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White matter fibre tracking

T  white matter orientation information provided indirectly by d can be used
to reconstruct the pathways of major white matter structures through the brain. This

reconstruction process is known as fibre tracking, or tractography. A considerable number
of tractography algorithms have been put forward, however, which differ in the ways that
they interpret the original data, how they handle uncertainty, and how they represent the
reconstructed tract. In some cases nontensorial models of diffusion have been employed to
handle some of the degeneracies that the diffusion tensor model faces.

In this chapter we review a number of different types of tractography algorithm, describe
their relative advantages and disadvantages, and discuss some of the uses to which fibre
tracking methods have been applied. We also mention some of the limitations that still apply
to the state of the art algorithms.

5.1 Streamlines

We have seen in chapter 4 that the tensor model of diffusion provides an indication of the
principal orientation and magnitude of diffusion at a point, in the form of the first eigenvector
and associated eigenvalue. This information can be visualised simply by drawing a line,
whose orientation and length indicate these two properties, at each location where the model
is evaluated—typically a voxel. The components of this representation in a single axial (x–y)
plane are shown in Fig. 5.1(a). It can be seen by inspection from this figure that there is a fairly
smooth curvature in successive principal diffusion direction vectors as they progress across,
in this case, the corpus callosum splenium. The most intuitive way to reconstruct a tract is,
then, to link these directions together to form a streamline. This is the approach taken, in some
form, by a majority of tractography algorithms.

Fig. 5.1(b) demonstrates the tract reconstruction process of the Fibre Assignment by Contin-
uous Tracking () algorithm, which was first demonstrated for fixed rat brain tissue (Mori
et al., 1999; Xue et al., 1999). Beginning at the centre of a seed voxel, the algorithm moves in
the direction of the principal diffusion orientation until reaching the boundary with another
voxel, at which time the direction of the reconstructed tract changes to match the orientation of
diffusion in the voxel it is entering. This process continues until a termination criterion is met,
and is then repeated in the opposite direction from the seed point. It should be noted that the
arrowheads shown at each voxel are present for the benefit of interpretation only—they have
no physical significance, since diffusion orientation information is directionally nonspecific.

The differences between the early tractography algorithms are primarily in the choice of
termination criteria and sampling policy. While  samples a trajectory direction exactly once
per voxel, other approaches interpolate the original data to obtain local orientation information
at a shorter scale, with the reconstruction typically involving short steps of a fixed distance
(Basser et al., 2000; Conturo et al., 1999)—a strategy which results in smoother tract pathways
than the  one. Meanwhile, anisotropy and tract curvature thresholds are commonly used
as termination criteria for the reconstruction process, both of which help avoid tracking into
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with the largest eigenvalue was assumed to represent the
direction of a local axonal fiber within the laboratory
reference frame. This data processing provided the 3D-
vector field from which the fibers were reconstructed. In
addition a cylindrical anisotropy index was obtained,
defined as Acyl ! ("1 # ("2 $ "3)/2)/( "1 $ "2 $ "3).

MR Experiment

As mentioned above, the acquisition of high-resolution 3D
data is necessary to relate diffusion anisotropy information
to 3D axonal projections and to avoid dominant orienta-
tional averaging within voxels containing multiple tracts.
The long scanning time associated with such a high
resolution complicates diffusion measurements, which are
inherently susceptible to motion artifacts. In order to
accomplish both the resolution and motion objectives, we
designed a modified rapid 3D diffusion MRI technique (18)
with a real time motion monitoring scheme based on the
navigator echo approach (18–20). A data size of 128 % 64 %
32 was acquired over a field-of-view of 28 %20 % 16 mm,
after which zero-filling to the final resolution of 256 %
128 % 64 was performed (nominal voxel size of 109 %
156 % 250 µm). By using a repetition time of 1 sec, two
scans per phase encoding, and acquisition of four echoes
per excitation, each diffusion-weighted image could be
acquired within 17 min. From seven diffusion-weighted
images along six independent axes, six independent vari-
ables in a diffusion tensor were calculated using a multi-
variant linear fitting as described by Basser et al. (7). The
total data size was 59 MB and the data processing time was
30 min on a Silicon Graphics ONYX workstation (Moun-
tain View, CA).

Fiber Tracking

Fibers were reconstructed using a method dubbed FACT
(16). In this method, tracking is started through the selec-
tion of an arbitrary voxel in 3D space, afterwhich an axonal
projection is traced in both the orthograde (forward) and
retrograde (backward) directions. Even though the 3D-
vector field obtained from the DTI consists of discrete
voxels, the tracking is made in a continuous number field.
Namely, a line is propagated from the center of the initial
voxel along the direction of the vector until the line exits to
the next voxel (Fig. 1). In this approach, the starting point
in the next voxel is the intercept of the previous voxel.
Once the line is propagated, voxels through which the line
passes are connected to represent the fiber projection. The
tracking is terminated when it enters a region where the
average of the inner products with the vectors of the three
closest voxels is smaller than 0.75. For the tracking of a
certain projection, the white matter region is identified
using the Acyl image or a T2-weighed image using anatomi-
cal landmarks, after which a group of voxels is defined.
The FACT analysis is then performed from each voxel
(10–20 voxels depending on the size of the region of
interest).

RESULTS

The results of the in vivo 3D-fiber tracking are shown in
Fig. 2. Eight well-known fiber projections, genu and

splenium of corpus callosum, internal and external cap-
sule, fimbria, anterior commissure, optic tract, and stria
terminalis were tracked. Two-dimensional slices are shown
in Fig. 3 with the corresponding levels in a rat brain atlas
(21). The tracking of the genu and splenium of the corpus
callosum began from the points indicated by arrows. Fibers
in the genu (light blue) were followed laterally into the
external capsules of both hemispheres, while fibers in the
splenium (pink) were tracked posteriorly into the occipital
poles. Fibers in the fimbria (blue) were traced ipsilaterally
to the alveus of CA1-CA2 and also contralaterally through
the ventral hippocampal commissure (hc) into the fimbria
of the contralateral hippocampus. Internal capsule (red),
optic tract (green), and stria terminalis (peach)were closely
clustered in the slice shown in Fig. 3E. However, their
overall structures were very different, and our tracking
precisely reflects them. Fibers initially identified in the
internal capsule extended in one direction to caudate-
putamen (CPu); in the other direction they passed through
the cerebral peduncle (cp) of the midbrain and into the
longitudinal fasciculus of the pons (lfp). The optic tract
was identified at the point where it first contacted the base
of the diencephalon (Fig. 3F) and then traced to its
termination in the dorsal lateral geniculate body (Fig. 3C).
At that point, however, some of the tracking started to
follow fibers in fimbria, a problem described previously
(16). Fibers in the stria terminalis looped around the
thalamus and connected the hypothalamus (HT) and the
amygdala (Amg) (Fig. 3E). Fibers in the anterior commis-
sure (yellow) were not only traced caudally and across the
midline but also rostrally into the olfactory bulbs. Some of
the tracts in the anterior commissure and splenium of
corpus callosum seem to exit the brain. This is because the
3D-rendering scheme filtered out low intensity regions,

FIG. 1. A schematic diagram of the fiber tracking by the fiber

assignment by continuous tracking (FACT) program. Short arrows

represent vector directions of the largest principal axis. A tracking (a

long arrow) is started from a center of a selected voxel and a line is

propagated by observing the vector direction of each voxel. The

voxels through which the line passes are connected. Examples of the

tracking from voxels numbered 1 and 2 are shown. Note that the two

trackings which lead to the labeling of two different fiber paths share

the same voxels indicated by shading (for more detail, please see the

Discussion section).

