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Abstract

Many interesting patterns can be uncovered from network data by studying the neighbourhood
of nodes. For example, in protein-protein interaction (PPI) networks it has been shown that the
function of a protein is strongly related to its interactions with other proteins [1]. Studying the
neighbourhood of nodes can tell us important information not only about the nodes themselves,
but also about the network as a whole. However, not much research has been done into studying
these neighbourhoods of nodes. The clustering coefficient, one of the few signatures that quantify
the topological structure in the neighbourhood of a node, is unable to capture complex patterns
that arise in these sub-networks.

Our project defines a novel signature called the Graphlet Cluster Vector (GCV) that gen-
eralises the clustering coefficient of a node and quantifies the topological structure in the
neighbourhood of a node. We apply the GCV signature to economic, protein interaction and
metabolic networks and demonstrate its strength by uncovering interesting insights from the
data and providing real-world interpretations of our results.

In the economic networks, we show that the structure of the economic network causes
fluctuations in the change of crude oil price. Moreover, we also show that for a given country, a
relatively sparse network of trading partners is beneficial for its economy. In the PPI networks,
we show that the neighbourhood structure of a protein is influenced by the protein’s involvement
in RNA processing, translation, metabolism or Golgi endosome sorting. In Metabolic networks,
we show that the network of interacting partners of an enzyme is affected by its involvement
in several cellular processes, organismal systems or diseases. Moreover, we also quantitatively
evaluate the novel GCV signature on clustering random networks and test its performance when
dealing with noisy and incomplete data.
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2.4.2 Erdős-Rényi with preserved degree distribution . . . . . . . . . . . . . . . 22
2.4.3 Scale-free networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Geometric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5 Stickiness index-based graphs . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.6 Random graph Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Measuring Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Pearson’s product-movement correlation coefficient . . . . . . . . . . . . . 26
2.5.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Computing the GDV correlation matrix of a network . . . . . . . . . . . . 27
2.5.4 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.1 Derivation of Canonical Correlation Analysis . . . . . . . . . . . . . . . . 30
2.6.2 Canonical Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.3 Canonical Cross-Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Interpretation of Canonical Correlation Results . . . . . . . . . . . . . . . 32

2.7 Networks analysed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.1 Protein-Protein Interaction networks . . . . . . . . . . . . . . . . . . . . . 33



Contents 4

2.7.2 Metabolic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.3 World Trade Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Methodology 38
3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 GCV normalisation attempt . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Study on neighbouring subgraph size . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Relative Cluster Frequency Distance . . . . . . . . . . . . . . . . . . . . . 42

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Node-based Graphlet Cluster Vector . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Pearsons’s GCV correlation matrix . . . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.5 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.6 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.7 Network life cycle framework . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.8 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Applications 56
4.1 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Average Network GCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.3 Relative Cluster Frequency Distance Results . . . . . . . . . . . . . . . . 60

4.2 World Trade networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Correlation matrix change during 1962–2010 . . . . . . . . . . . . . . . . 63
4.2.2 CCA - 1980–2010 World Trade networks . . . . . . . . . . . . . . . . . . . 64
4.2.3 Economic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Revision of GCV - normalisation . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.5 Pearson’s normalised GCV correlation matrix . . . . . . . . . . . . . . . . 70
4.2.6 Normalised GCV - Canonical Correlation Analysis . . . . . . . . . . . . . 70
4.2.7 Normalised GCV - Correlation matrix change during 1962–2010 . . . . . 72
4.2.8 Trade partners sparsity index . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.9 Case study: Saudi Arabia . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Protein-protein Interaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Analysis of Pearson’s GCV Correlation Matrix . . . . . . . . . . . . . . . 79
4.3.2 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Results for other PPI networks . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.4 Summary of the CCA Results from the 17 experiments . . . . . . . . . . 81

4.4 Metabolic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.1 Analysis of Pearson’s Correlation Matrix . . . . . . . . . . . . . . . . . . . 84
4.4.2 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 CCA Results for other model organisms . . . . . . . . . . . . . . . . . . . 87
4.4.4 CCA on the KEGG categories . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.5 Cellular Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.6 Organismal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.7 Human Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Evaluation 93
5.1 Strengths and weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Evaluation of network clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Multi-dimensional scaling results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Precision-Recall curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Contents 5

5.5 Robustness testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Network Rewiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Edge completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.3 Signature approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 GCV-based Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.1 Classifier Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 106
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Bibliography 109

A Statistical results 115

B Canonical Correlation Tables 116
B.1 The 17 experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures

2.1 Graph types: claw, triangle, cycle and clique . . . . . . . . . . . . . . . . . . . . 13
2.2 Clustering coefficient example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Graphlets for sizes of 2, 3, 4 and 5 nodes . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Graphlet Frequency Vectors for S. cerevisiae PPI network . . . . . . . . . . . . . 18
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Chapter 1

Introduction

In a complex network, studying the neighbourhood of a node is important for understanding
the function of that node within the network. For example, vertex neighbourhoods have been
used by Schwikowski et al. for predicting protein function in protein-protein Interaction (PPI)
networks [1]. A. Hertz and D. de Werra have used node neighbourhoods for graph colouring
using tabu search techniques [2]. For the World Wide Web network, query-dependent ranking
algorithms calculate neighbourhood graphs of a given web page in order to measure its relevance
and quality [3]. On the other hand, local properties of vertices in a network have also been
studied by N. Pržulj using graphlets, which are small induced subgraphs of the original network.
For each node in the network, a Graphlet Distribution Vector (GDV) can be constructed that
captures the local topological structure around the node [4]. However, this GDV signature
cannot capture the topological structure in the neighbourhood set of a vertex. This project
addresses this issue by defining and analysing a novel signature called the Graphlet Cluster
Vector (GCV), which will calculate the frequency of graphlets in the neighbourhood of a node.
Therefore, the GCV signature will be able to bridge the gap between node neighbourhood
analysis and graphlet analysis by combining both approaches.

1.1 Motivation

We developed the novel GCV signature in order to gather insights from two main types of net-
works: biological and economic. Over the past few decades, major advancements in Genomics
and Molecular Research technologies have made available large biological networks of chemi-
cal interactions that can help us better understand molecular processes. On the other hand,
economic networks have also been produced that track trade flows between countries or cities.
Because of the sheer size of the networks, suitable algorithms need to be devised that capture
important patterns in the data automatically.

We believe that studying the neighbourhood of nodes in biological or economic networks can
yield very interesting insights and correlations that other classical methods cannot capture. For
instance, it has been shown that in protein-protein interaction (PPI) networks, proteins that
interact in a similar manner with their neighbours will probably have similar functions, even if
the proteins are at a large distance from each other in the PPI network [1]. Therefore, studying
the interactions of the neighbours of a node can tell us something about the properties of that
node itself. We also believe that exploring new ways to analyse biological networks will help
us shed a new light on complex biological processes. This could further lead to an increased
understanding of diseases such as cancer or cardiovascular disorders that are leading causes of
death worldwide [5, 6].

For each node in a given input network, our novel GCV signature will count the frequency
of different graphlets in the neighbouring subgraph of the node. Unfortunately, hub nodes
(i.e. nodes with a high degree) have a large neighbouring subgraph and computing the GCV
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signature for these nodes can easily become infeasible. As a result, the computation needs to
be parallelised for large networks with tens of thousands of nodes, such as the PPI networks.

Apart from getting insights from the network data, our GCV signature can also be used
to align networks or assess which random model fits the real data best. The GCV signature
can also be used in conjunction with other local and global properties of networks, such as the
degree distribution, average diameter or node centralities. These network properties have so
far been successfully used to identify enzymes or reactions that are crucial for the survival of
organisms [7], model drug design trends [8] or modeling the world-wide airport network [9].

Our technique builds upon work done by the Pržulj group, which has developed a signature
called Graphlet Distribution Vector (GDV) that counts the number of graphlets that a node
touches [10]. This has been successfully used to fit random network models to real world
networks [11], uncover biological network function [4] and topologically align networks [12]. Our
novel Graphlet Cluster Vector signature can be seen as a generalisation of the GDV signature,
by extending it on the neighbourhood set of a node. Given the different areas where the GDV
signature has been successfully applied, we believe the new GCV signature can also be successful
at uncovering insights and patterns from the networks we will apply it on.

1.2 Objectives

The project was concerned with exploring the properties of the novel GCV signature and using
it for uncovering hidden patterns from the network data. Since the GCV signature is built
on the older GDV signature developed by N. Pržulj, we applied previously used statistical
techniques such as Canonical Correlation Analysis and Pearson’s correlation matrices that have
been successfully used with the older GDV signature. Our objectives were to:

1. Implement an algorithm that calculates the GCV signature for every node in a given
network.

2. Calculate the GCV signatures for several biological and economic networks as well as
random networks that have been generated from these. If the computation is taking too
long, parallelise the processing.

3. Use statistical techniques to find out which graphlets from the GCV signature have a
behaviour similar with each other.

4. Correlate the GCV signature with functional node annotations.

5. Implement a framework that automatically preprocesses a large number of networks and
performs all the statistical experiments on each of them.

6. Identify which network dataset gives the best correlations with the GCV signature. Per-
form deeper experiments in the chosen dataset.

7. Interpret the results and report on the findings.

While objectives 1 and 2 represented the implementation of the core algorithms in this
project, the rest of the objectives were focused on data analysis. In the data analysis part of
the project, we tested our methods on a variety of networks, using different GCV normalisation
procedures and functional annotations. The main network classes we applied this to are as
follows:

• Real networks

1. Protein-Protein Interaction (PPI) networks

2. Metabolic networks
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3. World Trade networks

• Random networks

1. Erdős-Rényi [13]

2. Erdős-Rényi (with preserved degree distribution)

3. Geometric networks [14]

4. Barabási-Albert (preferential attachment) [15]

5. Stickiness index-based [16]

Optionally, the following extra objectives have also been considered:

• Parallelising the computation for the GCV signature. This is required for large networks
such as the PPI networks.

• Implementing a classifier that uses the GCV signature of proteins in PPI networks to
predict protein function.

• Using the GCV signature to cluster random network models.

Finally, this work was a research project that had a certain amount of risk associated to it.
The GCV is a novel signature that has not been studied before by the scientific community,
so we could not predict beforehand how well it performs on our experiments. Throughout the
project, we guided our experiments by the signals we got from initial experiments. Nevertheless,
when analysing some network data such as the enzyme-based Metabolic networks we hit a dead
end multiple times, suggesting that our signature is not suitable for analysing these types of
networks.

1.3 Contributions

The main contributions of the project are summarised below:

• development of the mathematical model of the GCV signature followed by the implemen-
tation and parallelisation of the algorithm that computes it.

• implementation of algorithms that compute Pearson’s correlation matrices and Canonical
Correlation Analysis on several classes on networks

• interpretations of the results obtained by the initial experiments and the identification of
the World Trade networks (WTNs) as the dataset which offered the best results.

• results in the WTN showing that:

– Changes in the structure of the WTN are inversely correlated with the changes in the
price of crude oil. Since the changes in the network structure happen one year before
the changes in oil prices, we believe that the network structure causes the price of
crude oil to change. This is one of the main results of the project (section 4.2.1).

– For a certain country, sparse networks of trading partners are a sign of its economic
well-being. On the other hand, dense networks of trading partners are detrimental
for its economy (section 4.2.6)

– The structure of trading partners of Saudi Arabia, a major oil exporter, is influenced
by the change in oil price (section 4.2.9).

– A clustered structure of the trading partners network of a country is correlated with
the level of regional integration of the country (section 4.2.3).
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– A trading partner sparsity index score has been computed for a variety of countries
for the time period 1962–2010. The index correlates with major economic events
such as oil crises, political revolutions, economic reforms or changes in foreign policy
(section 4.2.8).

• results in the PPI networks showing that the interaction neighbourhood of a protein is
related to the protein’s involvement in several processes (section 4.3.4):

– Ribosome translation

– RNA processing

– Metabolism

– Golgi endosome vacuole sorting

• results in the Metabolic network showing that the interaction neighbourhood of an enzyme
is related to the enzyme’s involvement in:

– Cellular Processes (section 4.4.5)

∗ Transport and Catabolism

∗ Cell communication

∗ Cell growth and death

– Organismal Systems (section 4.4.6)

∗ Environmental adaptation

∗ Excretory system

∗ Digestive system

∗ Circulatory system

– Human diseases (section 4.4.7)

∗ Cardiovascular diseases

∗ Substance dependence

Although more experiments are needed to confirm some of these results, they all have the
potential to be published in a scientific journal. Unfortunately, the given time frame didn’t
allow us to perform supporting experiments to further certify the results.

1.4 Report Structure

The report structure can be summarised as follows:

• Chapter 2 provides the background research on Graph theory, Global and Local Net-
work Properties, Random Graphs, Pearson’s and Spearman’s correlation coefficients and
Canonical Correlation Analysis. At the end of the chapter, section 2.7 provides detailed
information about the networks analysed.

• Chapter 3 describes the methodology used for developing the algorithms that compute
the GCV signature, the Pearson’s Correlation matrices and the Canonical Correlation
Analysis.

• Chapter 4 presents the results of the analysis on three different network classes: World
Trade networks, PPI networks and Metabolic networks.

• Chapter 5 describes the evaluation of the GCV signature on clustering random networks
generated using different algorithms.

• Chapter 6 outlines a summary of the project achievements, a critique of the current
approach and future directions.



Chapter 2

Background

2.1 Graphs

Throughout the project we will be concerned with the study of networks represented by simple,
undirected graphs. We therefore need to give the following basic definitions about graphs:

Definition 1 A graph is a pair G = (V,E) composed of a finite set of vertices or nodes V
and a set of edges E.

Definition 2 An isomorphism f from a graph G to H is a bijective function f : V (G) →
V (H) such that ∀x, y ∈ V (G) there is an edge of G between x and y if and only if there is an
edge of H between f(x) and f(y).

Definition 3 An automorphism of a graph G is an isomorphism from G to itself.

An isomorphism is a function that maps vertices and edges from a graph G to a different
graph H, while an automorphism is a function that maps a graph G to itself. Now that graphs
have been introduced, we need to give the following definitions that will eventually introduce
the concept of an automorphism orbit :

Definition 4 Two graphs G and H are called isomorphic if and only if there exists an iso-
morphism from G to H.

Definition 5 A set of graphs S is called non-isomorphic if and only if there is no isomorphism
between any two graphs from S.

Definition 6 The automorphisms of a graph G form a group Aut(G) called the automorphism
group of G.

Definition 7 For a node x of a graph G, the automorphism orbit of x is defined as Orb(x) =
{y ∈ V (G)|y = f(x) for some f ∈ Aut(G)}

The automorphism orbits of a node x in graph G can be intuitively understood as the set
of nodes similar to x that can be interchanged with it in an automorphism. This definition is
needed later on for the definition of the Graphlet Degree Vector (see section 2.3.4).

Definition 8 A subgraph H = (V ′, E′) of a graph G = (V,E) is a graph such that V ′ ⊆ V
and E′ ⊆ E
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Definition 9 Let G be a graph and H be a subgraph of G. H is said to be induced (or full)
if, for any pair of vertices x and y of H, xy is an edge of H if and only if xy is an edge of
G.

The definitions for non-isomorphic and induced subgraphs are needed later on in order to
define what a graphlet is (see section 2.3.2).

2.1.1 Graph terminology

We shall now explain several commonly-used graph types and the terminology used to describe
them. These will be used throughout the project when interpreting results from the Pearson
GCV correlation matrices. The graph types are as follows:

• cycle Sn: a sequence of n vertices that starts and ends at the same vertex.

• path Pn: a sequence of n vertices.

• clique Kn: a graph of n vertices where every pair of vertices is connected by an edge.

• claw Cn: a graph of n vertices that has one central node and n−1 satellite nodes connected
to it. The satellite nodes have no edges between them.

• bipartite-graph: a graph whose vertices can be split into two sets U and V such that every
edge connects one node from U to a different node from V .

These structures will be used throughout the project in order to group graphlets1 that have
common properties. A few basic graph structures are show in figure 2.1.

1

2 3

4

(a) Claw

1

2

3

(b) Cycle

1

2

3

(c) Path

1

2 3

4

(d) Clique

Figure 2.1: From left to right: A claw of 4 nodes (C4), cycle of 3 nodes (S3) (or triangle), a
path of 3 nodes (P3), a clique of 4 nodes (K4).

2.2 Global Network properties

Global network properties give an overall picture of the network, but are unable to capture
low-level patterns in the structure of the network. In the following sections we will present a
few key global properties such as the degree distribution, clustering coefficient and the average
path length.

2.2.1 Degree Distribution

Definition 10 The degree of a node x in a graph G is the number of edges incident to the
node, with loops counted twice.

1small induced subgraphs; they will be defined later on
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Definition 11 The degree distribution P (k) of a graph is the fraction of nodes in the network
having degree k.

Several classes of degree distributions exist, with some most commonly-used ones being:
• Binomial

• Poison

• Power-law

• Exponential

Definition 12 A random variable X follows the Bionomial distribution with parameters n
and p if its probability mass function is given by:

f(k;n, p) =

(
n

k

)
pk(1− p)n−k

Definition 13 A random variable X follows the Poisson distribution with parameter λ > 0
if its probability mass function is given by:

f(k;λ) =
λke−λ

k!

Definition 14 A random variable X follows the Power-law distribution with parameter γ if
its probability mass function is given by:

f(k;λ) = k−γ

A Power-law degree distribution has a high number of nodes with low degree and a very
small number of nodes with high degree, also called hub nodes.

Definition 15 A random variable X follows the Exponential distribution with parameter λ >
0 if its probability mass function is given by:

f(k;λ) = λe−λk

Although many random graphs have a Poison degree distribution, it has been shown that
many real networks actually have a Power-law degree distribution instead. Such networks
include metabolic networks [17], the Internet [18] and social networks [19].
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2.2.2 Clustering Coefficient

1

(a)

1

(b)

1

(c)

Figure 2.2: The clustering coefficient intuitively describes how densely connected the neighbours
of a node are. In the above three scenarios, the clustering coefficient C of node 1 increases from
C = 0 (image a) to C = 1 (image c) as more edges are added in its neighbourhood.

The clustering coefficient is another important property of a graph that is used for data analysis
and comparisons. It measures the tendency of nodes to cluster together, which is commonly
seen in social networks.

Watts and Strogatz gave the following definition to the clustering coefficient [20]:

Definition 16 Let G be a graph and n a node that has kn neighbours. The maximum number
of edges between the neighbours of n is kn(kn−1)

2 . The clustering coefficient of node n is then
defined as the fraction Cn of these edges that are present in the set of neighbours of n. Cn
can also be viewed as the probability of two neighbours of n being connected. This is then
averaged against all the nodes in the graph and the final clustering coefficient C of graph G is
obtained.

It has been shown that real networks such as metabolic networks have a high clustering
coefficient [21]. Later on we will see that some random networks such as the Erdős-Rényi
graphs have a low clustering coefficient when the probability p of connecting two nodes is also
low. This makes these models unsuitable for modeling real data.

2.2.3 Average path length

Definition 17 Let G = (V,E) be a graph and u and v two nodes in V . The distance between
u and v is defined as the smallest number of links that have to be traversed to get from u to
v.
Definition 18 Let G = (V,E) be a graph. The average path length of G is the average
distance between any pair of two nodes from V .

Real networks have been shown to exhibit a small average path length. As a result, random
network models that have been developed aimed at producing networks with a small average
path length. Moreover, this property has several real-life applications. For example, in a real
network such as the World Wide Web, a short average path length will facilitate the exchange
of information and reduce operating costs. Similarly, a power grid will suffer less losses if its
average path length is minimal.

2.2.4 Spectral Distribution

Spectral network theory explains the topology of a network in terms of the eigenvalues and
eigenvectors of matrices associated with the network, such as the adjacency matrix or Laplacian
matrix. In order to understand the spectral distribution of a network we first need to define its
Laplacian matrix.
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Definition 19 Let G = (V,E) be an unweighted graph and let A be its adjacency matrix. The
diagonal degree matrix D of G is a matrix where the diagonal entries are equal to the node
degrees, that is D(x, x) = dx, where dx is the degree of node x. The Laplacian matrix of G is
defined as:

L = D −A

Definition 20 Let G be a graph and L its Laplacian matrix. The spectral distribution of G is
defined as the ordered vector λ = (λ1, λ2, . . . , λn) of eigenvalues of L , where λ1 is the largest
eigenvalue and λn the smallest.

The Spectral distance between two graphs G and H is then defined as the Euclidean distance
of their spectral distributions. Wilson and Zhou have analysed the spectral distribution of
various networks and showed that the spectral distance of two networks is the best measure
for classification and clustering purposes [22]. Thorne and Strumpf have also used the spectral
distribution for the analysis of the evolution of PPI networks [23].

2.3 Local Network properties

Local network properties capture detailed information about a local region in the network or
even about one single node of interest in the network. However, local properties cannot give an
overall description of the network in the way the global properties such as the degree distribution
or the average path length do. In the next few sections we will present three main types of local
network properties: Node centralities, Graphlet Frequency Vector and Graphlet Degree Vector

2.3.1 Node centralities

One commonly used property for measuring the importance of a node in a network is the
centrality. Several types of centralities exist:

• Degree centrality : Measures the number of links that connect with the node. It is simply
defined as the degree of the node.

• Betweenness centrality : Quantifies how many shortest paths pass through the node

• Closeness centrality : Measures how close the node is to the other nodes in the network.

Definition 21 Let G = (V,E) be a graph and v a node from V . The Degree centrality of v
is defined as the degree of v.

Definition 22 Let G = (V,E) be a graph and v a node from V . The Betweenness centrality
of v is defined as:

B(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

where σst(v) is the number of shortest paths from s to t that pass through node v, while σst is
the total number of shortest paths from s to t.

Definition 23 Let G = (V,E) be a graph, v a node from V and dv be the sum of the distances
from v to all the other nodes in the network. The Closeness centrality Cv is defined as Cv =
d−1v .
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Figure 2.3: Graphlets for sizes of 2, 3, 4 and 5 nodes. They are ordered in groups according to
the number of nodes they contain. These are the graphlets that are counted when computing
the GDV and GCV metrics. The node labels represent unique automorphism orbits. Source:
[4]

2.3.2 Graphlets

Graphlets are small connected non-isomorphic2 induced3 subgraphs of a graph. See definitions 5
and 9 for what non-isomorphic and induced graphs are. Figure 2.3 shows all the graphlets of 2,3,4
and 5 nodes. They have been previously used by Nataša et al. [4, 10] for developing signatures
such as the Graphlet Degree Vector (GDV) that quantify the local topological structure around
a node.

For a given graph G, the Graphlet Frequency Vector (GFV) can be calculated by counting
the number of distinct graphlets of each type found in G. From here, we normalise the GFV
against the total number of graphlets in G to calculate the Relative Graphlet Frequency Vector
(RGFV).

Definition 24 Let Gi be the total number of graphlet of type i in graph G. Then the Relative
Graphlet Frequency Vector (RGFV) is defined as:

GFV (G) = (F1(G), F2(G), ...F29(G)) (2.1)

where

Fi(G) = − log

(
Gi∑n
i=1Gi

)

2No two graphs from the set are the same.
3An induced subgraph is a subset of the vertices of a graph G together with any edges whose endpoints are

in the subset.
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Figure 2.4: Example of Graphlet Frequency Vectors for several random graphlets of a PPI
network of S. cerevisiae (baker’s yeast). As one can see from the plot, the GFV signature of
the real network is considerably different from the ones of the random networks. The random
networks have been generated using the Erdős-Rényi method. Source: [11]

2.3.3 Relative Graphlet Frequency Distance

Using the Graphlet frequencies that have been previously defined, we can now compute a
measure of disparity between two graphs by taking pairs of graphlet frequencies for each type
and then summing their absolute difference. This is called the Relative Graphlet Frequency
Distance (RGFD). It is formally defined as follows:

Definition 25 Let G and H be two graphs and let Fi(G) and Fi(H) be the frequency of the ith

graphlet in G and H respectively. The Relative Graphlet Frequency Distance is then defined
as:

D =

n∑
i=1

|Fi(G)− Fi(H)|

2.3.4 Graphlet Degree Vectors

In order to explain what a Graphlet Degree Vector is, we first need to come back to automorphism
orbits. For a node x, its automorphism orbit is the set of nodes similar to x in the graph that
could be interchanged with it in an automorphism operation. See definition 7 on page 12 for a
formal definition of the automorphism orbits.

