An Fgfr3-iCreERT2 Transgenic Mouse Line for Studies of Neural Stem Cells and Astrocytes

KAYLENE M. YOUNG, TOMOYUKI MITSUMORI, NIGEL PRINGLE, MATTHEW GRIST, NICOLETTA KESSARIS, AND WILLIAM D. RICHARDSON

The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom

KEY WORDS
Fgfr3; Cre-lox; transgenic mice; astrocytes; radial glia; neural stem cells; spinal cord; SVZ; olfactory bulb; interneurons

ABSTRACT
The lack of markers for astrocytes, particularly gray matter astrocytes, significantly hinders research into their development and physiological properties. We previously reported that fibroblast growth factor receptor 3 (Fgfr3) is expressed by radial precursors in the ventricular zone of the embryonic neural tube and subsequently by differentiated astrocytes in gray and white matter. Here, we describe an Fgfr3-iCreERT2 phage artificial chromosome transgenic mouse line that allows efficient tamoxifen-induced Cre recombination in Fgfr3-expressing cells, including radial glial cells in the embryonic neural tube and both fibrous and protoplasmic astrocytes in the mature central nervous system. This mouse strain will therefore be useful for studies of normal astrocyte biology and their responses to CNS injury or disease. In addition, Fgfr3-iCreERT2 drives Cre recombination in all neurosphere-forming stem cells in the adult spinal cord and at least 90% of those in the adult forebrain subventricular zone. We made use of this to show that there is continuous accumulation of all major interneuron subtypes in the olfactory bulb (OB) from postnatal day 50 (P50) until at least P230 (~8 months of age). It therefore seems likely that adult-born interneurons integrate into existing circuitry and perform long-term functions in the adult OB.

INTRODUCTION

Astrocytes are the most abundant cells in the adult mouse brain, yet the paucity of molecular markers with which to identify astrocytes \textit{in situ} means that they remain relatively poorly characterized. Two broad classes of astrocyte are recognized—fibrous astrocytes, found mainly in white matter; and protoplasmic astrocytes in the gray matter. Within these broad groupings there might be functionally specialized subtypes, for region-specific gene expression differences have been reported (Hochstim et al., 2008). At least some astrocytes develop by direct trans-differentiation of radial glial cells after they have undergone their final divisions (Hirano and Goldman, 1988; Voigt, 1989). On the basis of the development of their densely ramified fine processes and exclusive territories (Bushong et al., 2004; Nagy and Rash, 2003), they are said to reach maturity between postnatal day 17 (P17) and P30. Unlike the neuronal or oligodendroglial lineages, we have no simple way of distinguishing astrocytes at different stages of maturation, which impedes study of their differentiation and plasticity in the normal or injured brain.

Glial fibrillary acidic protein (GFAP) is expressed strongly by fibrous astrocytes in white matter and at the pial surface but is absent from the vast majority of gray matter (protoplasmic) astrocytes in the normal healthy CNS. Antibodies to S100\textsubscript{\textbeta} are often used to mark GFAP-negative protoplasmic astrocytes (Ludwin et al., 1976), but this protein is also expressed by some oligodendrocyte (OL) lineage cells (Hachem et al., 2005; Vives et al., 2003; Zuo et al., 2004). Therefore, identifying astrocytes unambiguously \textit{in vivo} has proven difficult. We previously reported that the fibroblast growth factor receptor 3 (Fgfr3) transcripts are expressed in the ependymal zone (EZ) of the embryonic spinal cord and subsequently become restricted to astrocytes in the gray and white matter of the postnatal cord (Pringle et al., 2003). Fgfr3 has been used subsequently for \textit{in situ} studies of astrocyte development (Agius et al., 2004; Hochstim et al., 2008).

Fgfr3 is also expressed in the ventricular zone (VZ) of the developing brain (Bansal et al., 2003). A constitutive activating mutation of Fgfr3 has also been associated with increased MAPK activity and increased proliferation of cells in the VZ (Inglis-Broadgate et al., 2005; Thomson et al., 2007). These data indicate that FGFR3 is expressed by neuroepithelial precursors and/or radial glial cells in the brain, as in the spinal cord. Many Fgfr3+ cells in the postnatal brain are found outside the VZ (Bansal et al., 2003), similar to the spinal cord (Pringle et al., 2003). Fgfr3 expression both \textit{in vivo} and in cultured neural cells has been linked to OL lineage cells as well as astrocytes (Bansal et al., 2003; Miyake et al., 1996; Oh et al., 2003). However, Fgfr3 is
expressed at a low level in early oligodendrocyte precursors (OLPs) and is upregulated only transiently as they start to differentiate into OLs (Bansal et al., 1996), so it is to be expected that the great majority of Fgfr3\(^+\) cells in the postnatal CNS should be astrocytes, not OL lineage cells. Consistent with this, Cahoy et al. (2008) immunopurified astrocytes from early postnatal brains (P1–P30) of S100b-eGFP mice and showed that Fgfr3 mRNA was highly enriched relative to other purified neural cell types on Affymetrix gene microarrays.

