tract, c. Its output also depends on the length of
the shorter of the two tracts. It moves along the two tracts simultaneously, voxel by voxel,
finding a maximum likelihood pathway through the data, φr and φc, subject to certain path
direction constraints. The output of the algorithm is a scalar value, σ(r,c). The calculation
is asymmetric, so that in general, σ(r,c) ! σ(c,r). The algorithm tacitly assumes that the seed
points are equivalently located in the two tracts.

1. Initialise two sets of visited voxel locations, Vr and Vc, to the empty set.

2. Set tract pointers to the seed point location in each tract.

3. Add the current pointer position in the reference tract to the set Vr, and the position in
the candidate tract to Vc.

4. Check the voxel values, from the field of connection likelihoods, φr, of the 26 voxels
forming a cube around the current pointer location in the reference tract, and choose the
largest valued neighbouring voxel not in Vr. Note the step vector, vr, required to move
to this new location.
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Figure 6.3: Two-dimensional illustration of the shape
similarity algorithm, as applied to two identical tracts.
In (a), the boxes with bold borders represent the
starting point, which has been marked visited. The
shaded voxels in the reference tract indicate those
nonzero, unvisited locations that the algorithm may
legally move into, and the line represents the chosen
step vector, from the current pointer location (circle
head) to the next location (arrow head). In (b), move-
ment in the candidate tract is restricted to those voxels
whose angle from the chosen step direction in the ref-
erence tract is less than 90◦. Since the voxel values
are identical, the same direction is chosen. In (c),
the next step in the reference tract cannot be back to
the previous pointer location, since it is marked vis-
ited. In each diagram, numbers represent connection
likelihood values at each voxel.

5. Prohibiting movement at any angle greater than or equal to 90◦ from the chosen step
direction in the reference tract, find the largest valued neighbour to the pointer in the
candidate tract that is not in Vc. Note the step vector used here, vc.

6. Add the normalised inner product of the two step vectors to the result, σ(r,c).

7. Move in the directions of the chosen steps and update the pointers in each tract.

8. Return to step 3, and repeat until there are no unvisited, nonzero voxels adjacent to one
of the pointers. At this point, the algorithm has followed the reference tract to its end in
one direction.

9. Return to step 2, and repeat until there are no unvisited, nonzero voxels adjacent to one
of the starting points. The algorithm has now followed the reference tract to its end in all
directions.

The normalised inner product calculated in step 6 is given by

vr ·vc

‖vr‖‖vc‖
, (6.2)

which is equivalent to the cosine of the angle between the two step vectors. The formulation
of step 5 may seem to be excessively restrictive, but it simply ensures that the result is not
undervalued due to the pointers drifting in opposite directions along the tract. This is an
important issue because seed points are rarely placed at tract extremities—since such areas
tend to be associated with high directional uncertainty—and so traversal away from the seed
point can usually be in two, almost equally likely, directions. Note that there is no angle
restriction in step 4.

The value of the σ function is translation invariant; but because we compare the local
absolute directions of the tracts relative to the d acquisition coordinate system, rather than
curvature, it is not rotation invariant. This is desirable, since we do not want to produce
spurious matches between rotationally symmetric tracts such as the corpus callosum genu and
splenium, or bilateral pairs.



6.3. Similarity and matching 67

6.3.1 The reduced tract

Tract data of the form given by Eq. (6.1) are not constrained to be a single voxel wide, and
in general they will not be. Moreover, since the algorithm ceases stepping through the data
when either tract terminates, the exact path taken through a reference tract can vary, and may
be different during comparisons with different candidate tracts. This makes establishing an
upper bound on the value of σ(r,c) extremely difficult.

