,’// f
“ ’
/
l] ‘

Introduction to Data Processing with R

Jon Clayden <j.clayden@ucl.ac.uk>

DIBS Teaching Seminar, 9 Dec 2016

- W - e . & =
’ \ s & P, z o~ \
: \‘\ - ~ S 2 - \~\ 3 . el g
L “ay ~ - - .
_‘.:« S Mt - ~\, \
\\‘_' '.-.’lA i - . \\
L T e \

TSR MWy < X g -

_,\ - Y !‘l’!‘q . ’; :“ .'. - . 3 &
& Ph_o,tobyJos&@art‘ln--.R;_\mwez.Caﬁ:‘asco-; iy
“* * https://www.behance net/martmi re s . -
P b A 2 s e oy

e P et o " fo LY L AN &7 4 e
\ g T T el WARE T R

A R e L el - I LRSS A

mailto:j.clayden@ucl.ac.uk
https://www.behance.net/martini_rc

R: Background and status

A free and open-source
implementation of S

Appeared 1993; current version is
3.3.2

Core strength is statistics, but very
good at handling and manipulating
data

Increasingly used by Google,
Microsoft, Oracle, etc., for data
science applications

Runs on Windows, Mac OS X,
Linux, etc.

Main contributed code repository
(CRAN) contains 9500+ packages;
growing supralinearly

Huge array of statistical methods
available

Annual useR! conference

About 25 packages currently in the
medical imaging “task view"; more
for image processing

The language

High-level; comparable to MATLAB

Vectorised: you can operate on
multiple data elements at once

A matrix or higher-dimensional
array is represented as a vector
with a dimension attribute

> 1:4
[1] 1 2 3 4
> X <- matrix(1l:4,ncol=2)
> X
[,1] [,2]
[1,] 1 3
[2,] 2 4
> attributes(x)
Sdim

[1] 2 2

Index into objects using [
Call functions using (

Assignment can be done with =,
but usually <- or -> (left or right
assign) are used

Function arguments may be
named in a call using =

Default function arguments are
also set with =

Commands are separated by ; or
newline

Lists and data frames

e Alist can contain (hamed or
unnamed) variables of different

types

e Elements are accessed using [[or $
syntax

« A dataframe is similar, but
elements must be vectors (and will
be “recycled”)

o Data frames are typically used to
store tabular data, like in a
spreadsheet

> x <- list(2:3, a="text", b=1)
> X

[[1]]
[1] 2 3

Sa
[1] "text"

$b

[1] 1
> x$b
[1] 1

> y <- data.frame(2:3, a="text", b=1)
>y
X2.3 ab
1 2 text 1
2 3 text 1
> y$b
[1] 1 1

Factors and formulas

A factor is a vector whose

elements can only take certain
values (levels)

> factor(c(1,2,1,3,1,4))
[11 12131 4
Levels: 1 2 3 4

> factor(c(1,2,1,3,1,4), levels=1:3)
[1] 1 2 1 3 1 <NA>
Levels: 1 2 3

Note that the element which is not
a valid level is set to NA, which is
used by R to denote missing values

Because of R’s statistical heritage,
formulas describing relationships
between variables are important

>y ~ X

y ~ X

> class(y ~ x)
[1] "formula"

More on this later

Data manipulation

As in most vectorised languages,
widespread use of for loops is
inefficient and unnecessary

The apply function allows another
function to be applied along one or
more dimensions of an array

> # Find the mean value along each row
> X <- matrix(l:4,ncol=2)

> apply(x, 1, mean)

[1] 2 3

lapply is used for applying a
function to elements of a list, and
returning a list containing the
results

> y <- readImageFile("genu.nii")
> image(y[,,35], col=grey(0:100/100))

> z <- apply(y, 1:2, max)
> image(z, col=grey(0:100/100))

tapply

« tapply lets you apply a function to
subsets of a vector defined by the
levels of a factor

> gender <- factor(c("male","female","male","male","female"))
> age <- c(28,31,30,29,32)

> tapply(age, gender, mean)

female male

31.5 29.0
> tapply(age, gender, sd)
female male

0.7071068 1.0000000

Simple statistics

> a <- rnorm(10); b <- rnorm(10) # Generate random data
> t.test(a,b) # Do the means of “a” and “b” differ?