Here, we describe the generation and characterization of a phage artificial chromosome (PAC) transgenic mouse line that expresses tamoxifen-inducible Cre (“codon-improved” version, iCreERT\(^2\)) under Fgfr3 transcriptional control. This has allowed us to identify and study Fgfr3\(^+\) cells in the developing and/or adult CNS. We have confirmed that Fgfr3 is expressed by radial glial stem cells in the embryonic brain and spinal cord and by fibrous and protoplasmic astrocytes in the postnatal CNS. In addition, we show that Fgfr3 is expressed by adult neural stem cells located within the subventricular zone (SVZ) of the forebrain and the EZ of the spinal cord. We followed the development of olfactory bulb (OB) interneurons from SVZ stem cells during adulthood and showed that all identifiable interneuron subtypes accumulate and survive long term (>6 months) in the granule and periglomerular layers of the OB. We expect that our Fgfr3-iCreERT\(^2\) line will be useful for further studies of OB neurogenesis and studies of astrocytes in the postnatal CNS. In addition, it is likely that the line will find uses for studies of non-CNS tissues that normally express Fgfr3, such as developing cartilage and bone.

MATERIALS AND METHODS

Transgenesis

The mouse genomic PAC library RPCI 21 from the UK Human Genome Mapping Project Resource Center was screened with a 900-bp PCR-generated fragment from a rat Fgfr3 cDNA, corresponding to most of the extracellular domain. One positive clone (608P12) was selected for modification. It contained an ~180 kb insert, including 37 kb upstream and 130 kb downstream of the Fgfr3 gene. The targeting construct was designed to insert an iCreERT\(^2\)-SV40polyA cassette into exon 2 of the Fgfr3 gene, fusing it to the endogenous initiation codon and deleting 58 bp immediately downstream. iCreERT\(^2\) (Claxton et al., 2008) is a fusion between iCre (excluding the nuclear localization signal) (Shimshek et al., 2002) and the ERT\(^2\) component of CreERT\(^2\) (Indra et al., 1999). PAC recombination and screening were as described (Lee et al., 2001; Rivers et al., 2008). The modified PAC was digested with Sgf1, which recognizes a single site in the PAC vector backbone. The linear PAC was purified by pulsed field gel electrophoresis, and transgenic mice were generated by pronuclear injection. Five founders were identified by Southern blotting. Three produced fertile transgenic offspring, which gave indistinguishable Cre mRNA expression patterns. All data here refer to founder #4-2, which can be requested online at http://www.ucl.ac.uk/~ucbwdr/Richardson.htm.

Genotyping and Embryo Staging

All animal work conformed to the Animals (Scientific Procedures) Act 1986 and was approved by the UK Government Home Office. Genotyping was performed by PCR using primers iCre250 (GAG GGA CTA CCT CCT GTA CC) and iCre880 (TGC CCA GAG TCA TCC TTG GC) which amplify a 630-bp fragment. The amplification program was: 94°C/4 min, followed by 33 cycles of 94°C/30 s, 61°C/45 s, 72°C/1 min and finally 72°C/10 min. Heterozygous Fgfr3-iCreERT\(^2\) mice were crossed to R26R-GFP (Mao et al., 2001), R26R-YFP (Srinivas et al., 2001), or Z/EG (Novak et al., 2000) Cre-conditional reporters and double-heterozygous offspring selected for analysis. R26R-GFP and R26R-YFP transgenes were identified by PCR of tail DNA as described (Psachoulia et al., in press). The Z/EG transgene was identified by whole mount β-galactosidase labeling of tail tissue.

For timed matings, breeders were caged together overnight and vaginal plugs scored the following morning. Midday of the day of the vaginal plug was designated embryonic day 0.5 (E0.5). Pregnant females were killed by CO\(_2\) inhalation and the embryos removed. Embryonic ages were confirmed by morphological criteria (Theiler, 1972).

Tamoxifen Administration

Tamoxifen was dissolved in corn oil at 40 mg/mL and administered by oral gavage. Adult mice (P50 or older) received 200 mg/kg body weight once a day for 5 days. Pregnant females received a single dose of 200 mg/kg body weight. Time after tamoxifen administration is denoted as e.g. P50 +7, where +7 refers to the number of days after the first dose given on P50.

BrdU Administration

BrdU (Sigma) was dissolved in phosphate buffered saline (PBS) at 20 mg/mL, and 50 µL was administered intra-peritoneally to adult mice four times in 24 h (6 a.m., noon, 6 p.m., midnight).

Tissue Preparation and Immunohistochemistry

Tissue fixation, and immunohistochemistry employed methods and antibodies as described previously (Rivers et al., 2008; Young et al., 2007). Additional antibodies were as follows: rabbit anti-Aquaporin-4 (Chemicon; 1:500); guinea-pig anti-GLAST (Chemicon; 1:5,000); mouse anti-RC2 monoclonal IgM supernatant (Developmental Studies Hybridoma Bank; 1:4). Sections of adult tissue (30 μm) were immunolabeled as floating sections.
and transferred to glass slides for mounting and microscopy. Embryonic brain and spinal cord sections were collected directly onto coated glass slides.