In order to alleviate this problem, we define a reduced version of the tract r to include
that subset of the nonzero data in φr which is visited during the comparison of r with itself, a
process that is illustrated, for a two-dimensional case, in Fig. 6.3. Parts (a) and (c) of the figure
represent two consecutive iterations of step 4 of the algorithm, and part (b) illustrates step 5.
The shaded squares in the figure represent those voxels that the algorithm is allowed to move
into, and the boxes with bold borders indicate visited voxels. After this calculation of σ(r,r),
the reduced tract, r̃, is defined as

ar̃ = ar φr̃(x) =
{
φr(x) if x ∈ Vr

0 otherwise, (6.3)

where Vr is the set of visited voxel vectors calculated by the algorithm above. While r and r̃
are generally not identical, they are equivalent to the σ function in the sense that

σ(r,r) = σ(r̃, r̃) = σ(r, r̃) = σ(r̃,r) , (6.4)

because all voxel locations whose data value is nonzero in r but not in r̃ are never visited. It
must be remembered here that the tract data r includes the seed point, ar, since this property
will not hold if the same voxel data but different seed points were to be passed to the σ function.

When comparing a tract to itself the inner product calculated in step 6 of the algorithm will
always be unity, and so the algorithm is merely counting the number of steps taken. Thus,
the value of σ(r,r) is exactly equal to the number of nonzero voxels in r̃ (excluding the seed
point), and since each nonzero voxel can be visited at most once, producing a maximum score
contribution of one, we can establish the bounds

0 ≤ σ(r̃,c) ≤ σ(r,r) ∀c . (6.5)

The restriction that the pointer in the candidate tract can never move in a direction opposite to
the reference tract ensures that all inner products are positive, and this fixes the lower bound
in Eq. (6.5) at 0. Equivalently, 0 ≤ σ(r, c̃) ≤ σ(c,c) for any r.

6.3.2 A similarity measure

Using the tract comparison algorithm described above, we now develop measures of shape
and length similarity, and then combine them together to form an overall similarity score.

We first approximate the length, Lr, of tract r as the number of voxels visited when it is
compared to itself, excluding the seed point, which is given by

Lr ≡ σ(r,r) . (6.6)

This length value is unchanged in the reduced tract, r̃, as shown by Eq. (6.4). Note that when
comparing a tract to itself, shape is irrelevant because the local directionality of the reference
and candidate tracts is always the same. If there are no nonzero voxels adjacent to the seed
point, the data represents a “point tract”, with length zero.

Given the definition of length in Eq. (6.6), and having calculated its value for the reference
and candidate tracts, we establish the similarity of these two numbers using the symmetric
normalised difference given by

S1(r,c) = 1−
∣∣∣∣∣
Lr−Lc

Lr+Lc

∣∣∣∣∣ =
2 ·min{Lr,Lc}

Lr+Lc
= S1(c,r) . (6.7)

This measure has the value zero if either Lr or Lc is zero, and unity if the lengths are equal.
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Figure 6.4: Qualitative demonstration of the ef-
fect on the two score components, S1 (length)
and S2 (shape), of different types of relationship
between the reference tract (fixed, and on the left
in each case) and the candidate tract (variable,
and on the right). The seed points are assumed
to be in the centre of each tract throughout.

(a) (b) (c) (d)

S1 = 1

S2 = 1

(S = 1)

S1 = 1

S2 < 1

(S < 1)

S1 < 1

S2 = 1

(S < 1)

S1 < 1

S2 < 1

(S < 1)

The other component of the similarity measure, the similarity in shape between the reference
and candidate tracts, can be established using the asymmetric formulation

S2(r,c) =
σ(r̃, c̃)

min{Lr,Lc}
! S2(c,r) . (6.8)

The denominator in Eq. (6.8) removes the length dependence of the σ function. The bounds
on the σ function that were established above ensure that the value of Eq. (6.8) is always in the
interval [0,1].

Finally, the two score components given by Eqs (6.7) and (6.8) are combined to form the
overall similarity score,

S(r,c) ≡
√

S1(r,c) ·S2(r,c) =

√
2 ·σ(r̃, c̃)
Lr+Lc

, (6.9)

the geometric mean of the two components. A higher value of Eq. (6.9) indicates a better match,
and a lower value indicates a worse match. The score will be 1 if r and c are the same tract.
It will be 0 if either r or c is a point tract. The geometric mean lends a far stronger influence
to very small values in one score component than does the arithmetic mean when finding the
“average” similarity of c to r, and in particular, if either score component is 0 then the overall
score is also 0. This formulation emphasises that both length and curvature must be similar for
the candidate tract to be considered a likely equivalent to the reference.

