
Jon Clayden <j.clayden@ucl.ac.uk>

Photo by José Martín Ramírez Carrasco
https://www.behance.net/martini_rc

Introduction to Data Processing with R

DIBS Teaching Seminar, 9 Dec 2016

mailto:j.clayden@ucl.ac.uk
https://www.behance.net/martini_rc

R: Background and status
• A free and open-source

implementation of S

• Appeared 1993; current version is
3.3.2

• Core strength is statistics, but very
good at handling and manipulating
data

• Increasingly used by Google,
Microsoft, Oracle, etc., for data
science applications

• Runs on Windows, Mac OS X,
Linux, etc.

• Main contributed code repository
(CRAN) contains 9500+ packages;
growing supralinearly

• Huge array of statistical methods
available

• Annual useR! conference

• About 25 packages currently in the
medical imaging “task view”; more
for image processing

The language
• High-level; comparable to MATLAB

• Vectorised: you can operate on
multiple data elements at once

• A matrix or higher-dimensional
array is represented as a vector
with a dimension attribute

• Index into objects using [

• Call functions using (

• Assignment can be done with =,
but usually <- or -> (left or right
assign) are used

• Function arguments may be
named in a call using =

• Default function arguments are
also set with =

• Commands are separated by ; or
newline

> 1:4
[1] 1 2 3 4
> x <- matrix(1:4,ncol=2)
> x
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> attributes(x)
$dim
[1] 2 2

Lists and data frames
• A list can contain (named or

unnamed) variables of different
types

• Elements are accessed using [[or $
syntax

• A data frame is similar, but
elements must be vectors (and will
be “recycled”)

• Data frames are typically used to
store tabular data, like in a
spreadsheet

> x <- list(2:3, a="text", b=1)
> x
[[1]]
[1] 2 3

$a
[1] "text"

$b
[1] 1
> x$b
[1] 1

> y <- data.frame(2:3, a="text", b=1)
> y
 X2.3 a b
1 2 text 1
2 3 text 1
> y$b
[1] 1 1

Factors and formulas
• A factor is a vector whose

elements can only take certain
values (levels)

• Note that the element which is not
a valid level is set to NA, which is
used by R to denote missing values

• Because of R’s statistical heritage,
formulas describing relationships
between variables are important

• More on this later

> factor(c(1,2,1,3,1,4))
[1] 1 2 1 3 1 4
Levels: 1 2 3 4

> factor(c(1,2,1,3,1,4), levels=1:3)
[1] 1 2 1 3 1 <NA>
Levels: 1 2 3

> y ~ x
y ~ x
> class(y ~ x)
[1] "formula"

Data manipulation
• As in most vectorised languages,

widespread use of for loops is
inefficient and unnecessary

• The apply function allows another
function to be applied along one or
more dimensions of an array

• lapply is used for applying a
function to elements of a list, and
returning a list containing the
results

> # Find the mean value along each row
> x <- matrix(1:4,ncol=2)
> apply(x, 1, mean)
[1] 2 3

> y <- readImageFile("genu.nii")
> image(y[,,35], col=grey(0:100/100))

> z <- apply(y, 1:2, max)
> image(z, col=grey(0:100/100))

tapply
• tapply lets you apply a function to

subsets of a vector defined by the
levels of a factor

> gender <- factor(c("male","female","male","male","female"))
> age <- c(28,31,30,29,32)
> tapply(age, gender, mean)
female male
 31.5 29.0
> tapply(age, gender, sd)
 female male
0.7071068 1.0000000

Simple statistics
> a <- rnorm(10); b <- rnorm(10) # Generate random data
> t.test(a,b) # Do the means of “a” and “b” differ?

 Welch Two Sample t-test

data: a and b
t = 0.5343, df = 16.344, p-value = 0.6003
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -0.6769035 1.1341339
sample estimates:
 mean of x mean of y
 0.15810667 -0.07050854

> cor.test(a,b) # Are “a” and “b” correlated?
(output removed)

Using a data frame and formula
• A formula is used to define a

simple (ANCOVA) model
• We are assuming that the response

(DriversKilled) may be modelled
using a linear combination of
drivers and law

> data(Seatbelts)
> s <- as.data.frame(Seatbelts)
> head(s)
 DriversKilled drivers front rear kms PetrolPrice VanKilled law
1 107 1687 867 269 9059 0.1029718 12 0
2 97 1508 825 265 7685 0.1023630 6 0
3 102 1507 806 319 9963 0.1020625 12 0
4 87 1385 814 407 10955 0.1008733 8 0
5 119 1632 991 454 11823 0.1010197 10 0
6 106 1511 945 427 12391 0.1005812 13 0
> anova(lm(DriversKilled ~ drivers * law, data=s))
Analysis of Variance Table

Response: DriversKilled
 Df Sum Sq Mean Sq F value Pr(>F)
drivers 1 97196 97196 734.2697 <2e-16 ***
law 1 693 693 5.2387 0.0232 *
drivers:law 1 256 256 1.9324 0.1661
Residuals 188 24886 132

Graphics
• plot creates a standard scatter

plot; additions can be made with
lines or points

• Other useful plots include
histograms (hist), box-and-
whisker plots (boxplot) and 3D
surface plots (persp)

• Also many more specialised ones
> plot(scale(s$DriversKilled),
type="l", lwd=2, xlab="month", ylab="")
> lines(scale(s$drivers), col="red",
lwd=2)