In Situ Hybridization

Sections (20 μm) for in situ hybridization were collected on the surface of DEPC-treated PBS, transferred onto glass slides and allowed to dry in air at 20–25°C. The Fgfr3 RNA hybridization probe has been described (Pringle et al., 2003). For the iCreERT2 probe, iCreERT2 coding sequences were PCR amplified using primers that added a 5’ Sal1 site and a 3’ EcoR1 site. The PCR product was cloned into pBluescript along with a 3’ SV40-polyA sequence. The antisense probe was transcribed with T3 RNA polymerase (Promega) from Sal1-linearized template in the presence of digoxygenin- or fluorescein-conjugated nucleotide mix (Roche). For details see http://www.ucl.ac.uk/~ucbwdr/Richardson.htm.

Neurosphere Cultures

Primary neurosphere cultures were generated from the entire spinal cord or the micro-dissected SVZ of tamoxifen-treated Fgfr3-iCreERT2;R26R-YFP mice at P70 + 7, P70 + 14, P70 + 21, and P70 + 56. At each time, separate cultures were established from three individual mice. Tissue was chopped into small pieces, digested with Trypsin-EDTA (Invitrogen) at 37°C for 12 min and digestion stopped with soybean trypsin inhibitor (Sigma). Single-cell suspensions were produced by trituration in calcium- and magnesium-free Earles Buffered Salt Solution (Invitrogen). Dissociated cells from each mouse were plated in one (SVZ) or two (spinal cord) six-well tissue culture plates in Neurocult basal medium for neural stem cells with Neurocult neural stem cell proliferation supplement (9:1, Stem Cell Technologies), plus 10 ng/mL basic fibroblast growth factor (Roche), 20 ng/mL epidermal growth factor (Sigma), and 4 μg/mL heparin (sodium salt, Sigma). Cultures were maintained at 37°C in a 5% (v/v) CO2 atmosphere. Half of the spinal cord culture medium was replaced at 7 days. The fractions of YFP+ neurospheres were determined by fluorescence microscopy at 7 days (SVZ) or 14 days (spinal cord).

Microscopy and Data Analysis

Confocal images were collected as single scans (1 μm) using an Ultraview confocal microscope (Perkin Elmer). For quantification, a series of nonoverlapping images (20× objective lens) were collected from selected adult brain regions (at least 8 micrographs/region/section). Three brain sections from each of three mice were counted for each staining condition (at least 300 labeled cells in total). The brain regions analyzed are illustrated in Supporting Information Figure 1. Statistical comparisons were made by t-test or, for multiple regions or time points, by ANOVA. Differences were considered to be statistically significant at P < 0.05.

RESULTS

Fgfr3 as a Marker for Cortical Astrocytes

Following from our previous study of mouse spinal cord (Pringle et al., 2003), we examined Fgfr3 as a candidate marker for astrocytes in the postnatal brain. By in situ hybridization we detected many Fgfr3+ cells in the adult mouse cerebral cortex (Fig. 1). These cells did not co-express NG2, OLIG2, or NeuN (Fig. 1a–c), indicating that they were not OL lineage cells or neurons. The majority of Fgfr3+ cells were GFAP-negative but all GFAP+ cells co-expressed Fgfr3 (Fig. 1d). Since most cortical astrocytes do not express GFAP, this was consistent with the notion that Fgfr3 is expressed by astrocytes in the adult mouse cortex.

Expression of an Fgfr3-iCreERT2 PAC Transgene in the CNS

To characterize the Fgfr3+ cells further, we generated transgenic mouse lines that express iCreERT2 under the transcriptional control of Fgfr3 in a PAC (Fig. 1e and Methods). We obtained five founders, three of which transmitted the Fgfr3-iCreERT2 transgene to their offspring. We characterized each founder by in situ hybridization for Fgfr3 and iCreERT2 on adjacent sections of embryonic spinal cords. Fgfr3 and iCreERT2 had similar expression patterns at all ages examined (Supp. Info. Fig. 2). At the earliest times (embryonic day 11.5, E11.5), expression was restricted to cell bodies in the EZ. We identified these EZ cells as pluripotent radial precursors that generate neurons, astrocytes, and OLs during embryonic development (Supp. Info. Fig. 2). Subsequently, Fgfr3- and iCreERT2-positive cells moved away from the EZ into the developing gray and white matter, where they persisted long term (Supp. Info. Fig. 2).

In the postnatal spinal cord and brain, there were many Fgfr3+ cells in gray and white matter (Fig. 1 and Supp. Info. Fig. 2). In adult Fgfr3-iCreERT2 mice, these Fgfr3+ cells co-expressed iCreERT2 (Fig. 1f). We tentatively concluded that expression of the Fgfr3-iCreERT2 transgene mimics normal Fgfr3 expression in the embryonic and adult spinal cord and adult forebrain.

Fgfr3-iCreERT2 Marks Protoplasmic and Fibrous Astrocytes

Fgfr3-iCreERT2 was crossed into the Rosa26R-YFP (R26R-YFP) background (Srinivas et al., 2001), tamoxifen was administered from P50 and the mice analyzed subsequently by immunolabeling for YFP (see Methods). On P50 + 5, no YFP-labeled cells were detected...
anywhere in the CNS, either because recombination had not yet occurred or because the level of YFP protein was still below detectable levels. However, at P50 + 7 many YFP+ cells were found throughout the gray matter of the brain (Fig. 2) and spinal cord (Supp. Info. Fig. 2). These cells were close-packed and filled almost the entire gray matter volume with YFP fluorescence. Within this sea of fluorescence were scattered “holes,” corresponding to unlabeled cells (e.g. Fig. 2a–c, arrowheads). This pattern was consistent with the idea that the YFP-labeled cells were astrocytes and indicated that the efficiency of $R26R$-YFP reporter gene activation was high, though less than 100%. We never observed any YFP+ cells in $Fgfr3$-iCreERT2:R26R-YFP mice that had not received tamoxifen.