1124 Xue et al.
(b)(a)

Figure 5.1: (a) Visualisation of the principal orientations and magnitudes of diffusion at each voxel in part
of a dMRI image. (b) Reconstructing fibre pathways using the FACT algorithm. Subfigure (b) is reproduced
from Xue et al. (1999).

grey matter or cerebrospinal fluid regions. Further discussion of these issues can be found in
a review of fibre tracking methods by Mori & van Zijl (2002).

The simplest fibre tracking algorithms are completely deterministic—the principal eigen-
vector of the diffusion tensor is assumed to be a reliable and noise-free indicator of the local
white matter trajectory. The problem, of course, is that the principal diffusion direction is
neither of these things. Its reliability is never perfect, and will be affected by the number of
gradient directions applied to the sample and any registration errors that occurred during the
alignment of the component images, while noise is in fact omnipresent and will tend to “cause
a computed trajectory to hop from tract to tract”, as Basser et al. (2000) have pointed out. More-
over, noise errors will accumulate as one moves further and further from the seed point. One
way to try to circumvent this issue is to impose constraints on the tract reconstruction process
which are informed by a priori knowledge about the geometry or topology of the underlying
fasciculi (Conturo et al., 1999; Poupon et al., 2000). The benefit of these methods—as well as the
extent of the problem that they attempt to tackle—is, however, difficult to predict in general
terms, since the effects of noise (say) will depend on the particular protocol used to acquire
the data, the shape of the tract, the signal-to-noise ratio, the anisotropy characteristics of the
tissue, and so on. The final streamline itself gives no indication of the level of confidence that
one can expect in the reconstruction.

More recently, streamline-based algorithms have been developed that attempt to indicate
the variability that can result, when tracking from a single seed point, due to noise and
uncertainty in the data. Some of these techniques are parametric, using a model to explain the
data, while others are nonparametric, and therefore implicitly take any source of variability
in the results into account. Fundamentally, however, all of these probabilistic approaches are
based on the idea of replacing the single principal diffusion direction with a distribution over
orientations, which indicates the uncertainty associated with the data at each voxel. One can
then generate a family of streamlines from a single seed point using a Monte Carlo approach,
sampling from these local distributions each time a new tracking direction is needed. Early
work in this vein was published by Lazar & Alexander (2002) and Parker et al. (2003), who
used the tensor shape to choose the variance of the orientation distributions. The approach
demonstrated by Parker et al. was later developed further by Cook et al. (2004).

Bootstrap approaches to tractography are an example of a nonparametric statistical ap-
proach. Bootstrap is a resampling method, which requires that multiple measurements of the
diffusion-weighted signal be taken for each diffusion gradient direction. Then, rather than us-
ing all of these data to fit a single diffusion tensor—which is the maximum likelihood approach
taken by more simplistic algorithms—a subset of the data is sampled, with replacement, from
the multiple measurements, and the tensor is calculated from this subset. A large number of
these subsets are then extracted from this original data set, producing an empirical distribution
over each of the free parameters in the diffusion tensor model. A general approach to using
bootstrap to characterise uncertainty in d data was put forward by Pajevic & Basser (2003),
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Full data set Sample 1 Sample 2

A(1)
1 A(2)

1 · · · A(6)
1 A(2)

1 A(4)
1

A(1)
2 A(2)

2 · · · A(6)
2 A(5)

2 A(4)
2

A(1)
3 A(2)

3 · · · A(6)
3 A(1)

3 A(1)
3

A(1)
4 A(2)

4 · · · A(6)
4 A(2)

4 A(6)
4

...
...

...
...

...
︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸ ︸︷︷︸ ︸︷︷︸

regression ↓ ↓ ↓
D̂ D(1) D(2)

Table 5.1: Illustration of the application of bootstrapping to a dMRI data set containing repeated measure-
ments. We denote the ith signal measurement using the kth gradient direction as A(i)

k .

confidence intervals, and how to visualize both fiber ori-
entation and uncertainty concurrently. Since this tech-
nique provides an objective measure of reproducibility of
fiber orientation, it could be used to provide objective
comparison of the performance of different DT-MRI data
acquisition strategies in terms of their reproducibility of
fiber orientation.

This technique could also be used to compare the effi-
cacy of different tensor smoothing and regularization tech-
niques (10,14–16) which aim to eliminate variations in
estimates of eigenvectors due to noise while preserving
true anatomical variations. The optimal scheme would be
that which resulted in the smallest cone of uncertainty
while, at the same time, introducing minimum perturba-
tion of the most probable fiber orientation (i.e., the most
likely fiber orientation in the unsmoothed/unregularized
data).

Both Figs. 1 and 2 show low uncertainty in fiber orien-
tation estimates in the splenium of the corpus callosum, a
structure that is much favored in the tractography litera-
ture. It is perhaps unsurprising, therefore, that results ap-

FIG. 2. Cones of uncertainty (showing the
95% confidence angle) at the level of the
splenium of the corpus callosum. a: Frac-
tional anisotropy. b: Cones of uncertainty in
the region indicated by the dashed lines in a.
This region is further magnified in c. The
zoomed area highlights a region where fibers
cross and the uncertainty in !1 is large.

FIG. 3. Plot of 95% confidence interval in fiber orientation vs. Clinear.
The data for each voxel in the entire 60-slice volume are plotted on
a pair-wise basis.
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Figure 5.2: Orientation uncertainty in dMRI data, visualised as cones showing the 95% angular confidence
interval at each voxel. Subfigure (b) corresponds to the area of (a) indicated with a box; likewise the further
enlarged image (c). Reproduced from Jones (2003).

with applications to tractography following later (Jones & Pierpaoli, 2005; Lazar & Alexander,
2005).

Let us assume, for the sake of argument, that we have made six signal measurements for
each of the gradient directions applied during a d experiment. The diffusion tensor, D, can
then be estimated from various subsets of these data, provided that at least the minimum six
noncollinear gradient directions, plus a measurement with no diffusion weighting, contribute
data to each subset. This is the principle employed by Jones (2003), and illustrated by Table 5.1.
The maximum likelihood tensor is denoted by D̂, while those estimated by sampled subsets of
the data are denoted D(1) and so on. The latter can be used to estimate the uncertainty associated
with the principal eigenvector, which is visualised in Fig. 5.2. Each set of sampled tensors for
a given brain volume can then be used, in turn, to generate a single streamline from a chosen
seed point, using a normal deterministic algorithm. The result will be a set of streamlines with
a spatial distribution that reflects the variability encountered by the streamlining algorithm
across the sample set—as shown in Fig. 5.3.

There are some interesting characteristics of the uncertainty elucidated in this way. Firstly,
we can see by immediate inspection of Fig. 5.2 that the width of the 95% confidence interval
on the principal diffusion orientation, which is depicted there, is highly variable between
voxels. Near the middle of the corpus callosum splenium the confidence interval is extremely
narrow. In this region, the maximum likelihood tensor would provide a reliable indication
of the trajectory of this white matter structure. By contrast, the uncertainty is huge in areas
which are composed primarily of —like near the bottom right of subfigure (b)—where
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cle. The utility of the visitation count maps is further
demonstrated in Fig. 3, in which pathways emanating
from a point placed in the cingulum are shown. The tract
reconstructions are very compact along the central third of
the cingulum. This portion of the tract is in local isolation

and there are no “alternative ” routes/fasciculi in proxim-
ity for the stream particle to follow. However, as the
streamlines proceed further from the seed point, the tracts
begin to deviate and can pick up artifactual false-positive
tracts, e.g., connections to the contralateral hemisphere.