Figure 2.3 shows the automorphism orbits for all the nodes in each of the 29 different
graphlets. The different automorphism orbits are labelled with numbers ranging from 0 to 72,
and the nodes in each graphlet are coloured according to which automorphism orbit it belongs
to. Now that we have defined automorphism orbits, we can give a full definition of the Graphlet
Degree Vector of a node:
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Definition 26 For a node x in a graph G, its Graphlet Degree Vector or GDV is a vector of
73 coordinates, where each coordinate i measures the number of graphlets that touch node x
at automorphism orbit i.

The GDV generalises the degree of a node, which counts the number of edges it touches,
into the vector of graphlet degrees, which counts the number of graphlets that the node touches
at a particular automorphism orbit. The resulting signature describes the local topology of the
node neighbourhood up until a distance of 4 [4].

For a given node x in a graph G, we denote by xi the ith coordinate of the GDV vector of
x. That is, xi is the number of times x is touched at orbit i.

Definition 27 The distance Di(x, y) between the ith automorphism orbits of nodes x and y
is defined as:

Di(x, y) = wi
| log(xi + 1)− log(yi + 1)|

log(max(xi, yi) + 2)

where wi ∈ [0, 1] are weights that normalise orbit dependency [4].

The logarithm function is used because the ith coordinates of the signature vectors of two
nodes can differ by several order of magnitude and we do not want the distance measure to be
dominated by the larger values [4]. We also add 1 to ui and vi in order to prevent the logarithm
from going to −∞. We add 2 in the denominator of the formula in order to prevent it from
being infinite or 0 [4].

Definition 28 Given two GDVs of nodes x and y, the distance D(x, y) between the GDVs of
x and y is defined as:

D(x, y) =

∑72
i=0Di∑72
i=0wi

The distance measure given in definition 28 is in the [0, 1] range, where a distance of 0 means
that the two GDVs are identical.

Definition 29 The signature similarity between nodes x and y is defined as:

S(x, y) = 1−D(x, y)

The signature similarity gives a measure of how similar the topological structure around
two nodes is. This is very useful because it can be easily applied to practical problems. For
instance, it has been shown that the function of a protein can be predicted from its interactions
[24]. Therefore, if a protein x is known to have a particular function and one would like to
annotate a different, unknown protein y, one can transfer the function from x to y if their GDV
signature similarity is high.

2.3.5 Graphlet Degree Distributions

The Degree Distribution of a network calculates the number of nodes touching k edges for each
value of k. However, we can generalise this concept by looking at the 73 automorphism orbits
(see figure 2.3) and counting the number of nodes that touch a particular graphlet at a particular
orbit. Finally, we get a spectrum of 73 Graphlet Degree Distributions (GDDs) measuring local
properties of a network.

We are now trying to compare the spectrum of 73 Graphlet Degree Distributions belonging
to a graph G to the ones corresponding to another graph H. There might be several ways to
perform this, but we will present the method used by N. Pržulj et al. in 2006 [10].
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Definition 30 Let G be a graph and let djG(k) be a sample distribution of the number of nodes

in G touching orbit j (j = 1− 73) k times. djG represents the jth graphlet degree distribution

(GDD). The scaled jth graphlet degree distribution SjG(k) of G is then defined as:

SjG(k) =
djG(k)

k

The reason for scaling djG is because most of the information is retained in the lower degrees,
whereas the high degrees mostly contain noise [10]. Afterwards, the distribution is normalised
against its total area:

T jG =

∞∑
k=1

SjG(k)

giving the normalised distribution:

N j
G(k) =

SjG(k)

T jG
.

The reason why we are normalising the distribution is because a large network would have
a lot of nodes that potentially touch orbit j and therefore a large area under the curve. Nor-
malising it would make large and small biological networks comparable in terms of their GDD.

Definition 31 For two graphs G and H and an orbit j, we define the distance Dj(G,H)
between their normalised jth distributions as:

Dj(G,H) =

√√√√ ∞∑
k=1

[N j
G(k)−N j

H(k)]2

The distance Dj(G,H) is between 0 and 1, where 0 means that G and H have the same
GDD for automorphism orbit j. Now that we have a measure of distance between two graphs
G and H, we need to invert the this distance in order to get the jth GDD agreement :

Definition 32 For two graphs G and H and an orbit j, we define the jth GDD agreement
between their normalised jth distributions as:

Aj(G,H) = 1−Dj(G,H)

Moreover, the overall GDD agreement between the two networks G and H is defined as the
arithmetic mean of Aj(G,H) over all j:

A(G,H) =
1

73

72∑
j=0

Aj(G,H)

The GDD agreement is like the GDV signature similarity of two nodes x and y, but this
time for the overall graphs G and H. This measure can be used to compare different networks
or even evaluate which random graphs best model the real data.
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2.4 Random graphs

Random graphs are graphs that are usually generated using a random process. They are used
in data analysis for comparing or aligning them against real networks. They can model the
behaviour of real-world networks, such as the World Wide Web or PPI networks. Random graph
models have been successfully used in various biological settings, such as: Network motifs [25],
De-noising of protein-protein interaction network data [26] or guiding biological experiments
[27]. In the next sections we will present several types of random graphs along with their
properties.

2.4.1 Erdős-Rényi graphs

The work on random graph models started from the influential publications of Erdős and Rényi
in the 1950s and 1960s. Edgar Gilbert also published a similar model later on. Erdős and Rényi
described the Gn,m model [13], while Gilbert described the Gn,p model [28]. These two methods
can be described as follows:

Gn,p : We start with n disconnected nodes and a given probability p. We then go through
every pair of nodes and connect them with probability p.

Gn,m : We start with n disconnected nodes and a target number of edges m. Afterwards, we
randomly select m pairs of nodes and connect them.

Although these networks are very easy to generate, it was later found that real networks
have a structure that is different from the Erdős-Rényi graphs. More precisely, they have a
different degree distribution and a low clustering coefficient. On the other hand, some real
networks have a power-law degree distribution. For the Erdős-Rényi Gn,p graph, the degree
distribution is binomial:

P (k) =

(
n− 1

k

)
pk(1− p)n−1−k (2.2)

which can be approximated with a Poisson distribution for a large n:

P (k) =
zk ∗ e−z

k!
(2.3)

(a) p = 0 (b) p = 0.1 (c) p = 0.2

Figure 2.5: Example of three Erdős-Rényi random graphs generated using the Gn,p method.
The three different graphs differ with respect to the probability p of connecting one pair of
nodes: (a) p = 0 – the graph is completely disconnected. (b) p = 0.1 – the graph is sparsely
connected because the probability p is low (c) p = 0.2 – the graph becomes more dense because
of the increase of p .
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(a) Example of a scale-free network. Note
the large number of nodes of small degree
at the periphery of the network, while the
number of hub nodes is very small.

(b) The power-law degree distribution of a scale-free
network. As the degree of the nodes gets larger, the
fraction of nodes decreases exponentially. Notice the
logarithmic scale on the Y axis. It has been observed
that many real networks exhibit a power-law degree
distribution [17, 18, 19].

Figure 2.6: Scale-free network (a) and power-law degree distribution (b)

2.4.2 Erdős-Rényi with preserved degree distribution

As we have previously seen, the degree distribution of an Erdős-Rényi graph does not match
the real data. We will now present a method for constructing an Erdős-Rényi network that
preserves the degree distribution of a real network.

We start with n disconnected nodes. Each node is assigned a number of stubs according
to the degree distribution of the real network that is being modelled. A stub is simply a slot
belonging to a particular node from where an edge can be connected. Afterwards, edges are
created only between random pairs of nodes with available stubs. After an edge is created,
the number of stubs left available at the nodes that were just connected is decreased by one.
Moreover, edges between one node and itself are not allowed.

This ”stubs method” allows us to create Erdős-Rényi networks that have a power-law degree
distribution and a small average path length. Unfortunately, they still have a low clustering
coefficient.

2.4.3 Scale-free networks

Scale-free networks are networks that normally exhibit a power-law degree distribution (see fig
2.6). That is, P (k) = k−γ , where P (k) is the fraction of nodes having degree k. It is currently
believed that many networks such as the World Wide Web, social networks or biological networks
exhibit scale-free properties with a power-law degree distribution.

Barabási-Albert model

There are several proposed ways in which scale-free networks can be generated. The Barabási-
Albert model is one such technique that uses the preferential attachment mechanism, with which
nodes of high degree have a high probability of receiving even more connections.

In order to construct a network using the Barabási-Albert method, we start with an initial
connected network of m0 nodes. New nodes are consecutively added to the network one at
a time. Each one of them is connected to m ≤ m0 target nodes with a probability that is
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proportional to the degree of the target nodes. Formally, the probability pi that the new node
is connected to node i is:

pi =
ki∑
j kj

(2.4)

where ki is the degree of node i, while the sum is over all the nodes j that already existed
in the network when the new node is added. Because of the preferential mechanism, heavily
linked nodes (also called hub nodes) tend to quickly accumulate links, whereas nodes with a
low degree are unlikely to be chosen. It has also been shown that the starting network heavily
influences the properties of the resulting network [29].

2.4.4 Geometric graphs

Geometric graphs are generated by fixing a certain metric space and using metrics such as
geometric distance or radius to connect edges together. A metric space is a space that has a
distance norm associated to it such as: the Euclidean distance, Chessboard distance or Man-
hattan distance.

Such a network is generated in the following manner:

1. Choose a metric space and place nodes within the space using a uniform random distri-
bution.

2. If any nodes are within distance d from each other, then connect them with an edge.

3. d needs to be chosen so that the end number of edges matches the network that is modelled.
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Figure 2.7: Geometric random networks built using different values for the distance parameter
d, starting from d = 0. Initially, nodes are distributed randomly across a metric space. When
d = 0 in graph (a), the nodes are all disconnected from each other. As d increases in graphs
(b – d), the number of connections in the network also increases proportionally. When using a
Geometric network to model a real network, one would normally use a value of d that would
yield a similar number of edges as the real network.

2.4.5 Stickiness index-based graphs

Pržulj et al. have proposed in 2006 a simple random graph model that inserts a connection
according to the degree or stickiness of the nodes involved [16]. This model has been inspired
from analysing protein-protein interactions and is based on two assumptions:

1. A node with a high degree or stickiness represents a protein that has many binding
domains and/or its binding domains are commonly involved in interactions.

2. A pair of proteins is more likely to interact, or share complementary binding domains,
if they both have a high stickiness. On the other hand, if one or both of them have a
low stickiness index, they are less likely to interact. Thus, the product of their stickiness
values can be used as the probability of connecting the nodes.

Considering the above assumptions, a stickiness based random graph can be constructed as
follows:
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Comparison of real networks versus randomly generated networks
Model Degree Distribution Clustering coefficient Average path length

Real networks Power-law High Small

Erdős-Rényi Poisson Low Large (for small p)

Erdős-Rényi - DD Power-law Low Small

Barabási-Albert Power-law Low Small

Geometric (uniform) Poisson High Small

Stickiness based Power-law High Small

Table 2.1: As one can observe from the table above, some of the models such as Erdős-Rényi
are not suitable for modeling real networks according to these metrics. On the other hand,
the Stickiness based random graph satisfies all the three criteria. Nevertheless, other network
properties might exist for which the Stickiness based random network does not match the
corresponding real network.

1. We start with a network of n nodes each having a degree degi sampled from a degree
distribution of our choice

2. For each node i, we compute the stickiness index θi = degi/
√∑N

j=1 degj . Note that

0 ≤ θi ≤ 1

3. For each pair of nodes (i, j), we connect them with probability θiθj

2.4.6 Random graph Comparisons

Now that we have presented a few commonly used random graph generating methods, we would
like to compare them in terms of their underlying properties. As can be clearly seen in table 2.1,
real networks normally have a power-law degree distribution, high clustering coefficient and a
small average path length. In terms of degree distribution, only Erdős-Rényi (with a preserved
degree distribution), Barabási-Albert and Stickiness-based random networks have a power-law
degree distribution, which is found in real networks. However, it must be noted that although
most of the real networks have a power-law degree distribution, this subject is still a matter of
research. For example, it has been shown that the Interactome network can be better modelled
with a Geometric network that has a Poisson degree distribution [11].

On the other hand, only the Geometric and the Stickiness based models have a high cluster-
ing coefficient. This is again something which has been observed in most of the real networks
such as social networks or biological networks. Finally, most of the networks have a small average
path length. It can therefore be noted that the Stickiness-based network is the most success-
ful at modeling real-world phenomena with respect to these three properties. However, there
might be other network properties, such as various node centralities [30] or Relative Graphlet
Frequency Agreement, with can also be employed to assess the suitability of the random net-
works. Identifying which of these properties can best compare various types of networks is still
an open problem in Network Analysis.

2.5 Measuring Correlation

In sections 2.3.3 and 2.3.5 we presented two main methods for calculating how closely two
GDV vectors match: Relative Graphlet Frequency Distance and Graphlet Degree Distribution
Agreement. However, other methods also exist that use correlation coefficients such as Pearson’s
product-movement correlation coefficient or Spearman’s rank correlation coefficient. This section
presents correlation techniques that can be used for GDV comparisons.
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2.5.1 Pearson’s product-movement correlation coefficient

Given two random variables X and Y from a population, Pearson’s correlation coefficient or
sometimes called Pearson’s population correlation coefficient is defined as the ratio between the
covariance of X and Y and the product of their standard deviation. It was introduced by Karl
Pearson and it is based on a similar idea by Francis Galton in 1880 [31, 32].

Definition 33 The Pearson’s product-movement correlation coefficient ρX,Y between random
variables X and Y is defined as:

ρX,Y =
σXY
σXσY

=
E[X − µX ]E[Y − µY ]

σXσY

where σXY is the covariance of X and Y , while σX , µX and σY , µY are the standard deviation
and the expectation of X and Y respectively.

Pearson’s correlation coefficient can also be applied to a sample from a given population, in
which case it is called the sample Pearson’s correlation coefficient and is commonly denoted by
r. This can be calculated by using sample estimators for the covariance and standard deviation
in the formula above.

Definition 34 The sample Pearson’s product-movement correlation coefficient rX,Y between
population samples X and Y is defined as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (2.5)

where σXY is the covariance of X and Y , while σX , µX and σY , µY are the standard deviation
and the expectation of X and Y respectively.

The values of both the sample and the population variants of Pearson’s correlation coeffi-
cients are between -1 and 1. Sample data points that have exactly 1 or -1 as their correlation
coefficient will lie on a straight line. Moreover, Pearson’s correlation coefficient is symmetric
because:

ρ(X,Y ) = ρ(Y,X)

where ρ(X,Y ) is defined as the correlation between random variables X and Y .

Pearson’s distance

Given a correlation coefficient ρX,Y , a distance metric called the Pearson’s distance can be
derived as follows [33]:

dX,Y = 1− ρX,Y
It should be noted that because Pearson’s correlation coefficient lies between -1 and 1, then

the Pearson’s distance will have a value between 0 and 2.

Interpretation

Several researchers have provided guidelines into how to interpret the size of the correlation
coefficient [34] (equation 2.5). However, interpretation is highly dependent on the context of
the problem. For example, a correlation of 0.8 might be low if one verifies physical laws using
measurements made with high-precision instruments, but it might be considered high when
applied to the analysis of social networks, because of underlying hidden factors.
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Pearson correlation: 0.91
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Pearson correlation: 0.08
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Spearman correlation: 0.11
p-value: 0.31

Figure 2.8: Spearman’s correlation coefficient is measuring how well the dependence between
two variables X and Y can be modelled using a monotonic function. A Spearman’s correlation
of 1 can result even when the data points are not linear (subfigure a), as long as they are
monotonically related. For the same dataset, Pearson’s correlation coefficient is 0.91. When the
data points are evenly spread (subfigure b), both the Pearson’s and the Spearman’s correlation
coefficients will be low ( 0.08 and 0.11 respectively) and their p-value will be high (0.44 and
0.31), suggesting that the correlation is not statistically significant.

2.5.2 Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient or Spearman’s rho, named after Charles Spearman,
is a non-parametric estimator of the statistical dependence of two random variables [35]. It
intuitively measures how well the dependence between two variables can be measured using a
monotonic function. It is normally defined as follows:

Definition 35 Let X and Y be two population samples and let xi and yi be the ranks of each
of the data points in X and Y . The Spearman’s rank correlation coefficient is defined as the
Pearson’s correlation coefficient of the ranks xi, yi of the data points [36].

The calculation of the ranks is best illustrated in table 2.2. After the rank xi, yi of each
data point is calculated, the Spearman’s correlation coefficient is computed using the formula
for the Pearson’s correlation coefficient.

Spearman’s correlation coefficient is considered non-parametric in the sense that one does
not need to know any prior on the X and Y random variables, as it does not require knowledge
(i.e. the parameters) of the joint probability distribution of X and Y .

2.5.3 Computing the GDV correlation matrix of a network

We can use the Pearson’s or Spearman’s correlation coefficient previously described to compute
the GDV correlation matrix for a given network in the following manner:

1. We compute the 73-element Graphlet Degree Vector (GDV) for every node in the input
network
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Pearson correlation: 0.55
p-value: 0.0
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Figure 2.9: Spearman’s rank correlation coefficient is less sensitive to outliers than Pearson’s
correlation coefficient, because each data point is first projected to its rank. For the above
dataset, the Pearson’s correlation coefficient is only 0.55, while Spearman’s correlation coefficient
is 0.81. Both correlations are statistically significant, since their p-values are below 0.05.

2. We then construct samples Si, i ∈ 1, 2, 3, .., 73 containing all the frequencies of the orbits
of type i found in the GDVs of the nodes.

3. We compute the Pearson’s (or Spearman’s) correlation coefficient of each pair of samples
(Si, Sj) and we put them in the 73x73 correlation matrix Cij .

The newly obtained graphlet correlation matrix will be symmetric with respect to the main
diagonal, as Pearson’s correlation coefficient is also symmetric. In order to display such a
matrix, we use a heat map, with blue representing a correlation of -1 and red representing a
correlation of 1.

Given two matrices from two different networks G and H, we then calculate the Pearson’s
correlation matrix distance between them by performing pairwise-subtractions of the elements.

Variable Xi Position Rank

0.3 1 1

0.6 2 2

1.2 4 4+5
2

1.2 5 4+5
2

0.8 3 3

1.9 6 1

Table 2.2: Computation of Spearman’s ranks for a dataset of 6 samples. The data is initially
sorted in ascending order. If the data point is unique, then the rank is simply the position in
the ordered list. Otherwise, the rank is computed as the average of the positions of all the data
points with the same value.
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The Pearson’s correlation matrix distance is also referred to as the Graphlet correlation distance
in the literature [37].

Definition 36 Let G and H be two graphs and G′, H ′ their Pearson’s correlation matrices.
The Pearson’s correlation matrix distance or Graphlet correlation distance between G and H
is then defined as:

D(G,H) =
∑
i,j

(
G′(i, j)−H ′(i, j)

)2
(2.6)

Note that the computed distance D(G,H) is always greater than 0. We are now able to
define the Graphlet Correlation Matrix Agreement, which measures how similar two graphs are
with respect to the GDV signatures.

Definition 37 The Graphlet Correlation Matrix Agreement between two graphs G and H is
defined as:

Agreement = 1−D(G,H) (2.7)

One advantage of using the Graphlet Correlation Matrix Agreement instead of the GDD
agreement previously defined is that it has been shown to be more robust to noise in the
network data [38].

2.5.4 Hierarchical clustering

When analysing the GDV correlation matrix of a network, we are interested to find out how
graphlets group together with the rest of the graphlets according to their correlation. These
groups of graphlets can be easily identified if we use hierarchical clustering, which is a clustering
method that builds a dendogram of the graphlets according to a distance function.

The two main types of strategies for hierarchical clustering are:

• Agglomerative (bottom-up): Each observation starts in its own cluster. At each step, the
clusters with the smallest distance between each other are merged.

• Divisive (top-down): All observations start in one cluster. At each step, the clusters are
split recursively.

Distance metric

In order to perform hierarchical clustering, a distance metric has to be defined. Some commonly-
used metrics are:

• Euclidean distance: ‖a− b‖2 =
√∑

i(ai − bi)2

• generalised p-norm: ‖a− b‖p = (
∑

i |ai − bi|p)
1
p

• Mahalanobis distance: ‖a− b‖ =
√

(a− b)S−1(a− b), where S is the covariance matrix

Linkage criteria

The linkage criteria defines the distance between the sets of data points as a function of the
distances between the data points themselves.

Some commonly used criteria for the linkage between two sets A and B are [39]:

• Complete linkage clustering: max{d(a, b)|a ∈ A, b ∈ B}

• Single linkage clustering: min{d(a, b)|a ∈ A, b ∈ B}

• Average linkage clustering [40]: max{d(a, b)|a ∈ A, b ∈ B}

• Centroid linkage clustering: ||cA − cB|| where cA and cB are the centroids of clusters A
and B.
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2.6 Canonical Correlation Analysis

Canonical Correlation Analysis is a statistical method of analysing interdependence between two
random variables X and Y . The method was first introduced in 1936 by Harold Hotelling [41]
and it has been used for analysing and interpreting data in various fields including Psychology
[42], Marketing [43] and Operations Research [44].

Given two random variables X and Y and a set of vector weights a1 and b1, let u1 = Xb1 and
t1 = Y a1. Canonical Correlation Analysis (CCA) aims to find the weights a1 and b1 such that
the correlation ρ = r(t1, u1) is maximised. In this case, u1 and t1 are called the first canonical
variates.

The CCA process can be repeated again in order to find a second pair of canonical variates
u2 and t2, with the additional condition that they are orthogonal to the first set of canonical
variates u1 and t1. Thus, the second stage of the canonical correlation problem can be stated
as follows:

Choose a2,b2 to maximise
r(t2, u2) = r(Y a2, Xb2) (2.8)

such that
r(t1, t2) = 0 and r(u1, u2) = 0

This procedure can be repeatedly applied, although at each iteration the amount of cor-
relation that we can achieve is decreasing. The reason for this is because each subsequent
problem contains one extra orthogonality constraint compared to the previous one. The num-
ber of ”stages” to the canonical correlation problem depends on the number of variables. If p
is the number of X variables and q is the number of Y variables, then the maximum number of
canonical variates that can be computed is min(p, q).