The great majority of YFP+ cells in $R26R$-YFP reporters were S100b+ (94% ± 4% of YFP+ cells) and most of these were GFAP-negative (Fig. 3a–c). This fits the idea that the YFP+ cells are protoplasmic astrocytes, which normally express low or undetectable levels of GFAP. The minority of cortical YFP+ cells that was GFAP+ (18% ± 4%) tended to be associated with blood vessels or the pial surface (Fig. 3d). Those that contacted blood vessels frequently also expressed Aquaporin-4 (Fig. 3e). A very small number of YFP+ cortical cells co-expressed the neuronal marker NeuN (0.2% ± 0.4% of YFP+ cells) or the OL lineage marker OLIG2 (1.0% ± 0.6% of YFP+ cells) (Fig. 3f–i). These double-labeled cells did not localize to any particular region of

Fig. 1. $Fgfr3$ mRNA in astrocytes of the adult mouse cerebral cortex. Cells expressing $Fgfr3$ transcripts were distributed throughout all regions of the P60 forebrain. In single confocal scans (1 μm) from the medial cortex $Fgfr3$+ cells were negative for NG2 (a), OLG2 (b), or NeuN (c). GFAP-positive cells co-expressed $Fgfr3$ (d). A PAC containing ~37 kb upstream and 110 kb downstream of the mouse $Fgfr3$ locus was modified by insertion of iCreERT2 into exon 2 immediately downstream of the endogenous initiation codon (e). Double-fluorescence in situ hybridization confirmed that $Fgfr3$ (R3, red) and iCreERT2 (iCre, green) are expressed within the same cells (arrowheads) in the medial cortex of P60 $Fgfr3$-iCreERT2 mice (single 1 μm scan). Sections were counterstained with Hoechst 33258 (Hst, blue) to visualize cell nuclei. Single-labeled (arrows) and double-labeled cells (arrowheads) are indicated. Scale bars: 25 μm.

Fig. 2. Tamoxifen administration to $Fgfr3$-iCreERT2 transgenic mice. YFP immunolabeling of 30 μm coronal forebrain sections of P50 + 7 $Fgfr3$-iCreERT2:R26R-YFP mice (a–e). Arrows in (c) and (e) (higher-magnification images of the indicated regions in a) reveal intense YFP labeling under the pial surface and in the SVZ of the lateral ventricle, respectively. Reporter gene activation was very efficient and YFP-labeled cells were widespread and ubiquitous in the gray and white matter (b, d). To visualize the morphology of individual cells, we switched to the Z/EG reporter (f–i), in which recombination was less efficient than $R26$-YFP (compare b and f), so that labeled cells could be seen in isolation (g–i). At P50 + 7, the morphologies of GFP+ cells resembled fibrous white matter astrocytes (g), sub-pial astrocytes (h), and protoplasmic astrocytes (i). Sections were counterstained with Hoechst 33258 (Hst) to visualize cell nuclei. Scale bars: 0.8 mm (a), 40 μm (b–f), or 8 μm (g–i).
Fig. 3. Fgfr3-CreERT2 marks astrocytes in the adult mouse forebrain. To determine the identity of Fgfr3+ cells, 30 µm coronal forebrain sections of P50 + 7 Fgfr3-iCreERT2:Z/EG (a-d, g, n, q) or Fgfr3-iCreERT2:R26R-YFP mice (e, f, h–l, o, r) were co-immunolabeled for GFP or YFP, respectively, and neural cell type-specific markers. The vast majority of GFP/YFP+ cells in the medial cortex co-labeled for S100b (a, b), but not GFAP (c). However, GFP/YFP+ cells co-labeled for GFAP (d) and Aquaporin-4 (AP4) (e) when they were associated with blood vessels. GFP/YFP+ cells were mostly negative for OLIG2 (f) or NeuN (h), although there were rare exceptions (g, i). In the corpus callosum, the great majority of GFP/YFP+ cells were OLIG2-negative (j) but GFAP+ (k, n, o). Occasional cells that were GFAP-negative were observed (l). The proportions of YFP+ cells in the corpus callosum and medial cortex of Fgfr3-iCreERT2:R26R-YFP mice that co-express GFAP, S100b, OLIG2 or NeuN were quantified (m). Not all GFAP+ fibrous astrocytes were GFP/YFP+ in the corpus callosum of P50 + 7 Fgfr3-iCreERT2:Z/EG (n) or Fgfr3-iCreERT2:R26R-YFP (o). Not all S100b–, OLIG2-negative protoplasmic astrocytes were GFP/YFP+ in the cortex of P50 + 7 Fgfr3-iCreERT2:Z/EG (q) or Fgfr3-iCreERT2:R26R-YFP (r). Reporter-specific recombination efficiencies (fractions of fibrous or protoplasmic astrocytes that were GFP/YFP+) are shown (p, s). Sections were counterstained with Hoechst 33258 (Hst) to visualize cell nuclei. Images are single confocal scans (1 µm). Examples of single-positive (arrows) and double-immuno-positive cells (arrowheads) are indicated. Ctx, cortex; CC, corpus callosum. Scale bars: 25 µm (a–e, n, o, q, r), 15 µm (f–l).
the forebrain. Many (around half) of the OLG2+, YFP+ cells expressed a low level of OLG2 relative to the OLG2+, YFP-negative cells (Fig. 3g). Although S100β is widely used to detect protoplasmic astrocytes, it is also expressed by some OL lineage cells (Hachem et al., 2005; Vives et al., 2003). We therefore triple-labeled for YFP, S100β, and OLG2. The great majority (92% ± 5%) of YFP+ cells co-expressed S100β but not OLG2 (Fig. 3r), confirming them as astrocytes.