FIG. 1. Bootstrap results obtained from
three seed points placed in the body of the
corpus callosum. The location of the seed
point is indicated by a red asterisk.

FIG. 2. Results obtained from a seed
point placed in the right cerebral pedun-
cle. (a) The “raw” bootstrap trajectories;
(b) the percentage visitation count. The
color bar is in 5% intervals, with dark blue
corresponding to the lowest visitation
count (at least 1 visitation), while red cor-
responds to all 5000 bootstrapped tracts
passing through the voxel. The data are
overlaid on slices showing the fractional
anisotropy (FA). The seed point location is
indicated by the cross-hairs.

Confidence Mapping in Deterministic Tractography 1145

Figure 5.3: Results of applying the
bootstrap method to tractography of
the corticospinal tract. From a sin-
gle seed point, which is indicated on
each subfigure, a number of sample
streamlines are produced (top). The
proportion of the streamlines visiting
each voxel can be counted to form
a “visitation map” (bottom). Repro-
duced from Jones & Pierpaoli (2005).

diffusion is close to isotropic. Less predictable, however, is the effect of fibre crossings, which
can be observed near the centre of (c). In this case, diffusion is approximately oblate, with two
relatively large eigenvectors and one smaller one; and so the principal direction is less certain.
The cone metaphor reflects this.

The necessity of acquiring multiple signal measurements for each diffusion gradient direc-
tion represents a problem for the basic bootstrap paradigm, because it will result in considerably
extended scanning times without the improvement in angular resolution that would result from
spending this time sampling more directions. Long scan times are particularly problematic in
the clinical domain, since patients cannot be expected to remain still for long periods of time.
Furthermore, the bootstrap method can substantially underestimate the degree of uncertainty
in the tensor components when the number of repeated acquisitions is small (Chung et al.,
2006). However, a method known as the wild bootstrap offers to remove the need for multiple
acquisitions when estimating the uncertainty in d data (Whitcher et al., 2007).

The wild bootstrap differs from “ordinary” bootstrapping in that it works with the residuals
from a diffusion tensor fit to the signal data. If we describe a vector of unknown parameters,
x = (Dxx,Dyy,Dzz,Dxy,Dxz,Dyz, ln A0)—where Dxx (and so on) are the tensor components, and
A0 is the signal without diffusion weighting—then the linear model used to estimate these
components can be written out as

A = Bx+ε ,

where A is a vector of observed log-signal values, B is a matrix describing the diffusion gradient
directions applied, and ε is a vector of error terms. Thus we can evaluate an estimate for the
parameters, x̂, using least-squares regression and our knowledge of A and B. As with other
bootstrap methods, we do not need an explicit model for the errors, which are caused by
noise and misregistration and so on. However, we subsequently use them to generate samples
according to

A(i)
k = Bk · x̂+hk s(i)

k εk , (5.1)

where Bk and εk are the elements of B and ε corresponding to the kth direction, and s(i)
k has the

simple probability mass function

Pr
(
s(i)

k = s
)
=

{
1
2 for s = ±1
0 otherwise ∀k, i . (5.2)

The constant hk in Eq. (5.1) is used to ensure that the sampled residuals have the covariance
structure required by the method (see Chung et al., 2006, for details). Rather than repeatedly
measure Ak, therefore, we instead resample the data by randomly permuting the signs of the
residuals—i.e. by sampling from Eq. (5.2) for each value of i and k. Thus, only a single set of
real measurements need be made, keeping scanning time short.
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5.2 BEDPOST

It should be noted that the wild bootstrap introduces a dependence on the diffusion tensor
model which is not present using ordinary bootstrap. Since the acquired data must be fitted to
some kind of model for residuals to be available, the wild bootstrap is by nature a model-based
resampling method. However, while the signal measured for each diffusion gradient applied
is modelled using the diffusion tensor formalism, no model is used to explain the variability
itself.

It is possible to go further, and model the observed data including their inherent uncer-
tainty. This is the aim of another category of tractography algorithms, including the 
algorithm (Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques;
see Behrens et al., 2003b), which has been used for most of the practical parts of this thesis.
By way of illustration of a fully model-based approach to tractography, and because of its
centrality to work described later, this algorithm is fully described below.

The  algorithm uses Markov chain Monte Carlo sampling to estimate diffusion 
parameters. As above, the algorithm works with a vector of observed log-signal data, A, and
a model parameter vector, x. However, because the diffusion tensor model can only usefully
describe a single principal diffusion direction—since the second eigenvector is constrained
to be orthogonal to the first—similar information can be embodied in a simpler model. In
particular, Behrens et al. assume that the diffusion displacement distribution is a mixture of
two Gaussians, in which one “compartment” is isotropic and the other is perfectly anisotropic,
describing a single local tract orientation. The signal for the kth diffusion direction, µk, is then
given by

µk = A0
(
(1− f )exp(−bkD)+ f exp(−bkDGT

k RMRTGk)
)
, (5.3)

where bk is the kth scalar b-value, Gk is the kth diffusion encoding direction represented as a
column vector,

M =




1 0 0
0 0 0
0 0 0


 ,

and R rotates M to align with the fibre direction in the voxel, which requires two implicit
angles (θ, φ). Compare Eq. (5.3) with the standard d formulations in Eqs (4.7) and (4.8).
The natural index of anisotropy arising from this model is the mixture coefficient, f , which we
refer to as the anisotropic volume fraction (). Note that the model provides no information
about anisotropy perpendicular to the direction encoded by R; but then such information is
not directly relevant to streamline tractography.

Under the generative model of local diffusion described by Eq. (5.3) and the assumption
that noise is independent and identically distributed for each measurement, the likelihood of
the observed data is given by

P(A |x) =
∏

k

P(Ak |x) , (5.4)

where
P(Ak |x) ∼N(µk,σ

2) ; (5.5)

and so the full parameter vector is x = (A0,D, f ,θ,φ,σ). The posterior distribution over these
parameters is given by Bayes’ rule:

P(x |A) =
P(A |x)P(x)∫

P(A |x′)P(x′)dx′
. (5.6)

For the purposes of fibre tracking, however, the most important parameters at each voxel are
the angles which provide tract orientation information. If we wish to obtain distributions over
x1 = (θ,φ), we will need to calculate the marginal distribution given by

P(x1 |A) =
∫

P(x |A)dx2 , (5.7)
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where x2 = (A0,D, f ,σ), a vector consisting of the remaining parameters. Both the evidence term
in the denominator of Eq. (5.6) and the marginal distribution of Eq. (5.7) require the evaluation
of complex integrals, however, and cannot be expected to be soluble analytically. We therefore
turn to  sampling to evaluate them empirically.