2.6.1 Derivation of Canonical Correlation Analysis

We first define the correlation matrix R as:

R =

(
RY Y RY X
RXY RXX

)
where RXY is the correlation matrix between X and Y , while RXX and RY Y are the

correlation matrices of X and Y .
We find that solving the problem in matrix form will in fact give the solution to all stages of

the problem. Dropping the subscripts on variates u = Xb and t = Y a, we restate the problem
as follows:

Choose a, b to maximise

r(t, u) =
cov(t, u)√
var(t)var(u)

(2.9)

The numerator of the objective function in equation (2.9) is simply given by:

Cov(t, u) =
[t′u]

n− 1
=
a′Y ′Xb

n− 1
= a′RY Xb

By standardising t and u, we effectively eliminate the denominator from the objective func-
tion in equation (2.9). Note that setting var(t) = 1 is equivalent to the following:

var(t) = 1

=⇒ [t′t]

n− 1
= 1
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=⇒ [a′Y ′Y A]

n− 1
= 1

=⇒ a′RY Y a = 1

Similarly, setting var(u) = 1 is the same as setting b′RXXb = 1. Imposing these constraints,
the problem becomes:

Choose a, b to maximise
a′RXXb

subject to
a′RY Y a = 1 and b′RXXb = 1 (2.10)

This constrained maximisation problem can be solved by using Lagrange multipliers and
solving the first-order conditions. Using α/2 and β/2 as Lagrange multipliers, the Lagrangian
function is then given by:

L = a′RY Xb−
α

2
(a′RY Y a− 1)− β

2
(b′RXXb− 1) (2.11)

Differentiating with respect to a and b and setting the results equal to zero gives the first-
order necessary conditions:

∂L

∂a
= 0 =⇒ RY Xb− αRY Y a = 0 (2.12)

∂L

∂b
= 0 =⇒ RXY a− βRXXb = 0 (2.13)

Taking the expression in equation (2.12) and premultiplying by a′ yields:

a′RY Xb− α(a′RY Y a) = 0

which implies that α = r(t, u), the canonical correlation, because a′RY Y a = 1 under the scaling
constraints we have imposed for this problem. Similarly, taking equation (2.13) and premulti-
plying by b′ yields β = r(t, u), which means that α = β.

Now that the values of α and β are known, we can substitute into equations (2.12) and
(2.13) and solve the expressions for either a or b.

Suppose we choose to solve for b. We use equation (2.12) to write a as a function of b as
follows:

a =
1

r(t, u)
R−1Y YRY Xb (2.14)

We then substitute the right-hand side of equation (2.14) above for a in equation (2.13) and
solve for b. The result is:

RXY

(
1

r(t, u)
R−1Y YRY Xb

)
= r(t, u)RXXb (2.15)

Premultiplying by R−1XX and mutiplying through by r(t, u) gives:

[R−1XXRXYR
−1
Y YRY X ]b = r2(t, u)b (2.16)

Equation (2.16) is an eigenvector-eigenvalue problem. The vector b is the first eigenvector
of the matrix R−1XXRXYR

−1
Y YRY X . The proportionality constant, which is the eigenvalue corre-

sponding to b, is the squared canonical correlation r2(t, u). Although we will not prove this in
the report, the structure of the canonical correlation problem ensures that the eigenvalues are
both real and non-negative [45].
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We can now find a by substituting b into equation (2.14). We also find that a is the first
eigenvector of the matrixR−1Y YRY XR

−1
XXRXY . The first eigenvalue is again the squared canonical

correlation.

2.6.2 Canonical Loadings

To facilitate interpretation, it is helpful to look at canonical loadings, which are correlations
between original variables and their corresponding canonical variates. The correlations between
X and u, which we denote f , are given by:

f =
1

n− 1
X ′u =

1

n− 1
X ′(Xb) = RXXb (2.17)

Similarly, the correlations between Y and t, denoted g are given by:

g =
1

n− 1
Y ′t =

1

n− 1
Y ′(Y a) = RY Y a (2.18)

2.6.3 Canonical Cross-Loadings

A slightly different concept is given by canonical cross-loadings, which are the correlations
between original variables and the opposite canonical variates. The correlations between X and
t, which we denote h, are given by:

h =
1

n− 1
X ′t =

1

n− 1
X ′(Y a) = RXY a (2.19)

The cross-loadings between Y and u, denoted j are given by:

j =
1

n− 1
Y ′u =

1

n− 1
Y ′(Xb) = RY Xb (2.20)

In our project, when we present CCA results we only use canonical cross-loadings, because
we are interested to find out how each element from one variate correlates with the elements
from the opposite variate.

2.6.4 Interpretation of Canonical Correlation Results

The weights a and b that maximise the correlation ρ = corr(Xa, Y b) can be easily interpreted
in the following manner:

• If two values ai, bj have the same sign it means that variables Xi, Yj are positively corre-
lated. Similarly, if the values of ai, bj have different signs then it means that the variables
are negatively correlated.

• A higher absolute value of ai and bj means that variables Xi, Yj show a stronger cor-
relation. Similarly, if the absolute value of ai and bj is close to zero then it shows that
variables Xi, Yj show a weak and insignificant correlation.

• If the weight vectors a and b are multiplied by scalars α and β respectively, then the
resulting correlation ρ′ = corr(αaX, βbY ) is still the same as the original correlation
between vectors a and b, that is ρ = corr(Xa, Y b).

Note that in this report, when we say that two elements xi and yi of vectors X and Y
correlate positively or have a positive correlation with respect to each other, it means that they
have the same sign. Similarly, xi and yi will correlate negatively if they have opposite signs.
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2.7 Networks analysed

Throughout the project we will be analysing several classes of networks:

• Protein-Protein Interaction (PPI) networks

• Metabolic networks

• World Trade networks

In order to perform Canonical Correlation Analysis, we have also used annotations, which
are labels that offer information about each node in the graphs. For a country in the World
Trade network (WTN), the annotations are financial indicators such as GDP per capita. On the
other hand, for a protein in the PPI network these are properties such as ”RNA transcription”
or ”energy production” that describe the function of the protein. Each of these networks and
their annotations are described in detail in the following sections.

2.7.1 Protein-Protein Interaction networks

The Protein-Protein Interaction networks, or PPI networks are mainly represented by a graph
where the nodes are proteins and the edges are interactions between proteins. These interactions
are normally captured using technologies such as Yeast two-hybrid screening [46] or affinity
purification mass spectrometry (AP-MS) [47, 48].

The source of our PPI networks is the Biological General Repository for Interaction Datasets
(BioGRID). Throughout the project we have mainly focused on the Human PPI network, al-
though some of our experiments have also been performed on the PPI networks of other model
organisms such as C. elegans(worm), D. melanogaster(fruit fly), E. coli(bacteria), M. muscu-
lus(mouse) and S. cerevisiae(baker’s yeast). We have done this in order to find out whether our
results are consistent across a spectrum of networks from different species.

Annotations

In order to assign functional information to each protein in the PPI network, we have used
Gene Ontology terms, commonly called GO terms. These are part of a large project called
Gene Ontology that aims to unify the representation of gene attributes across all species [49].
Moreover, we have also used two smaller annotation sets that only contained 13 and 14 functional
terms respectively. The first one belongs to Christian von Mering et al. [50] and contains the
following annotations:

• Energy production

• Amino acid metabolism

• Other metabolism

• Translation

• Transcription

• Transcriptional control

• Protein fate

• Cellular organisation

• Transport and sensing

• Stress and defence

• Genome maintenance

• Cellular fate / organisation

• Uncharacterized

The second annotation file is from Charlie Boone [51] and contains a slightly different an-
notation set:
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Basic statistics of the Human PPI network
Clustering coefficient 0.125 Number of nodes 11099

Connected components 77 Density 0.001
Network diameter 13 Heterogeneity 1.945

Average number of neighbours 10.236 Isolated nodes 0
Network centralisation 0.046 Number of self-loops 0

Shortest paths 119,301,268 (96%) Multi-edge node pairs 0
Characteristic path length 3.963 Edges 56806

Table 2.3: Basic statistics for the Human PPI network. The Human PPI network has a large
number of nodes (11099), a small clustering coefficient (0.125) and a large network diameter
(13).

• Golgi endosome vacuole sorting

• Metabolism - mitochondria

• DNA replication

• Chromatin transcription

• Cell polarity morphogenesis

• Signalling stress response

• Chromatin segmentation

• Protein folding

• ER Golgi traffic

• Nuclear cytoplasmic transport

• Cell cycle progression meiosis

• Protein degradation proteosome

• RNA processing

• Ribosome translation

Nevertheless, both annotation files label each proteins according to their function. Since
these annotation sets are more compact4 than GO terms, we have found it easier to work with
Boone’s and von Mering’s annotation files.

2.7.2 Metabolic networks

A metabolic network is a set of chemical and metabolic processes that regulate physiological
and biochemical properties of a cell. Therefore, these networks contain metabolic pathways and
regulatory interactions that guide these processes. The source of our metabolic network data
and annotations is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [52]. Other sources
where metabolic networks are available include EcoCyc [53] and BioCyc [54].

Throughout the project we have analysed two main types of metabolic networks:

• Enzyme-based metabolic networks: each node in the network graph corresponds to an
enzyme, protein, metabolite or other chemical. An edge is constructed whenever two
chemicals participate in the same reaction.

• Compound-based metabolic networks: each node in the network graph is a compound,
which is a set of enzymes that usually take part in one reaction of the metabolic process.
In the compound-based networks, edges are formed between compounds as opposed to
individual enzymes.

Annotations

The two types of metabolic networks can be annotated with functional information about the
enzymes or compounds respectively. One annotation set we used is the Enzyme Commission

4GO terms are in the order of thousands. A more compact version called GO Slim exists, which has around
100 different functional annotations.
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Basic statistics of the Human Metabolic network
Clust coeff 0.251 Nr of nodes 1343

Connected components 2 Density 0.005
Network diameter 9 Heterogeneity 2.702

Avg. nr of neighbours 6.774 Isolated nodes 0
Network centralisation 0.322 Number of self-loops 26

Shortest paths 1,796,942 (99%) Multi-edge node pairs 1127
Characteristic path length 3.362 Edges 8610

Table 2.4: Basic statistics for the Human Metabolic network. In terms of node size, the Human
Metabolic network lies somewhere in between the PPI network and the World Trade network.
It also has a medium clustering coefficient (0.251) and small density (0.005).

number, which is a numerical classification for enzymes that is based on the chemical reac-
tions they catalyse [55]. Every enzyme code consists of four numbers separated by periods.
When annotating the enzymes from our metabolic networks we have only used the top-level EC
numbers:

1. Oxidoreductases: enzymes that catalyse the transfer of electrons from one molecule to
another.

2. Transferases: enzymes that enact the transfer of specific functional groups (e.g. a methyl
or glycosyl group) from one molecule to another.

3. Hydrolases: enzymes that catalyse the hydrolysis5 of a chemical bond.

4. Lyases: enzymes that catalyse the breaking of various chemical bonds by means other
than hydrolysis.

5. Isomerases: enzymes that convert a molecule from one isomer to another.

6. Ligases6: enzymes that catalyse the joining of two large molecules by forming a new
chemical bond.

2.7.3 World Trade Networks

The World Trade network (WTN), commonly called the trade or economic network in this
report, contains a set of countries and the corresponding trade volume in commodities between
them in a particular year. The volume of trade is expressed in international dollars ($). The
data has been taken from the United Nations Commodity Trade website (Comtrade) [56]. The
data that is available on the website is given as an undirected edge-list file, where each edge is
weighted by the volume of trade between those two countries. Moreover, the edge list is sorted
by the weight, with the countries that traded most with each other at the top of the list.

Since most of the countries trade with each other at least in small or negligible amounts,
the original network graph is very dense. In order to reduce the density of the network and
analyse only the important economic links between countries, the network has been thresholded
to an 85% level. This means that only the highest-weighted edges that made up 85% of the
total trade were finally kept, with the rest being discarded. As a result of this thresholding
operation, we only kept the countries that trade significantly with each other.

We have analysed data from 49 different WTNs for all years between 1962 and 2010. Having
this time series data allowed us to find patterns in the changes of world trade as it evolves over

5Hydrolysis is a chemical process in which chemical bonds are broken by the addition of water.
6from the Latin verb ligare: ”to bind” or ”to glue together”
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Basic statistics of the 2010 World Trade Network
Clust coeff 0.583 Nr of nodes 119

Connected components 1 Density 0.110
Network diameter 4 Heterogeneity 1.255

Avg. nr of neighbours 12.992 Isolated nodes 0
Network centralisation 0.578 Number of self-loops 0

Shortest paths 14,042 (100%) Multi-edge node pairs 0
Characteristic path length 2.137 Edges 773

Table 2.5: Basic statistics for the 2010 World Trade network that has been thresholded at the
85% level. The network has a small number of nodes(119), large clustering coefficient(0.583)
and small network diameter(4).

time. Table 2.5 shows basic statistics for the 2010 trade network - thresholded at the 85% level.
Moreover, apart from total trade network, we have also worked with the following commodity-
specific trade networks:

• Minerals and fuels

• Food and live animals

These networks represent the trade in a specific commodity that was done throughout the
world. Table 2.5 shows basic statistics for the 2010 WTN. One can notice that the diameter of
the network is really small (0.4). This is slightly undesirable, because the smaller the diameter
the stronger the GCV correlation will be between nodes, because the probability of two nodes
sharing part of their neighbourhood is large. Therefore, we tried thresholding the network at
levels lower than 85%, in order to make the network more disconnected and therefore increase its
diameter. However, this attempt has not succeeded, because the network diameter has stayed at
the same level. The reason for this might be because of the scale-free properties of the network,
which ensure that when thresholding is applied, the isolated nodes are removed and only hub
nodes are kept.

Annotations - Economic indicators

The basic economic indicators that we have used for the Canonical Correlation analysis are the
following:

• Population (POP): The total population of the country. Data source: WEO [57]

• Level of Employment (LE): The number of people who performed some work during a
specified period. Data source: WEO [57].

• Real GDP per capita (RGDPL): Purchasing Power Parity adjusted Gross Domestic Prod-
uct (Laspeyres) which was derived from the growth rates of consumption share, govern-
ment share and investment share. Data source: PENN [58]

• Real GDP per capita (RGDPL2) – Purchasing Power Parity adjusted Gross Domestic
Product (Laspeyres) which was derived from the growth rates of domestic absorption.
Data source: PENN [58]

• Real GDP per capita – Constant Prices Chain series (RGDPCH). Data source: PENN
[58]

• Consumption Share of RGDPL (KC) – Data source: PENN [58]

• Government Share of RGDPL (KG) – Data source: PENN [58]
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• Investment Share of RGDPL (KI) – Data source: PENN [58]

• Exchange Rate (XRAT) – Data source: PENN [58]

• Current Account Balance (BCA): The difference between a country’s exports of goods and
services and its imports. Financial transfers and investments are not taken into account.
Data source: PENN [58]

• Trade Openness (OPENK) – Data source: PENN [58]

Moreover, this list of economic indicators has been augmented with composed indicators
that are the products of several basic indicators. The full list is as follows:

• POP

• LE

• KI x RGDPL x POP

• RGDPCH x POP

• RGDPL x POP

• RGDPL2 x POP

• KG x RGDPL x POP

• KC x RGDPL x POP

• KC x RGDPL

• XRAT

• RGDPCH

• RGDPL

• RGDPL2

• KG x RGDPL

• KI x RGDPL

• KC

• KI

• BCA per RGDPL

• KG

• BCA

• OPENK
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Methodology

3.1 Mathematical model

We now introduce the novel signature that can be interpreted as a generalisation of the Graphlet
Distribution Vector (GDV) described in section 2.3.4. This signature, which we shall call the
Graphlet Cluster Vector (GCV) (for reasons that will soon become obvious), is a central concept
of this project. Since the GCV is a novel signature, we would like to explore its properties and
find out how to use it for getting insights from the network data. The idea for the novel GCV
signatures came from Zoran Levnajić, one of Nataša Pržulj’s collaborators. Before giving a full
definition of the GCV, we first define what the neighbouring subgraph of a node n is:

Definition 38 Let G = (V,E) be a graph and n be a node in V . The neighbouring subgraph
Sn = (Vn, En) of node n is an induced subgraph of G where Vn is the set of all neighbouring
vertices of n, with n /∈ Vn.

This implies that Sn will contain all the edges between the neighbours of n excluding those
coming from the source node n itself. Now that we have defined the neighbouring subgraph of
a node, we are ready to give the full definition of the new Graphlet Cluster Vector :

Definition 39 Let G be a graph, n a node in G, Sn the neighbouring subgraph of n in G
and let Sin be the number of graphlets of type i in Sn, i ∈ {1, 2, . . . 29}. The Graphlet Cluster
Vector of node n is a vector of 29 elements defined as:

GCV (n) =
(
S1
n, S

2
n, . . . , S

29
n

)

The GCV signature of a node n is therefore counting the number of graphlets of each type
in n’s neighbouring subgraph. One can also normalise it with respect to the total number of
graphlets found in Sn to get the normalised Graphlet Cluster Vector. The formal definition is
the following:

Definition 40 Let G be a graph, n a node in G, Sn the neighbouring subgraph of n in G and
let Sin be the number of graphlets of type i in Sn. The normalised Graphlet Cluster Vector of
node n is defined as:

GCV (n) =
(
F 1
n , F

2
n , ...F

29
n

)
where

F in =
Sin∑n
i=1 S

i
n

There are several ways to interpret both variants of the GCV signature:
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Figure 3.1: Illustration of the neighbouring subgraph S1 of node 1. S1 is made of 4 nodes:
{2,3,4,5} and 3 edges: {(2, 4),(3, 4),(4, 5)}. In order to find the GCV signature we count the
frequency of graphlets of each type in S1. In this example we obtain: (3, 3, 0, 1, 0, 0, 0, ...). Note
that since there is no edge between nodes 1 and 6, node 6 is not used for calculating the GCV
of node 1. Moreover, source node 1 and the edges linking it are also excluded from S1.

• GCV generalises the GDV by capturing structural information in the neighbouring sub-
graph of a particular node. The GDV used to count the number of graphlets touching a
node at a particular orbit.

• In the normalised version, if the GCV would have also recorded the frequency of graphlet
G0

1, that frequency would have represented the clustering coefficient of node n. Therefore,
one can also interpret the GCV as a generalisation of the clustering coefficient of a node.

• The normalised version of the GCV of a node n can also be interpreted as an exponenti-
ated2 RGFV3 of the neighbouring graph of node n.

The reason we don’t include graphlet G0 is because that simply gives us the clustering
coefficient of the node. Moreover, G0 correlates positively with all the other graphlets in the
vector, since it is a subgraph of all the other graphlets. Therefore, that does not give us any
useful information in Pearson’s GCV correlation matrices or CCA.

As it was previously mentioned, the core idea of the GCV signature belongs to Dr. Zoran
Levnajić, one of Nataša Pržulj’s collaborators. Nevertheless, I also have some contributions to
the mathematical model, because at the beginning of the project I researched a few normalisa-
tion methods and sizes of the neighbouring subgraph of a node where the GCV is calculated.
After several normalisation procedures and neighbouring subgraph sizes have been discussed
and analysed, we decided on the version presented in this paper. For an overview of a different
normalisation method attempted, see section 3.1.1. For a study on the neighbouring subgraph
size, see section 3.1.2.

3.1.1 GCV normalisation attempt

Our initial plan was to normalise each frequency in the GCV signature according to the max-
imum possible number of graphlets of that type in the neighbouring subgraph. However, this
proved to be a very complicated mathematical problem, because both of the following sub-
problems are mathematically non-trivial:

1G0 is simply an edge between two nodes.
2RGFV applies a logarithmic function to each of the frequencies, see definition 24 in section 2.3.2
3RGFV counts the frequency of graphlets in the whole graph, see definition 24 in section 2.3.2
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1. Finding out which graphs contain the maximal number of graphlets of each type.

2. Once such a graph is found, finding the formula for the maximum number of graphlets.

Each of the above subproblems are unique for all the 30 different graphlets and they have to
be solved separately. One remark we can make is that an upper limit for the maximum number
of graphlets of type i is :

max(i) =

(
n

k

)
=

n!

k!(n− k)!

where i ∈ {1, 2, . . . 29} and k is the number of nodes in graphlet i.
For the first subproblem, one can hypothesise a graph structure that might have the maximal

frequency of graphlet i for a fixed number of nodes n and mathematically prove that no other
graph with the same number of nodes can yield a higher frequency. To illustrate the complexity
of the problem, let us find the maximum number of graphlets of type 1 (G1, path of 3 nodes) in
a graph H = (V,E), where |V | = n, for a given n. First of all, we need to identify which graph
H gives a high frequency of graphlet G1. Since G1 is not a clique, it would not be convenient
for H to be a clique either, otherwise the frequency of G1 would be 0. Similarly, if H has no
edges, then the frequency of G1 is also 0.

One type of graph H that might give us a high frequency of G1 is a bipartite graph. More-
over, let us also assume that the nodes of H are split into two sets of equal cardinality4 H1 and
H2. Since we would like H to be bipartite, let us assume edges exist between all nodes i and
j, with i ∈ H1 and j ∈ H2. Now that we have a candidate graph H that might give us a high
frequency of G1 graphlets, one can count how many graphlets G1 there are in H. The exact
frequencies are given below:

max(G1, H) =

{
n2(n− 2)/8 if n is even

x(x+ 1)(2x− 1)/2 where x = bn2 c if n is odd

Therefore, this is the hypothesised maximum number of graphlets of type G1 in a graph H of
n nodes. The formulae already look complicated and get even more complex as the graphlets
increase in size and density. Therefore, the problem of finding the maximum theoretical number
of graphlets of each type is infeasible, at least for the purposes of our project. We have therefore
decided to only normalise the GCV with the sum of all the frequencies, as it is given in definition
40 in the previous section.

3.1.2 Study on neighbouring subgraph size

One other aspect that has been closely studied is the size of the neighbourhood subgraph. The
current definition of the GCV uses a subgraph that excludes the source node and nodes that
are at a distance of 2 or more from the source node. However, the subgraph can be extended
in two different manners:

• Shell extension: For a given parameter d, the neighbouring subgraph Sn of a node n
contains nodes that are at a distance d from n, where the distance between two nodes is
defined as the minimum path length.

• Core extension: For a given parameter d, the neighbouring subgraph Sn of a node n
contains all nodes that are at a distance d or smaller from n. Moreover, n ∈ Sn.

Figure 3.2 illustrates different shell and core neighbouring subgraphs for a source node.
There are several problems associated with shell and core neighbourhoods that are larger than
1:

4If n is odd then one extra node is added in H1.
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• The GCV computation becomes intractable for large networks, because the neighbourhood
of each node is bigger.

• Finding the actual neighbourhood requires graph searching in order to find the shortest
path between the source node and every other node in the network. This places further
computational demand on the algorithm.

• Some networks such as the World Trade Networks have a short diameter of approximately
5. Therefore, the core-5 neighbourhood will contain all the nodes in the network, while
core-4 and core-3 will also contain a lot of nodes if the starting node is a hub node.

1

source
node

(a) Shell-1 neighbourhood

1

source
node

(b) Shell-2 neighbourhood

1

source
node

(c) Core-1 neighbourhood

1

source
node

(d) Core-2 neighbourhood

Figure 3.2: Shell and Core neighbourhoods for source node 1: (a) Shell-1 is the subgraph of
nodes at distance 1 from the source node. (b) Shell-2 is the subgraph of nodes at distance 2
from the source node. (c) Core-1 is the subgraph of nodes at distance 1 or smaller from the
source node (including the source node itself). (d) Core-2 is the subgraph of nodes at distance
2 or smaller from the source node (including the source node itself).

Because of these reasons we have decided against the use of core and shell neighbourhoods
that have a size larger than 1. This left us only with core-1 and shell-1. The final decision was
to use shell-1 because the resulting GCV signature would not count any graphlets that the older
GCV signature would count as well. With core-1, there exist graphlets that touch the source
node which are also counted by the other GDV signature.
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3.1.3 Relative Cluster Frequency Distance

We now define the Relative Cluster Frequency Distance (RCFD), which measures the distance
between two GCVs. It is the equivalent of RGFD (section 2.3.3), but instead uses the GCV
instead of the GDV.

Definition 41 Let G be a graph, p and q two nodes in G and let F ip and F iq be the frequency

of the ith graphlet in the GCVs of nodes p and q respectively. The Relative Cluster Frequency
Distance (RCFD) between p and q is then defined as:

RCFD(p, q) =

√√√√ n∑
i=1

|F ip − F iq |2 (3.1)

Note that the RCFD formula uses the Euclidean-distance, while the RGDF uses the abso-
lute value as the distance measure. In this project, we use the Euclidean distance version for
computing the RCFD.