Fig. 6.4 shows four examples of tract pairs and their associated score components. In each
case the reference tract is on the left, and the seed points are assumed to be placed exactly in the
middle of each tract. These are idealised, and continuous rather than voxelised, tract curves;
but they illustrate how the two score components will be affected in various scenarios. In (a),
the candidate tract is identical to the reference tract. This is equivalent to the case in Fig. 6.3. In
(b), the candidate is a reflected copy of the reference. Note that the shapes of these two curves
are considered different. In (c), the candidate is a central segment from the reference, so the
shape is considered identical, but the lengths differ. It should be noted that this case represents
a truncation rather than a scaling of the reference tract, as the latter would not produce an S2
score of 1. Finally, in (d), the tracts are different in both shape and length.

6.4 Validation and application

Six normal volunteers (2 male, 4 female; mean age 27±3.4 years) were recruited for this study.
Each subject underwent a d protocol on a  Signa  1.5 T clinical scanner, consisting of a
single-shot spin-echo echo-planar imaging sequence with 51 noncollinear diffusion weighting
gradient directions at a b-value of 1000 s mm−2, and 3 T2-weighted scans. 48 contiguous axial
slice locations were imaged, with a field of view of 220× 220 mm, and a slice thickness of
2.8 mm. The acquisition matrix was 96×96 voxels in-plane, zero filled to 128×128. was 17 s
per volume and was 94.3 ms.

In order to investigate the variation in similarity scores between acquisitions, 2 of the sub-
jects were scanned twice, and 3 were scanned three times. Those subjects that went through the
protocol three times were taken out of the scanner between the second and third acquisitions,
and the slice locations were repositioned for the third acquisition without reference to those
chosen for the first two.
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The data were initially preprocessed to remove skull data and eddy current induced dis-
tortion effects from the images, using  tools. The underlying tractography algorithm used
in this study was the /ProbTrack algorithm (Behrens et al., 2003b). It should be re-
membered that the  model of the d signal is a partial volume model assuming a
single anisotropic diffusion direction at each voxel, and the measure of anisotropy it uses is
the anisotropic volume fraction (), rather than the more common, diffusion tensor-based
fractional anisotropy (). However, the two measures are closely related.

The aim of our first experiment was to validate the similarity measure described above,
by investigating whether the measure could differentiate between comparable and disparate
tracts in the group of volunteers. A series of 8 seed points were placed in major white matter
fasciculi on a Montréal Neurological Institute () standard brain (Evans et al., 1993), and
transferred to each subject’s native space using the  registration algorithm (Jenkinson &
Smith, 2001), with thewhite matter map used as a weighting volume (Clayden et al., 2005).
The specific seed regions chosen were genu and splenium of corpus callosum (), right and
left anterior limb of internal capsule (), right and left posterior limb of internal capsule
(), and right and left sagittal stratum (). Whilst the accuracy of seed point placement
using this registration method may be limited, it provides an independent mechanism for
generating groups of tracts that can be expected to be more or less similar to one another. The
ProbTrack tractography algorithm was run with each of these points as a seed, and similarity
scores were calculated for various tract pair permutations. Comparisons between equivalent
seed regions on the left and right of a single brain volume (e.g. left  versus right ) were
labeled “bilateral”, and all other comparisons within a single volume (e.g. left  versus right
) were labeled “nonbilateral”. Comparisons across subjects for a single seed region (e.g.
left  in subject 1 versus left  in subject 2) were labeled “intersubject”; and additional
similarity scores were calculated between 1st and 2nd scans (“inter-”b) and 2nd and 3rd
scans (“interscan”), where available, within each subject and seed region. We expect that
similarity scores will be lowest for the nonbilateral comparisons, and highest for the interscan
and inter- cases where the two tracts are from the same seed region and same subject. For
every pair of tracts thus compared, similarity scores were calculated using each in turn as the
reference tract.