The priors, P(x), in Eq. (5.6) are chosen by the authors to be uninformative, except where
ensuring positivity is appropriate: in A0 and f . Initialisation for the Markov chains is provided
by performing a normal least-squares diffusion tensor fit to the data at each voxel, and using
tensor analogues of each parameter. Samples for σ are generated using a Gibbs sampler,
and all other parameters are sampled using the Metropolis–Hastings algorithm. Proposal
distributions for the latter are zero-mean Gaussians whose variance is tuned to maintain an
acceptance rate of 0.5.

The generative model for the noisy data, Eq. (5.5), takes the form of a normal distribution
with known mean—given knowledge of the partial parameter vector x3 = (A0,D, f ,θ,φ)—and
unknown variance. This is a common and therefore well-characterised situation. Using a
gamma prior distribution for the precision, τ = 1/σ2, viz.

P(τ |α,β) =Gamma(α,β) =
τα−1 βα e−βτ

Γ(α)
,

where Γ(·) is the gamma function, the posterior over τ given data A is another gamma distri-
bution:

P(τ |α,β,A,x3) =Gamma


α+

K
2
, β+

1
2

∑

k

(Ak−µk)


 ,

where K is the total number of gradient directions acquired. This is used by  as the
conditional distribution for the Gibbs sampler, although the authors do not explicitly state how
they chose the prior hyperparameters α and β.

The marginal distribution for x1 is trivially extracted from the samples over x by considering
only θ and φ from each sample vector. The tractography part of the algorithm—which the au-
thors call ProbTrack—then uses these samples to reconstruct a set of “probabilistic streamlines”
using a normal streamlining approach. Given a seed voxel, a, the process is as follows.

1. Start with the current “front” of the streamline set to a.

2. Select a random sample, (θ,φ), from P(θ,φ |A) at the streamline front.

3. Move the front some small distance in the direction of (θ,φ).

4. Return to step 2, and repeat until a stopping criterion is met.

The stopping criteria are not strict, stipulating only that a streamline is not allowed to curve
by more than about 80◦, and that a streamline will be terminated if it leaves the brain or enters
an area that it has already visited.

To evaluate the direction of propagation at any location in the brain, not just those that
coincide with voxel centre points, some kind of interpolation scheme is required. The authors
use a probabilistic analogue of trilinear interpolation, in which a sample is drawn from one
of the two adjacent voxels in each dimension according to how close the sample location is to
each of them. Indexing in voxel steps, the sample location is taken from the p.m.f.

Pr(x = v) =
{

ceil(x)−x for v = floor(x)
x−floor(x) for v = ceil(x),

where floor and ceil are the usual floor and ceiling functions. If x = floor(x)—that is, x falls
exactly on a voxel location—then the sample is taken from that voxel with unit probability.

This procedure for generating streamlines is repeated a large number of times (typically
5000) for a particular seed point, generating a spatial distribution for the tract running through
the seed point at a. This distribution may be usefully discretised by counting up the number of
streamlines passing through each voxel and associating this count with the voxel volume. An
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(a)

(b)

(c)

Figure 5.4: Example discretised spatial
distribution from the BEDPOST/ProbTrack
tractography algorithm, showing the corti-
cospinal tract in axial (a), coronal (b) and
sagittal (c) maximum intensity projections.
The underlying greyscale image shows AVF
in the slice in-plane with the seed point in
each case. White indicates that nearly all
streamlines pass through the local voxel,
while red means that very few do. The full
colour scale is shown.

example of the result is shown in Fig. 5.4. These data can be interpreted as confidence bounds
on the location of the most probable tract passing through the seed point.

Behrens et al. showed, in their paper, that the levels of uncertainty estimated by their
method are comparable with those estimated by the bootstrap approach described by Jones
(2003)—thus justifying, to some extent, the additional assumptions that they make in their
fully model-based approach. The advantage of this added model specificity, meanwhile, is an
improved sensitivity.

A standard implementation of  is freely available as part of the  package of
software tools (Smith et al., 2004), which is written and maintained by the  centre at the
University of Oxford.

A number of variations on, and extensions of, the  method have been proposed.
Friman et al. (2006) describe another alternative model for diffusion at a voxel, which is essen-
tially the tensor model, but with the two smaller eigenvalues constrained to be equal—that is,
λ2 = λ3 = α—thereby producing the form

µk = A0 exp(−αbk)exp
(
−(λ1−α)bkGT

k RMRTGk
)
. (5.8)

The authors also use a more theoretically justified noise model, whose variance depends on
the signal value; and they use point estimates for the “nuisance” parameters in the model in
order to reduce its computational demands.

Neither the compartment model described by Eq. (5.3) nor the constrained model of Eq.
(5.8) can account for more than one fibre orientation at a voxel. Rather, multiple fibre orienta-
tion information is manifested as increased uncertainty in the single orientation that they can
represent. However, both models can be generalised to handle this case, which occurs com-
monly in the brain at typical imaging resolution—the compartment model by adding extra
anisotropic compartments (Behrens et al., 2007), and the constrained case by modelling addi-
tional tensors (Hosey et al., 2005). It is generally wise to use the simplest model that explains
the data satisfactorily at each voxel, rather than simply to fit multiple fibre orientations at every
location in the brain. Hosey et al. achieve this by fitting one and two tensor models at each
voxel and using probabilistic model selection to choose between the results, while Behrens et al.
fit a single, complex model but apply a technique known as automatic relevance determination
(see MacKay, 1995, §7) to factor out unneeded parameters.

5.3 Fast marching

Streamline generation is not the basis for all fibre tracking algorithms; although it is, as we
have mentioned, the most common. One alternative general approach is to propagate a 3-
surface or front in all directions from the seed point at once, such that its speed is faster in some
directions than in others—a method called fast marching tractography (; see Parker et al.,
2002b). A speed function is used to define how fast the front moves as it progresses through
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Figure 5.5: Front propagation in fast march-
ing tractography. The speed function, F, is
designed so that the front of the spreading
region grows most quickly where its normal
vector, n, aligns closely with the principal
eigenvector of the local diffusion tensor, ε1.
Thus the front will move fastest along paths
with smoothly varying principal diffusion
orientation. Arrowheads on the eigenvec-
tors are notional. After Parker et al. (2002b).

grey matter

x′ x

tractε1
n
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the brain. Parker et al. (2002a) use the speed function

F(x) =min
{ |ε1(x) ·n(x)|, |ε1(x′) ·n(x)|, |ε1(x) ·ε1(x′)| } , (5.9)

where n(x) is the local normal to the front at point x, and ε1(x) is the first eigenvector of the
local diffusion tensor. The point x′ represents the position of a neighbouring voxel that has
already been passed by the front. These terms are visualised in Fig. 5.5.

As we follow this propagating front out from the seed point, we can establish a “time of
arrival” for each voxel in the brain. Wherever the front moves fastest, the time of arrival to
voxels along its route will be low. One can do target-based tractography by then performing a
gradient descent in a time of arrival map, from the target voxel back to the seed. Exploratory
tractography from a seed point is also possible by using every other voxel in the brain as
a target point in turn, and retaining those pathways which are most plausible under some
criterion, such as the minimum or average value of the speed function along them.

The performance of  hinges on the choice of speed function. Parker et al. (2002b) discuss
alternative forms for the speed function, although they limit themselves to the case where the
first tensor eigenvector can be considered a reliable indicator of tract direction. Since then,
however, Staempfli et al. (2006) have described a set of four speed functions, from among
which their  algorithm selects, depending on the tensor shape at x and x′. This allows their
method to track through regions in which diffusion has an oblate, rather than prolate, profile.