3.2 Implementation

After the mathematical model behind the Graphlet Cluster Vector has been formally defined,
we implemented it in C++. The two main reasons for choosing C++ are as follows:

1. Nataša Pržulj’s research group already wrote a C++ function that counted the number of
graphlets in a given input graph. Therefore, we were able to leverage that code and add
extra functionality on top of it.

2. C++ is a compiled language that does not run in a virtual environment, and consequently
it can run intensive computations very fast. A similar implementation in a language such
as Java, which runs on a virtual machine, takes longer. Since our algorithm is required to
execute intensive computations on large biological networks, we decided that C++ was the
most suitable programming language for this.

The C++ file that I was given from N. Przulj’s group (called ncount.cpp) was used to count
both the RGFV (i.e. the number of graphlets of each type in a graph) and also the GDV
signatures (i.e. the number of automorphism orbits that nodes touch). I was also given another
script that was used to convert the given networks5 to a file format called LEDA [59], that is
easy to be read and processed by the graphlet counting function.

3.2.1 Node-based Graphlet Cluster Vector

We started writing the implementation by first modifying a function called count() that com-
puted the GDV signature (from ncount.cpp) and removing the unnecessary code that was
dealing with automorphism orbits. Afterwards, we realised that the function was still hard
to work with, for it was very long6 and resembled a ’God-function’ that was responsible for
everything: reading from the input file, parsing it, building an efficient data structure to store
the input in, counting the graphlets and writing to the output file. We therefore decided to split
it up into modules according to their responsibility. Some of these concepts have been intro-
duced in the second-year Software Engineering course. We delegated the reading and parsing
of the input file and writing the out files to separate functions and cleaned up the unnecessary
computations.

5The given networks were represented as edge lists in a text files.
6400 lines of code
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After re-structuring the function that computes the GDV signature, we modified the main
loop that was going over every single node and inserted some code that would extract its
neighbouring subgraph (see definition 38) and store it in a data structure. However, this proved
to be one of the hardest tasks because the data structures used to represent the graph were
complex. The programmers who implemented the initial graphlet-counting function used a
specially-optimised data structure that stored the network graph in two different structures at
the same time: an adjacency matrix and an adjacency list. This turned out to be a good idea,
because using both the list and the matrix forms allowed for many operations to be executed
in constant time:

• The adjacency matrix allowed one to check whether two arbitrary nodes are connected in
O(1) time.

• The adjacency list allowed one to get the list of all the neighbours of a node in O(1) time.
This was especially useful for our extension, where we extracted the neighbourhood of a
node in order to count the number of graphlets in it.

However, the complexity associated with this representation is that both structures had
to be synchronised at every point in the execution of the algorithm. Fortunately, since our
algorithm was only computing the number of graphlets in the given graph, there was no need
to change the graph structure. Nevertheless, constructing the data structure was made even
more complicated by the following facts:

• The representation used by the adjacency matrix and the adjacency list used low-level
C++ optimisations. For example, the adjacency matrix was using a char for storing 8
consecutive binary values. As a result, connecting two vertices i and j with an edge
became as complicated as this: adjmat[i][j / 8] = 1<<(j % 8)

• The extensive use of macros in the code we were leveraging. For example, a for loop that
iterated through all the nodes in the network was defined using the following declara-
tion: #define foreach_adj(x,y) for(x = edges_for[y]; x != edges_for[y+1]; x

++). Similar macros existed for operations like connecting two nodes, calculating the
degree of a node or checking if two nodes are connected.

After the neighbourhood of the node has been successfully extracted and represented in this
data structure, it was simply passed to the graphlet-counting function. The result obtained
is a 29-element GCV containing the frequencies of each graphlet type. This process is then
repeated for the rest of the nodes in the network graph. At the end the program outputs a
list of nodes and their corresponding GCVs. The algorithm was tested for correctness on some
small, manually-constructed networks. Afterwards, we ran it on four different real networks:

• Protein-Protein Interaction network (PPI)

• Metabolic network

• 2010 Full World Trade network (WTN)

• 2010 Thresholded World Trade network (WTN)

However, the computation was taking more than 10 hours for the 2010 Full WTN, so the
next step was to parallelise the computation.
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3.2.2 Parallelisation

Given a graph G = (V,E), the easiest approach to parallelise the GCV computation is to split
the vertex set V into n different chunks (V1, V2, . . . , Vn) and then distribute them to the working
threads or processes. Each process i would receive its chunk Vi, calculate the GCV for each
node in Vi and write the output to a file. After all the processes have finished their work, all
the n files can be assembled together.

Although there exist several other approaches, this is the method we chose to implement.
More precisely, we parallelised the code across multiple cores by creating child processes with
the C++ fork() function. After being forked, each child process starts computing the GCV
for its chunk of nodes and outputs the results to its own output file, suffixed with the process
number. Meanwhile, the parent process waits until all the child processes finish their execution,
at which point it assembles all the output files7 together and cleans up the environment. A
diagram of this process can be visualised in figure 3.3. Moreover, we added extra functionality
to the parallelisation code by allowing a variable number of processes to be generated and
have this number passed as a parameter to the program. This is useful especially because the
ideal number of processes can vary from one machine to another, depending on the number
of available cores. Given that we have access to machines that have at most 64 cores, this
parallelisation can in theory offer us a maximum speedup of 64 if run on these machines. A
pseudocode of the parallelisation logic is given in figure 3.4.

Process 1

Process n

GCV list 1

GCV list n

Final GCV list

chunk 1

chunk n

GCVs

GCVs

Figure 3.3: Illustration of the parallelisation process for the GCV computation. For an input
network, we split the nodes into different chunks and assign each chunk to a process. Each
process computes the GCVs only for his chunk of nodes and writes them to an output file.
At the end, all the GCV lists from the output files are assembled together into one final list.
During the assembly process, the final GCV list is also sorted by node entry in order to easily
visualise all the GCVs and to simplify our consistency checks.

Because of the way we chose to implement parallelisation, some processes tend to finish
earlier than other. Even if every process computes the GCV for the same number of nodes in
the network, computing the GCV for hub nodes takes considerably longer because they have
large neighbouring subgraphs. As a result, some processes finish early while others get stuck
with the GCV computation for some hub nodes. However, this limitation tends to become less
obvious as the size of the input network increases. One way to overcome this problem is to
redistribute the computation to the processes that finish early.

7Each output file is tagged with an ID of the process that generated it. However, this ID is not the PID of
the process.
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for each child process

2 {

/* spawn a new process and store its PID */

4 pids[proc_index] = fork();

if (current process is a child)

6 {

/* open file suffixed by process number */

8 FILE* out_file = fopen(out_name + proc_index , "w");

/* find the nodes that the child needs to process */

10 nodes_to_process = [CHUNK_SIZE * proc_index , CHUNK_SIZE *

proc_index + 1]

/* compute the GCV list and write them to the output */

12 compute_gcv(input_graph , out_file , nodes_to_process);

/* the child process closes the file and terminates */

14 fclose(fp_out);

return 0;

16 }

}

18

/* Parent process waits on all children to finish execution */

20 for each child process

{

22 waitpid(pids[proc_index ]);

}

Figure 3.4: Pseudocode for the parallelisation logic that is implemented in file e_gdv.cpp. Note
that the actual GCV computation takes place in the compute_gcv function. The reason why
the output file pointer is passed to this function is because we want each process to write the
GCV signatures to the output files on the fly, as soon as they are computed. This helps us
debug the software more easily and also avoid ”out of memory” problems when processing large
network files which have more than 11.000 nodes.
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In order to evaluate the speedup from parallelisation, we repeatedly perform the GCV
computation on the PPI, WTN and Metabolic networks using a variable number of processes
and network size. Each experiment is also repeated 5 times and the average running time
is reported. The machine we run the experiments is the Bionets02, having the following
specifications8:

• cpu: 4 x AMD Opteron(tm) Processor 6282 SE @ 2600MHz

– Number of cores: 16

– Data width: 64 bit

– Level 1 cache size: 8 x 64 KB 2-way associative shared instruction caches, 16 x 16
KB 4-way associative data caches

– Level 2 cache size: 8 x 2 MB 16-way associative shared exclusive caches

• memory: 125GB

We therefore calculate on Bionets02 the speedup obtained on the Human PPI, Human
Metabolic and 2010 World Trade network as the number of processes increases from 1 to 64.
The speedup sn when using n processes is calculated as follows:

sn = 100

(
T1
Tn
− 1

)
where Tn is the wall-clock time of execution when using n processes, while T1 is the wall-clock

time of the serial execution. The final value is multiplied by 100 so that we can express it in
percentage terms. Figure 3.5 shows the speedup for the PPI, Metabolic and WTN networks.
Each experiment has been run 5 times and the average running times Tn have been used to
compute the final speedup. When the number of processes is 2, we don’t get any speedup in the
execution, but as the number of processes increases, some speedup is clearly visible for the PPI
and WTN networks. The Metabolic network only shows some speedup when 64 processes are
running the computation. The PPI and the WTN networks also show a considerable speedup at
the end, when executing the computation on 64 processes. It should be noted that the speedup
of WTN becomes greater than the equivalent speedup of the PPI network when more than 32
processes are used.

8The CPU type and memory size are taken from the output of the lshw command. The specifications of the
AMD Opteron 6282 SE processor are taken from the www.cpu-world.com website.
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Figure 3.5: Speedup gained from parallelisation as the number of processes increases. The
following three different networks have been tested: A human PPI network, a human metabolic
network and a 2010 World Trade network (WTN). Although not immediately obvious from
the graph because of the logarithmic X axis, the speedup trend is linear in the number of
processes. A maximum speedup of 680% and 380% is obtained for the WTN and the PPI
network respectively when 64 processes are used.

After evaluating the speedup of the parallelisation, we are now interested to see how the
execution time changes when we increase/decrease the problem size. In order to test for different
problem sizes, we take a large network and randomly remove edges from it. We therefore
generate networks that contain 50%, 60%, . . . , 100% of the edges of the initial network. We
then compute the execution time (wall-clock time) on each of these incomplete networks for
a different number of processes. For each process and network size, 5 trials are run and the
average execution time is reported. Figure 3.6 shows the results obtained for this experiment.
When the problem size is small, the execution time is fast regardless of the number of processes
used. However, as the network size increases, the speedup gains from parallelisation become
apparent, because the difference between lines widens. Eventually, when 64 processes are used,
the execution time on the full network is approximately 32 seconds, which is 3-4 times faster
than the equivalent execution time with 1 process. Note that the apparent inconsistencies
between the PPI results in figure 3.5 and the last column from figure 3.6 might be because of
the fact that the Bionets02 might have had other services from users running in the meantime
that could have affected the performance.
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Figure 3.6: Execution time plotted for different number of processes as the network size in-
creases. The input network used is the Human PPI network, and a network size of p% refers to
the percentage of edges that were kept from the original network. For all network sizes, one can
easily notice that the execution time gets faster as the number of processes increases. These
results suggest that the gains in parallelisation are noticeable only for large networks.

The network that had the longest average runtime was the PPI network, with an execution
time ranging from 95 seconds (1 process) to 32 seconds (64 processes). Although an execution
time of 95 seconds is not problematic for our experiments, other PPI networks9 we have exper-
imented with have taken around 10 hours to finish using 64 parallel processes. Moreover, other
networks such as the literature network10 of the Bible have taken several days to finish using 64
parallel processes. The reason the GCV computation takes so long to finish on these networks
is because some processes get stuck with computing GCVs for hub nodes, which have very large
neighbouring graphs.

In conclusion, parallelisation of GCV computation was a key part of the project that enabled
us to run more experiments faster and to exploit all the computational resources of our machines.
Some of the experiments on the PPI and literature networks would not have been possible
without parallel computation.

3.2.3 Pearsons’s GCV correlation matrix

In the background section 2.5.3, we introduced the Pearson’s GDV correlation matrix for a
given graph. Similarly, the Pearson’s GCV correlation matrix can also be computed in order
to find out which graphlets cluster together. This is important because graphlets that cluster
together have a similar behaviour and also correlate with the same functional annotations. We
present to the reader the steps used for computing the Pearson’s GCV correlation matrix, which
uses the GCV (Graphlet Cluster Vector) instead of the GDV (Graphlet Degree Vector):

1. We compute the Graphlet Cluster Vector (GCV) for every node in the input network

2. We then construct samples Si, i ∈ 1, 2, 3, .., 29 containing all the frequencies of the graphlet
of type i found in the GCVs of the nodes. The length of Si would be equal to N , the
number of nodes in the network.

9the PPI networks from BioGRID - Full version, see section 4.3.3
10We have also experimented with literature networks, which are networks of characters from a book. However,

the results were not significant so we have not included them in this report.



Chapter 3. Methodology 49

3. We compute the Pearson’s correlation coefficient for each pair of samples (Si, Sj) and we
write them in the 29x29 correlation matrix C at position (i, j).

The program that computes the GCV correlation matrix has been written without using
any library functions. Nevertheless, it took me a few of hours to identify some bugs and
memory leaks. Using GDB and Valgrind has proven to be extremely helpful for this task. I also
implemented my own function that computes the Pearson’s coefficient for two samples X and
Y and tested it using an excel spreadsheet that computed the correlation coefficient in parallel.

Unfortunately, the first heat maps that we get for the three main network classes (PPI,
Metabolic and Trade) are not easy to interpret. See the initial image (top-left corner) from
figure 3.8, which shows the original heat map obtained for the Human PPI network. Most of
the graphlets display a high correlation (at least 0.5) and because of that we cannot distinguish
clusters easily. Similar results are obtained for the other two networks: Human Metabolic and
WTN. In order to identify which graphlets cluster together, we apply two main modifications
to the matrices:

• Normalisation: We normalise the correlation values so that they lie more evenly in the
(0,1) range.

• Hierarchical clustering: In order to better identify clusters of graphlets that are highly
correlated with each other, we perform hierarchical clustering on the set of 29 graphlet
signatures.

3.2.4 Normalisation

Two main normalisation steps have been performed in order to spread out the correlation values
over the (0,1) range:

1. Feature scaling

2. Polynomial scaling

By feature scaling we denote a uniform scaling that makes the data fit on the (0,1) range.
On the other hand, polynomial scaling applies a polynomial function to the input value. They
are formally defined as follows:

Definition 42 Let X be a population and min(X), max(X) be the minimal respectively max-
imal value in X. Feature scaling is a transformation that converts each element x ∈ X into
an element x′ such that:

x′ =
x−min(X)

max(X)−min(X)
(3.2)

Definition 43 Let X be a population. Polynomial scaling is a transformation that converts
each element x ∈ X into an element x′ such that:

x′ = xn

For each matrix, feature scaling is first applied followed by polynomial scaling. For both
feature scaling and polynomial scaling, the set of all entries in the 2D matrix are used as the
population vector X. After applying feature scaling, all the entries in the correlation matrix
are converted to the (0,1) range. This results in both the input and output of the polynomial
scaling to also be in the (0,1) range, regardless of the parameter n that is used.
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Figure 3.7: Computation process of the Pearson’s GCV correlation matrix. For an input net-
work, we compute a table of the GCV signatures for all the nodes in the input network. After-
wards, we compute the Pearson’s correlation coefficient ρ(i, j) between each pair of row vectors
i and j and store it at position M [i, j] in the correlation matrix M .

3.2.5 Hierarchical clustering

Hierarchical clustering is a method that clusters data points according to how similar they are.
In our case the data points were the 29 GCV correlation vectors, and the similarity measure
used was given by the Euclidean distance. See section 2.5.4 for background information on
hierarchical clustering. The reason for clustering them is because we need to find out which
graphlets are similar and which ones are different with each other. The graphlets that are
similar probably have some common properties that we are able to identify and interpret.

We have used the python library Scipy to run hierarchical clustering. We first calculate
a distance matrix using the Scipy.spatial.distance. This symmetric matrix stores the dis-
tances between every two data points as a 2D matrix. Afterwards, the hierarchical clustering is
performed with the function call scipy.cluster.hierarchy.linkage(dist_matrix, method

=’complete’). The method parameter refers to the type of hierarchical clustering that is
performed. We have chosen to use Complete linkage11 because it avoids the so-called chaining
phenomenon of single linkage, where clusters are forced together due to outlier data points

11Complete linkage groups clusters together according to the shortest distance between the farthest points in
the sets (see the definition for complete linkage in section 2.5.4).
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being close to each other, even though the majority of the data points might actually be away
from each other. It has also been shown that complete linkage tends to create clusters of similar
diameter [60].

Each Pearson’s correlation matrix is first normalised using both feature scaling and polyno-
mial functions and then hierarchically clustered. We shall refer to this process as the Pearson’s
GCV correlation matrix life cycle. More details about its implementation aspects can be found
in section 3.2.7. Figure 3.8 shows the Pearson’s GCV correlation matrix life cycle for the Hu-
man PPI network. One can clearly see that the initial matrix is very hard to interpret, having
all correlations very high. On the other hand, the final matrix is very easy to interpret and
clearly shows graphlet clusters formed along the diagonal. In this example, we used a a 4th

degree polynomial, but for other networks we found that other polynomial functions offer bet-
ter results. Chapter 4 presents the key results of the Pearson’s matrices applied to different
network classes.

3.2.6 Canonical Correlation Analysis

Graphlets only give us information about the topology of the network connections. However, in
order to associate them with node functions or annotations, we need to correlate the GCV with
a vector of node annotations. Canonical Correlation Analysis (CCA) is able to do exactly this
and also give us a p-value, that can quantify the significance of the result. The theory behind
CCA is given in background section 2.6. In this section, we present how we applied CCA in our
experiments and discuss implementation details.

Initially, I experimented with CCA using three different implementations:

• Python Scikit: a Python implementation that is based on algorithms by Jacob A.
Wegelin [61]. The problem with this implementation is the poor documentation avail-
able.

• Matlab: based on two books by Krzanowski, W. J. [62] and Seber, G. A [63]. The
documentation is good, but the implementation does not provide canonical cross-loadings.

• Darren Davis’s R script: Darren Davis is a collaborator of N. Pržulj who has previously
applied CCA on GDV signatures. His R implementation also performs some preprocessing
of the data points and covariance matrices, such as scaling, centring12 and regularisation13.
This implementation is also accompanied by some python scripts that can preprocess all
the trade networks for a given range of years.

We have decided to use Darren Davis’s script, mainly because it is able to calculate cross-
loadings and it also had 5 accompanying python scripts that preprocess the economic networks.
Therefore, we refactored the R script in order to allow several parameters to be passed from
the command line. On the other hand, the preprocessing python scripts have been extensively
modified to deal with the new GCV signature and for enabling them to process different anno-
tation files, such as EC numbers (see section 2.7.2) or Boone’s and von Mering’s annotations
(see section 2.7.1).

Darren Davis’s R script gives us all the canonical correlation eigenvectors, with their asso-
ciated correlation and p-values and writes them to a text file. The eigenvectors are sorted in
descending order by their correlation strength, so the first eigenvector is the most significant.
We therefore created a parser for this file that finds the first eigenvector and produces a LATEX
table with all the cross-loadings and the respective overall correlation and p-value. This script
has been used for generating all the CCA tables in this report. We have also created another
script that creates a vector graphics image containing the following:

12The data points are centred around the origin
13If the covariance matrix is singular, a weighted identity matrix is added to it. More formally, if the covariance

matrix of the data points is S, then S′ = S + λI



Chapter 3. Methodology 52

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

G
ra
p
h
le
ts

Graphlets

file matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

Initial matrix

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

G
ra
p
h
le
ts

Graphlets

file matrix

 0

 0.2

 0.4

 0.6

 0.8

 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

G
ra
p
h
le
ts

Graphlets

file matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

9
4
14
1
20
22
27
7
26
10
15
3
13
12
16
19
21
17
18
5
25
24
6
23
29
11
8
2
28

9 4 14 1 20 22 27 7 26 10 15 3 13 12 16 19 21 17 18 5 25 24 6 23 29 11 8 2 28

G
ra
p
h
le
ts

Graphlets

file matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

Final matrix

feature scaling:
x′ = x−min

max−min

4th degree polynomial scaling:
x′ = x4

hierarchical clustering
(complete linkage)

Figure 3.8: Pearson’s GCV correlation matrix life cycle for the Human PPI network. The
initial Pearson’s GCV correlation matrix is on the top-left corner and the final matrix is on the
top-right corner, after feature scaling, polynomial scaling and hierarchical clustering operations
are applied. One can see that in the final matrix graphlet clusters are distinguished more easily
compared to the initial matrix. The operation order is anti-clockwise. When feature scaling, the
range of the correlations [min,max] is scaled to [0, 1]. After performing polynomial scaling using
a 4th degree function, the correlations are lowered even more. Finally, after applying hierarchical
clustering, similar graphlets cluster together along the diagonal. Hierarchical clustering uses
complete linkage for grouping GCVs and the Euclidean distance to compute the difference
between GCVs.

• an indicator list on the left-hand side where is element is coloured from green (1) to red
(-1) according to their canonical cross-loading.

• a top-right panel containing the graphlets with the highest canonical cross-loading.

• a bottom-right panel containing the graphlets with the lowest canonical cross-loading.
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• a gradient bar in the middle measuring correlation where the graphlets and indicators are
connected.

This script is written in Python and generates fragments of Tikz code that can be used
by LATEXto generate the image. In order to get the images in their final state, further manual
modifications are performed. The images are very intuitive to understand and will be used
extensively during the presentation. They are also included in this report in figures 4.8, 4.12
and 4.20. However, we don’t include them for all CCA results in the report because they don’t
give the exact correlations which are required for a careful analysis.

3.2.7 Network life cycle framework

In order to be able to run all our experiments in an automatic fashion and for a variety of
networks, we implemented a few network life cycle frameworks that take a network and run
all the statistical experiments automatically. The frameworks are defined by commands in a
Makefile that chain a variety of scripts. We wrote two main classes of such frameworks:

1. Pearson’s GCV Correlation matrix life cycle: used for computing all the correlation ma-
trices and generating several types of heat maps.

2. Canonical Correlation life cycle: used for preprocessing a network and its annotation file
and applying CCA on them.

Both of these are described in more detail in the following subsections.

Pearson’s GCV correlation matrix life cycle

The Pearson’s GCV correlation matrix life cycle takes an input network and computes several
GCV correlation matrices and their corresponding heat maps. Several environment variables
need to be set in order to run it, such as the network source folder, network file, generated
folder14 and the GCV normalisation type15. The steps that are performed in the life cycle are
as follows:

1. Initial file handling: Several directories are created and input files are copied over.

2. GCV computation using e_gdv.cpp16

3. Average network GCV computation

4. Computation of the Pearson’s GCV correlation matrix

5. Computation of 4 types of normalised correlation matrices17

6. Hierarchical clustering on all the correlation matrices

7. Heat map generation of all the correlation matrices using gnuplot

14The generated folder is used for storing all the program results
15A binary value that decides whether the GCV is normalised or not.
16The name of the script is derived from ”extended gdv”, because at the time we started writing the script we

were not decided on the name for the new signature.
17The matrices are normalised with first, second, third and fourth degree polynomials. The higher the degree,

the stronger the contrast between correlation values will become.
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Canonical Correlation Analysis life cycle

A different framework was set up for Canonical Correlation Analysis. In order to run CCA
on an input network, several preprocessing steps are required that transform the GCV and
annotation files. For the World Trade network, the steps performed by the CCA life cycle are
defined below:

1. Initial file handling: the output folders are created and input files are copied over.

2. Conversion of the GCV dump file to a CSV file for each of the 48 networks over the period
1962-2010.

3. Aggregation of the above per-year GCV CSV files into a single GCV file.

4. Aggregation of the economic indicator files into a single CSV file. Country/year entries
with incomplete data are dropped.

