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Conclusions

THE AMs of this thesis were to develop methods to facilitate the robust segmentation of
specific white matter structures from multiple dMr1 brain volumes, and the subsequent
comparative analysis of the segmented regions. In this final chapter we review the extent to
which the work described in the previous chapters has met these aims, and discuss the work
that still needs to be done.

10.1 Tract segmentation

As we described in the introduction, the study of structural human brain connectivity in vivo
really only began with the invention of pr1 in the mid-1990s. Over the course of less than a
decade, since the possibility of using tensor-derived metrics to probe white matter integrity
took hold, a sizeable clinical literature based on the method has amassed; but the techniques are
still quite immature. Ideally, one would begin studying a disease in which a loss of connective
efficacy is a suspected factor by applying a whole-brain analysis technique such as vsMm to
suggest regions of localised contrast between patient and control populations. A replication
study might then hope to characterise the effect on any implicated white matter structures
more clearly, and look for evidence that particular white matter degradation is specifically
linked to the pathology in question. Unfortunately the reality is less straightforward.

When applied to maps of diffusion anisotropy, the vesm method is not robust. As we
discussed in §6.1, the choice of smoothing kernel can have a very substantial effect on the
results—not just quantitatively, but qualitatively too, with regions of contrast appearing in
quite different brain areas as the kernel width is altered. Since this parameter of the method
is usually chosen for each individual study without recourse to any firm principles, the scope
for spurious and misleading results is unsettling. Moreover, it is easy—although unwise—to
forget that ra itself has limitations as a proxy for integrity. We discussed in §9.4 that ra would
be expected to increase if one of a pair of crossing fibre populations were to be preferentially
degraded, and therefore it cannot necessarily be trusted as a reliable indicator of disease in
crossing fibre regions. Even if this shortcoming did not exist, the expressiveness of a single
scalar parameter will always be limited.

Tract-based spatial statistics may in practice take over as the method of choice when looking
for localised differences between populations with limited or no prior knowledge. Its only overt
parameter is an ra threshold that is applied to the skeletonised anisotropy maps, which will
usually affect the results only quantitatively due to its impact on the number of voxels surviving
to the multiple comparisons correction stage. The technique does perform time-consuming
nonlinear registration of each subject’s brain volume to every other, which makes it scale badly
to large data sets, but the introduction of a standardised template skeleton might be possible to
remove this issue. TBss is certainly an attractive approach, although it is not truly “tract-based”
since the skeletonisation process will find any ridge in the anisotropy map and has no concept
of white matter structure or connectivity. For most purposes, the approximation is however
an adequate one.
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On the other hand, automated methods for tract-specific segmentation and comparative
analysis are more or less nonexistent. Regions of interest can be defined in standard space
and then transferred to native space using registration, and used to constrain tractography;
but this multiple ro1 approach has a number of drawbacks, as we discussed in §6.5. Like any
registration-based transformation, this one will engender some inaccuracy in the placement of
the rois in native space; but in any case these rois encode prior knowledge about the topology
of tracts in an unintuitive manner, which is informed primarily by experience with tractography
rather than direct knowledge of anatomy. The use of “termination” and “removal” masks by
Heiervang et al. (2006), for example, is presumably founded on past experience, during which
the authors observed some pathways straying into these regions and deemed them aberrant
or undesirable. The problem is that the ro1s might need to be redrawn for use with a different
tractography algorithm.

We would argue that our representation of prior knowledge about tract topology in terms of
reference tracts is more intuitive, more transferrable and ultimately more reliable. Information
about the expected route of the tract is given along its entire length, but this richer prior
information is not used to directly constrain the fibre tracking algorithm—rather, it guides the
choice of tractography results from among a number of candidate seed points. The combined
process of matching tracts to a reference and choosing a segmentation a posteriori based on these
matches is neighbourhood tractography, a largely automated approach that we have invented
and refined over the course of the thesis.

In chapter 6, we described a heuristic similarity measure for matching tracts and outlined
the principle of NT. We demonstrated that the method improved segmentation consistency
over a naive alternative method in a group of healthy volunteers; and then, in chapter 7,
we found similar benefits in a healthy aged cohort. We were able to use a reference tract
taken from an aged brain to successfully select tracts from the younger group, and thereby to
show anisotropy differences between the groups in a specific tract where previous whole-brain
studies have suggested that one might be present. We have also discussed how standardised
reference tracts can be generated from a white matter atlas, and used these references in a
practical study.