The “Hadleyverse”
• The packages of one very

productive R contributor: Hadley
Wickham

• Getting data into R: readr, haven,
readxl, rvest

• Data manipulation: plyr, dplyr,
tidyr

• Working with particular data
types: httr, stringr, lubridate

• Visualisation: ggplot2, ggvis,
rggobi

• Tools for package developers:
devtools, testthat, roxygen2

The ggplot2 package
• Highly recommended; provides a

neat mechanism for mapping
graphical aesthetics to variables

> library(ggplot2)
> qplot(drivers, DriversKilled, colour=factor(law), data=s) +
geom_smooth(method="lm")

drivers

D
ri
v
e
rs
K
il
le
d

60

80

100

120

140

160

180

200

1500 2000 2500

factor(law)

0

1

The dplyr package
• Provides a set of simple, chainable

operations which can be applied to
data frames

> library(dplyr)
How many drivers were killed on average with and without the seatbelt law?
> s %>% group_by(law) %>% summarise(AverageDriversKilled=mean(DriversKilled))
Source: local data frame [2 x 2]

 law AverageDriversKilled
 (dbl) (dbl)
1 0 125.8698
2 1 100.2609

Was the law in place during the worst months?
> s %>% filter(DriversKilled > 180) %>% select(law)
 law
1 0
2 0
3 0
4 0
5 0

The mmand and RNiftyReg packages
• Standalone packages which are

also used by TractoR

• mmand is for mathematical
morphology and resampling

• RNiftyReg is for registration; also
has fast functions for reading and
writing NIfTI files

• Affine (linear) and nonlinear
registration

• 2D or 3D (target may also be 4D)

• Control over cost function,
resampling scheme

• Can apply transformations to
other images or points, construct
affine matrices from scratch

Mathematical morphology
• Basis of morphological image

processing

• Erosion/dilation: region growing/
shrinking

• Opening/closing: e.g., removing
“holes”

• Additional composite processes

• A kernel, or “structuring element”,
acts like a brush

• The mmand package can work in
any number of dimensions, with
arbitrary kernels

Wikipedia/Renato Keshet

Binary morphology in 1D
library(mmand)
x <- c(0,0,1,0,0,0,1,1,1,0,0)

kernel <- c(1,1,1)

erode(x,kernel)

dilate(x,kernel)

Two dimensions
library(png); library(mmand)
fan <- readPNG(system.file("images", "fan.png", package="mmand"))
display(fan)

Greyscale morphology in 2D

kernel <- shapeKernel(c(3,3), type="diamond")
display(erode(fan,kernel))

Morphological gradient

kernel <- shapeKernel(c(3,3), type="diamond")
display(dilate(fan,kernel) - erode(fan,kernel))

Resampling
• Indexing between elements

• R truncates 2.5 to 2 and returns the
second element

• In some cases there is conceptually
a value at location 2.5 but we don’t
know it

• Best guess is probably that it’s 0,
or 1, something in between

• Using mmand we can interpolate
using different sampling kernels

• An entire image of any
dimensionality can be resampled
similarly

• Allows regridding, upsampling and
downsampling

x <- c(0,0,1,0,0)
x[2.5]
[1] 0

"Nearest neighbour"
resample(x, 2.5, boxKernel())
[1] 1

Linear interpolation
resample(x, 2.5, triangleKernel())
[1] 0.5

Mitchell-Netravali cubic spline
resample(x, 2.5,
 mitchellNetravaliKernel(1/3,1/3))
[1] 0.5708661

Upsampling a smaller image

fan_small <- readPNG(system.file("images", "fan-small.png", package="mmand"))
display(rescale(fan_small, 4, mnKernel()))

Image registration
• Aligning two related images

• Contrasts may be similar or
different

• Pixel information may be combined

• Optimisation over a space of
transformations (global/linear or
local/nonlinear)

• Resampling to match the target
image

Courtesy of Jiří Borovec, Czech Technical University, Prague

RNiftyReg usage (3D)

library(RNiftyReg)
source <- readNifti(system.file("extdata","epi_t2.nii.gz",package="RNiftyReg"))
target <- readNifti(system.file("extdata","mni_brain.nii.gz",package="RNiftyReg"))

linear <- niftyreg(source, target, scope="affine")
nonlinear <- niftyreg(source, target, scope="nonlinear", init=forward(linear))

source target result (nonlinear)

Combining the packages: checking registration
library(jpeg)
library(mmand)
library(RNiftyReg)

Read images and convert to greyscale
source <- readJPEG("source.jpg")
target <- readJPEG("target.jpg")
source <- apply(source, 1:2, mean)
target <- apply(target, 1:2, mean)

Register images
result <- niftyreg(source, target)

Calculate morphological gradient
kernel <- shapeKernel(c(3,3), type="diamond")
gradient <- dilate(result$image,kernel) - erode(result$image,kernel)

Display the results
display(target)
display(threshold(gradient,method="kmeans"), add=TRUE, col="red")

Combining the packages: checking registration

Other tools I have written and/or found useful
• The multiplatform RStudio IDE

• car for better AN(C)OVA

• divest for DICOM-to-NIfTI
conversion

• lme4 for random/mixed effects
models

• igraph for graph theory

• pcaMethods for PCA

• png and jpeg for working with
image formats

• R.matlab for reading .mat files

• soma for nonlinear optimisation

• ore for text processing

• shades for simple colour
manipulation

• TractoR, of course!

• See also http://
www.statmethods.net for other
applications

http://www.statmethods.net
http://www.statmethods.net

Why use R?
• Very strong on stats

• Scripted analyses for
reproducibility; explicit tests

• Quick development due to high-
level code

• Good performance in vectorised
code

• Very easy to link in bits of C/C++/
FORTRAN code for improved speed
where needed

• Pretty, publication-ready graphics

• Free and open source: install it
wherever you like

• Even modify it if you want!

• A strong platform for (image) data
analysis

• Usage and awareness in imaging
groups is growing (cf. Tabelow,
Clayden et al., NeuroImage, 2011)