In coronal sections of P50 + 7 corpus callosum, a major white matter tract, the vast majority (95% ± 3%) of YFP+ cells were GFAP+ fibrous astrocytes (Fig. 3k–m,o). A very small proportion (1.0% ± 0.8%) of YFP+ cells co-labeled for OLG2 (Fig. 3j,m) but none co-labeled for NeuN (Fig. 3m). A tiny minority of all SOX10+ OL lineage cells (0.07% ± 0.01%) were YFP+. Similarly, a tiny fraction of NG2+ OL precursors (0.3% ± 0.1%) were YFP+. Taken together, these data demonstrate that recombination in the R26R-YFP reporter background is both efficient and astrocyte-specific.

To examine the detailed morphology of labeled cells we used the Z/EG reporter, in which eGFP is expressed in a Cre-inducible manner from a synthetic promoter composed of CMV and β-actin promoter elements (Novak et al., 2000). Z/EG reporters recombined less efficiently (fewer cells labeled) than R26R-YFP (compare Fig. 2b and Fig. 2f). In P50 + 7 corpus callosum only 12% ± 1% of GFAP+ astrocytes were GFAP+ in the Z/EG reporter (Fig. 3n,p), compared with 89% ± 4% in R26R-YFP reporters. In the cortex, 14% ± 4% of S100β+, OLG2-negative protoplasmic astrocytes were GFAP+ in Z/EG reporters, compared with 95% ± 1% in R26R-YFP (Fig. 3q–s). Nevertheless, expression of GFP in individual, isolated cells was very high in Z/EG reporters so that even fine processes were visible by GFP immunolabeling. The morphologies of GFP+ cells in the corpus callosum (Fig. 2g) and at the pial surface (Fig. 2h) resembled fibrous white matter astrocytes and subpial astrocytes, respectively. In the cortical gray matter, GFP+ cells had a dense halo of very fine processes around their cell bodies, giving them the distinct “bushy” or “fuzzy” morphology typical of protoplasmic astrocytes (Fig. 2i).

Long-Term Stability of Fgfr3-Expressing Astrocytes in the Cortex

To investigate the long-term fates of Fgfr3-expressing cells in the adult CNS, we immunolabeled coronal forebrain sections of P50 + 14 and/or P50 + 80 Fgfr3-iCreER22i:R26R-YFP mice for YFP and either GFAP (to identify fibrous astrocytes) or with S100β and OLG2 (to identify S100β+, OLG2-negative protoplasmic astrocytes) (Fig. 4).

In the cortex between P50 + 7 and P50 + 80, there was no significant change in the proportion of YFP+ protoplasmic astrocytes (92% ± 5% vs. 97% ± 1%, respectively) nor was there a change in the proportion of YFP+ cells that labeled for OLG2 (1.0% ± 0.6% vs. 1.0% ± 1.0%) or NeuN (0.2% ± 0.4% vs. 0.3% ± 0.3%).

In the corpus callosum, there was no significant change in the proportion of YFP+ cells that were GFAP+ fibrous astrocytes (>95% at all ages from P50 + 7 to P50 + 80) (Fig. 4a,b,e). However, we found a small but significant accumulation of YFP+ oligodendroglial cells with time (Fig. 4c–e). Between P50 + 14 and P50 + 80 the proportion of YFP+ cells that was NG2+ increased ~3-fold from ~0.2% to ~0.6%, and the proportion of YFP+ cells that was SOX10+ increased from ~0.8% to ~2.3% (significance, P < 0.01; Fig. 4e). These presumptive OL lineage cells might be derived from Fgfr3+ astrocytes. However, a small number of OLs in the adult corpus callosum is generated throughout life by SVZ stem cells (Menn et al., 2006; Rivers et al., 2008). Therefore, it seemed possible that in addition to labelling astrocytes our Fgfr3-iCreER22i transgene might target SVZ stem cells.