5. Augmentation of the basic economic indicators with composed economic indicators (e.g.
GDP per capita x Population to get the total GDP of a country).

6. Alignment of the GCV entries with the final economic indicators.

7. execution of the actual Canonical Correlation Analysis

The CCA life cycle described above is specific for the Trade networks. Similar frameworks
were created for the other networks, which use different types of annotations. The steps per-
formed are similar, but they use different parameters and one different preprocessing script that
converts the indicators to a CSV file. It must be noted that the Python scripts performing the
above steps are based on scripts created by Darren Davis for the GDV-based CCA.

3.2.8 Unit testing

Throughout the project we implemented a small suite of unit tests that checks the basic func-
tionality of the GCV signature computation. We used the BOOST unit testing framework written
in C++ because of the following reasons:

• The core algorithm that computes the GCV signature has also been written in C++, which
made integration easy.

• The BOOST testing framework has very useful features such as:

– Grouping test cases into suites.

– The ability of running multiple, independent tests in parallel.

– The possibility of seeing the progress of long and complex tests.

• There exists a variety of online tutorials and learning materials on the BOOST testing
framework

We wrote unit tests that check for the correctness of the GCV signature on PPI, Metabolic
and World Trade networks. Moreover, we also tested the GCV on a small number of toy networks
and compared the results with GCV signatures that were calculated by hand. Furthermore, we
also tested the parallel computation in the following manner:

1. For a given input network, we compute the GCV signature list several times, using an
increasing number of processes.

2. We compare each of the generated GCV lists for consistency.
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This parallelisation test actually helped us discover a bug in the code caused by a null pointer
exception, which only occured when 2 or more processes were used. This only affected a few of
the processes that accessed the illegal area of the virtual memory and stopped their execution.
As a result, the resulting GCV dump was incomplete, and this aspect was not immediately
obvious without a close examination of the GCV list.

The unit tests in our suite can be run using the Makefile command: make test. This will
execute all the tests in the test suite. One can also run individual tests or a subset of all the
tests in the suite. Running two tests on the WTN network using 16 and 32 processes for the
GCV computation produces an output similar to the one in figure 3.9.

Running 2 test cases...

2

Running: ./e_gdv trade_2010_thresholded.gw test_bank/

trade_2010_thresholded 16

4 Finished parsing the LEDA file

Waiting on the children ... Children have finished processing.

Assembling the files ... Running: cat test_bank/

trade_2010_thresholded .0* > test_bank/trade_2010_thresholded.

ndump2;rm test_bank/trade_2010_thresholded .0*

6

Test successful

8

Running: ./e_gdv trade_2010_thresholded.gw test_bank/

trade_2010_thresholded 32

10 Finished parsing the LEDA file

Waiting on the children ... Children have finished processing.

Assembling the files ... Running: cat test_bank/

trade_2010_thresholded .0* > test_bank/trade_2010_thresholded.

ndump2;rm test_bank/trade_2010_thresholded .0*

12 %

Test successful

14

*** No errors detected

Figure 3.9: Command-line output when running two unit tests on the 2010 World Trade network
using 16 and 32 processes. For each test, the input network LEDA file is first parsed and then
the parent waits until all children finish their processing. When the children processes finish
their work, their output files are assembled together and checked for consistency.
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Applications

4.1 Initial Experiments

4.1.1 Average Network GCV

The first experiments we conduct with the novel GCV signature are comparisons of average
network GCV signatures. For each node in the given network, the normalised GCV signature
is calculated and then averaged over all the nodes in the network. Figure 4.1 shows the results
for three different networks: A Human PPI network, a Human Metabolic network and a 2010
World Trade network.
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Figure 4.1: Comparison of the average GCV signatures for three different real networks: a PPI
network, a Metabolic network and a 2010 World Trade network (WTN). There is a considerable
discrepancy in the values of graphlets {9,10,11} across the network types. Moreover, the WTN
is the only network in which graphlets {22,23,24,26,28,29} are represented.

We observe in figure 4.1 that there are slight differences between the normalised GCV of the
three networks analysed. More precisely, Graphlets {9,10,11} seem to discriminate well between
them, with the Metabolic network having the highest number of G11 graphlets and the WTN
having the least. All these graphlets are sparse 5-node graphlets that have 4 edges each. The
reason why the Metabolic network has a lot of graphlets G11 (a claw of 5 nodes) is because it is
made of long metabolic paths that intersect with each other. This is best represented by graphlet
G11 which is made of a central node and several satellite nodes. Moreover, the WTN also seems
to have relatively more graphlets {22,26,28,29,22,23,24} compared to the other networks. The
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reason for this is because the WTN is a dense network and all those graphlets are relatively
dense compared to graphlets {9,10,11, . . . } that have few connecting edges.

4.1.2 Random Networks

After we performed comparisons of the average GCV of real networks, our next step is to
experiment with the following random network models:

1. Erdős-Rényi [13] (ER)

2. Erdős-Rényi (with preserved1 degree distribution) (ER-DD)

3. Geometric networks [14] (GEO)

4. Scale-free Barabási-Albert – preferential attachment [15] (SF)

5. Stickiness index-based [16] (STICKY)

The corresponding labels (ER, ER-DD, GEO, SF, STICKY) will be used throughout this
section to refer to each of these models. We generate 30 different models for every network
(Metabolic, PPI, WTN) and random network generating algorithm (ER, ER-DD, etc ..) re-
sulting in 150 total networks. Afterwards, in order to give a measure of precision to the GCV
signature of random networks, we calculate the standard deviation for each of the values of the
GCV.

The results obtained for the Human PPI network are shown in figure 4.2. For the Human
PPI network, we notice that all the random models apart from ER-DD have very low standard
deviations for all the graphlet frequencies. The graphlets where the ER-DD networks exhibit
some degree of randomness are {10, 11}. On the other hand, the geometric random graphs
are the only ones which contain some of the dense 5-node graphlets at the right-end of the
spectrum {23,24,26,28,29}. Moreover, the ER random graphs only contain graphlet G1, which
is a P3. The reason for this is because ER is a rudimentary random graph model that is unable
to capture the underlying complexity of the original graph. The random networks that seem
to best approximate the original networks are the Scale-free2 and the Stickiness-based. These
results are confirmed by the Relative Cluster Frequency Agreement in section 4.1.3.

1The ”stubs” method enables the Erdős-Rényi graph to preserve the degree distribution of the real network.
2Barabási-Albert Preferential Attachment
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Average GCV for random models of the Human PPI network
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Figure 4.2: Average GCV for the Human PPI network, including the standard deviations
displayed as vertical error bars. The random models analysed are: Erdős-Rényi (ER), Erdős-
Rényi with preserved degree distribution (ER-DD), Geometric (GEO), Scale-free Barabási-
Albert – Preferential Attachment (SF) and Stickiness-based (STICKY). The length of one
vertical bar is equal to one standard deviation σ. We assume that the samples are normally
distributed with mean µ and variance σ2

Figure 4.3 shows the average GCVs for the Metabolic networks and the corresponding
random networks. We notice that the metabolic networks have a slightly different signature
compared to the PPI networks. First of all, they have more graphlets G11 but less graphlets
G10. Secondly, for this class of networks the ER-DD random network seems to be a better
approximation according to the GCV signatures, especially for graphlet types {10,11,12}. The
fact that ER-DD is the best approximation for the Metabolic network is again confirmed in
section 4.1.3.
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Average GCV for random models of the Human Metabolic network
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Figure 4.3: Average GCV for the Human Metabolic network, including the standard deviations
displayed as vertical error bars. The random models analysed are: Erdős-Rényi (ER), Erdős-
Rényi with preserved degree distribution (ER-DD), Geometric (GEO), Scale-free Barabási-
Albert – Preferential Attachment (SF) and Stickiness-based (STICKY). The length of one
vertical bar is equal to one standard deviation σ. We assume that the samples are normally
distributed with mean µ and variance σ2

Figure 4.4 shows the average GCVs for the WTNs and the corresponding random graphs.
Surprisingly, for this type of networks we see a greater variety in the frequencies of graphlets,
with graphlets in the 15–29 range now being much more represented than in the biological
networks. The simple Erdős-Rényi model has a large variance for the frequency of graphlets
{3,9,10}. On the other hand, the Erdős-Rényi graphs with preserved degree distribution offer
a good GCV signature approximation, especially for graphlets in the range {9-18}, which are
the 5-node graphlets at the sparse end of the spectrum. The Stickiness-based random graphs
also offer a good approximation, a result that is confirmed by the Relative Cluster Frequency
Agreement in section 4.1.3.
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Average GCV for random models of the 2010 World Trade Networks
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Figure 4.4: Average GCV for the 2010 WTN, including the standard deviations displayed as
vertical error bars. The random models analysed are: Erdős-Rényi (ER), Erdős-Rényi with
preserved degree distribution (ER-DD), Geometric (GEO), Scale-free Barabási-Albert – Prefer-
ential Attachment (SF) and Stickiness-based (STICKY). The length of one vertical bar is equal
to one standard deviation σ. We assume that the samples are normally distributed with mean
µ and variance σ2

4.1.3 Relative Cluster Frequency Distance Results

The Relative Cluster Frequency Distance (RCFD) between two GCV vectors is a measure of
how different they are with each other. It it is defined as the Euclidean norm of the difference
between the two GCV vectors. A low RCFD value means that the signatures are similar to
each other, while a high value means that the signatures are different. See section 3.1.3 for the
exact definition of RCFD. When applied to the average GCV signature of two networks, RCFD
can tell us how similar or different the two networks are. The question we are trying to answer
here is: according to the average GCV signature, which random graph is best for modelling the
real underlying network? The three tables from figure 4.5 show the RCFD distances between
the real network and random models3, applied to our three main classes of networks: PPI,
Metabolic and World Trade.

For the Human PPI network (table (a) from fig 4.5), the random networks that best ap-
proximate the real network are the Stickiness-based (STICKY) random networks, having the
smallest RCFD of 0.492, while the Scale-free Barabási-Albert (SF) graphs also offer a good
approximation of the original network, having a RCFD of 0.607. The other random models
perform much worse in this respect because they cannot capture all the underlying complexity
in the dataset. Moreover, we also notice that the difference between the SF and STICKY GCV

3the real network has been used to generate these random models
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signatures is really small (0.329), meaning that the generated networks are topologically similar
to each other.

For the Human Metabolic network (table (b) from fig 4.5), the results are slightly different.
The best-performing random networks are the ER-DD (RCFD to the real network is 0.557),
built using the ”stubs” method (see section 2.4.2). The second-best random network is the
STICKY model which has an RCFD between itself and the Real network of 0.697. When
analysing the 2010 WTN between countries(table (c) from fig 4.5), the random network with
the best approximation to the real network is again the Stickiness-based network, followed
closely by Erdős-Rényi with preserved degree distribution.

We therefore conclude that the STICKY random model is best at modelling PPI and WTN
networks, while ER-DD is best at modelling Metabolic networks.

Model ER ER DD GEO SF STICKY REAL

ER 0.000 1.296 1.889 1.963 1.995 1.995
ER DD 1.296 0.000 1.554 1.018 1.233 1.191
GEO 1.889 1.554 0.000 1.413 1.406 1.311
SF 1.963 1.018 1.413 0.000 0.329 0.607

STICKY 1.995 1.233 1.406 0.329 0.000 0.492

REAL 1.995 1.191 1.311 0.607 0.492 0.000

(a) RCFD distances for the Human PPI network

Model ER ER DD GEO SF STICKY REAL

ER 0.000 1.499 1.610 1.709 1.804 1.807
ER DD 1.499 0.000 1.430 1.040 0.799 0.557
GEO 1.610 1.430 0.000 1.356 1.438 1.648
SF 1.709 1.040 1.356 0.000 0.784 1.054

STICKY 1.804 0.799 1.438 0.784 0.000 0.697

REAL 1.807 0.557 1.648 1.054 0.697 0.000

(b) RCFD distances for the Human Metabolic network

Model ER ER DD GEO SF STICKY REAL

ER 0.000 1.134 1.198 0.663 1.172 1.336
ER DD 1.134 0.000 1.065 0.819 0.490 0.572
GEO 1.198 1.065 0.000 1.099 0.609 0.873
SF 0.663 0.819 1.099 0.000 0.896 1.161

STICKY 1.172 0.490 0.609 0.896 0.000 0.465

REAL 1.336 0.572 0.873 1.161 0.465 0.000

(c) RCFD distances for the 2010 World Trade network

Figure 4.5: The RCFD distances for (a) Human PPI network (b) Human Metabolic network
(c) 2010 WTN and five model networks: Erdős-Rényi (ER), Erdős-Rényi with preserved degree
distribution (ER DD), Geometric (GEO), Scale-Free - Barabási-Albert Preferential Attachment
(SF) and Stickiness-based (STICKY). For each network class, we have calculated not only the
distance between every pair of random network models, but also the distance between every
random network model and the real network which was used to generate the random models.
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4.2 World Trade networks

After running initial experiments that study the average GCV of a network, we performed
experiments that were specific to each of the network classes. In this section, we present
the main results obtained for the World Trade Networks (WTNs). A brief summary of these
networks is given in section 2.7.3.
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Figure 4.6: Pearson’s GCV correlation matrix for the 2010 WTN. It has been normalised with
feature scaling and a 3rd degree polynomial, and then hierarchically clustered with complete
linkage.

Figure 4.6 shows the Pearson’s GCV Correlation matrix for the 2010 WTN. This correlation
matrix was normalised with feature scaling and a 3rd degree polynomial function. For details
on how this has been calculated see the methodology section 3.2.3. Other polynomial functions
have been tested, but the 3rd degree polynomial was the most effective in emphasising the
clusters of graphlets that are formed on the diagonal. These clusters of graphlets are as follows:

• Cliques cluster made of graphlets {2,8,29}.

• A cluster that is made of graphlets {15,21,3,14,4,23,16,17,10,12,13,19,9,11} which can be
split into 2 further sub-clusters:

– P4 cluster made of graphlets {15,21,3,14,4,23,16,17}. These are all graphlets that
contain a P4 (path of 4 nodes, graphlet G3).
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– Claw4 cluster made of {10,12,13,19,9,11}. These graphlets all contain a C3 ( claw on
3 nodes, graphlet G4)

• A cluster that is made of graphlets {20,25,27,5}. These graphlets all contain an S4 (cycle
of 4 nodes).

• Another set of graphlets that correlate is {18,6,24,22,1,26}. The reason why graphlets
{1,26} have been added is because they also correlate with the other cluster, even if they
are not right next to them in the heat map. These all contain at least one P3 (path of 3
nodes).

Now that we know which graphlets cluster together, we will use these results in the subse-
quent CCA analysis in section 4.2.2.

4.2.1 Correlation matrix change during 1962–2010

The results from the previous section were concerned with the correlation matrix of the 2010
WTN. However, we are also interested to see how graphlets correlate in WTNs from other years.
We therefore compute the Pearson’s GCV correlation matrix for all the yearly WTNs in the
period 1962–2010. Using the 49 different correlation matrices, we then compute the change in
the correlation matrix during the respective time frame. In order to calculate the change in
correlation matrix between year Y and Y + 1, we simply subtract in a pairwise manner the two
matrices and then return the sum of squares of all the elements in the matrix. For the exact
formula used see equation 2.6 from section 2.5.3.

We then tried to find out if there is any correlation between the network topology and Crude
Oil price. If one of these attributes changes, it might be possible that the other reacts. However,
this might happen with a certain number of years delay. In order to account for this, we shift the
vector of GCV correlation change by [-2,-1,0,1,2] years. For each of these 5 cases, we calculate
the Spearman’s rank correlation coefficient and the respective p-value for the following vectors:

• one 48-element vector containing the change in Pearson’s GCV correlation matrix

• one 48-element vector containing the change in the price of Crude Oil

The best correlation is obtained when the vector of GCV correlation is shifted by -2 years.
This scenario is plotted in figure 4.7. Surprisingly, the oil change in inversely correlated with
the change in network topology: the Spearman’s rank correlation coefficient is -0.49, having a p-
value of 0.0004. Since the p-value is smaller than 0.05, the result is statistically significant. The
explanation for this is as follows: high oil prices generally have a large negative impact on the
global economic growth. Slower growth leads to diminished investment-related activity in the
countries affected, which in turn deters the creation of new trading partners. This implies that
the network structure remains mostly unchanged, a fact that results in a low GCV correlation
change. Moreover, because the best correlation is obtained when the change in GCV is shifted
by -2 years, this might suggest that changes in network structure cause the Crude Oil price to
change. However, we did not have time to perform more supporting experiments in order to
validate the causality aspect of this claim.

Furthermore, there are several major economic events for which we do not have a big change
in the topology of our network, such as the 2007 sub-prime mortgage crisis or the 1997 Asian
financial crisis. This implies that the unnormalised Pearson’s GCV correlation matrix is not
affected by these major events. Similar results that use a normalised version of the GCV are
better correlated with global economic and social events (see section 4.2.7).

4A claw Cn is a graphlet that has a central node and n− 1 satellite nodes connected to it. See section 2.1.1
for a full definition.
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Figure 4.7: Evolution of WTN structure during 1962–2010 using the unnormalised GCV. Plotted
in black is the change in GCV correlation that has been offset by -2 years, while the change
in Crude Oil Price is plotted in brown. Spearman’s rank coefficient between oil price change
and change in network topology is -0.49 with a p-value of 0.0004. This suggests that when
the change in GCV correlation between countries changes, then the oil price stays the same.
The top and left axis tics correspond to the Oil curve, while the bottom and the left axis tics
correspond to the network topology curve.

4.2.2 CCA - 1980–2010 World Trade networks

After correlating graphlets from the GCV vector with each other in order to see which one of
them have a similar behaviour, the next step is to correlate the GCV vectors with the economic
indicators of a country. This can be done using Canonical Correlation Analysis (CCA) which
is described in section 2.6. The two variates we correlated are:

1. the X variate containing economic indicators (GDP per Capita, Level of Employment).
See section 2.7.3 for details about all the economic indicators used.

2. the Y variate containing the unnormalised GCV vectors for each country.

The CCA analysis uses data for 119 countries over a period of 30 years (1980-2010). Each
country-year pair represents one sample for which we have both economic indicators (X variate)
and the GCV (Y variate).
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Figure 4.8: Canonical Correlation Analysis between economic indicators and the GCV signa-
ture. Only the graphlets that have the highest respectively lowest cross-loadings are shown
in the picture. However, all the graphlets have positive cross-loadings, with the lowest cross-
loading having a value of 0.44. Openness (OPENK), Balance Current Account (BCA) and a few
other indicators correlate negatively with all the graphlets, because their cross-loadings have
different signs. On the other hand, the rest of the indicators such as Population (POP), Level
of Employment (LE) and GDP per capita (RGPDL, RGDPCH) correlate positively with all the
graphlets, since their cross-loadings have the same sign. The overall correlation is 0.89 with a
p-value smaller than 0.0001. This result suggests that big and wealthy countries have a large
network of trading partners that is rich in graphlets.

CCA results are presented in figure 4.8. A supplementary table with the list of all the cross-
loadings can be found in figure B.1 in the appendix. This result shows that all the graphlets
correlate positively5 with some indicators such as Population, Level of Employment or GDP per
capita and negatively with Trade Openness and Balance of Current Account. This means that
big and rich countries that have a high population and GDP per capita have a neighbourhood
rich in graphlets, while small and poor countries with account deficits have a neighbourhood
sparse in graphlets. The population of the country seems to be quite an important factor for
determining whether it will have a rich neighbourhood because of the following two reasons:

• In the X variate, population has the weight with the highest magnitude: 0.766

• Most of the other economic indicators that have a high weight are obtained by multiplying
population with other indicators. This is also the case in a similar CCA Analysis of
Yaveroğlu et al. using graphlet orbits [37].

4.2.3 Economic Integration

We now try to find out if the level of Economic Integration of a country is positively correlated
with dense graphlets and negatively correlated with sparse graphlets. This is something to be

5An element from the X variate correlates positively with another element from the Y variate if and only if
their cross-loadings have the same sign
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expected, because when a country is part of a strong trading bloc, it’s neighbours have a higher
probability of doing heavy trade with one another. This is because there is incentive for the
country to trade more with the partners from the same bloc, that are already trading a lot with
each other. This would in turn result in denser graphlets in the neighbourhood of that country.
The idea of correlating the GCV with the integration level of a country was entirely mine.

For a given country, there exist several stages of economic integration. One possible classi-
fication is the following:

1. no economic integration

2. Multilateral Free Trade Area (e.g. AFTA, CEFTA, CISFTA)

3. Customs union (e.g. EAC, EUCU, MERCOSUR)

4. Common market (e.g. EEA, EFTA)

5. Customs and Monetary Union (e.g. CEMAC/franc, UEMOA/franc)

6. Economic union (e.g. CSME, EU)

7. Economic and monetary union (e.g. CSME + EC dollar, EU + euro)

We found some preliminary data on the Internet which labels each country using the most
advanced integration agreement it signed. Using this data, we computed an integration index
(1-7) for each country and correlated it with the GCV signature using CCA.

Figure 4.9 presents these preliminary CCA results. They confirmed our initial expectations,
with dense graphlets correlating most with the integration index, while the sparse graphlets
correlating least. However, since the source of the data that was used for this experiment could
not be verified, we searched for an official index that quantifies political integration for each
country around the world. Although we haven’t found an index that uses the 6-level scale that
we previously mentioned, we found some indices on the World Trade Organisation website that
measure the number of Regional Trade Agreements (RTAs) of a country [64]. These RTAs are
defined as trade agreements that are concluded between countries that are geographically close
to each other6. For a given country, the number of RTAs gives us a measure of economic and
political integration, since these agreements are mainly signed within trading blocks. The RTAs
facilitate trade on a regional basis and can be of several types:

• A Free Trade Agreement (FTA)

• A Customs Union (CU)

• Economic Integration Agreement (EIA)

• Partial Scope Agreement7 (PS)

The World Trade Organisation provides indices for each of the following classes of RTAs:

• Goods RTAs: agreements that facilitate trade in goods.

• Services RTAs: agreements that facilitate liberalisation of the services market.

• Physical RTAs: actual agreements signed that cover both goods and services.8

6However, the countries do not strictly have to be geographically close in order to sign an RTA.
7Covers only certain types of products
8An RTA that covers both goods and services is also counted for Goods RTAs and Services RTAs.
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Canonical Correlation 0.61882
p-value 0.01280

X variate Y variate

Integration 0.61882 G29 0.28704
G8 0.28349
G2 0.27862
G22 0.26820
G28 0.26806
G7 0.26021
G26 0.26011
G18 0.24661
G1 0.23837
G24 0.23133
G6 0.22969
G4 0.22021
G27 0.22013
G17 0.21021
G14 0.20631
G23 0.20420
G5 0.20149
G20 0.19391
G25 0.19122
G21 0.19076
G16 0.19026
G11 0.18330
G3 0.17730
G15 0.16814
G13 0.16764
G19 0.16051
G9 0.15087
G12 0.14886
G10 0.14638
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...

G9
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Figure 4.9: CCA results between the Integration index (X variate) and the GCV (Y variate).
The Integration index of a country is positively correlated with all the graphlets. However,
the strongest correlation is with dense graphlets such as cliques {29,8,2} because they have the
highest weight, while sparser graphlets {10,12,9} have the lowest weight. The overall correlation
is 0.61, with a p-value of 0.01, suggesting the correlation is statistically significant.
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The results of the Canonical Correlation Analysis are shown in figure 4.10. As we expected,
the Goods and Physical RTAs are correlating positively with dense graphlets such as cliques
{2,8,29} and negatively with sparse graphlets such as {10,11,9,12}. This suggests that once a
country is acceding to a trading block, its entire trade shifts towards its partners within the
block, which trade mainly with each other, hence the dense graphlets in the neighbourhood
structure. Surprisingly, the services EIAs are not showing this correlation, having a small but
positive weight of 0.00187. This implies that when a country negotiates services EIAs, that
doesn’t result in the total trade getting redirected towards the signatories of the EIAs. Further
research needs to be done in order to explain why this is the case.