A second experiment was then performed, aimed at applying the similarity approach to
the problem of improving the robustness of seed point placement across a group of scans.
For each seed region, a representative reference tract was chosen from a single scan. For
each other scan, a 7× 7× 7 cube of voxels around, and including, the voxel suggested by
the registration method—hereafter the “original” seed point—for each fasciculus of interest
were used as seed points for the tractography algorithm, except where the voxel  was less
than 0.2, an empirically chosen threshold used to avoid seeding in cerebrospinal fluid or grey
matter. The tract with the highest similarity score when compared to the relevant reference
tract was then selected as the “best” tract from each brain volume. We refer to this technique
as neighbourhood tractography.

In all of the experiments described above, reference and candidate tract data (i.e. the fields
φr and φc) were thresholded at the 1% level before similarity scores were calculated. This was
done to avoid inclusion of very low confidence paths in the comparisons.

Fig. 6.5 shows the results of the first experiment as a box-and-whisker plot. The mean (±
one standard deviation) similarity score for each group of tract comparisons was 0.14 (±0.13)
for nonbilateral, 0.31 (±0.13) for bilateral, 0.38 (±0.12) for intersubject, 0.47 (±0.09) for interscan,
and 0.46 (±0.12) for inter-. Two sample, two tailed t-tests showed significant differences
between nonbilateral and bilateral scores (P < 10−9), between bilateral and intersubject scores
(P = 0.005), and between intersubject and interscan scores (P < 10−6). There was no significant
difference between interscan and inter- similarity scores (P = 0.89).

Results from the second experiment are shown visually in Figs 6.6 and 6.7. The correspon-
dence between the letters labeling each subfigure and the different scans is shown in Table
6.1. Fig. 6.6 shows the tract fields produced by seeding ProbTrack at the original seed point
in splenium of corpus callosum, and thresholding the results at the 1% level. This seed region

bThe acronym , for “number of excitations”, is commonly used to denote the number of times an imaging
sequence was applied to the subject.
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Figure 6.5: Box-and-whisker plot showing the
range of similarity scores for the five different
categories of comparison in the first experiment.
The thick horizontal line across each box repre-
sents the median, the box shows the interquartile
range, the whiskers show the extent of the bulk of
the data, and circles show outliers more than 1.5
interquartile ranges from the box. The n values
indicate the number of scores making up the data
for each plot. The data demonstrate appropriate
score increases across the different test condi-
tions, suggesting that the score provides mean-
ingful and useful information.

Figure 6.6: Two-dimensional axial
projections of the tracts generated
by the ProbTrack algorithm using the
original seed points chosen by the
registration method, overlaid on AVF
maps of the slice in plane with the
seed in each case. White indicates
high AVF and black low. In the tracts,
yellow indicates high likelihood of
connection to the seed point, and red
low. The green stars indicate the seed
point locations. The similarity score
to the reference tract (f) is shown in
each case.
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Subject Scan 1 Scan 2 (inter-) Scan 3 (interscan)
1 (a) (b) (c)
2 (d) (e)
3 (f) (g) (h)
4 (i) (j) (k)
5 (l) (m)
6 (n)

Table 6.1: Correspondence between the different scans and the subfigure labels used in Figs 6.6 and 6.7.

Seed  point  score mean  score s.d.  score mean  score s.d.
 genu (8,22,14) 0.488 0.056 0.597 0.018
 splen. (−6,40,14) 0.354 0.106 0.542 0.031
right  (18,10,6) 0.529 0.098 0.651 0.026
left  (−16,10,6) 0.463 0.099 0.644 0.027
right  (36,−54,10) 0.329 0.220 0.680 0.023
left  (−36,−54,10) 0.365 0.077 0.516 0.024
right  (22,−14,10) 0.405 0.096 0.570 0.030
left  (−22,−14,10) 0.444 0.054 0.594 0.025

Table 6.2: Mean and standard deviation of similarity scores for all tracts chosen by neighbourhood trac-
tography (NT) in each of the 8 seed regions, determined from the 6 volunteers (14 scans). The means and
standard deviations for tracts chosen by the registration method (RM) are given for comparison. The position
of the seed point in MNI standard space is given in millimetres.