Fgfr3+ Neural Stem Cells in the Spinal Cord EZ and Forebrain SVZ

We previously noted that the spinal cord EZ was YFP-labeled in embryonic Fgfr3-iCreER22i:R26R-YFP mice. This EZ labeling also persisted in the adult spinal cord (Supp. Info. Fig. 2). In addition, the forebrain SVZ was heavily YFP-labeled (Fig. 2e, arrows). This suggested that Fgfr3-iCreER22i might induce recombination in neural stem cells, which are present in both the EZ and the SVZ (Doetsch et al., 1999; Hamilton et al., 2009; Weiss et al., 1996). Consistent with this, some YFP+ cells in the SVZ co-expressed GFAP, which marks SVZ stem cells (“subependymal astrocytes” or “type-B cells”) (Doetsch et al., 1999; Laywell et al., 2000) (Fig. 5a).
To test for stem cell labeling, we generated neurosphere cultures from the SVZ and spinal cords of Fgfr3-iCreERT2:R26R-YFP mice at increasing times (7–80 days) post-tamoxifen (Fig. 5). At P70 + 7, 100% of spinal cord-derived neurospheres were uniformly YFP+ (single confocal scan; lateral ventricle indicated by an asterisk). Neurosphere cultures were generated from the spinal cord (SC) and forebrain SVZ of Fgfr3-iCreERT2:R26R-YFP mice at P70 + 7, P70 + 14 (b phase; b’, fluorescence), P70 + 21 and P70 + 56 (c, phase; c’, fluorescence). A YFP+ neurosphere (arrow) and a YFP-negative neurosphere (arrowhead) are indicated. The proportion of neurospheres that was YFP+ was determined for each chase period (d). 100% of SC neurosphere-forming cells were YFP+ within 7 days of tamoxifen administration (P70 + 7), and the fraction of YFP+ SVZ-derived neurospheres increased with time to ~90%. BrdU was administered over 24 h to P50 + 80 Fgfr3-iCreERT2:R26R-YFP mice (e) (see Methods). Immunohistochemistry detected many YFP+ (green), BrdU (red) double-positive cells in the SVZ (single confocal scan; lateral ventricle marked by asterisk). A BrdU+ YFP+ cell (arrow) and a BrdU+ YFP-negative cell (arrowhead) are indicated. Scale bars: 40 μm (a, e), 300 μm (b, c).}

To test for stem cell labeling, we generated neurosphere cultures from the SVZ and spinal cords of Fgfr3-iCreERT2:R26R-YFP mice at increasing times (7–80 days) post-tamoxifen (Fig. 5). At P70 + 7, 100% of spinal cord-derived neurospheres were uniformly YFP+. At all times post-tamoxifen, 100% of spinal cord-derived neurospheres were uniformly YFP+. At P70 + 7, EZ stem cells are the only cells capable of generating neurospheres in the normal healthy spinal cord, so all adult EZ stem cells must be targeted by the Fgfr3-iCreERT2 transgene. In SVZ cultures, both stem cells (type-B) and progenitor cells (type-C) have the capacity to generate neurospheres (Young et al., 2007). If only the stem cell population expresses Fgfr3-iCreERT2, then only a fraction of neurospheres should be YFP+. However, this fraction would be expected to increase, the longer the delay between tamoxifen administration in vivo and establishment of the SVZ cell cultures. This is because YFP+ stem cells give rise to YFP+ intermediate progenitor cells, while preexisting (YFP-negative) progenitors generate migratory neuroblasts that leave the SVZ to join the rostral migratory stream (RMS) and move towards the OB. This is what we found experimentally. Only 31% ± 11% of neurospheres were YFP+ in SVZ-derived cultures that were established at the shortest time post-tamoxifen (P70 + 7) (Fig. 5d). However, the proportion of neurospheres that was YFP+ increased with time post-tamoxifen, to 89% ± 4% at P70 + 56 and 90% ± 6% at P70 + 80 (Fig. 5d). These data indicate that ~90% of SVZ stem cells recombine following tamoxifen administration (i.e., recombination efficiency ≥ 90%), similar to the recombination rate in fibrous and protoplasmic astrocytes. Consistent with this, BrdU labeling experiments in vivo showed that 91% ± 2% of BrdU+ cells in the SVZ of adult P50 + 80 Fgfr3-iCreERT2:R26R-YFP mice were YFP+ (four BrdU injections in 24 h; Fig. 5e).

If Fgfr3-iCreERT2 is expressed in migratory neuroblasts (type-A cells), one would expect to find YFP-labeling of PSA-NCAM+ neuroblasts in the SVZ, RMS, and OB at short times post-tamoxifen. Immunolabeling coronal sections of P50 + 7 brains showed that a decreasing proportion of PSA-NCAM+ neuroblasts was YFP+ as one moved rostrally from the SVZ to the OB (27% ± 9% versus 0.4% ± 0.4%, respectively) (Fig. 6a–c,g). The gradient of recombination (YFP labeling) from SVZ to OB suggests that the Fgfr3-iCreERT2 transgene is not transcribed in PSA-NCAM+ neuroblasts directly, but that neuroblasts inherit an active YFP reporter from SVZ stem cells, via intermediate progenitors (neither stem cells nor intermediate progenitors express PSA-NCAM). If this is correct, then an increasing proportion of neuroblasts should become YFP-labeled with increasing time post-tamoxifen.

To test this, coronal sections of SVZ, RMS, and OB from P50 + 14, P50 + 80, and P50 + 180 Fgfr3-iCreERT2:R26R-YFP mice were immuno-labeled for PSA-NCAM and YFP (Fig. 6d–g). At P50 + 14 there was still a rostro-caudal gradient in the proportion of neuroblasts labeled. However, by P50 + 80 the proportion of PSA-NCAM+ cells that was YFP+ had reached ~90% in the SVZ, RMS, and OB and this did not increase further, even at P50 + 180 (Fig. 6d–g). These data indicate that the Fgfr3-iCreERT2 transgene is not expressed by migratory neuroblasts but that, with time, they inherit the recombined YFP allele from Fgfr3+ stem cells in the SVZ. Furthermore, since progenitor cells have a limited capacity to generate neuroblasts and must be continually replenished from stem cells, the continued long-term production of YFP+ neuroblasts (for ~6 months) confirms that the true SVZ stem cell population was labeled in Fgfr3-iCreERT2:R26R-YFP mice.