4.2.4 Revision of GCV - normalisation

The results presented in previous sections used the un-normalised GCV vector which contained
the total number of graphlets of each type found in the neighbourhood of a node. However,
we also tried running all the experiments with the normalised GCV. See definitions 39 and 40
from section 3.1 for the un-normalised and normalised GCV respectively. The normalised GCV
contains the proportion of each graphlet in the neighbourhood of a node.

All the experiments performed in this project have been run with both the un-normalised
and normalised GCV versions. However, the only insightful results with the normalised GCV
have been obtained for the WTN. The next two sections present the Pearson’s Correlation
matrix and the Canonical Correlation Analysis results using the normalised GCV signature.
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Canonical Correlation 0.81460
p-value 0.00000

X variate Y variate

Services EIAs 0.00187 G10 0.04910
Physical RTAs -0.14733 G11 0.04673
Goods RTAs -0.15447 G9 0.04035
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Figure 4.10: Canonical Correlation Analysis on Trade Integration using the number of Regional
Trade Agreements as an indicator of trade integration. The Goods and Physical RTAs correlate
positively with dense graphlets such as {2,8,29} because the weights have the same signs. At the
other end, sparse graphlets such as {10,11,9,12} correlate negatively with Goods and Physical
RTAs. The canonical correlation is 0.81, having a p-value of 0.



Chapter 4. Applications 70

4.2.5 Pearson’s normalised GCV correlation matrix
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Figure 4.11: Pearson’s GCV correlation matrix for the 2010 WTN using the normalised GCV.
The heat map is normalised only with feature scaling.

Figure 4.11 shows the Pearson’s correlation matrix on the 2010 WTN that is calculated using
the normalised GCV signature. We can observe several clusters of graphlets that have been
formed along the diagonal:

• A: Cluster made of graphlets {10,11,9,12,14}. These are all sparse graphlets that have 4
or 5 nodes.

• B: A slightly similar cluster that is also correlated with the one above is {22,4,18,16,13,17}.
These graphlets all contain a C4 as a subgraph.

• C: Another cluster is formed by graphlets {5,25,27}. These graphlets all contain a cycle
of length 4 (S4).

However, we also notice that this time the cliques {2,8,29} do not cluster together. Cliques
used to cluster together when using the un-normalised GCV signature (see figure 4.6). We do
not have a clear explanation for this behaviour and further research needs to be done into this.

4.2.6 Normalised GCV - Canonical Correlation Analysis

After finding out which graphlets cluster together, we run Canonical Correlation Analysis using
the same methodology described in section 4.2.2, this time using the normalised GCV signature.
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Figure 4.12 shows the results of the CCA, while the supplementary table with all the correlations
can be found in the appendix figure B.2. The correlation is high ρ = 0.94 and the p-value is
0.0, suggesting that the result is statistically significant.
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Figure 4.12: CCA between economic indicators and the normalised GCV signature. Only
the graphlets that show the strongest respectively weakest correlations are shown. One can
notice that graphlets {12,10,14} are relatively sparse, while graphlets {2,29,8} are dense, being
cliques. The sparse graphlets are correlated with the good economic indicators (in green) such
as Population (POP), Level of Employment (LE) and GDP per Capita (RGDPL), while dense
graphlets are correlated with bad indicators (in red) such as the Balance of Current Account
(BCA). The canonical correlation ρ = 0.94 and the p-value is smaller than 0.0001, suggesting
that the result is statistically significant.

The good indicators such as population (POP), level of employment (LE) and GDP per
capita (RGDPL) are positively correlated with the graphlets {12,10,14,17,9, . . . }9. On the other
hand, the bad indicators such as the balance of current account (BCA) correlate positively with
graphlets {8,29,2,7,1,28}. Graphlets {10,12,14,9} on the positive side of the spectrum have
also clustered together in the Pearson’s correlation matrix (section 4.2.5). We first notice
that graphlets {8,29,2,7,1,28} represent cliques {8,29,2} or almost cliques {7,1,28}. Since these
graphlets are very densely connected, this suggests that the trading partners of small and poor
countries are trading heavily with each other or form highly connected clusters. As a result,
we deduce that the majority of the trading partners of small and poor countries are the big and
rich countries that are always trading heavily with each other.

This theory seems to be confirmed by taking a few small and poor countries and looking at
their trading partners. Note that since the network has only 119 countries, the poorest countries
from Africa or South Asia have already been filtered out.10 Therefore, let us consider Morocco a
small and poor country relative to the others, although in reality it considered to have a medium
level of development. Morocco’s main trading partners are: Saudi Arabia, China, France, USA,

9The CCA figure 4.12 only shows the graphlets that have the strongest and weakest cross-loadings. See figure
B.2 in the appendix for a list of cross-loadings for all the graphlets and economic indicators.

10This is the case because the network has been thresholded at an 85% level. See section 2.7.3 for more details.
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Spain, Germany and Italy. These countries are big and rich and every single pair of them clearly
trade with each other. Similar results have been observed for other countries such as Uruguay.
Moreover, all of Morocco’s trading partners are part of G20, a club of big and wealthy countries
that collaborate with each other on economic matters. This leads us to a second theory: since
the trading partners of a small and poor country form highly connected clusters, these clusters
represent big and rich economic groups such as G8, G20, OECD11 or Paris-club12. This theory
can be validated by selecting a few countries and looking at their neighbours. For example, the
biggest trading partners of Tunisia are Germany, France and Italy, all part of G8, G20, OECD
and Paris-club.

Regarding the first group of graphlets (i.e. {12,10,14, . . . }), we notice that all of them are
sparse graphlets that contain relatively few edges. Having the sparse graphlets at one end
of the spectrum and the dense graphlets at the other suggests that the graphlets are roughly
ordered according to their density. Therefore, CCA shows that the sparse graphlets correlate
with the good indicators such as population (POP), level of employment (LE) and GDP per
capita (RGDPL) while dense graphlets correlate with bad indicators such as the balance of
current account (BCA).

Now that we now know to interpret the positively weighted part of the graphlet vector as
sparse graphlets, canonical correlation tells us that the trading partners of big and wealthy
countries have a lot of sparse graphlets in their neighbourhood. The economic reason for this is
because big and rich countries like USA, China, Russia are trading with a lot of small, isolated
countries which in turn do not trade with each other. This theory is supported by a closer
analysis with Cytoscape13. Using this software we found that the clustering coefficient of a
country is inversely correlated with the wealth and size of that country, suggesting that big and
rich countries indeed have a relatively sparse neighbourhood.

4.2.7 Normalised GCV - Correlation matrix change during 1962–2010

We also calculated the changes in Pearson’s correlation matrix using the normalised GCV for
the WTNs over the period 1962–2010. The results are plotted in figure 4.13 along with the
changes in Crude Oil price. For this experiment we follow the same methodology as in section
4.2.1. We find that for the normalised GCV, the best results are obtained when the GCV vector
is shifted with -1 year and yields a positive correlation ρ = 0.34 and a p-value of p = 0.01. These
results are in contrast to the ones obtained using the original GCV signature in section 4.2.1
and at the moment we cannot give a reason why this is happening. Since the best correlation
is obtained when the GCV vector is shifted with -1, this again suggests that the changes in the
network structure might cause the changes in the price of Crude Oil.

11Organisation for Economic Co-operation and Development
12A group of countries that provide debt relief and debt restructuring to indebted countries and their creditors.
13A network analysis software that can provide useful statistics of the network data.
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Figure 4.13: Change in WTN topology (as measured by the normalised GCV correlation matrix)
versus change in crude oil price. The two plots are positively correlated, having a Spearman’s
rank correlation coefficient of 0.34 and p-value of 0.01. The best correlation coefficient is ob-
tained when the change in network topology is shifted by -1 years. The top and left axis tics
correspond to the Oil curve, while the bottom and the left axis tics correspond to the network
topology curve.

There are several major economic and social events that have clearly affected the WTN
structure. The 1970s were marked by two energy crises (1973 and 1979) that explain the
two small peaks in both the topology change but also in the oil price change. Afterwards, the
1983/1984 peak in network topology change might have been caused by the early 1980s recession,
which affected most of the developed world. A revival of neoliberalist economic policies around
the world occurred in this period which led to reduced government intervention, lower taxes
and deregulation. The peak in 1989 might be explained by the fall of communist/socialist
governments in Russia, Eastern Europe and around the world accompanied by a fall in heavy
industries and increased trade openness. These events have been accompanied by changes in
government for some former left-wing or right-wing countries such as Russia, Poland, Chile and
South Africa.

The early 1990s appear as a period of relatively low changes in oil and network topology,
which reflects the overall economic stability at that time. However, bigger changes are noticed
in the late 1990s, possibly started by the 1997 Asian financial crisis. By the 2000s, even bigger
changes can be observed in the network topology plot that were caused by the commodities
boom and rising oil prices and inflation.

4.2.8 Trade partners sparsity index

Using a combination of graphlet frequencies that are part of the GCV, we are now interested to
create an index that is positively correlated with the good indicators from section 4.2.6 such as
GDP per Capita (RGDPL) or Level of Employment (LE). Therefore, we take the three graphlets
that have the highest correlation with the economic indicators variate {12,10,14} and the three
that have the lowest correlation {8,29,2} (see figure B.2). Multiplying each of these by their
respective CCA cross-loading and summing up the results gives us a trading partner sparsity
index. The index T can formally be defined as:
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T = w12F12 + w10F10 + w14F14 + w8F8 + w29F29 + w2F2

where Fi, wi are the frequency respectively the canonical cross-loading of Gi. In order to
compute the index, we use the cross-loadings obtained from CCA in figure B.2.

This index can be calculated for every country and for every year and can have both positive
and negative values. It gives a measure of the sparsity of the network of the trading partners:
the higher the value the sparser the neighbourhood, because the sparse graphlets have positive
weights while the dense graphlets have negative weights. CCA has shown us that for a certain
country a network of trading partners that has sparse graphlets indicates a healthy economy, so
we expect the trading partner sparsity index to be high for big and wealthy countries and low
for small and poor countries. We also expect the index to fluctuate during periods of economic
uncertainty.
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Figure 4.14: Trading partners sparsity index measured for 5 big economies: United States
(USA), China (CHN), Germany (DEU), France(FRA) and the United Kingdom (GBR). The
index for US, Germany, France and the UK is approximately flat over the 49-year period.
However, the index of China has a downward trend over the time period 1963–1973 due to
Mao Zedong’s policies that harmed the economy of the country. However, the period after 1975
shows a surge that was boosted by economic reforms and growth. There is one exception in
1990–1992 right after the Fall of Communism in Eastern Europe, a global event that affected a
socialist country such as China.

Figure 4.14 shows the trading partners sparsity index for several influential countries: United
States (USA), China (CHN), Germany (DEU), France(FRA) and the United Kingdom (GBR).
Throughout the 1965–2010 period, the corresponding index for the United States, Germany,
France and the United Kingdom has been approximately flat, having a value of 0.2. Some small
variation can be seen starting from 1990, with Germany and the United States having a slightly
bigger index than France and the United Kingdom. Furthermore, for these four countries we
don’t observe any shocks during economic crises. On the other hand, China suffers a decrease in
the trading partners sparsity index during 1965–1976, due to Mao Zedong’s Cultural Revolution
that resulted in a period of economic decline. However, the index increases again during 1976–
1985, probably due to economic reforms that were initiated by Deng Xiaoping which helped
revive the economy. Another low point is noticed in 1990–1992 right at the Fall of Communism
in USSR and Eastern Europe, a global event that deeply affected a socialist state such as China.



Chapter 4. Applications 75

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 1965  1970  1975  1980  1985  1990  1995  2000  2005  2010

T
ra

d
in

g
 p

ar
tn

er
 s

p
ar

si
ty

 s
co

re

Years

RUS
POL
DDR
ROM
CZE

HUN
SUN

Figure 4.15: Trading partners sparsity index measured for countries from Eastern Europe:
Russia (RUS), Poland (POL), East Germany (DDR), Romania (ROM), Czech Republic (CZE),
Hungary (HUN) and the USSR (SUN). Most of the countries show a drop in the index after
1990 because of the Fall of Communism and the economic restructuring that took place at that
time.

Figure 4.15 shows the trading partners sparsity index for several countries in Eastern Europe:
Russia (RUS), Poland (POL), East Germany (DDR), Romania (ROM), Czech Republic (CZE),
Hungary (HUN) and the USSR (SUN). In the period leading to 1990, the USSR had the highest
index since it was a world superpower, while it’s satellite states had a lower index. However,
the Revolutions in December 1989 in Eastern Europe led to a large drop in the trading partners
sparsity index for all these countries, a fact that is reflected by the economic situation at that
time: unemployment skyrocketed and living standards fell considerably. It took some countries
such as Poland of Hungary around approximately 10–15 years to reach the pre-revolutions level
in the trading partners sparsity index.
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Figure 4.16: Trading partners sparsity index measured for 3 OPEC members: Iran (IRN), Saudi
Arabia (SAU) and United Arab Emirates (ARE). The rise in petroleum prices and the Oil crisis
in 1973 has led to a surge in the index for Saudi Arabia and Iran. Moreover, the Oil crisis of
1979 has also led to an increase in United Arab Emirate’s index. However, the 1980s Oil glut
that was caused by a serious surplus of oil had detrimental effects on all OPEC members, which
is reflected in the drop of their trading partners density index.

Figure 4.16 shows the trading partners sparsity index for three main OPEC members: Iran,
Saudi Arabia and United Arab Emirates. For Saudi Arabia and Iran, the rise in petroleum
prices in 1970s led to a surge in it’s index. However, during the 1980s the oil glut that was
caused by a serious surplus of crude oil and a drop in demand had detrimental effects on all
OPEC members, which are heavily dependent on the price of oil. It can also be noticed that
the 1973 Oil Crisis has led to an increase in the index only for Saudi Arabia and Iran, while the
1979 Oil crisis has led to an increase in the index only for the United Arab Emirates.

4.2.9 Case study: Saudi Arabia

As we have seen in previous sections, the GCV signature can indeed capture the changes in
Crude Oil prices and correlate with key economic and social events around the world. In this
section we are trying to apply the same analysis but on a smaller scale, at a country level.
We have selected Saudi Arabia as a major oil-exporting country, whose economy is heavily
dependent on the price of oil. We are trying to find the answer to the following questions:

• Are the partners of Saudi Arabia affected by changes in Crude Oil price?

• Is the GCV of Saudi Arabia positively or negatively correlated with the Crude Oil Price?

Saudi Arabia is the world’s largest oil-exporting economy and has the largest proven petroleum
reserves. It is also a very influential member of the Organisation of the Petroleum Exporting
Countries (OPEC). It’s main export partners are the United States, China and Japan, while it’s
main import partners are China, United States and South Korea. Around 90% of it’s exports
consist of petroleum and related products.

We therefore calculate the normalised GCV of Saudi Arabia for each year in the period
1962–2009. Afterwards, the change in GCV between every two consecutive years is calculated
using the Euclidean distance between the two vectors. Results of the GCV change along with
the Crude Oil price are plotted in figure 4.17. The two plots are negatively correlated, having
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a Spearman’s rank correlation coefficient of -0.32 with a p-value of 0.026, which resembles the
results we got for the original GCV change for the overall trade network in section 4.2.1. First
of all, it must be noted that since Saudi Arabia is an oil-exporting country, it benefits massively
from a rise in oil prices. However, high oil prices on the energy markets lead to less demand for
petrol and provides other oil-poor countries an incentive for developing alternative sources of
energy. The fact that Saudi Arabia benefits from high oil prices might explain why the change
in it’s trading partner network topology is inversely correlated with oil price: when the price
of oil is low, Saudi Arabia always looks for new export markets and thus has a move volatile
network of trading partners. On the other hand, when the price of oil is high, it means that
the demand is much higher than the supply available, so Saudi Arabian oil companies prefer to
export to their old trading partners, since there is no need for extra contracts, negotiations and
bureaucracy.

Figure 4.17 shows that big changes in the trading partners of Saudi Arabia occurred between
1968/1969 and 1969/1970, which subsumed shortly afterwards. These might be explained as a
consequence of the 1967 Oil Embargo, when Saudi Arabia and several Middle Eastern countries
limited or completely stopped their oil supplies to Western countries such as the USA, UK
and other European states. The result was that Saudi Arabia had to look for different export
partners and that led to a change in its trading partner structure.

This experiment has also been run using the un-normalised GCV change, but it hasn’t
yielded a good correlation between the GCV change and the change in crude oil price. The
associated p-value was also high, meaning that the result was not statistically significant. A
plot and the equivalent results are given in figure A.1 in the appendix.
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Figure 4.17: The change in the GCV of Saudi Arabia along with the change in Crude Oil price.
The two plots are negatively correlated, having a Spearman’s rank correlation coefficient of
-0.32 with a p-value of 0.026. This correlation is obtained when the vector of changes in Saudi
GCV is shifted by -1. Top and left axis tics correspond to the Oil curve, while the bottom and
the right axis tics correspond to the Saudi GCV curve.

In order to find out how each of the individual elements of the GCV vector are influenced
by the oil price, we apply Canonical Correlation between the GCV of Saudi Arabia and the
Crude Oil price index. However, this proves to be problematic since we only have 49 samples
to run the CCA on, one for every year during 1962–201014. On the other hand, there are

14In previous CCA experiments, we used all country-year pairs that gave us in total around 119 ∗ 29 = 3451
samples, where 119 is the average number of countries in the network and 29 is the number of years CCA was
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29(GCV)+1(Oil Price) = 30 parameters that need to be estimated. This could easily overfit or
yield singularities in our algorithm. Therefore, we trim down the GCV vector to only contain
the essential graphlets 1-8, discarding all the 5-node graphlets. The final CCA variates are as
follows:

X - short 8-element GCV of Saudi Arabia that only contains the essential graphlets (i.e.
G1 −G8)

Y - a single-element vector containing the Oil price

Results for the CCA analysis are shown in figure 4.18. It is shown that graphlet G3 correlates
positively with the increase in Oil price, while graphlets {1,2,8} correlate negatively. One
property that separates the two ends of the graphlet spectrum is their density. Graphlet G3 is
a sparse graphlet, while graphlets {1,2,8} are dense graphlets having a density of at least 0.66.

Using the results we got earlier from section 4.2.6, we know that sparse graphlets corre-
late with good economic indicators such as GDP per Capita (RGDPL), while dense graphlets
correlate with bad economic indicators such as Balance of Current Account (BCA). Using this
observation and the fact that sparse graphlets correlate positively with the oil price and dense
graphlets vice versa, we can conclude that for Saudi Arabia the good economic indicators such
as GDP per Capita, a result of a healthy economy, must correlate with the Oil price15. This is
confirmed by the fact that Saudi Arabia is an Oil-exporting economy, and it’s GDP per Capita
has been shown to strongly correlate with the Oil price [66]. We expect similar behaviour for
other oil-exporting economies such as Libya, Venezuela, Qatar or Russia.

Canonical Correlation 0.82353
p-value 0.00000

X variate Y variate

G3 0.49265 Crude Oil price 0.83032
G6 0.09838
G4 0.05294
G5 0.03942
G7 -0.23884
G8 -0.46603
G2 -0.50725
G1 -0.52241

Figure 4.18: Canonical Correlation Analysis between the short GCV vector of Saudi Arabia
and the price of Crude Oil. Only the short GCV-8 vector has been used because of the lack of
samples. The results show that graphlet G3 is has a strong positive correlation with the price
of Crude Oil, while graphlets {1,2,8,7} have a negative correlation. This suggests that when
the price of Oil is high, the trading partners of Saudi Arabia tend to form paths of 4 nodes
(P4). On the other hand, when the price of Oil is low, the trading partner network of Saudi
Arabia tends to cluster ({1,2,8,7} are dense graphlets with a density of at least 0.66). This
might be explained by the fact that when the price of Oil is high, Saudi Arabia starts new
trading partnerships with isolated countries that are not part of a clustered network.

run on (period 1980-2010). The reason CCA was run from 1980 is because we did not have data for the economic
indicators prior to 1980.

15if the correlation of XY is strictly positive and the correlation of YZ is likewise, then the correlation of X
and Z is not necessarily strictly positive. This is however the case if the correlations of XY respectively YZ are
close to 1 [65].
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Figure 4.19: Heat map for the Pearson’s GCV correlation matrix of the Human PPI network.
The heat map has been first normalised with feature scaling and a 4th degree polynomial and
then hierarchically clustered.

4.3 Protein-protein Interaction Networks

In this section we apply our methodology for various PPI Networks. For more background
information about how these networks are built and their properties, see section 2.7.1. We now
present the Pearson’s correlation matrix for a Human PPI network and Canonical Correlation
Analysis results for six different Human and Yeast PPI networks using two annotation files:
Boone’s and von Mering’s (see annotation descriptions in section 2.7.1). In short, the heat map
of the Pearson’s GCV correlation matrix did not give us any useful information, since graphlets
formed faint clusters. However, the CCA results have helped us get some interesting insights
into the interactions of the proteins present in these networks.

4.3.1 Analysis of Pearson’s GCV Correlation Matrix

The heat map from figure 4.19 represents the Pearsons’s correlation heat map for the Human
PPI network. It was first normalised with a simple feature scaling and then with a 4th degree
polynomial16, because the original correlation matrix yielded correlations that were too strong17.
There are a few faint clusters formed on the diagonal:

16Other polynomial functions have also been tested, but the 4th degree polynomial offers the best results.
17Having all correlations close to 1 made the identification of clusters impossible
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• {10,15,3,13,12,16,19 and 21}. These graphlets all contain a P4
18.

• {7,26} contain a G7.

• {4,14} contain a G4.

• {17,18} contain 2 G2’s (triangles).

• {5,25} contain a G5.

• {24,6,23} contain a G6.

The lack of clear graphlet clusters in the Human PPI is something that we cannot explain
at the current time. Because of this, it has not been possible for us to get any actual insights
from the Human PPI correlation matrix. Other human and yeast PPI networks have yielded
similar results. Further research needs to be done into this area in order to explain the lack of
graphlet clustering.

4.3.2 Canonical Correlation Analysis

The next step after the Pearson’s GCV correlation matrix is to run CCA on the PPI network.
We set the X variate to be the GCV and the Y variate to be a vector of values of Boone’s
annotation. For setting up the Y variate, we label each protein with a vector of binary entries,
where the ith entry is as follows:

Yi =

{
1, if the protein is annotated with the ith annotation

0, otherwise

Since each protein had only one annotation, each sample from Y only contained one non-null
entry. The results of the CCA on this network were unfortunately not good, since the correlation
is low and the p-value is above 0.05, suggesting that the correlation is not statistically significant.
In the next section we will explain the subsequent experiments that have been performed on
other PPI networks.

4.3.3 Results for other PPI networks

The 17 experiments

Since the CCA applied to the Human PPI network didn’t give us any meaningful information,
we thought of exhaustively running it on several types of Human and Yeast PPI networks.
We ran the same process on 5 other Human PPI networks with Boone’s annotation file and
on 6 Yeast networks using the two different annotation files: von Mering’s and Boone’s (see
section 2.7.1). For these experiments we have also used high-confidence networks, which contain
only protein interactions that have been confirmed by two independent sources. The networks
analysed are as follows:

• 5 Human networks

– A high-quality Human PPI network determined by Stitch-seq protocol [67], CCA
results are not statistically significant.19

– Two networks from I2D, a database of PPI networks maintained by Jurisca lab [68]
at Ontario Cancer Institute:

18Path on 4 nodes, graphlet G3
19In this subsection by statistically significant we mean that either the p-value was above 0.05 or the total

correlation was below 0.2
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∗ Full version, CCA results are not statistically significant.