Welch Two Sample t-test

data: a and b
t = 0.5343, df = 16.344, p-value = 0.6003
alternative hypothesis: true difference in means is not
equal to O
95 percent confidence interval:
-0.6769035 1.1341339
sample estimates:
mean of x mean of vy
0.15810667 -0.07050854

> cor.test(a,b) # Are “a” and “b” correlated?
(output removed)

Using a data frame and formula

A formula is used to define a
simple (ANCOVA) model

> data(Seatbelts)
> s <- as.data.frame(Seatbelts)
> head(s)
DriversKilled drivers front rear

1 107 1687 867 269
2 97 1508 825 265
3 102 1507 806 319
4 87 1385 814 407
5 119 1632 991 454
6 106 1511 945 427

> anova(lm(DriversKilled ~ drivers
Analysis of Variance Table

Response: DriversKilled

We are assuming that the response
(DriversKilled) may be modelled
using a linear combination of
drivers and law

kms PetrolPrice VanKilled law

9059 0.
7685 0
9963 0
10955 0
11823 0
12391 0.

1029718 12 0]
.1023630 6 0
.1020625 12 0]
.1008733 8 0
.1010197 10 0

1005812 13 0

x law, data=s))

Df Sum Sg Mean Sq F value Pr(>F)

drivers 1 97196 97196 734.2697 <2e-16 **x%
law 1 693 693 5.2387 0.0232 x
drivers:law 1 256 256 1.9324 0.1661

Residuals 188 24886 132

Graphics

plot creates a standard scatter
plot; additions can be made with
lines or points

> plot(scale(s$DriversKilled),

type="1", lwd=2, xlab="month", ylab="")

> lines(scale(s$drivers), col="red",

lwd=2)

Other useful plots include
histograms (hist), box-and-
whisker plots (boxplot) and 3D
surface plots (persp)

Also many more specialised ones

cv')—

N

- —

o

The “Hadleyverse”

« The packages of one very
productive R contributor: Hadley
Wickham

« Getting data into R: readr, haven,
readxl, rvest

« Data manipulation: plyr, dplyr,
tidyr

« Working with particular data
types: httr, stringr, lubridate

« Visualisation: ggplot2, ggvis,
rggobi

« Tools for package developers:
devtools, testthat, roxygen2

The ggplot2 package

e Highly recommended; provides a
neat mechanism for mapping
graphical aesthetics to variables

> library(ggplot2)
> gplot(drivers, DriversKilled, colour=factor(law), data=s) +

geom_smooth(method="1m")

factor(law)
0
1

DriversKilled

drivers

The dplyr package

« Provides a set of simple, chainable
operations which can be applied to
data frames

> library(dplyr)

How many drivers were killed on average with and without the seatbelt law?
> s %>% group_by(law) %>% summarise(AverageDriversKilled=mean(DriversKilled))
Source: local data frame [2 x 2]

law AverageDriversKilled

(dbl) (dbl)
1 0 125.8698
2 1 100.2609

Was the law in place during the worst months?
> s %>% filter(DriversKilled > 180) %>% select(law)

i i

The mmand and RNiftyReg packages

Standalone packages which are
also used by TractoR

mmand is for mathematical
morphology and resampling

RNiftyReg is for registration; also
has fast functions for reading and
writing NIfTI files

Affine (linear) and nonlinear
registration

2D or 3D (target may also be 4D)

Control over cost function,
resampling scheme

Can apply transformations to
other images or points, construct
affine matrices from scratch

Mathematical morphology

Basis of morphological image
processing

Erosion/dilation: region growing/
shrinking

Opening/closing: e.g., removing
“holes”