SVZ-Derived Interneurons Accumulate and Survive Long-Term in the Olfactory Bulb

The evidence above demonstrates that Fgfr3 is expressed by SVZ stem cells (type-B), but not by intermediate progenitors (type-C) or migratory neuroblasts (type-A). Furthermore, we found that no NeuN+ cells in the OB co-expressed YFP in P50 + 7 Fgfr3-
Fig. 6. OB interneurons inherit a recombined R26R-YFP from SVZ stem cells via intermediate PSA-NCAM \(^1\) progenitors. Coronal forebrain sections through the SVZ, RMS and OB of P50 + 7 (a–c), P50 + 14, P50 + 80 and P50 + 180 (d–f) Fgfr3-iCreERT2:R26R-YFP mice were immunolabeled for YFP (green) and PSA-NCAM (red). The proportions of PSA-NCAM \(^+\) cells that were also YFP \(^+\) are shown in (g). At each time point, coronal sections through the OBs of Fgfr3-iCreERT2:R26R-YFP mice were additionally immunolabeled for YFP (green) and either the pan-neuronal marker NeuN (h–j), or the interneuron specific markers calretinin (Crt, k), calbindin (Cb, l), or tyrosine hydroxylase (TH, m). At each time post-tamoxifen, the proportion of neurons that co-expressed YFP was determined (n). Cell counts were performed across both the granule cell layer (g) and periglomerular layer (p) of the OB. YFP \(^+\) neurons of each subtype accumulated in number up until at least P50 + 180. High magnification single confocal scans (1 \(\mu\)m) are shown. Examples of YFP \(^+\) cells are indicated by arrows and YFP-negative cells by arrowheads. Sections were counterstained with Hoechst 33258 (Hst) to visualize cell nuclei. Scale bars: 25 \(\mu\)m (a–f), 20 \(\mu\)m (h–m).
iCreERZ2::R26R-YFP mice, demonstrating that postmitotic OB neurons are themselves Fgfr3-negative (Fig. 6h). We took advantage of this to investigate the rate of arrival and accumulation of SVZ-derived interneurons in the adult OB. We administered tamoxifen to Fgfr3-iCreERZ2::R26R-YFP mice starting on P50 and analyzed OB sections by immunolabeling for YFP and NeuN 7, 14, 80, or 180 days later (Fig. 6h–j). In addition, we identified interneuron subtypes by immunolabeling for Calretinin, Calbindin, or Tyrosine Hydroxylase (Fig. 6k–m). The proportion of each interneuron subtype that was YFP-labeled increased between P50 + 14 and P50 + 80 and again between P50 + 80 and P50 + 180 (Fig. 6n), as expected if new adult-born neurons arrive in the OB from the RMS and survive in the OB for an extended period of time, at least 6 months. This suggests that the adult-born interneurons integrate into the OB circuitry and fulfill long-term functions in both the periglomerular and granule cell layers.

DISCUSSION

Finding markers that identify both white and gray matter astrocytes but not other kinds of neural cell in the CNS has been a thorny problem. We showed that Fgfr3 is expressed by astrocytes in the developing and mature CNS (Pringle et al., 2003) and now we have made an Fgfr3-iCreERZ2 PAC transgenic mouse line that can be used with conditional reporters to label astrocytes in the mature CNS. The efficiency of Cre recombination following tamoxifen administration by oral gavage was very high with the R26R-YFP reporter; ~90% of all protoplasmic and fibrous astrocytes could be labeled in the adult mouse brain. This is sufficient to allow FACS purification of astrocytes (or other Fgfr33+ cells) for biochemical studies and could also be useful for conditional gene deletion or overexpression. On the Z/EG reporter background, recombination was much less efficient, labeling only ~12% of protoplasmic or fibrous astrocytes. Nevertheless, each individual cell was brightly labeled, revealing fine detail of cellular morphology. For some types of experiment (e.g. electrophysiology) this could be a definite advantage.

In general, recombination efficiency depends on both the Cre driver and the Cre-conditional reporter. We have observed with Fgfr3-iCreERZ2 and many other Cre lines, both inducible and constitutive, that R26R-YFP (Srinivas et al., 2001) consistently gives the highest recombination rates. This presumably reflects structural features of the reporter transgene such as distance between lox sites (shorter distances favoring recombination). Strikingly, we observed practically no recombination in adult R26R-GFP reporters (Mao et al., 2001), either with Fgfr3-CreERZ2 or with other inducible Cre lines such as Pdgfra-CreERZ2 (Rivers et al., 2008), although the R26R-GFP reporter has many times been used successfully with constitutive Cre lines by ourselves and others. We ascribe the relatively inefficient recombination of R26R-GFP to the fact that it contains three lox sites, not two as in R26R-YFP. On top of this, CreERZ2 is much less active than constitutive Cre, either because of its altered structure or because it is only transiently activated by tamoxifen, or both. The recombination efficiencies of the R26R-LacZ and Z/EG reporters (Novak et al., 2000; Soriano, 1999) are intermediate between R26R-YFP and R26R-GFP, with R26R-LacZ being rather more efficient than Z/EG, although we have not quantified this.