∗ High-confidence version, CCA results are not statistically significant.

– Two networks from BioGRID:

∗ Full version, CCA results are not statistically significant.

∗ High-confidence version, CCA results are not statistically significant.

• 6 Yeast networks x 2 annotation files

– A network obtained through affinity-purification mass spectroscopy (AP-MS) by
Collin’s et al [69] - Co-complex membership associations, CCA results in figures
B.3, B.7

– A genetic network from BioGRID, CCA results in figures B.4, B.8

– Literature-curated PPI network by Reguly et al. [70], CCA results are not statisti-
cally significant.

– Yeast two-hybrid network made from the union of CCSB-YI1, Ito-core and Uetz-
screen [71], CCA results are not statistically significant.

– Two PPI networks from BioGRID:

∗ Full version, CCA results in figures B.5, B.9

∗ High-confidence version, CCA results in figures B.6, B.10

The best results have been obtained for the following Yeast networks, for both von Mering’s
and Boone’s annotation files:

1. Collin’s AP-MS network

2. BioGRID Full

3. BioGRID High-confidence.

Detailed interpretations of these results are given in the following section. The overall CCA
correlations for these networks have been around 0.45-0.5, all having p-values smaller than 0.05.
The other combinations of networks and annotation files have yielded much weaker correlations
(only approx 0.2) and high p-values above 0.5. Therefore we could not get any insights from
the human PPI networks or the other Yeast networks. One of the reason for this might be
the amount of noise present in the PPI data. In the next section we present the key Yeast
PPI results and provide biological interpretations for the observed phenomena. The other CCA
results for all the 17 experiments are shown in the Appendix section 2.

4.3.4 Summary of the CCA Results from the 17 experiments

Ribosome translation

Figure 4.20 shows the CCA results for Collin’s AP-MS20 PPI network. A full list of all the cross-
loadings is given in appendix figure B.3. The results mainly show that Ribosome Translation is
correlated with all the graphlets, since their cross-loadings have the same sign. The spectrum
of graphlets runs from the most dense graphlets {2,8,29} on top, having the highest cross-
loading magnitude of around 1 to the sparser {9,10,13,11,12} graphlets at the bottom, having
cross-loading magnitudes of approximately 0.46. The observation we can make is the following:
proteins involved in Ribosome translation generally interact more with clusters of other proteins
and less with individual proteins. This result is also confirmed by the same experiment that
was run using Von Mering’s annotation, with Translation also correlating positively with all

20affinity-purification mass spectroscopy
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the graphlets (see figure B.7). The explanation for this is that these clusters are found in the
Ribosome complex, a molecular machine that serves as the site for protein synthesis. It is usually
made up of dozens of distinct proteins that interact with each other.

Ribosome translation
RNA processing

Protein degradation
Cell cycle

Nuclear transport
ER Golgi traffic
Protein folding

Chromatin segmentation
Signalling stress response

Cell polarity morphogenesis
Chromatin transcription

DNA replication
Metabolism – mitochondria

Golgi endosome sorting

Correlation
-1

1

0

G2

G8

G29

G13

G10

G9

Highest correlations

Lowest correlations

Figure 4.20: CCA Analysis on Collin’s AP-MS Yeast PPI network using Boone’s protein anno-
tations (see section 2.7.1) and the GCV signature. The correlation value is 0.53 and the p-value
is 0. Ribosome translation and RNA processing correlate positively with all the graphlets, while
the rest of the protein annotations correlate negatively. On the annotation side, the correlation
is dominated by Ribosome translation, which has the largest correlation by far. This suggests
that proteins that are involved in Ribosome translation have a neighbourhood full of cliques
and other graphlets. The explanation for this is that these clusters are part of the Ribosome
complex. Other experiments have also confirmed the correlations of Ribosome translation,
RNA processing , Metabolism – mitochondria and Golgi endosome sorting (figures B.5, B.6 and
B.7). However, correlations for rest of the annotations were not consistent in results from other
experiments, so we conclude that they are not statistically significant.

RNA processing

RNA processing, formally known as Post-transcriptional modification is a biological process in
which primary transcript RNA is converted into mature RNA. CCA results also show that RNA
processing is correlated with dense graphlets such as cliques {2,8,29}. Although the magnitude
of the cross-loading for RNA processing is not extremely high (-0.08), other experiments (see
figures B.5 and B.6) have actually yielded a higher-magnitude cross-loading of around -0.2, which
means that the correlation cannot be attributed to chance or noise. If we try to understand the
RNA processing a bit further, we find out that there are three main tasks that occur in the cell
nucleus before the RNA is translated [72]:

• 5’ capping

• 3’ polyadenylation



Chapter 4. Applications 83

• RNA splicing

The second step in RNA processing, 3’ polyadenylation, is a process in which a segment of
the newly made pre-mRNA is first cleaved off by a set of proteins. This protein complex then
synthesises the poly(A) tail at the RNA’s 3’ end. We believe that this protein complex might
be one of the reasons why cliques correlate highly with proteins involved in the polyadeny-
lation step of RNA processing. The third step of the RNA processing, referred to as RNA
splicing, is a process in which regions of the RNA that do not code for protein (i.e. introns)
are removed and the remaining nucleotide sequence (i.e. exon) is re-connected to form a single
continuous molecule. This splicing reaction is also catalysed by a large protein complex called
the Spliceosome that is assembled from several smaller protein complexes and small nuclear
RNA molecules. The presence of these protein complexes in RNA processing results in proteins
interacting with dense clusters of other proteins that are part of these complexes.

Golgi Endosome vacuole sorting

At the other end of the Y variate we have Golgi Endosome vacuole sorting with a weight of -0.2.
Golgi endosome vacuole sorting is an environment where material is sorted before it reaches
the degradative state. CCA analysis shows that proteins involved in the Golgi endosome have
a sparse environment, since all the graphlets correlate negatively with the Golgi endosome
index21. The explanation for this is that proteins involved in Golgi endosome sorting mainly
interact with the proteins that need to be sorted, but these don’t interact with each other. This
result is also confirmed by similar experiments run on the Yeast Biogrid networks, both full and
high-confidence versions (see figures B.5 and B.6 in the appendix).

Metabolism - mitochondria

Figure B.3 shows that the Metabolism/mitochondria index is negatively correlated with all the
graphlets. This suggests that the proteins present in mitochondria interact with other proteins
which in turn don’t interact much with each other. This could be explained by the fact that
the proteins present in mitochondria each have a variety of different functions and therefore
their partner proteins are unlikely to interact because they have different functions. The main
functions of the proteins found in mitochondria are related to:

• Energy production and cellular metabolism - the main function of a large number of
mitochondria proteins is the production of Adenosine triphosphate (ATP), commonly
referred to as the energy currency of the cell. [73]

• Pyruvate and the citric acid cycle [73]

• Electron transport chain [73]

• Heat production [73]

• Storage of calcium ions [74]

• Signalling through mitochondrial reactive oxygen species [75]

• Regulation of the membrane potential [73]

• Apoptosis (programmed cell death) [76]

• Calcium signalling (including calcium-evoked apoptosis) [77]

21they correlate negatively since their weights have different signs: Golgi endosome has a weight of 0.2, while
all the graphlets have negative weights
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• Regulation of cellular metabolism [78]

• Certain heme synthesis reactions [79]

• Steroid synthesis [80]

We can illustrate our last argument using a small, simple example. Cytochrome c is a small
protein found in the inner membrane of the mitochondrion. It is an essential protein in the
Electron transport chain, where it carries one electron. Apart from electron transportation, it
is also involved in the initiation of apoptosis, that is the programmed cell death. However, the
interacting partners of Cytochrome c are less likely to interact with each other, since they are
split in two different functional groups: electron transportation and apoptosis. Now, from a
topological point of view, that is why the network of partners of Cytochrome c is more likely to
form sparser graphlets such as {9,10,13,11,12} as opposed to dense graphlets such as {29,28}.

Ribosome translation, RNA processing, Golgi endoscope sorting and Metabolism/mitochon-
dria are the annotations that have consistently shown up with strong correlations in all our
relevant22 experiments. The other annotations varied in their correlation, so their weights are
not reliable. We conclude that our GCV signature coupled with Canonical Correlation Analysis
cannot capture any patterns in proteins that are part of those processes.

4.4 Metabolic networks

We computed the Pearson’s correlation matrix and CCA for metabolic networks belonging to
several different organisms: Homo sapiens (human), C. elegans (worm), D. melanogaster (fruit
fly), E. coli (bacteria), M. musculus (mouse) and S. cerevisiae (baker’s yeast). Most of the
experiments showed consistent results consistent across the spectrum of organisms, so only
the heat maps and CCA figures/tables for the human metabolic network are presented. For
background information on metabolic networks see section 2.7.2.

4.4.1 Analysis of Pearson’s Correlation Matrix

Figure 4.21 illustrates the Pearson’s GCV correlation matrix for the compound-based Human
metabolic network, normalised with feature scaling and a 3rd degree polynomial. We clearly
distinguish several clusters of graphlets that formed along the main diagonal. Section 2.1.1
describes the graphlet terminology in detail. The main clusters are as follows:

A Claw cluster made of graphlets {4,16,5,25,1,17,14,22}. These graphlets all have a C4

(claw of 4 nodes) as a subgraph.

B Paths cluster made of graphlets {9,13,21,10,15,12,3,19}. These graphlets all have a P4

(path of 4 nodes) as a subgraph.

C Triangles cluster made of graphlets {2,26,24,18,23,27,6,7}. These graphlets all have
triangles (graphlet G2) as subgraphs

D Dense graphlets cluster made of graphlets {29,8,28}. Graphlets {8,29} are cliques,
while G28 is almost a clique because it has one missing edge. Note that the 3-node clique
(graphlet G2) is missing, because it is more correlated with the triangle group above.

22i.e. experiments with the Biogrid and Collin’s yeast networks, since they have a p-value below 0.05 and
relatively high canonical correlations
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Figure 4.21: Pearson’s GCV correlation matrix heat map for the compound-based Human
Metabolic network. The heat map has been normalised with feature scaling and a 3rd degree
polynomial and hierarchically clustered.

Furthermore, we notice that graphlets from clusters A,B and C also have a certain amount
of inter-correlation between them, with inter-correlation values of at least 0.5. However, this
is not the case for cluster D, which is made of cliques. The cliques only bear some correlation
with cluster C made of triangle-like graphlets, which is not surprising for the following reasons:

• Cliques contain a lot of triangles

• Cliques do not contain claws Cn or paths Pn, which miss several edges.

It should also be noted that graphlets G11 and G20 have been left outside, as they don’t
strongly correlate with any of the other groups. The cluster closest to these 2 graphlets is the
claw cluster. To sum up, we conclude that graphlets cluster together according to what basic
shapes they contain.

4.4.2 Canonical Correlation Analysis

In order to run Canonical Correlation Analysis on the metabolic networks we used Enzyme
Commission (EC) numbers as annotations for the network nodes. More information about EC
numbers can be found in background section 2.7.2. Basically, EC numbers are used to annotate
each enzyme in the metabolic network according to the type of reaction it catalyses. The results
of the CCA analysis using EC numbers is presented in figure 4.22.

There is some degree of correlation between the Graphlets and the EC numbers (ρ = 0.517),
with a p-value smaller than 0.05. All the cross-loadings from both the graphlets and the EC
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Canonical Correlation 0.51769
p-value 0.00000

X variate Y variate

EC5 -0.11422 G20 -0.13839
EC2 -0.12601 G11 -0.17646
EC4 -0.16144 G9 -0.17733
EC1 -0.16156 G10 -0.18420
EC3 -0.21057 G13 -0.18757
EC6 -0.40615 G16 -0.20243

G12 -0.20399
G4 -0.20521
G15 -0.20553
G3 -0.20671
G19 -0.20956
G22 -0.21329
G5 -0.21897
G25 -0.22033
G14 -0.22256
G17 -0.23125
G21 -0.23144
G18 -0.24860
G1 -0.25408
G27 -0.25641
G6 -0.26110
G24 -0.26365
G23 -0.26813
G7 -0.28239
G26 -0.28362
G28 -0.32754
G29 -0.34583
G2 -0.36785
G8 -0.37442

G20

G11

G9

...

G29

G2

G8

Figure 4.22: CCA analysis on the compound-based Human Metabolic network. The CCA is
0.51, with a p-value smaller than 0.0001. We notice that all EC numbers correlate positively
with all the graphlets because their cross-loadings have the same sign. In the X variate EC6
shows the highest correlation while in the Y variate cliques {8,2,29} show the highest correlation.
Note that the p-value is not exactly zero, but it was truncated to zero because of floating point
approximations.



Chapter 4. Applications 87

numbers have the same sign, which suggests that they are positively correlated. Cliques {8,2,29}
have the highest magnitude in their weights, while EC6 (ligands) have the highest magnitude
in the EC vector.

EC6 refers to Ligases, which are enzymes that can catalyse the joining of two large molecules
by forming a new chemical bond. The reason why the magnitude of EC6 is quite high (0.4)
compared to the other indicators is because the two large molecules catalysed by EC6 enzymes
are represented in the metabolic network by cliques or dense clusters which have a lot of in-
teractions and feedback loops between them. This is why cliques {8,2,29} or dense graphlets
such as G28 have the cross-loadings with the highest magnitude. However, this doesn’t exclude
other sparser protein groups to be part of the two molecules catalysed by the Ligase, since
graphlets such as {9,10,11 or 12} also correlate positively with EC6. Regarding the other func-
tional groups, we cannot say much about them because the magnitude of their cross-loading is
relatively smaller compared to the cross-loading of EC6.

4.4.3 CCA Results for other model organisms

We have analysed other compound-based metabolic networks that belong to the following organ-
isms: C. elegans, D.melanogaster, E.coli, M.musculus, S.cerevisiae. These experiments confirm
the results obtained for the human metabolic network. Average CCA correlation is around
0.5, EC6 has the highest magnitude at around 0.4 and cliques {2,8,29} are the graphlets most
correlated with EC6 (ρ = 0.35).

The same methodology has also been applied to enzyme-based metabolic networks for all
the 6 different organisms. However, these display a much lower CCA correlation (around 0.25),
having p-values that are above 0.05, suggesting that the results are not statistically significant.
This is the case for all the organisms, including humans. The graphlet signatures have very low
signatures, while EC numbers don’t have magnitudes above 0.22. These results have not been
included in the report, but are available in the source code, under the code/final_results/

folder23.

4.4.4 CCA on the KEGG categories

We have also tried to use the KEGG categories as annotations for the enzymes in the metabolic
network. We have initially annotated the enzymes with the following high-level categories:

• Metabolism

• Genetic Information Processing

• Environmental Information Processing

• Cellular Processes

• Organismal Systems

• Human Diseases

The CCA correlation obtained was only around 0.6, so we tried running CCA on the lower-
level categories. That is, for each of those 6 high-level categories, we ran CCA on its subcate-
gories. The best results were obtained for Human Diseases, Cellular Processes and Organismal
Systems and are presented in the following subsections.

23The relevant folders are: hsa_meta_ec_omer, cel_metabolic, dme_metabolic, eco_metabolic,
mmu_metabolic, sce_metabolic,
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4.4.5 Cellular Processes

The overall CCA correlation for Cellular Processes is 0.98, which is quite high compared to
previous CCAs, and the p-value is smaller than 0.00001. Figure 4.23 shows the CCA for Cellular
Processes. We observe that graphlet G9 correlates positively with Transport and Catabolism.
The reason for this is because in Catabolism, large molecules such as polysaccharides, lipids
and nucleic acids are broken down into smaller units such as monosaccharides, fatty acids
or nucleotides. Since molecules such as polysaccharides are made up of long chains of small
monomer units, graphlets that are made of long paths such as G9 will be overly represented
in these processes. Similarly, enzymes involved in transport are transporting nutrients from
one chemical to another, so their interactions will be characterised by long ”transportation”
paths that are best represented by graphlet G9. At the other end of the spectrum, Cell growth
and death and Cell communication are correlated with graphlets {1,2,7,8}. The reason for
this is because in Cell Communication, if a cell is stimulated, it’s needs to send signals to
its neighbours through the use of molecules. First of all, in order to ensure that a signal is
successfully transmitted, several molecules carrying the same message could be transmitted
and there must be different possible paths to reach the destination. If this is not the case,
then the message will get lost when the path is disrupted or the messenger molecule stops
functioning. This is why a graphlet like G9 correlates negatively with these, because G9 is
made of a long path of 5 nodes and if one of the nodes fails, then the whole signal is lost.
Graphlets {2,7,8} correlate positively because these are highly connected ({2,8} are cliques) or
because they contain several alternative paths for message transmission (G7). However, the
reason why graphlet G1 correlates with Cell Communication is still a matter or research.

4.4.6 Organismal Systems

Figure 4.24 shows the CCA for Organismal Systems. The CCA correlation is also very high
(0.96) and the p-value smaller than 0.0001. These cross-loadings suggest that enzymes involved
in Environmental Adaptation and Excretory systems are usually rich in interactions and their
neighbours are also highly clustered, since all the graphlets correlate positively with these sys-
tems. On the other hand, enzymes involved in Circulatory and Digestive metabolic pathways
have sparse neighbourhoods that would ideally contain few graphlets. One explanation for this
is because in these systems enzymes, proteins and metabolites have to circulate throughout the
whole body and interact with distant enzymes, which don’t cluster together. Enzymes at the
other end of the spectrum (Environmental Adaptation and Excretory system) are much more
localised in the body. For instance, excretory system enzymes are mainly active in the kidney or
liver. Moreover, the enzymes involved in the Circulatory and Digestive systems will probably
have less interactions compared to their counterparts in the Environmental Adaptation and
Excretory systems, because a neighbourhood sparse in graphlets is usually an indication of it
being small.

4.4.7 Human Diseases

Figure 4.25 shows the CCA for various Human Diseases such as Cancers, Immune diseases,
Neurodegenerative diseases or Cardiovascular diseases. The result that is most striking here
is that Cardiovascular diseases and Substance dependence correlate negatively with almost all
the graphlets (apart from {2,8}). This implies that the enzymes and proteins involved in these
Human Diseases have a low number of interactions and when they do have interactions, their
neighbourhood only contains small clusters of 3–4 nodes maximum. The explanation for this
might be the same as for the Organismal Systems: the enzymes involved in Cardiovascular
diseases and Substance dependence travel across long pathways throughout the body and end
up interacting with distant chemicals that do not interact with each other because of their
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Cellular Processes CCA

Canonical Correlation 0.98633
p-value 0.00000

X variate Y variate

Transport and catabolism 0.52121 G9 0.04828
Cell motility 0.20502 G21 0.01960

Cell communication -0.40751 G25 0.01441
Cell growth and death -0.69712 G5 0.01434

G16 0.00969
G13 0.00199
G12 -0.00048
G27 -0.00134
G20 -0.00256
G3 -0.00412
G24 -0.01287
G19 -0.01528
G10 -0.01623
G18 -0.01681
G14 -0.02579
G11 -0.02667
G23 -0.02851
G15 -0.03092
G17 -0.03201
G29 -0.04271
G6 -0.04386
G28 -0.04750
G4 -0.05059
G26 -0.05235
G22 -0.05877
G8 -0.05881
G7 -0.07069
G2 -0.07388
G1 -0.07463

G9

G21

G25

...

G7

G2

G1

Figure 4.23: CCA on the Human Metabolic network using Cellular Processes from KEGG.
The correlation value is high (ρ = 0.98) and the p-value is smaller than 0.00001, suggesting a
very strong correlation. Transport and catabolism and cell motility correlate with the upper
part of the graphlet spectrum: {9,21,25,5, . . . } because their cross-loadings have the same sign.
Similarly, Cell Communication and Cell growth and death correlate with the lower end of the
graphlet spectrum: {1,2,7,8, . . . }.
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Organismal Systems CCA

Canonical Correlation 0.96925
p-value 0.00000

X variate Y variate

Environmental adaptation 0.20426 G26 0.30978
Excretory system 0.19729 G24 0.29818

Development 0.07461 G23 0.29308
Endocrine system 0.04192 G18 0.28901
Nervous system -0.01315 G6 0.27857
Sensory system -0.06276 G12 0.26520
Immune system -0.15192 G19 0.25419
Digestive system -0.23211 G3 0.24988

Circulatory system -0.37659 G14 0.23274
G13 0.23155
G1 0.22611
G17 0.22546
G7 0.21225
G27 0.20440
G10 0.19976
G9 0.19547
G25 0.19422
G16 0.19135
G28 0.18874
G4 0.18421
G5 0.18381
G20 0.17359
G11 0.15537
G21 0.14453
G29 0.11208
G8 0.10681
G2 0.10369
G22 0.08192
G15 0.01276

G26

G24

G23

...

G2

G22

G15

Figure 4.24: CCA on the Human Metabolic network between different Organismal Systems and
the GCV signature of enzymes. The correlation value is again high (ρ = 0.96) and the p-value
is small (p < 0.00001). Environmental adaptation, Excretory system, Development and the
Endocrine system correlate positively with all the graphlets, while the Circulatory, Digestive,
Immune, Sensory and Nervous systems correlate negatively. The actual p-value is not exactly
zero but it is shown as zero because of floating point approximations.
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distant location in the body. However, the small clusters of interactions might occur because of
locality, that is all chemicals involved will be in the same area and therefore inevitably interact
with each other. In the case of the Cardiovascular diseases, the enzymes travel long distances
because they are transported through the blood vessels, while the ones involved in Substance
dependence are again transported through the blood vessels or other channels. We cannot say
anything about the rest of the diseases (Cancers, Immune Diseases, etc . . . ) because their
relative cross-loadings have a very low magnitude relative to the others.
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Human Diseases CCA

Canonical Correlation 0.99479
p-value 0.00000

X variate Y variate

Cardiovascular diseases 0.99171 G2 0.01681
Substance dependence 0.57989 G8 0.00462

Infectious diseases 0.21844 G29 -0.00737
Neurodegenerative diseases 0.00366 G7 -0.00812

Endocrine and metabolic diseases -0.02545 G1 -0.00989
Immune diseases -0.03029 G26 -0.01077

Cancers -0.08682 G24 -0.01274
G6 -0.01321
G28 -0.01321
G15 -0.01342
G23 -0.01369
G22 -0.01420
G21 -0.01438
G14 -0.01449
G12 -0.01465
G17 -0.01516
G16 -0.01521
G18 -0.01526
G13 -0.01528
G19 -0.01562
G9 -0.01565
G10 -0.01641
G4 -0.01727
G3 -0.01742
G11 -0.01781
G20 -0.01936
G25 -0.02017
G5 -0.02438
G27 -0.02731

G2

G8

G29

...

G25

G5

G27

Figure 4.25: CCA Analysis on the Human Metabolic network between Human Diseases and
the GCV signature. The correlation value is high (ρ = 0.96) while the p-value is very small
(p < 0.00001). The actual p-value outputted by the program is 0.0 due to floating-point
approximations. Cardiovascular diseases, Substance dependence, Infectious and Neurodegen-
erative diseases correlate positively with all the graphlets, while the Endocrine and Metabolic
diseases, Immune diseases and Cancers correlate negatively.
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Evaluation

5.1 Strengths and weaknesses

The GCV signature has been successfully used on some of the networks and it helped us get
valuable insights. The best results have been obtained on the WTN networks, followed by the
PPI and metabolic networks. Overall, the main achievements of this project are as follows:

• The development of the mathematical model of the GCV signature followed by the im-
plementation and parallelisation of the algorithm that computes it.

• The use of a rigorous methodology for the analysis of GCV correlations that helped us
uncover insights from the network data.

• The results and interpretations presented for the economic, protein interaction and metabolic
networks.

• The quantitative evaluation of the GCV signature (sections 5.2 and 5.6).