Additional composite processes

A kernel, or “structuring element”,
acts like a brush

The mmand package can work in
any number of dimensions, with
arbitrary kernels

Wikipedia/Renato Keshet

Binary morphology in 1D

library (mmand)
x <- ¢(0,0,1,0,0,0,1,1,1,0,0)

0 o Ko o o KRKNEN o o

kernel <- c(1,1,1)
1‘1‘1

erode(x,kernel)

0 00 0 0 O oo 0 0

dilate(x,kernel)

o KIENEN o ENERERERED o

Two dimensions

library(png); library(mmand)
fan <- readPNG(system.file("images", "fan.png", package="mmand"))
display(fan)

Greyscale morphology in 2D

kernel <- shapeKernel(c(3,3), type="diamond")
display(erode(fan,kernel))

Morphological gradient

kernel <- shapeKernel(c(3,3), type="diamond")
display(dilate(fan,kernel) - erode(fan,kernel))

Resampling

Indexing between elements

X <- ¢(0,0,1,0,0)
x[2.5]
[1] ©

R truncates 2.5 to 2 and returns the
second element

In some cases there is conceptually
a value at location 2.5 but we don't
know it

Best guess is probably that it's O,
or 1, something in between

Using mmand we can interpolate
using different sampling kernels

"Nearest neighbour"
resample(x, 2.5, boxKernel())
[1] 1

Linear interpolation
resample(x, 2.5, triangleKernel())
[1] 0.5

Mitchell-Netravali cubic spline
resample(x, 2.5,

mitchellNetravaliKernel(1/3,1/3))
[1] 0.5708661

An entire image of any
dimensionality can be resampled
similarly

Allows regridding, upsampling and
downsampling

Upsampling a smaller image

fan_small <- readPNG(system.file("images", "fan-small.png", package="mmand"))
display(rescale(fan_small, 4, mnKernel()))

Image registration

« Aligning two related images

e Contrasts may be similar or
different

« Pixel information may be combined

Optimisation over a space of
transformations (global/linear or
local/nonlinear)

Resampling to match the target
image

RNiftyReg usage (3D)

library(RNiftyReg)
source <- readNifti(system.file("extdata","epi_t2.n1i1.gz",package="RNiftyReg"))
target <- readNifti(system.file("extdata","mni_brain.nii.gz",package="RNiftyReg"))

linear <- niftyreg(source, target, scope="affine")
nonlinear <- niftyreg(source, target, scope="nonlinear", init=forward(linear))

source target result (nonlinear)

Combining the packages: checking registration

library(jpeg)
library(mmand)
library(RNiftyReg)

Read images and convert to greyscale
source <- readJPEG("source.jpg")
target <- readJPEG("target.jpg")
source <- apply(source, 1:2, mean)
target <- apply(target, 1:2, mean)

Register -1images
result <- niftyreg(source, target)

Calculate morphological gradient
kernel <- shapeKernel(c(3,3), type="diamond")
gradient <- dilate(result$image,kernel) - erode(result$image,kernel)

Display the results
display(target)
display(threshold(gradient,method="kmeans"), add=TRUE, col="red")

checking registration

the packages

ining

Comb

Other tools | have written and/or found useful

The multiplatform RStudio IDE
car for better AN(C)OVA

divest for DICOM-to-NIfTI
conversion

lme4 for random/mixed effects
models

igraph for graph theory
pcaMethods for PCA

png and jpeg for working with
image formats

R.matlab for reading .mat files

soma for nonlinear optimisation
ore for text processing

shades for simple colour
manipulation

TractoR, of course!

See also http://
www.statmethods.net for other
applications

http://www.statmethods.net
http://www.statmethods.net

Why use R?

Very strong on stats

Scripted analyses for
reproducibility; explicit tests

Quick development due to high-
level code

Good performance in vectorised
code

Very easy to link in bits of C/C++/
FORTRAN code for improved speed

where needed

Pretty, publication-ready graphics

Free and open source: install it
wherever you like

Even modify it if you want!

A strong platform for (image) data
analysis

Usage and awareness in imaging
groups is growing (cf. Tabelow,
Clayden et al., Neurolmage, 2011)