To ameliorate some of the shortcomings of our simple first approach to tract matching
for N1, we reformulated the problem in formal probabilistic terms in chapter 8, and took a
machine learning perspective toward its solution. The models that we used to represent the
relationships between matching tracts were parameterised such that the extent of deviation
from the route of the reference tract can vary along its length, meaning that large variability
within the data used to fit the model will result in only small penalties for straying from the
reference. To learn suitable parameters, we initially took a supervised maximum likelihood
approach, in which a group of training tracts is selected by hand in addition to the reference
tract; but later showed that an em algorithm could be used to successfully find matches in a
data set without a separate training phase.

The main parameter of NT methods is the neighbourhood width. If this is set too small
then no appropriate match to the reference will be found, and if it is set too large then the
process will take a very long time to run. The limiting case of seeding throughout the brain
is theoretically optimal in the sense that if a matching tract can be produced then it should be
found this way—unless there happens to be another fasciculus with very similar shape and
length in another part of the brain—but the practical consideration of run time makes this an
unwise strategy. In any case, the use of tract similarity measures or matching models gives us
an indication of the acceptability of the best match that we can use to our advantage. As we
mentioned in §8.6, the null-match posterior probability that is available in the unsupervised
probabilistic case could be used as the basis of a rejection criterion. To minimise run time, the
neighbourhood width could be chosen separately for each brain volume, being increased in
steps until the null-match posterior drops below a certain level. Nonetheless, a proper analysis
of the effect of neighbourhood width would be a useful avenue for future work.

Other parameters arising in the model-based NT methods, such as the residual error thresh-
old, n, and the streamline length quantile, &, may also have some effect on the outcome. But
the former is relevant only to the reference tract, and we have found no reason to vary the
latter from one brain volume to another, so in practice there should be little reason for them to
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vary between studies and therefore become a point of weakness in any results.

We have not yet had time to apply the probabilistic model-based variants of NT to clinical
data sets, or to develop atlas-based reference tracts for use with them; and these are important
areas for future work. With them in place, however, we feel that the approach could represent
a useful, robust and automated technique for the segmentation of specific tracts.

10.2 Comparative analysis

Once similar regions are segmented from a number of brain volumes, the simplest approach
to comparative analysis between groups is to average a scalar measure of interest within
each region and statistically compare the range of values thus obtained. This average can
be weighted using the voxelwise likelihoods of connection to the seed point produced by an
algorithm such as rsL ProbTrack—as we did in chapter 7. Using probabilistic neighbourhood
tractography, we can also include data derived from multiple seed points, weighting according
to the corresponding matching posteriors as in §8.5. It would be constructive to examine the
benefits (or otherwise) of these weighting schemes more closely than we have done above.

In chapter 9, we explored the possibility of profiling anisotropy along tracts rather than
simply averaging its value within the regions representing the relevant fasciculus. This raises
some difficult questions about point homology in different brain volumes, but our initial
results nevertheless suggest that this kind of approach may be able to yield some additional
meaningful information.

Ultimately, comparing anisotropy between populations—however it is done—is only going
to take in vivo white matter studies so far. Mean diffusivity is a mathematically independent
measure for characterising diffusion, but in practice it is generally negatively correlated with
Fa. Combination of diffusion data with information from other magnetic resonance methods
may prove more fruitful: spatially localised brain “activation” data from functional Mri, or
metrics derived from magnetisation transfer imaging (which was briefly mentioned in §4.5)
may help, if the concomitant coregistration issues can be worked out. Even more broadly, there
is scope for incorporating data from fields such as genetics into advanced studies.

10.3 Final remarks

It is our hope that the methodological developments set out in this thesis will be helpful for on-
going work investigating whether connective changes are systematically linked to outwardly
visible pathology. We believe that we have made useful progress towards robust segmentation
of tracts of interest, which, so long as it remained problematic, has been a distracting prerequi-
site for meaningful investigation of the differences and similarities between comparable white
matter structures.

As its resolution and noise properties improve, the potential of dmr1 should continue to
increase, although these developments will probably bring new challenges as well. Methods
for examining connectivity may need to become more sophisticated, but a definitive test of the
disconnection hypothesis could be at hand in the foreseeable future.