was chosen as the example because considerable variation in tract shape can be seen across the
group: the resultant tracts demonstrate pathways running anterior (d, e, h, k), posterior (a–c,
f, g, j, l–n) or both (i) from the edges of the corpus callosum itself (cf. Fig. 6.2). Fig. 6.7 shows
the tracts chosen by the neighbourhood tractography approach, after the same 1% threshold
has been applied. Both figures also show the similarity scores associated with each tract, using
(f), which is the same in both cases, as the reference tract. In Fig. 6.7, similarity scores are
necessarily greater than or equal to the corresponding score in Fig. 6.6, and only two tracts (i, l)
remain that do not project in the posterior direction from the corpus callosum. These two tracts
have the two lowest similarity scores in the figure. Tract (g), which has the highest score apart
from the reference tract, is found in the same subject as the reference tract, so the fasciculus it
represents is identical.

Fig. 6.8 shows examples of “reduced” reference and candidate tracts, in the sense described
in §6.3.1. It shows how the reduction affects the tracts. In this case, the reference tract is simply
slightly narrower than its unreduced equivalent, Fig. 6.6(f). The candidate tract is truncated at
the edge of the splenium, where the unreduced version, Fig. 6.6(h), had an ambiguous branch.

The mean and standard deviation of the similarity scores for the tracts chosen before and
after applying neighbourhood tractography for each seed region, across all subjects and acqui-
sitions, are given in Table 6.2. The figures for the “best” tracts—as chosen by neighbourhood
tractography—represent narrow and seed-specific score distributions, whose coefficients of
variation (s, the standard deviations divided by the means) are in the range 3.0–5.7%. By
comparison, the original scores, generated by the registration method, are invariably lower
with wider standard deviations. Their s are in the range 11.5–66.9%.

In the second experiment, 63% of seed points chosen by neighbourhood tractography were
not more than 2 voxels from the original seed point in any direction. This proportion is high
enough to suggest that a 7× 7× 7 search neighbourhood is generally sufficiently large. Run
time for the method might be expected to increase with the cube of the neighbourhood width,
although in practice it may be that more of the extra seed points are rejected by the anisotropy
threshold, and so the scale factor may be a little less.
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6.5 How many seeds?

To date, it has not been explicitly shown that tractography-based segmentation using a single
seed point cannot yield consistent results, and we see no reason that this should be the case,
particularly as the sophistication of tractography algorithms continues to improve. However
it is certainly true, as we saw in §6.2, that choosing a single point so as to obtain useful results is
hard. We have described here a method which emulates a process for selecting an appropriate
seed that might be used by a human observer: the expected topology of the tract is clearly
defined—in this case in terms of a reference tract—and then we try seeding at several plausible
locations until a good match is found. Unlike the human observer, though, the algorithm is
completely consistent in its assessment of candidate tracts and has no difficulties working in
three dimensions. The selection process is also far faster using the algorithm: comparing each
candidate tract with the reference tract takes only a second or so on a typical workstation.

The relationship between the neighbourhood tractography method, as we have presented
it here, and region of interest-based methods is simple to explain. Let us assume that a
plausible but suboptimal seed point has been selected in the native space of the subject using
the registration method. This seed point could then be used directly for tractography, or
one could grow an  around it and seed at every point therein, possibly subject to an
anisotropy threshold. Neighbourhood tractography then performs all-but-one rejection of
these seed points based on a posteriori tract similarity, whereas a multiple  method would
combine results from the whole seed region, subject to the waypoint constraint on individual
streamlines. Another option is to simply retain all the results with no constraints: this is a
single method. Selection between these strategies is therefore partly a question of deciding
how many seed points should be used to generate the final tract representation.

It should be noted that the two  constraint, as demonstrated by Fig. 6.2, is effectively a
modification of the tractography algorithm that it is applied to. A deterministic streamlining
algorithm, thus modified, will return either a streamline passing through the seed point and the
waypoint regions, or nothing. In the probabilistic case, the effect is to add an extra conditional
dependency on the  locations to the connection likelihoods, making it somewhat more
difficult to interpret the results.