5.4 High angular resolution methods

A number of models of diffusion have been developed for the purpose of elucidating the
orientations of multiple fibre populations within a voxel. Some of these are direct extensions
of simpler models, as we have already seen, while others were designed from the outset to
work with crossing fibres.

The need for more complex models than the tensor model in tractography has been touched
upon earlier in this chapter, but Fig. 5.6 demonstrates the issue explicitly (see also Frank, 2001).
With a single fibre orientation per voxel, the tensor model is an adequate model, effectively
representing the diffusion profile expected for this case, as in subfigure (a). On the other hand,
we would like to be able to recover a profile encapsulating two fibre orientations when this
is justified (b), but instead the tensor can only represent a directionally nonspecific profile (c).
In order to track effectively through regions of crossing fibres, however, the structure in the
inherent diffusion profile must be retained.

The first requirement for successful elucidation of crossing fibre architectures is, then, a
diffusion model that is capable of representing their relatively complex structure; but there
are also commensurate acquisition requirements. Since more complex models have more
parameters, and in particular because they aim to more fully represent the diffusion profile,
larger numbers of gradients must be applied to improve the angular resolution of the scan. For
this reason, the modelling and acquisition techniques that aim to represent complex intravoxel
architectures are called high angular resolution diffusion imaging () methods. Secondly,
in order to produce strong enough contrast between the signal effects of each fibre population,
greater diffusion weighting—corresponding to greater values of b, the weighting coefficient—
is usually applied. This can be achieved by increasing gradient strength or diffusion time.
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(a)

(b) (c)

Figure 5.6: Visualisation of diffusivity as a function of gradient orientation. When there is a single fibre
population within a voxel, it produces a diffusivity profile like the one in (a), which is well represented by
the diffusion tensor model. In the presence of two orthogonal populations, the true profile is something like
(b), but a single diffusion tensor is only capable of representing the ambiguous case shown in (c).

(a) b = 500 s mm-2 (b) b = 1000 s mm-2 (c) b = 3000 s mm-2

Figure 5.7: Dependence of the signal on b-value. Multiple fibre orientations are better contrasted at higher
levels of diffusion weighting. Peak diffusivity in each of the two component tensors was 7.5×10−4 mm2 s−1.

The effect on angular contrast of increasing the b-value is shown in Fig. 5.7, and described in
Alexander et al. (2001). It should be borne in mind that unfortunately, higher b-values also
produce less overall signal—since the weighting factor determines the level of attenuation in
the signal due to diffusion effects—so the signal-to-noise ratio of the acquisition is lower.

One way to handle multiple fibre directions is to use multiple tensors (Tuch et al., 2002)—an
approach we have already seen employed, in a constrained form, by Hosey et al. (2005). Under
this model, the diffusion displacement distribution is assumed to be a mixture of Gaussians
with different covariance structures. Two tensors are able to faithfully represent the situation
shown in Fig. 5.6(b), although a third tensor would need to be used for the case of three fibre
populations, and it is often not possible to know a priori how many fibre populations are
expected within a given voxel.

It should be noted that a multiple tensor model assumes that the diffusing water molecules
do not move between fibre populations during the course of the experiment. This is known
as the assumption of slow exchange, and it is a typical assumption in the analysis of crossing
fibre structure. Since the root-mean-squared diffusion distance for a typical d protocol is of
the order of 10 µm, compared to a typical axon diameter of a few microns, this assumption is
thought to be a reasonable one for most purposes. Fibre tracts consist of bundles of hundreds
of axons, and so diffusion over the width of a few axons will rarely exchange between bundles.

5.4.1 Using q-space

An alternative general approach to the crossing fibre problem is to employ q-space diffusion
imaging. As we saw in §4.3, q-space imaging allows us to recover an arbitrary displacement
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Figure 5.8: Results from q-ball imaging and
comparison with invasive tracing. The q-
ball reconstruction of fibre orientations ef-
fectively represents the fanning out of path-
ways emerging from part of the corpus cal-
losum, which can be seen in an atlas of
the central nervous system (Niewenhuys,
1996). Reproduced from Tuch et al. (2003).
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888

Figure 2. Comparison of DTI, QBI, and Nieuwenhuys Atlas

Comparison of DTI (top row), low-frequency QBI (q ! 670 cm"1) (middle row), and a histological tracing (bottom row) from the Niewenhuys
atlas (Niewenhuys, 1996). The Niewenhuys tracing is taken from approximately the same level as the MRI. The DTI map is rendered as a
cuboid field, where each cuboid is oriented in the direction of the principal eigenvector of the diffusion tensor within that voxel. The QBI map
is rendered as multicuboid field where the cuboids represent the peaks of the ODF within that voxel. The cuboids are color-coded according
to the red-green-blue scheme described in Figure 1 and are scaled by the fractional anisotropy for the DTI map and by the generalized
fractional anisotropy for the QBI map.
The region-of-interest images (right column) are taken from the three-way intersection between the CR, SLF, and projections from the CC.
At the intersection, DTI only shows the CR, whereas the QBI resolves the crossing between the CC, CR, and SLF. The intersection is shown
in more detail in Figure 3. The projections of the SLF can be seen to extend as far superior as the level of the PCL. Also, the SLF intersects
the projections to SFG. The fanning projections from the CC to PreCG and PoCG are clearly resolved. This fanning pattern is consistent within
the histological results shown in the Niewenhuys figure (bottom row). In contrast, on the DTI (top row) the striations of the CC are obscured
by the ascending CR. In the absence of the CC projections, PreCG and PoCG appear to receive no inputs. Abbreviations: CC, corpus callosum;
CR, corona radiata; CG, cingulate gyrus; SLF, superior longitudinal fasciculus; PCL, paracentral lobule; PoCG, postcentral gyrus; PreCG,
precentral gyrus; SFG, superior frontal gyrus.

distribution in a model-free manner, by taking a Fourier transform of  signal information
acquired using an appropriate scheme. A scheme suitable for recovering crossing fibre ori-
entations was described by Wedeen et al. (2005), using 515 q-vectors and a maximal b-value
equivalent of 17,000 s mm−2. Having recovered a spatial displacement distribution, P(r), an
orientation distribution function () can be calculated by projecting the distribution onto the
unit sphere. That is,

Ψ(r̂) =
∫ ∞

0
P(ρr̂)ρ2 dρ , (5.10)

where r = ρr̂. In this case the authors use the squared vector length, ρ2, as a weighting factor.
The  then provides the information needed to perform tractography, using a streamline
method or otherwise, in the region. (It should be noted, however, that the  has no proba-
bilistic interpretation because it is not properly normalised.) This approach is called diffusion
spectrum imaging ().

The biggest problem with  is its acquisition requirements. The protocol makes no real
attempt to satisfy the narrow gradient pulse assumption, so the demands it makes on gradient
hardware are not extreme; but because it samples q-space quite thoroughly, imaging a brain
volume at a reasonable resolution takes far longer than a comparable  protocol.

A step towards reduction of the q-space sampling requirements of  was taken by the
development of so-called q-ball imaging (Tuch et al., 2003; Tuch, 2004). In this case, the length
of the sampled q-vectors is fixed so that they lie on a sphere. The authors show that an  can
then be recovered directly by means of an integral transform called the Funk–Radon transform,
which has its roots in computed tomography, a medical imaging technique using -rays. The
authors also describe a method for calculating this transform that is reasonably simple and
computationally inexpensive. Fast marching tractography has since been demonstrated using
the q-ball  as a speed function (Campbell et al., 2005).

