
Jon Clayden <j.clayden@ucl.ac.uk>

Photo by José Martín Ramírez Carrasco 
https://www.behance.net/martini_rc

Statistics and Imaging

DIBS Teaching Seminar, 11 Nov 2015

mailto:j.clayden@ucl.ac.uk
https://www.behance.net/martini_rc


“Statistics is a subject that many 
medics find easy, but most 
statisticians find difficult”

— Stephen Senn (attrib.)



Purposes

• Summarising data, describing 
features such as central 
tendency and dispersion 

• Making inferences about the 
population that a given sample 
was drawn from



Hypothesis testing
• A null hypothesis is a default position (no effect, no difference, no 

relationship, etc.) 

• This is set against an alternative hypothesis, generally the opposite of the null 

• A hypothesis test estimates the probability, p, of observing data at least as 
extreme as the sample, under the assumption that the null is true 

• If this p-value is less than a threshold, α, usually 0.05, then the null is rejected 
and treated as false 

• 5% of rejections are therefore expected to be false positives 

• The rate at which the null hypothesis is correctly rejected is the power 

• NB: Failing to reject the null hypothesis does not constitute strong evidence 
in support of it



The t-test
• A test for a difference in means … 

• … which may be of a particular sign (one-tailed) or either sign (two-tailed) … 

• … either between two groups of observations (two sample), or one group and 
a fixed value, often zero (one sample) … 

• … which is valid under the assumptions that the groups are approximately 
normally distributed, independently sampled and (for some 
implementations) have equal population variance



Anatomy of a test
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In R
> t.test(a, b) 

 Welch Two Sample t-test 

data:  a and b 
t = -2.6492, df = 197.232, p-value = 0.008722 
alternative hypothesis: true difference in 
means is not equal to 0 
95 percent confidence interval: 
 -0.63820792 -0.09351402 
sample estimates: 
 mean of x  mean of y  
-0.1366332  0.2292278 

> se2.a <- var(a) / length(a) 
> se2.b <- var(b) / length(b) 
> t <- (mean(a) - mean(b)) / sqrt(se2.a + se2.b) 
> t 
[1] -2.6492 
> df <- (se2.a + se2.b)^2 / ((se2.a^2)/
(length(a)-1) + (se2.b^2)/(length(b)-1)) 
> df 
[1] 197.2316 
> pt(t, df) * 2 
[1] 0.00872208



Effect of sample size

Mean of 1000 p-values at each n



Other common hypothesis tests
• t-test for significant correlation coefficient 

• t-test for significant regression coefficient 

• F-test for difference between multiple means 

• F-test for model comparison 

• Nonparametric equivalents, e.g. signed-rank test 

• Robustness to violations of assumptions varies



Issues with significance tests
• Arbitrary p-value threshold 

• Significance vs effect size, especially with many observations 

• Publication bias: non-significant results are rarely published 

• Choice of null hypothesis can be controversial 

• Ignores any prior information 

• Probability of data (obtained) vs probability that hypothesis is correct (often 
desired)



The big-picture problem

The Economist, 
19th October 

2013



Multiple comparisons

See R’s p.adjust function 
for p-value adjustments



The picture in imaging
• Hypothesis tests may be performed on a variety of scales 

• Worth carefully considering the appropriate scale for the research question 

• Dimensionality reduction can be helpful  

• Mass univariate testing (e.g. voxelwise) produces a major multiple 
comparisons issue



Linear (regression) models
• We have some measurement, y, for each subject 

• We have some predictor variables, x1, x2, x3, etc., for which we have 
measurements for each subject 

• We want to know ß1, ß2, ß3, etc., the influences of each x on y 

• We use the model 

where the errors (or residuals), εi, are assumed to be normally distributed 
with zero mean 

• Typically fitted with ordinary least squares, a simple matrix operation 

• Assumes constant variance, independent errors, noncollinearity in predictors
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A versatile tool
• With one predictor, a regression model is closely related to (Pearson) 

correlation or t-test 

• With more predictors, also covers analysis of (co)variance 

• Extension to multivariate outcomes (general linear model) covers MANOVA, 
MANCOVA



Anscombe’s quartet, or, why you should look at your data

• Same mean 

• Same variance 

• Same 
correlation 
coefficient 

• Same 
regression line

Anscombe, 
Amer Stat, 

1973



SPM

Savitz et al., Sci 
Reports, 2012



Beyond hypothesis tests
• Models of data as outcomes, plus derivatives such as reference ranges 

• Parameter estimates, confidences intervals, etc. 