Fig. 6.9 shows the results of applying the different strategies in a single scan, corresponding
to Fig. 6.6(c), using 5000 streamline samples per seed point in each case. If the reference tract
in Fig. 6.6(f) is taken to represent the pathway we are attempting to find in this scan, then Fig.
6.9(a) surely shows poor correspondence. Its projection into cortex is further anterior than it
ought to be, and the reconstructed tract appears to cross the interhemispheric plane posterior
to the splenium, which is definitely nonphysical. By constrast, tract (b) shows neither of these
problems. It can be seen in the unthresholded version of this tract, (f), that a very small number
of probabilistic streamlines (less than 1%) do project anteriorly from the splenium, but the main
trajectory of the tract is consistent with the reference.

Full seeding in the 7× 7× 7 voxel neighbourhood yields tract (g), which is very widely
spread out and heavily affected by thresholding—compare tract (c). These two effects are
related. A very large number of probabilistic streamlines are generated in this case (570,000 in
total), but since they are very widely spread out no more than 80,710 pass through any single
voxel in the brain. As a result, only 5.2% of nonzero voxels from (g) survive the threshold,
compared to 21.5% from (f). Worse, the threshold scales with the volume of the neighbourhood,
but the visit counts at each voxel do not keep pace (see Fig. 6.10), making the application of
this kind of threshold undesirably sensitive to neighbourhood size. This effect is even more
pronounced if an anisotropy threshold is not used to cull unpromising seeds from the seeding
region. It seems, then, that tract (c) should be treated with caution, while (g) is too nonspecific
to be of much use. Nevertheless, by carefully placing a smaller  well within the tract, a
single seeding region can be practical (Kanaan et al., 2006).

Finally, tracts (d) and (h) show the result of using two constraint s in addition to the
seeding . In order to yield a tract as similar as possible to (b), we used information from
the latter to place the constraint regions. The centres of the waypoint s in the left and
right hemispheres were placed at the locations with the greatest voxel value, in (b), within a
plane normal to the anterior–posterior axis that is shown in green. The size of the constraint
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Figure 6.7: Projections of the tracts
chosen as the “best” (highest similarity
to the reference tract), using a 7×7×7
seeding neighbourhood around the
original seed point. Individual simi-
larity scores are also shown. Tract (f)
is the reference tract.

Figure 6.8: Examples of reduced reference and candi-
date tracts, produced from two of the unreduced tracts
shown in Fig. 6.6.

(a) (b)

(e) (f) (g) (h)

(c) (d)

Figure 6.9: Illustrative results using
various seeding strategies for the cor-
pus callosum splenium in a single
subject, ignoring potential seed points
with AVF of less than 0.2 throughout.
(a,e) Single seed point placed using
the registration method. (b,f) Single
seed point chosen using neighbour-
hood tractography. (c,g) Full seeding
throughout the neighbourhood, with
additive combination of results. (d,h)
Full seeding, but with additional bilat-
eral waypoint ROIs placed posterior to
the splenium. (a–d) are thresholded
at the 1% level; (e–h) are unthresh-
olded. The colour scale is not consis-
tent in meaning between subfigures.
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Figure 6.10: The effect of thresholding on connection
likelihood when using a single ROI strategy. The im-
pact of the threshold, expressed as a fixed proportion
of the total number of streamlines initiated in each
case, is more significant as the seeding ROI increases
in size.

s was 7× 7× 7 voxels, as with the seeding region. The effect of thresholding in this case
is far more modest than without the constraints, but again the segmentation appears to be
passing between hemispheres twice, suggesting that the use of two waypoint regions may not
be sufficient to ensure a plausible segmentation. One can attempt to rectify this by adding
more constraints—in a recent reproducibility study, up to five constraint s of four different
types were used to segment each of the fasciculi of interest (Heiervang et al., 2006)—but all
such restrictions are simultaneously absolute and independent of the actual data, and so risk
undermining the very advantages of using tractography for segmentation. The logical limit of
the process of adding constraints, after all, is the case in which tracts are simply outlined by
hand.