It has been shown that the q-ball method produces  information that is in fairly good
agreement with standard, invasive tracing work (see Fig. 5.8), and certainly provides more
useful information for tractography in crossing fibre regions than the tensor model (Fig. 5.9).
Note that in Fig. 5.9(a) the first tensor eigenvector represents a more or less arbitrary orientation
in regions where the crossing occurs. This is consistent with the degenerate representation
expected under this model (cf. Fig. 5.6).

Jansons & Alexander (2003) describe an alternative to an orientation distribution function
called persistent angular structure (). As with the  formulation, the aim is to capture the
orientation information in the signal which is important for tractography, whilst discarding
the less salient radial information. The radial part of the diffusion displacement distribution is
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therefore factored out and represented by a Dirac δ-function, viz.

P(r) =
p(r̂)δ(|r| −ρ)

ρ2 ,

where the function p(r̂) is the , the angular component of the distribution. Here, ρ is
a parameter that has to be chosen independently. By means of an optimisation which is
constrained by the relationship between the data and the displacement distribution—embodied
in Eq. (4.13)—the authors arrive at the maximum entropy solution

p(r̂) = exp


λ0+

∑

j

λ j exp(iq j ·ρr̂)


 , (5.11)

where {λ j} are constants to be found. The maximum entropy solution is the most uninformative
function possible, subject to the constraints imposed by the data. The intuition of this approach
is to encode just the angular structure “reported” by the acquired data, without introducing
extra information by making additional assumptions.

A big—perhaps the biggest—advantage of - is its modest acquisition requirements.
Jansons & Alexander use a scheme involving just 54 nonzero q-vectors, compared to hundreds
for a typical or q-ball experiment. The trade-off, however, comes in computation time. Since
the , Eq. (5.11), is a nonlinear combination of functions, reconstruction times for - are
typically orders of magnitude longer than those required by the other, linear techniques. With
present computing power, the time needed to fully process a large data set could be prohibitive.

5.4.2 Spherical deconvolution

A further subcategory of methods use a technique called spherical deconvolution, which
allows one to recover an  without relying on the Fourier relationship between the d
signal and the displacement distribution, which is anyway only approximate since the narrow
gradient assumption is not fulfilled. Instead, the fundamental assumption here is that the
signal arises from the convolution of an  with a “response function”, which is assumed
to be invariant across all white matter in the brain, with partial volume effects accounting for
all nonorientational variability (Tournier et al., 2004). Slow exchange is also assumed. We
therefore write, for a particular b-value,

A(θ,φ) =
∑

i

fi Ri S(θ) =Ψ(θ,φ)⊗S(θ) , (5.12)

where θ represents the polar angle and φ the azimuthal angle in spherical polar coordinates,
fi is the volume fraction of the ith fibre population, and Ri is a rotation matrix representing its
orientation. The symbol ⊗ represents convolution on the unit sphere. We note that the unit
vector r̂ used above as the  parameter is related to the two angles by

r̂ = (sinθ cosφ, sinθ sinφ, cosθ) .

coil, an eight-channel acquisition system, and an eight-

channel head surface coil. Data were reconstructed using a

sum of squares algorithm.

We note that we used a standard scanner in order to

validate QBI with a diffusion phantom under clinical imaging

conditions, which is a challenging aspect of this work

compared with DSI validation achieved in Lin et al. (2003),
which was realized with a micro-gradient coil delivering up to

1000 mT mK1.

As described previously, echoplanar acquisition cannot be

carried out on the diffusion phantom owing to the presence of

small air bubbles yielding large susceptibility artefacts.

Therefore, we used a standard pulsed gradient spin echo

sequence with conventional Stejskal–Tanner diffusion sensit-

ization (Stejskal & Tanner 1965; Tanner & Stejskal 1968;

figure 3).

Sequence parameters were as follows. The field of view

was set to 19 cm. The slice thickness was set to 3 mm,

including enough layers of rayon fibres crossing at 908. We

used a 128! 96 acquisition matrix, interpolated during

reconstruction to 256! 256, leading to 0.74! 0.74!
3 mm3 voxels, and we selected 4 interleaved axial slices

parallel to the plane containing fibre bundles. Data were

reinterpolated to 128! 128 matrix yielding 1.5! 1.5!
3 mm3 voxels.

Echo time, TE, was set to its minimum possible value

52 ms and repetition time, TR, was chosen considering T1

estimation inside fibres and set to 1000 ms. The total scan

time for the dataset was exactly 5 h 36 min.

Diffusion sensitization settings were chosen within the

constraints of both hardware limitations and characteristics of

the anisotropic structure to be measured. Water solution is

characterized by an ADC close to 2.2!10K9 m2 sK1 at

25 8C. This value is approximately three times the value of

ADC inside white matter and clinical QBI of the brain

requires b-values greater than 3000 s mm2 to obtain correct

high angular ODF. Therefore, we decided to use a b-value
equal to 1000 s mm2. The gradient coil specifications of

the system lead to the following Stejskal–Tanner parameters:

dZ21.52 ms; DZ26.064 ms; and GZ40 mT mK1 that cor-

respond to the spatial modulation jqjZ(g/2p)dGZ3.58!
104 mK1 (g is the gyromagnetic ratio, G is the diffusion

gradient magnitude corresponding to the nominal maximal

gradient strength).

As the diffusion sensitization parameters are known, one

can compute the free average displacement sZ
ffiffiffiffiffiffiffiffiffi
2Dt

p
Z

9:12 mm with the diffusion time tZDKd/3Z18.89 ms. This

9.12 mm average displacement must be compared to the fibre

spacing achievable with rayon fibres of 17 mm diameter and

manual packing technique. A greater displacement sensitivity

(a)

(c)

(b)

(d)

Figure 7. Axial maps of diffusion phantom corresponding to diffusion tensor model. (a) T2-weighted map of an axial slice
located inside fibre bundles; (b) fractional anisotropy map revealing the anisotropy of the underlying structure; (c) Red–green–
blue colour map asserting the presence of one fibre bundle oriented along the horizontal x-axis (red colour) and one fibre bundle
oriented along the vertical y-axis (green colour); (d ) map of the main eigenvector of diffusion tensor superimposed on the T2-
weighted image. Note the mixture of red and green colour on the RGB map at the location corresponding to fibre crossing, and
the wrong corresponding eigenvectors.
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fibres, we defined three regions of interest, two regions
inside x- and y-bundles, and a third located inside the
crossing area (figure 10). The deviation angles (table 1)
for each of the three regions were evaluated as
a1Z19.18 for the bundle oriented along the x-axis
(ROI1), a2Z15.58 for the bundle oriented along the
y-axis (ROI2) and a3Z29.88 for fibre crossing (ROI3).

The samemeasurements were taken using the tensor
model yielding the following results: the deviation
angles for each of the three regions were evaluated to
a1Z10.38 for the bundle oriented along the x-axis
(ROI1), a2Z10.08 for the bundle oriented along the
y-axis (ROI2) and a3Z53.48 for fibre crossing (ROI3).