• Model comparison via likelihood, information theory approaches 

• Clustering 

• Predictive power, e.g. ROC analysis 

• Measures of uncertainty via resampling methods 

• Bayesian inference: prior and posterior distributions



Regression to the mean
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by Stephen Senn

Three things that every 
medical writer should know 
about statistics

Introduction
The joke goes that there are three kind of statistician: those 
who can count and those who can’t. Therefore, readers of 
the Write Stuff will forgive me, I hope, if I end up writ-
ing about more than three things. It should be obvious, in 
that case, as to which sort of statistician I am. There are, 
of course, many more things than three that every medi-
cal writer should know about statistics because there are 
many things about statistics that anybody working in drug 
development should know and medical writers are in the 
unenviable position of having to know about everything. 
However, everybody has to start somewhere and three is a 
number with a great tradition. The three things I am going 
to write about are regression to the mean [1], the error of 
the transposed conditional [2] and individual response [3]. 
The first is a widespread phenomenon that has a powerful 
influence on the way that results appear to us, the second 
is a pernicious fallacy and the third is a sort of Holy Grail-
cum-wild goose chase that is responsible for leading many 
a researcher astray.

Regression to the mean
Regression to the mean is the tendency for members of a 
population who have been selected because they are ex-
treme to be less extreme when measured again [4, 5]. Be-
cause entry into clinical trials is usually only allowed if pa-
tients have extreme values (diastolic blood pressure above 
95 mmHg, Hamilton depression score greater than or equal 
to 22, forced expiratory volume in one second less than 
75% of predicted etc.), regression to the mean is a phe-
nomenon that is likely to affect many clinical trials. We can 
expect that patients will appear to improve even if the treat-
ment is ineffective. Regression to the mean is a plausible 
explanation, for example, for the ‘placebo effect’ which 
then becomes, as I hope to explain, a purely statistical rath-
er than psychological phenomenon.

How does it occur? Consider figure 1. This shows a simu-
lated set of results for a group of 1000 individuals who have 
had their diastolic blood pressure (DBP) measured on two 
occasions: at ‘baseline’, X, and at ‘outcome’, Y. The figure 
plots Y against X and the simulation has been arranged so 
that the expected values of X and Y are identically equal 
to 90 mmHg and that the standard deviations are 8 mmHg 
with a correlation of 0.79. An arbitrary but common cut off 
of 95 mmHg is taken as being the boundary for hyperten-
sion. Individuals are labelled as being of one of three sorts: 
hypertensive at both baseline and outcome (labelled with 
a red +), normotensive at both baseline and outcome (la-
belled with a blue 0) and hypertensive on one occasion and 
not the other (labelled with an orange x).

Figure 1 Simulated results at baseline and outcome for diastolic blood pres-
sure (mmHg) for 1000 individuals in a population.

Now consider a plot of a subset of the individuals, namely 
those who are ‘hypertensive’ on at least one occasion. This 
plot is given in figure 2. Just as was the case in figure 1 
there is no essential difference as to whether we look at 
results at baseline or outcome, the mean result on either 
occasion, although higher than it was before because the 
‘normotensives’ have been removed, will be the same.

Figure 2 Simulated results at baseline and outcome for diastolic blood pres-
sure (mmHg) for 1000 individuals in a population with those who 
are normotensive on both occasions removed.
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However, neither of these plots is what we would observe 
in a standard clinical trial. Instead, we would observe some-
thing like figure 3. Figure 3 has been obtained from figure 
2 by removing those patients who were normotensive at 
baseline but hypertensive at outcome. Why? Because if 
they were normotensive at baseline they would never be 
recruited into the trial and hence never followed up. Now 
we can see that the way that we have chosen subjects has 
an inherent bias if we measure the effect of treatment as 
the difference between outcome and baseline. The outcome 
values are on average lower than the baseline values but 
this is only because of the way that we have sampled. It 
says nothing about the effect of treatment.