It is interesting to note that even though the neighbourhood tractography result was used
to inform the placement of waypoint s, the result is very different in shape. The pathway
segmented in (b) is present in (h), of course, but the projection is so “unlikely”, given the
seed mask and waypoint constraints, that its end points in occipital cortex are absent from the
thresholded version. Instead, the tract projection in (d) represents the most visited pathway
from (g) that passes through the waypoints. It is very difficult to decide which of these results
is more anatomically correct. Validation of tractography output is a complex issue in its own
right, as we discussed in §5.5. However, we would certainly claim that the tracts shown in Fig.
6.7 are more similar to the reference tract—which is chosen for illustration—than those in Fig.
6.6. If the nature of the reference tract were later to be found to be inappropriate, it could be
updated and neighbourhood tractography repeated without change. The method would then
find the best match to the new reference tract.

Although we have focussed on probabilistic tractography in this comparison, our obser-
vations are just as valid in the deterministic—or maximum likelihood—case, where only one
streamline is generated per seed point. However, a connection likelihood threshold would not
then be relevant.

Multiple seed points for tractography need not necessarily be adjacent to one another in
a neighbourhood. We have described, in separate work, an iterative approach in which each
seed point is chosen from the tractography output for the previous seed such that it is as far
as possible from its predecessor whilst still having high likelihood of connection to it (Clayden
et al., 2005). This can help the segmentation to recover, to some extent, from a poor starting
seed point; but the choice of each seed point is not very strongly principled in that case, and
the method is likely to be rather too scattershot for general purpose use.

Ultimately, the question of which seeding strategy generates the most useful segmentation
of the fasciculus of interest will depend on the application. The all-but-one rejection approach
of neighbourhood tractography offers the greatest specificity whilst providing a strong prefer-
ence—as opposed to an enforced constraint—for tracts with topologies similar to the reference
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tract. methods, meanwhile, offer to segment the full width of the fasiculus if they are given
a large enough seeding region. The latter may be desirable, or it may be problematic due to the
larger expected role of partial volume effects. Of course, these two techniques are not mutually
exclusive, and it may be that in some cases a combination is the most successful.

6.6 Evaluation of the similarity measure

While tract shape has been studied before (Batchelor et al., 2006; Corouge et al., 2004; Ding
et al., 2003), previous work has been aimed at modelling individual tracts, rather than doing
pairwise similarity scoring. The kinds of tract characteristics that these previous studies have
worked with, such as curvature and torsion, could in principle be applied to the tract matching
problem; but as far as we are aware, the work described above represents the first actual
attempt at using a quantitative tract similarity measure to improve segmentation consistency.

The results from our first experiment provide evidence that the similarity measure described
above produces higher scores for a single seed region across a range of healthy subjects, than it
does for a range of seed regions within a single subject, as demonstrated by higher intersubject
than bilateral and nonbilateral similarity scores. Behaviour of this nature is clearly crucial
for any tract similarity measure that is intended to be used as a basis for the identification
of comparable tracts across a group of subjects. It is not surprising to find that comparisons
between bilateral seed regions (such as left versus right ) produce generally higher scores
than other comparisons (such as left  versus right ), since comparable white matter
fasciculi in the two hemispheres can be expected to have similar lengths and related shapes.
Nevertheless, even the bilateral scores are significantly smaller than the intersubject scores.

The finding that interscan and inter- scores are indistinguishable is an interesting one.
It suggests that repositioning of the slice positions introduces no consistent bias to the results
of the similarity measure, demonstrating a useful robustness to subtle changes in the slice
locations. It is also reassuring to see that both these sets of scores are significantly higher than
the intersubject scores, since the underlying fasciculi are the same across acquisitions, rather
than merely comparable as they are in the intersubject case.

The narrowness of the score distributions for each seed point—as shown in Table 6.2—
seems to indicate that the scoring algorithm is quite strongly influenced by the nature of the
reference tract. This may be because the part of each tract near the seed point in each direction
is relatively reproducible, whereas the spatially uncertain regions near the ends of tracts are
very unlikely to produce a perfect match with the reference tract. The combination of these
two factors may effectively impose reference tract-specific upper and lower score bounds.