In the case of single population regions of interest,
DTI seems to give better resolution than QBI. This is
not surprising since the DTI model is reconstructed

from a robust fit involving the only six coefficients of
the tensor matrix, while QBI reconstruction is analyti-
cally model free, and, consequently, more sensitive to
the presence of noise. We must keep in mind that
imaging of diffusion phantoms is always more difficult
than in vivo brain imaging, so the difference should be
less striking with in vivo experiments. However, fibre-
crossing locations clearly highlight the net contribution
of QBI in comparison with DTI for describing multi-
modal configurations in the case of ex vivo experiments
(figures 7d and 11). However, the reliability of QBI in
vivo has yet to be proved.

4. DISCUSSION
This study aimed to demonstrate the capability of QBI
to describe the structural anisotropy of tissue more
effectively than conventional DTI, by providing an
accurateODF, even in the context of clinical scanner use
where imaging conditions are much less advantageous
than for high gradient strength, short field of view MR
systems, as used by Lin et al. (2003). Consequently,
although it is not possible to reach orientation accuracy
down to the degree order, QBI is sufficiently precise to
allow studies of tissue orientation such as white matter
fibre tracking or cytoarchitectony studies.

This accuracy relies primarily on scanner perform-
ance, phantom design and the QBI method.

The hardware limitations of the gradient coil in terms
of maximum strength and slew-rate leads to an echo
time not smaller than half of the T2 relaxation time,
which directly decreases the SNR by a factor of two.

Phantom design also plays an important role in the
SNR decrease. First, rayon fibres are permeable, but
they do not have a tubular structure, such as
myelinated axons. Therefore, the diffusion is largely
restricted to the external cavity made up of the space
between filaments. Consequently, the spin density of
a voxel is drastically reduced compared with that of
tubular structure, and the observed anisotropy
remains low (fractional anisotropy was evaluated to
0.2 on FA map; figure 7b) because fibres were
manually tightened. This manual operation does not
allow for controlling of the average distance
between fibres. Therefore, the average free random
walk sZ

ffiffiffiffiffiffiffiffiffi
2Dt

p
Z9:12 mm may be too short compared

with measuring a stronger anisotropy. The only
possible action for improving this random walk
observation is to increase the diffusion time t.
However, after several experiments, this potential
solution was discarded because it also required
increasing the echo time, resulting in a significant
decline in SNR. Nevertheless, we were able to
consistentently measure the anisotropy of the fibre-
crossing structure on the diffusion phantom
(figures 9–11). Such results confirm the efficiency of
the QBI method for characterizing the structural
orientation of tissue. Furthermore, it should be noted
that white matter tissue is more suitable than textile
fibres for diffusion imaging. This means that the
quadratic angular error is probably much better than
the 308 we reached with the diffusion phantom.

The QBI method itself affects the theoretical angular
accuracy of the ODF. First, the number of diffusion

Figure 11. Main orientations of ODF calculated from QBI
model. Red is used for representing orientations of ROI1,
green for orientations of ROI2 and blue for orientations of
ROI3. Vectors for ROI1 and ROI2 are aligned with the x- and
y-axis, respectively. ODF belonging to the fibre-crossing area
present two main lobes, leading to both different orientations
of the diffusion process that are globally consistent with the
orientations of rayon fibres. This result must be compared
with the eigenvector map of tensor model depicted in figure 7.

Table 1. Quadratic average deviation angle between the
primary orientation of the ODF and the x- or y-laboratory
axis in regions containing one single-fibre population (ROI1
and ROI2), or between the primary and second orientations
of the ODF and both x- and y-axes in regions containing fibre
crossing (ROI3).
(q-Ball deviation angles can be compared with results
obtained with diffusion tensor model.)

ROI, a priori
orientation(s)

q-ball deviation
angle (deg)

DTI deviation
angle (deg)

ROI1: ux 19.1 10.3
ROI2: uy 15.5 10.0
ROI3: (ux, uy) 29.8 53.4

Validation of q-ball imaging M. Perrin and others 889

Phil. Trans. R. Soc. B (2005)

(a) DTI (b) q-ball

Figure 5.9: Fibre orientation
information reconstructed using
DTI and q-ball methods for a
specially constructed phantom,
mimicking orthogonal crossing
fibre populations. Adapted from
Perrin et al. (2005).
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Figure 5.10: Results of applying the spherical deconvolution method
in a region of fibre crossing in the pons. The two fibre orientations
appear quite distinct from one another and are qualitatively accu-
rate representations of the underlying architecture. Reproduced from
Tournier et al. (2004).

SNR0 = 30, hsep = 608, nmax = 8 with filtering), the standard
deviation in the estimated angle is approximately 98. Note however
that there is a bias in the estimated orientations, whereby the
estimated orientations of the two fibers are dpushed apartT slightly
by approximately 0.78. This bias is due to the limited angular

resolution of the technique and can be reduced by using a higher
value of nmax (results not shown). The bias also decreases to zero
as the separation angle hsep approaches 908 (data not shown). As

might be expected, the standard deviation in the estimated
orientations decreases as SNR0 increases, but the bias remains
constant. The volume fractions tend to be overestimated in the
presence of noise, but this bias disappears at high SNR. As

expected, the standard deviation in the estimated volume fractions
decreases as a function of SNR0. In both cases, the bias in the
estimated values is much less than their standard deviation for the

range of feasible SNR0 values.
Fig. 5 shows the dependence of the spherical deconvolution

technique on the b value used (b value increases from left to right

of figure). At low b values, the angular dependency of the signal
profile in the plane containing both fiber orientations is relatively
small, and the fiber ODF reconstruction is very noise sensitive. At

high b values, the angular dependency is much more pronounced,
but the signal attenuation is so large that the noise begins to
dominate. Intermediate b values produce better results, because
they introduce the strong angular dependence necessary to resolve

the fiber orientations, without attenuating the signal down to the
noise level. For SNR0 = 30, the results indicate that the optimal b
value lies between 3000 and 4000 s/mm2.

If the response function R(h) used to deconvolve the signal
attenuation profile does not correspond exactly to the signal
attenuation profile of the underlying fibers, their volume fractions

will be incorrectly estimated. For example, for a system consisting
of two fiber populations crossing at 908, with both underlying
anisotropies FA1 = FA2 = 0.7 and volume fractions f1 = 0.3, f2 =
0.7, the volume fractions estimated using a response function with

anisotropy set to FAR = 0.8 are f1 = 0.19, f2 = 0.44 (assuming no
noise and nmax = 8). However, although the actual volume fractions
are incorrect, their intensities relative to each other are preserved,

as are the estimated fiber orientations (data not shown). Note also
that the sum of the volume fractions is no longer unity.

On the other hand, if the two fiber populations present have

different underlying anisotropies, their relative volume fractions
will not be preserved, regardless of the response function used. For
example, for a system similar to that above, consisting of two fiber

populations crossing at 908, with underlying anisotropies FA1 = 0.7

and FA2 = 0.8 and volume fractions f1 = 0.5, f2 = 0.5, and the
response function anisotropy set to FAR = 0.7, the volume fractions

estimated are f1 = 0.49, f2 = 0.81 (assuming no noise and nmax = 8).

Fig. 5. The effect of b value on the estimation of the fiber ODF using the spherical deconvolution method. Top: the noiseless signal attenuation profile S(h,/)
in the plane of the fibers for a system consisting of two fiber populations (FA1 = FA2 = FAR = 0.7) crossing at 908. Bottom: the corresponding fiber ODFs for

SNR0 = 30. As before, the mean fiber ODF is depicted by the opaque surface, and the mean F SD by the transparent surface. Left to right: b value increasing

from 1000 to 5000 s/mm2 in increments of 1000 s/mm2. Other parameters: Nenc = 60, nmax = 8 with filtering.