Figure 3 Simulated results at baseline and outcome for diastolic blood pres-
sure (mmHg) for 1000 individuals in a population with those who 
are normotensive at baseline removed.

The consequence is that on average patients will appear to 
improve even if the treatment is ineffective. In fact, patients 
given placebo can be expected to improve for reasons that 
are purely statistical. There is no need to invoke psycholo-
gy, the healing hands of the physician, the white coat effect 
and so forth. The way that the data are collected suffices.

Does it matter? Not in a controlled clinical trial provided 
that we only consider, describe and interpret differences be-
tween treatment and control groups. Both of these will be 
subject to the same regression to the mean effect, which is 
therefore eliminated by comparison. Hence, the joke about 
a medical statistician. If you ask him, “how’s your wife?” 
he answers, “compared to what?” Only head to head com-
parisons have meaning. Alas, many clinical trial reports re-
veal that trialists have no idea why they have carried out a 
controlled clinical trial. Pages of ink are wasted describing 
the response in each group, although this is meaningless. 
Reports would be sharper and understanding would be im-
proved if these ignorant descriptions were dumped where 
they belong in the waste paper basket.

What are the lessons for a medical writer? He or she should 
think comparatively. Controlled clinical trials are about 
comparisons, or to use some statistical jargon treatment 

contrasts, that is to say difference between treatments. Giv-
en a choice between a graph that shows the course over 
time of each treatment together with standard error bars or 
a plot of the difference between treatments together with 
confidence interval for that difference, choose the latter and 
dump the former. If survival is the outcome of interest, it is 
the log-hazard ratio, a statistic used to model the difference 
between treatments, that should take pride of place and not 
the median survival within each group. For a binary out-
come, stress the odds ratio rather than the probability for 
each group.

The error of the transposed conditional
All French are Europeans but not all Europeans are French. 
I can put this in the language of probabilities. With a proba-
bility of 100% someone who is French is European. Howev-
er, the probability that a randomly chosen European (taking 
this to mean a citizen of the European Union) is French is 
only about 13% (since the population of France is about 65 
million and that of the European Union about 500 million). 

Here is another example. The probability that a randomly 
chosen woman has breast cancer is, thank goodness, quite 
low. However the probability that a randomly chosen breast 
cancer victim is a woman is extremely high. Or how about 
the prosecutor’s fallacy? The probability of the DNA on 
the scene of the crime matching that of the defendant is 
one in a million, therefore, claims the prosecution, there are 
999,999 chances out of a million that he is guilty. However, 
in a population of 100 million (which could be the number 
of adult males in the USA) there must be 100 individuals 
about whom we could make a similar statement. They can’t 
all be almost certainly guilty.

This is all very obvious and 
elementary, yet, surprising-
ly, even experienced trialists 
find it hard to grasp that the 
probability of A given B is 
not the same as the probabil-
ity of B given A. Consider 

that most ubiquitous of statistics, the P-value. A P-value 
is the probability of seeing a result as extreme or more ex-
treme than that observed if the null hypothesis is true. In 
other words it says something about the probability of the 
evidence given the null hypothesis. It is not, therefore, the 
probability of the hypothesis given the evidence. Yet it is 
often misinterpreted as being the probability that the null 
hypothesis is true. This is just an egregious error.

P-values are a concept in frequentist statistics. The frequen-
tist approach to statistics is the approach generally used in 
drug development. In this approach it is never possible 
to talk of the probability of a hypothesis being true. The 
hypothesis is either true or false. The problem is we don’t 
know which. If one wished to make statements about the 
truth of a hypothesis one would have to use the Bayesian 

Patients given placebo 
can be expected to 
improve for reasons 
that are purely 
statistical

> 

Senn, Write Stuff, 2009



Some advice
• Plan ahead 

• Be clear what you really want to know 

• Use R 

• Visualise and understand your data 

• Save scripts 

• Keep statistical tests to a minimum 

• Be aware of sources of bias 

• Use available resources at ICH and beyond