A major advantage of the  approach is that no spatial manipulation of each individual
brain volume is required before tractography can be performed, and so potentially interesting
anatomical variation across the group need not be averaged away or otherwise distorted.
However, we have made no alterations or corrections for factors such as natural variation in
brain size and shape, or head rotation; even for the purposes of tract comparison. In fact, a
correction based on a transformation of the candidate tract into the space of the reference tract
would have problems of its own, since interpolating the tract data could alter its structure in
undesirable ways. For example, local duplication of voxel values—which would arise from
a nearest neighbour interpolation scheme—would be strongly suboptimal for our similarity
algorithm. The difficulty with registration also makes simple field-based distance measures
such as the sum of squared differences between voxels highly problematic for comparing tracts.

Since differences in head rotation and head size between scans will have a complex, non-
linear effect on the similarity measure, and may affect different tracts differently, it is not
straightforward to establish the impact of these variates, nor to recommend upper bounds on
acceptable rotations or scalings. Moreover, working with simulated data would add another
image processing step, which may be a source of variance, and would introduce similar in-
terpolation issues to a correction. However, interscan rotations for single subjects are present
in our data set. Linear registrations between pairs of T2-weighted images suggest that the
median rotation between a subject’s first scan and their third was 1.5◦ (4.3◦ about the left–right
axis, 0.6◦ about the anterior–posterior, and 1.1◦ about the superior–inferior). Hence, some
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variance due to rotation is incorporated into the results from our first and second experiments;
but it should be remembered that in the first experiment, inter- and interscan scores were
statistically indistinguishable, despite much smaller rotations in the former case (median of
0.3◦), suggesting a certain robustness to such effects.

The similarity measure described above aims to be relatively simple whilst capturing impor-
tant characteristics of the two tracts that we wish to compare. This simplicity aids portability.
Whilst probabilistic tractography algorithms tend to produce tract data of the form given by
Eq. (6.1), some other approaches, particularly streamline-based algorithms, instead produce a
single line of infinitesimal thickness through the seed point. In these cases, the principle of
our similarity calculation would still be applicable, and in fact the method would become even
simpler because there would no longer be any need to produce a reduced tract.

There is an obvious limitation of comparing shape at the voxel scale, which is that voxel
sizes vary between data sets and have no intrinsic physiological significance at all. Moreover,
since voxels are often not equal in width in all dimensions, a step of “one voxel” may represent
a different real-world distance depending on the orientation of the step.

The main weakness of the similarity measure presented here is that the termination criterion
in step 8 of the algorithm (see page 66) can be met prematurely if a local “loop” of relatively
high valued voxels is encountered. This leads to underscoring or false negatives, and is
likely to be at least a contributor to the problem of narrow score distributions for a particular
reference tract, and the reason that tract (l) is less visually similar to (f) in Fig. 6.7 than in Fig.
6.6. That result, when taken in context with the rest of the data, suggests that while a high
score seems to indicate a good match between tracts, a low score may not reliably indicate a
bad match. Indeed it is plausible, even likely, that in some cases better matching tracts than
those selected by this similarity measure were available but were underscored and therefore
disregarded. This substantial issue could perhaps be alleviated by biasing the algorithm in
favour of continuing in the same direction as its previous step, and introducing some fuzziness
into the choice of local maximum voxel in step 4 of the algorithm. However, these changes
would render the algorithm nondeterministic, and care would have to be taken to ensure that
the maximum and minimum scores remain tractable. A different approach may be preferable.

6.7 The next step

This chapter began with a look at how segmentation and comparative analysis in white matter
can be approached using either a tract-specific or a whole brain starting point, the choice
between which should depend on the specificity of one’s hypothesis. We saw that segmentation
using tractography is typically subjected to constraints based on a number of “waypoint”
regions of interest, which are described in advance. This multiple  approach is one way to
incorporate prior knowledge into the fibre tracking process, but it represents a hard constraint
which complicates the interpretation of the resulting tract. The novelty of the neighbourhood
tractography method, as an alternative approach, is that it allows prior information to be
introduced in the form of a reference tract, but rather than constraining tractography directly,
the reference is used to select from a number of candidate segmentations generated with
different seed point initialisations.

We have demonstrated here that  can work as intended, although we have also identified
some shortcomings in the particular similarity measure that we used. As well as considering
how these issues might be overcome, it is important to investigate how successful the method
is when applied to data of clinical interest, where there may be more confounding factors than
are present in scans from healthy young volunteers. The latter will be the focus of the next
chapter.