Many markers of mature astrocytes appear to be shared with other glial cell types, particularly radial glia. For example, transgenic lines that express constitutively active Cre under the transcriptional control of human GFAP (hGFAP) or brain lipid binding protein (BLBP) activate recombination in radial glia during embryogenesis and hence label all of their progeny, including neurons and OLs as well as astrocytes (Anthony et al., 2004; Casper and McCarthy, 2006; Hegedus et al., 2007; Malatesta et al., 2003). An S100β-eGFP line (Vives et al., 2003) labels embryonic radial glia and both astrocytes and OLs in the postnatal CNS, mimicking endogenous S100β expression. Tamoxifen-inducible CreERZ2 lines that are available to label astrocytes include those driven by the human GFAP promoter (hGFAP) (Chow et al., 2008; Gatani et al., 2006; Hirrlinger et al., 2006), GLAST (Mori et al., 2006; Slezak et al., 2007), or Connexin 30 (Cx30) promoters (Slezak et al., 2007). With the exception of Cx30-CreERZ2, these lines, like our Fgfr3-iCreERZ2, label radial glia and SVZ stem cells as well as astrocytes. This points to a close relatedness between radial glia and astrocytes, presumably connected to the fact that at least some astrocytes develop by direct trans-differentiation from radial glia (i.e. without an intervening cell division) (Hirano and Goldman, 1988; Voigt, 1989).

We also showed that Fgfr3 is expressed by stem cells in the postnatal SVZ and RMS but not by the progenitor cells or neuroblasts. The latter is consistent with a report that, following a single pulse of BrdU, most BrdU3+ cells in the SVZ (mainly progenitor cells) do not express Fgfr3 mRNA (Frinchi et al., 2008). It is difficult to label the main population of parenchymal astrocytes without also labeling subependymal astrocytes in the SVZ (the stem cells), as they share several properties, not only with each other but also with embryonic radial glia. Recent gene array studies of parenchymal astrocytes have identified many new genes that are preferentially expressed by astrocytes in vivo (Cahoy et al., 2008; Lichter-Konecki et al., 2008; Obayashi et al., 2009); these gene sets could be a rich source of new astrocyte-specific markers in the future.

We have not examined the fates of Fgfr33+ astrocytes following mechanical injury to the CNS. However, in collaborative experiments to be reported elsewhere (WDR and RMJ Franklin, University of Cambridge, UK; manuscript in preparation) we found that, following experimental focal demyelination in Fgfr3-CreERZ2::R26R-YFP spinal cords, YFP− reactive astrocytes but no other cell types were generated around the remyelinating lesions. In parallel experiments with Pdgfra-CreERZ2::R26R-YFP

AN Fgfr3-iCreERZ2 TRANSGENE MARKS NEURAL STEM CELLS AND ASTROCYTES

GLIA
mice, we found few if any YFP-labeled reactive astrocytes. These data suggest that reactive astrocytes are formed from preexisting parenchymal astrocytes and/or EZ stem cells but not from Pdgfra-expressing OL precursors/NG2 cells.

We used the fact that our Fgfr3-1Cre^{T2} transgene is expressed in SVZ stem cells to assess their contribution to adult neurogenesis in the OB. There is a variety of interneuron subtypes in the OB. These include the three major populations of GABAergic interneurons in the periglomerular layer, which can be distinguished by immunolabeling for the calcium binding proteins Calbindin and Calretinin and the dopamine synthesizing enzyme tyrosine hydroxylase. The lifespans and functions of these new interneurons has been a matter of great interest in recent years. We report that newly born neurons (YFP⁺, NeuN⁺) accumulate in the periglomerular and granule neuron layers of the OB for at least 6 months after tamoxifen-induced labeling of the SVZ stem cells. By this time, the adult-born interneurons comprise ~15% of all periglomerular interneurons and ~35% of all granule neurons. These data are consistent with a recent study (Imayoshi et al., 2008) in which OB neurogenesis was followed using Nestin-CreERT^{T2} on the R26R-LacZ reporter background to label SVZ stem and progenitor cells. These authors demonstrated that adult-born interneurons comprised ~40% of all granule neurons by 6 months post-tamoxifen (Imayoshi et al., 2008). Moreover, it has been established that, in rats, granule neurons that are born at 2 months of age (identified by BrdU pulse-labeling) are still present at 19 months of age (Winner et al., 2002). Our study complements those results by demonstrating that accumulation and long-term survival of adult-born olfactory interneurons is not limited to granule neurons but extends to three distinct sub-classes of periglomerular interneurons.

ACKNOWLEDGMENTS

We thank Ulla Dennehy and Marta Müller for excellent technical support and our other colleagues in the Wolfson Institute for Biomedical Research (UCL) for helpful comments and discussion. We also thank Yasmin Sabri for contributing to the experiments of Supporting Information Figure 2. KMY is the recipient of an Alzheimer’s Society Collaborative Career Development Award in Stem Cell Research. NK was funded by a UK Medical Research Council (MRC) New Investigator Award.

REFERENCES