Fig. 6. Fiber ODFs reconstructed from the in vivo data for adjacent voxels

in the pons. Top left: an axial FA map at the level of the pons. Bottom left: a

magnified section of the FA map, colored according to the anatomic

direction of the major eigenvector of the diffusion tensor (red: left–right,

green: anterior–posterior, blue: inferior–superior). Right: the fiber ODFs

reconstructed from the voxels highlighted in the direction map, also colored

according to orientation. Note that the fiber ODFs are displayed as coronal

projections to highlight the presence of two distinct fiber orientations and

that any negative lobes in the fiber ODFs have been discarded. (For

interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

J.-D. Tournier et al. / NeuroImage 23 (2004) 1176–1185 1181

The response function, S, is a function only of θ because it is taken to be axially symmetric.
Given the knowledge of an appropriate response function, the can therefore be deconvolved
out of the signal profile, at least in principle.

It is worth noting that the spherical deconvolution model is related to the anisotropic
component of the  partial volume model, Eq. (5.3). In that case the response function
represents Gaussian diffusion along a single orientation, and the  is a δ-function whose
orientation corresponds to that of the modelled fibre pathway. - can also be framed as a
deconvolution (Alexander, 2005).

Tournier et al., by contrast, use an  which can represent multiple directions; and they
represent it, along with the response function, in terms of a set of functions known as the
spherical harmonics (Riley et al., 2002). These functions form an orthonormal basis set over the
sphere, and their use in general spherical deconvolution problems has been described by Healy
et al. (1998). Representation of the signal profile, A, using these basis functions had already
been described (Alexander et al., 2002; Frank, 2002). Under this parameterisation, the  can
be recovered by means of a straightforward set of matrix multiplications, given knowledge of
the response function—which the authors establish by observing the signal profile in strongly
anisotropic parts of the brain.

The method has been demonstrated to work well for resolving fibre crossings in simu-
lations and in real data acquired with a modest 60 gradient directions at a b-value of about
3000 s mm−2 (see Fig. 5.10). The authors estimate that using these acquisition parameters,
two fibre orientations with a separation of 60◦ can be recovered with a standard deviation of
around 9◦. The minimum resolvable separation is estimated to be about 40◦.

The validity of the assumption of equivalent response throughout the brain is hard to
establish, but the most significant shortcoming of the method is probably its sensitivity to
artefacts caused by noise. Recently developed methods for regularising the  (Sakaie &
Lowe, 2007; Tournier et al., 2007) promise to mitigate this issue significantly, however—even
when the signal-to-noise ratio is low. Thus it may be possible to apply the method to recover
useful orientation information even at the lower b-values commonly used in  experiments.
A parametric version of the spherical deconvolution method has also been recently developed,
allowing Bayesian statistics to be used to infer an  (Kaden et al., 2007).

5.5 Applications and challenges

Given the increasingly formidable array of ideas and innovations which have been thrown at
the fibre tracking problem, it is natural to ask what scientific uses there may be for reliable
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tractography methods once they have been developed. At present, there are two general
categories of application for these algorithms which have appeared in the literature.

The first application might be loosely described as connectivity analysis. Despite the fact
that tractography is still very much a field in its infancy, it is already beginning to provide
information about the brain’s internal connections which are corroborating the findings of
more well established—and more invasive—neuroscientific techniques. In an impressive piece
of work, Behrens et al. (2003a) demonstrated, using tractography, that voxels in the thalamus
can be effectively categorised by the targets of their most likely projections into cortex. The
resulting thalamic parcellations are in close agreement with atlas data (see Fig. 5.11), and have
been further reinforced by functional results (Johansen-Berg et al., 2005). Similar principles
have been applied to the corpus callosum (Huang et al., 2005), and used to identify boundaries
between cortical regions based on their connectivity (Johansen-Berg et al., 2004).

The second category of application encompasses the segmentation and visualisation of
specific tracts. The emphasis in this case is more clinical than neuroscientific, since segmenting
a particular tract is often a precursor to comparative analysis of anisotropy—or some other
indicator of pathology—between a patient group and controls. We will not expand further
on the segmentation application here, however, because it will be the focus of the next three
chapters; and therefore will be described fully elsewhere. Tract visualisation can be useful in its
own right as a preoperative surgical planning tool, since any invasive treatment will naturally
try to minimise damage to important connective pathways—although at present it is highly
advisable to avoid setting too much store by tractographic results in such critical applications
(Kinoshita et al., 2005).

Notwithstanding their increasing popularity and promising early results, tractography
methods have some outstanding theoretical and practical limitations. The problem of handling
crossing fibres cannot be said to be fully solved, especially in the relatively high noise and low
angular resolution regime which is common in clinical scanning. There is also an additional
degeneracy which is widely recognised, but whose impact has not yet been fully characterised:
the problem of “kissing” fibres (Basser et al., 2000). From a fibre tracking point of view, it is
important to be able to distinguish the two intravoxel architectures shown in Fig. 5.12, but a
recovered will usually not provide enough information to do so.

However plausible the reconstructed tracts may appear to be, the issue of validation is a
significant one. Efforts to validate tractography methods have recently increased, and include
computer simulation work (as in Hosey et al., 2005) and studies with physical phantoms
designed to mimic biological white matter (Campbell et al., 2005; Perrin et al., 2005). In addition,
Bürgel et al. (2006) have generated maps of the routes of a number of fasciculi, based on
postmortem histology, for comparison with tractography results. We saw, in Fig. 5.8, evidence
of qualitative agreement between the q-ball  and fasciculus crossing information derived
invasively; and in a similar way Schmahmann et al. (2007) demonstrated a very respectable
agreement between -based tractography and histology in the monkey brain. The matches
are still far from perfect, however; and are often demonstrated in rather idealised conditions.
The  scan used by Schmahmann et al., for example, was performed on a 4.7 T system and

Figure 5.11: Thalamic parcellation using proba-
bilistic tractography. Dividing the human brain
into major cortical regions (a) and colour coding
thalamic voxels according to their most probable
projection into cortex using tractography (c,d)
yields results broadly in good agreement with in-
formation obtained using invasive methods (b).
Reproduced from Behrens et al. (2003a).
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Figure 5.12: Kissing and crossing fibre architectures.
In (a) the two fibre populations bend away from one
another, whilst in (b) they cross or interdigitate. Since
the angular information intrinsic to each of these sce-
narios is very similar, it is hard to tell them apart from
their ODFs.

(a) kissing (b) crossing

took 25 hours to complete. Such protocols are clearly useless to the clinician.

5.6 Summary

In this chapter we have attempted to provide a sense of the spectrum of extant approaches
to the fibre tracking problem. We have focussed on giving a sense of the breadth of the
alternatives, to avoid provoking informational indigestion in the reader (or the author), and
have therefore omitted one or two notable techniques due to their similarity to other methods.
It should be evident that the range of proposed solutions is wide, although they differ with
respect to a fairly small number of core principles. Streamline-based tracking methods are
the most widespread, but the model of orientation density is an important factor. There is,
as yet, no clear reason to use one particular technique over all others, and studies based on
tractography would be well advised to justify their choice of algorithm according to the nature
of their aims.