However, the GCV signature has inherent limitations and weaknesses. The main deficiencies
with our methodology are:

• A more effective normalisation method of the GCV can be designed. Such a normalisation
method can take into account the size of the neighbourhood subgraph.

• A redundancy analysis of each GCV frequency has not been made. This could tell us
whether elements in the GCV vector are redundant and eliminating these will improve
the GCV performance and remove noise.

• The GCV signature is only able to quantify the structure between the immediate neigh-
bours of a node. It cannot capture the structure between nodes that are further away
from the source node, at distances of 2 or more.

• The implementation of the GCV computation is not parallelisable on a cluster of comput-
ers. The program is only able to spawn processes that run on multiple cores. Moreover,
when using multiple processes for parallel GCV computation, most of the processes finish
their share early while a few processes get stuck with computing GCVs for hub nodes.
This problem could be overcome by redistributing the workload to the processes that
finish early.

• The GCV signature is not able to capture any information in some of the networks, such
as the enzyme-based metabolic network. Further research needs to be done in order to
understand why that is the case.

• The results we got for the WTN, PPI and Metabolic networks need more supporting
experiments in order to validate the interpretations.
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5.2 Evaluation of network clustering

Although the focus of this project is on using the GCV signature for uncovering hidden struc-
tures in the data analysed, we are also interested to find out whether the GCV can be used for
clustering networks of different types. In this section, we evaluate the performance of the GCV
signature on clustering the following types of random graphs:

• Erdős-Rényi graphs (ER)

• Erdős-Rényi graphs with preserved degree distribution (ER-DD)

• Geometric graphs (GEO)

• Scale-free Barabási-Albert graphs (preferential attachment) (SF-BA)

• Stickiness index-based graphs (STICKY)

For each model, we generate 30 different networks that are modelled from the 2010 World
Trade network. These random networks have also been used in section 4.1.2 for computing the
average network GCVs. For each one of the 150 generated networks, we compute 6 different
signatures:

1. Graphlet Cluster Vector (GCV)

2. Degree Distribution

3. Average clustering coefficient

4. Spectral distribution

5. Graphlet Frequency Vector (GFV).

6. Graphlet Distribution Vector (GDV).

Calculating each of the 6 signatures requires a considerable amount of computation. This
is the reason why we have chosen to generate the random networks from the WTNs, because
these networks are small in comparison to the metabolic or PPI networks. Other networks such
as the PPI networks are much larger and computation of all the signatures on 150 of these
networks is very intense.

After all signatures for the 150 networks have been calculated, the distance between each
pair of networks is computed. All these entries are placed in a 150x150 distance matrix and 6
distance matrices are finally obtained, one for each signature. The distance matrices can be used
for visualising the distances using Multi-dimensional scaling or for performing Precision-Recall
curve analysis or Receiver-Operating Characteristic (ROC) curve analysis. These results are
presented in the next sections.

The Relative Graphlet Frequency distance (RGFD) defined in section 2.3.3 has been used as
the distance metric between two Graphlet Frequency Vectors. For the distance metric between
two Graphlet Distribution Vectors, we have used the Graphlet Correlation Distance defined in
section 2.5.3. This will be denoted as GCD73, because it uses information from all 73 orbits
and in order to distinguish it from a similar metric called GCD-11 that has been developed by
Yaveroğlu et al [37]. For the degree and spectral distributions, we have used as the Euclidean
distance between the first 60 elements.1

1These distributions are in theory infinite so we decided to cap them at 60, since very little information is
retained after this threshold.
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5.3 Multi-dimensional scaling results

Multi-dimensional scaling (MDS) refers to a series of visualisation techniques which attempts to
represent n-dimensional data points into a 2D or 3D space such that the distances between them
are preserved as much as possible. We computed 3D MDS plots for each of the 6 signatures
using the Python Scikit library which provides the function sklearn.manifold.MDS that can
perform the MDS transformation.

Figures 5.1 and 5.2 provide the 3D MDS plots for the GCV and the Clustering coefficient.
For the GCV MDS plot, the ER networks are more spread compared to the other random
graphs and clearly distanced from them. On the other hand, the distances between the ER-DD,
STICKY and SF-BA graphs are really small, suggesting that the GCV signature cannot easily
distinguish between these random networks. We also notice that the SF-BA random graphs
have formed two different clusters. This phenomena might be explained by the fact that the
SF-BA random graphs are very sensitive to the initial starting graph. We therefore conclude
that the GCV signature can only distinguish the ER networks from the rest.

For the Clustering coefficient MDS, the data points are positioned in a nearly collinear fash-
ion, because the clustering coefficient is a 1-dimensional signature. The ER-DD and Stickiness
graphs show some degree of overlap2, while the rest of the random graphs are clearly separated
from each other. This means that the clustering coefficient is able to distinguish any two pairs
of random graphs apart from a STICKY, ER-DD network pair.
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Figure 5.1: GCV MDS: The GCV signature can-
not distinguish between ER-DD, GEO, SF and
STICKY random graphs. The intra-cluster vari-
ance for ER networks is high.
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Figure 5.2: Clustering Coefficient MDS: The
clustering coefficient cannot distinguish between
ER-DD and STICKY random graphs (ER-DD
points are hidden behind the STICKY points).

The RGFD and GCD73 MDS plots are shown in figures 5.3 and 5.4 respectively. The RGFD
MDS shows that each of the clusters is clearly separated from the other, suggesting that RGFD

2this fact is not completely obvious from the graph because the STICKY data points are covering the corre-
sponding ER-DD data points.
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is highly suitable for separating these types of networks. The GCD-73 metric is also suitable
for clustering random networks, but the clusters display a higher variance.
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Figure 5.3: RGFD MDS: The RGFD is clearly
able to separate all the random network models.
The intra-cluster variance is low.
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Figure 5.4: GCD73 MDS: The GCD73 metric
is also efficient at clustering random networks
although the clusters are more spread around.

Figures 5.5 and 5.6 provide the 3D MDS plots for the Degree distribution and the Spectral
Distribution signatures. The GEO and ER clusters in the Degree distribution MDS show a
certain degree of overlap, although in reality there is much less overlap because the viewing
angle is unsuitable3. In the Spectral Distribution MDS, we notice that the ER and GEO
clusters are very close to each other, suggesting that the Spectral Distribution cannot easily
distinguish between these two types of random networks. However, the other clusters are clearly
separated from each other.

3We tried to capture the image from other angles but that resulted in other clusters colliding.
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Figure 5.5: Degree Distribution MDS: Most of
the clusters are clearly separated although the
intra-cluster variance for ER, GEO, SF-BA and
STICKY is high.
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Figure 5.6: Spectral Distribution MDS: The
spectral distribution cannot distinguish between
ER and GEO random graphs. The other pairs
of clusters are clearly separated.

5.4 Precision-Recall curve

MDS plots are only useful for visualising the distance matrices. However, one can test how
well a distance measure groups networks of the same type by using the Precision-Recall curve.
Starting from the 150x150 distance matrix, a Precision-Recall curve analysis can be performed
in the following manner:

1. one searches for the minimum and maximum distance in the distance matrix.

2. for small increments of parameter ε such that min ≤ ε ≤ max, if the distance between
two networks is smaller than ε then the pair of networks is retrieved

(a) Precision is calculated as the fraction of the correctly retrieved pairs (i.e. grouping
networks from the same model)

(b) Recall is calculated as the fraction of the correctly retrieved pairs over all the correct
ones.

3. The Precision-Recall curve is plotted using the values calculated so far.

4. The Area under Precision-Recall (AUPR) can be calculated using the following formula:

AUPR = AUPR+ 0.5 ∗ (REC[k]−REC[k − 1]) ∗ (PREC[k] + PREC[k − 1])

We chose to perform a Precision-Recall curve analysis because it is known to be more robust
to large numbers of negatives than Receiver Operator Characteristic (ROC) curve analysis [81].
In our case negatives are pairs of networks that are grouped together although they belong to
different random models.
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Figure 5.7 shows the precision-recall curve for the six signatures calculated from their dis-
tance matrices. Our novel GCV signature has a generally low precision compared to the other
signatures, as the precision decreases a lot in the recall range [0.2 – 0.5]. This result was ex-
pected from our signature, since the MDS plots showed that it cannot easily distinguish between
ER-DD, STICKY, SF-BA and GEO random graphs (figure 5.1). The best-performing signature
is actually the RGFD, which has a precision of 1 for any recall value in range [0 – 1]. Note that
this is only faintly seen on the plot, because the GCD73 line overwrites it.
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Figure 5.7: Precision-Recall curves for 6 different signatures: Graphlet Cluster Vector (GCV),
Degree Distribution, Clustering Coefficient, Spectral Distribution, the Relative Graphlet Fre-
quency distance (RGFD) and the Graphlet Correlation distance which uses the 73 automor-
phism orbits (GCD73). The best performing signature is the RGFD which has a value of 1 for
any recall value. However, this is not clearly seen in the plot because the GCD73 line overwrites
it. The GCV signature has the worst performance particularly in the range [0.25–1].

Table 5.1 shows the table of AUPR values for each of the signatures. The higher the AUPR,
the better the signature is at distinguishing between different clusters. The best-performing
distance measure is the RGFD that uses the Graphlet Frequency Vector of the random network.
It has a perfect AUPR of 1.0, which is expected because the RGFD MDS plot showed it can
clearly distinguish all the random graphs generated. On the opposite end, our GCV signature
has the worst AUPR of only 0.575. This suggests that the GCV signature is not suitable for
clustering random networks generated from the WTN.

GCV 0.575

Degree Distribution 0.949
Clustering Coefficient 0.829
Spectral Distribution 0.840

RGFD 1.0
GCD73 0.994

Table 5.1: AUPR table for the GCV and other signatures. The best AUPR has been obtained
using the GCD73 signature, which has an AUPR of 0.994. On the other hand, our GCV
signature performed worst with an AUPR of 0.575.
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5.5 Robustness testing

This section evaluates the robustness of the six signatures. The same Precision-Recall curve
analysis is performed, this time with data that is noisy, incomplete or when the signatures are
approximated. However, because of the sheer number of experiments performed, only the final
AUPR values are plotted. The methodology is similar to that performed by Yaveroğlu et al.
on the short GCD-11 signature [37].

5.5.1 Network Rewiring

In most real-life scenarios the data we have to work with is noisy. In order to evaluate the
GCV robustness to noise, we take each of our initial 150 generated random networks and rewire
the edges with a probability p, for different values of p between 0 and 1. When rewiring an
edge (i, j), we find a target node k such that there is no edge between nodes i and k. For each
rewiring probability p we get 150 different networks that have been rewired. Afterwards, we
calculate the AUPR for this set of networks. Figure 5.8 shows the AUPR for each signature as
p increases from 0% to 90%. All signatures apart from GCV and clustering coefficient show a
general downward trend. The GCV reaches a low point in AUPR for a rewiring rate of 50%,
but it increases again shortly afterwards. On the other hand, the clustering coefficient reaches
a maximal AUPR when p = 0.3, followed by a sharp drop afterwards. When the networks
are almost random (p = 0.9), the values of the AUPR converge to the range [0.5,0.7] for all
signatures.

We therefore conclude that the GCV signature is not robust to noisy data either, with other
signatures such as RGFD always having an AUPR that is higher, for all rewiring rates. The
best performing signature is again the RGFD which always has an AUPR above 0.6.
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Figure 5.8: The AUPR for different percentages of noise in the model networks. The rewiring
probability increases from 0 to 90%. The GCV signature has a poor performance when dealing
with noisy data, having the lowest AUPR when the rewiring parameter is in the [0–70] range.
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5.5.2 Edge completeness

In real-life situations, one also has to deal with incomplete data. In order to simulate incomplete
data in our networks, we remove q% of the edges from the networks, where q varies from 100%
(full network) to 10% (incomplete network). Moreover, in order to simulate both noisy and
incomplete data, we choose the 40% rewired networks as the starting point and then start
removing edges from these networks. We evaluate the performance of the signatures on these
noisy and incomplete networks.

Figure 5.9 shows the AUPR of the networks as the edge completeness parameter varies
from 100% to 10%. The initial networks have been rewired with a 40% probability. All the
signatures display a general downward trend. The GCV signature performs poorly also in this
experiment, always having an AUPR that is smaller than the AUPR of the other signatures.
Some signatures such as the RGFD have a sharper drop in their AUPR than other signatures
such as the Spectral Distribution. This suggests that RGFD is not as robust to incomplete data
as the Spectral Distribution is. We conclude that the GCV signature is unable to deal with
incomplete data either.
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Figure 5.9: The AUPR for different percentages of edge completeness in the model networks.
The GCV signature also has a poor performance when dealing with incomplete data, always
having the lowest AUPR compared to the other signatures.

5.5.3 Signature approximation

In order to speed up computation, sometimes we have to approximate the signatures that are
computed for all the random networks. In this section we try to evaluate the robustness of
each signature to approximation. For each network, we only use a percentage p% of nodes to
calculate the signatures. This is done for each signature/metric in the following manner:

1. Graphlet Cluster Vector (GCV): We compute the Pearson’s GCV correlation matrix using
the GCV signatures of only p% of the nodes.

2. Degree Distribution: We calculate the degree distribution from p% of the nodes in the
graph.
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3. Average clustering coefficient: We average only the clustering coefficient of p% of the
nodes.

4. Spectral distribution: We compute the Laplacian matrix L of the original network, then
randomly sample p% nodes and take the submatrix L′ of L that corresponds to the sampled
nodes. We compute the spectral distribution from the submatrix L′.

5. Graphlet Frequency Vector (used for computing RGFD): We randomly sample p% of the
nodes and take the induced subgraph S on these nodes. We then compute the GFV in S.

6. GCD73: We compute the Graphlet correlation matrices using the GDV signatures of only
p% of the nodes.

The experiments for signature approximation have also been run using the 40% rewired
networks, which simulate noisy data. The results are presented in figure 5.10. For the GCV
signature, we notice that it is actually robust to signature approximation, showing a very small
but steady drop in the AUPR as less nodes are sampled. Other metrics such as the RGFD show
a sharp drop in AUPR from 1.0 to 0.2, suggesting that RGFD is not robust to approximations.
The Spectral distribution can also be considered robust, showing a peak AUPR of 0.7 when
50% of the nodes are sampled.
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Figure 5.10: The AUPR for different percentages of nodes sampled in the model networks. The
GCV signature is robust to approximation, showing only a slight but steady drop in AUPR
as the percentage of nodes sampled varies from 100% to 10%. On the other hand, the RGFD
shows a sharp drop, suggesting that it is not robust to signature approximation.

In conclusion, the novel GCV signature is not robust to noisy or incomplete data, but it
is robust to signature approximation. The signatures that performed best on our tests are the
RGFD and GCD73, which are mostly robust to noisy and incomplete data.

5.6 GCV-based Classifier

In this section we evaluate the performance of the GCV signature at classifying proteins into
functional classes. We use Collin’s Yeast AP-MS PPI network for computing the GCV of each
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protein.4 Separately, we label each protein using Boone’s annotation that comprises 14 different
classes. The classifier we wrote uses a K-nearest neighbours (K-NN) method for predicting the
function of a protein in the following manner:

• Compute the GCV signature for all the proteins in the input network.

• For predicting the function of a given protein, compute the Euclidean distances between
the GCV of the protein and the GCV of all the other proteins in the training data set.
Store the distances in an array and sort it.

• Find the closest K data points to the input protein according to the computed distances.

• Perform majority voting5 on the classes of the K nearest neighbours and return the result
as the predicted class.

This process is run inside a Cross-validation framework, where the protein dataset is split
into two groups:

• training data: this is stored in a data structure and is used for predicting the class of
proteins using K-NN

• test data: this dataset is used for the actual prediction.

We split the dataset into 10 different chunks and run 10-fold cross-validation. We also choose
N = 5 as the number of neighbours on which majority voting is performed. At each fold, 90%
of the data is used for training and 10% for testing. For each fold during cross-validation,
we compute a confusion matrix M for all the classes, where entry M(i, j) corresponds to the
number of data points that have actual label i, but the classifier predicted them as having label
j. The confusion matrices for each fold are added together and a final confusion matrix is
obtained at the end of the cross-validation process. From the final confusion matrix, we then
count for each class C the following types of data points:

• True Positives (TP ) are the data points that belong to C and have also been correctly
predicted as belonging to class C.

• False Positives (FP ) the data points that do not belong to C but have been incorrectly
predicted as belonging to class C.

• True Negatives (TN) are the data points that not belong to C and have also been
correctly predicted as not belonging to class C.

• False Negatives (FP ) the data points that do not belong to C but have been incorrectly
predicted as belonging to class C.

After we compute the number of TP , FP , TN and FN data points, we can calculate for
each class C the following 3 statistics:

• Precision: the percentage of data points that have been correctly classified in C out of all
the data points that have been classified in C. The exact formula for precision is:

Precision =
TP

TP + FP

4The reason we run it on Collin’s AP-MS network is because CCA analysis has given a high correlation on
this dataset (see section 4.3.4).

5In majority voting, the class that has the highest frequency is the one that is returned. If two or more classes
have the same highest frequency, one of them is chosen at random.
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• Recall: the percentage of data points that have been correctly classified in C out of all
the data points are in C. It is formally defined as:

Recall =
TP

TP + FN

• F1 score: it is a measure of the test’s accuracy that combines both precision and recall.
The formula for F1 is as follows:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

5.6.1 Classifier Results

Figure 5.11 shows the confusion matrix obtained for Collin’s AP-MS Yeast PPI network using
Boone’s annotations. Note that only part of the classes have been tested in our classifier. The
reason for this is because there were not enough data points for some classes to allow our
algorithm to run properly. For example, there was only one sample belonging to the class Cell
cycle progression/meiosis in our dataset. As a result, we ran our classifier only on 9 classes that
did not originally give an F1 score of zero.6

We observe that although our classifier correctly classified some data points (diagonal en-
tries), there are considerable errors, especially in the first column (Nuclear transport). A
considerable number of data entries have been incorrectly predicted as belonging to Nuclear
transport, and we attribute this to the following bias in our methodology: during the majority
voting phase, if two or more frequencies have the same highest score, the class with the low-
est index is ultimately selected. As a result, the first class (Nuclear transport) is more likely
to be selected as opposed to others. A closer look at the data further explains why some of
the proteins are wrongly classified: there are many proteins that have the exact same GCV
signature but different functional annotations. Most of these proteins tend to have a sparse
neighbourhood, a fact that is easily noticed in the GCV signature, with many frequencies set
to zero.

On the other hand, we also notice that there is a large number of True Positives for RNA
processing (RNA proc.), Chromatin transcription (Chrom. transc.) and Ribosome translation
(Rib. transl.). Ribosome Translation and Chromatin transcription also had a large cross-
loading magnitude in the CCA analysis (see figure B.3). We can therefore conclude that the
GCV signature is particularly suitable for analysing proteins that are involved in Ribosome
translation and Chromatin transcription.

Finally, the classifier has not correctly classified any protein labelled with DNA replication,
as there are no True Positives for this class. The reason for this might be because we only use
N = 5 nearest neighbours, and if the classifier finds at least 3 proteins from Nuclear Transport
(Nucl. trans.) that have the same GCV signature as a protein that belongs to DNA replication,
it will instead be assigned a Nuclear Transport label instead. We have tried using a value of K
that is bigger than 5, but that did not result in a better classification, having the final F1 score
approximately the same or lower.

6We first ran our classifier using all the classes and removed the classes for which the final F1 score was zero.
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pred.
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Golgi
sort.

Metab. Rib.
transl.

Nucl. trans. 24 3 5 2 0 0 4 1 1
Chrom. seg. 41 23 5 3 0 3 1 0 1
RNA proc. 42 11 99 26 0 5 7 1 18
Chrom. transc. 62 21 20 95 0 6 6 1 11
DNA repl. 67 10 1 3 0 0 1 1 1
Prot. deg. 19 5 3 6 0 18 0 0 0
Golgi sort. 63 21 2 13 0 0 23 0 0
Metab. 72 4 4 2 0 0 2 7 4
Rib. transl. 35 10 31 23 0 0 0 1 60

Figure 5.11: Confusion matrix obtained on Collins AP-MS Yeast PPI network after 10-fold
cross-validation, using Boone’s annotations as classes. The rows represent actual classes, while
columns represent predicted classes. The classes used were: Nuclear transport (Nucl. trans.),
Chromatin segmentation (Chrom. seg.), RNA processing (RNA proc.), Chromatin transcription
(Chrom. transc.), DNA replication, repair, HR cohesion (DNA repl.), Protein degradation
(Prot. deg.), Golgi endosome vacuole sorting (Golgi sort.), Metabolism - mitochondria (Metab.)
and Ribosome translation (Rib. transl).

Table 5.2 shows the Precision, Recall and F1 rates for each of the 9 classes used by our
classifier. At the bottom of the table, the average precision, recall and F1 rates across all
classes are shown. The results in the table show that the GCV-based classifier is not efficient
at classifying proteins according to their function. The average precision and recall rates are
only 0.41 and 0.31 respectively, while the average F1 rate is 0.29. However, there is considerable
variance in precision, recall and F1 rates across the classes. For example, the classifier has a
relatively high precision for classes such as Ribosome translation, Protein degradation, Golgi
Endosome sorting and RNA processing. On the other hand, a class such as DNA replication
has zero precision, meaning that no protein has been correctly classified to this class.

Overall, we conclude that the GCV-based K-NN classifier is not suitable for labelling proteins
from PPI networks according to their function. Nevertheless, it still performs 3-4 times better
than a random classifier, which would have average precision, recall and F1 rates of around
1
9 = 0.11, when 9 classes are used. Last but not least, we also tried running the same classifier
with different parameters N – nearest neighbours and F – fold numbers. When varying N , we
got the best results when N was in the range [5,10], although the performance decreases only
slightly for N greater than 10.
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Class Precision Recall F1

Nuclear-cytoplasmic transport 0.056 0.600 0.103
Chromatin segmentation 0.213 0.299 0.249

RNA processing 0.582 0.474 0.522
Chromatin transcription 0.549 0.428 0.481

DNA replication, repair, HR cohesion 0.000 0.000 0.000
Protein degradation proteosome 0.562 0.353 0.434
Golgi endosome vacuole sorting 0.523 0.189 0.277

Metabolism - mitochondria 0.583 0.074 0.131
Ribosome translation 0.625 0.375 0.469

Average 0.410 0.310 0.296

Table 5.2: Precision, recall and F1 rates for each class used by the protein annotation classifier.
At the bottom of the table, the overall average precision, recall and F1 rates are given. The
low scores in average precision (0.41), recall (0.31) and F1 (0.29) suggest that our GCV-based
classifier is not suitable for classifying proteins according to their function.

5.7 Evaluation Summary

We conclude that when clustering random networks generated with different algorithms, the
GCV signature is not as efficient as other signatures or metrics. Nevertheless, the GCV can
still be successfully used for data analysis and it helped us uncover interesting insights from
the economic and biological networks. Moreover, the GCV might still be successfully used for
clustering, if combined with other signatures such as the GDV.

Furthermore, our results do not precisely resemble those obtained by Yaveroğlu et al. in 2014
[37]. The reason for this is because we have not used the same source network to generate the
random networks. Moreover, Yaveroğlu et al. have also done the precision-recall curve analysis
on a larger number of networks. In our case, we considered that 150 generated networks are
sufficient to perform the analysis and draw our conclusions.

Section 5.6 also showed that the GCV signature cannot be directly used as a classifier without
further modifications. The K-NN classifier we built for Collin’s AP-MS Yeast PPI network using
Boone’s annotations is not precise and has a low F1 score of 0.29. The reason for this is because
there are several proteins that have the exact same GCV signature but different functional
labels. We therefore suggest an improved GCV signature that captures more information about
the protein’s neighbourhood. One possibility is the combination of GDV and GCV signatures
into one vector of frequencies.
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Conclusion

6.1 Summary

At the beginning of the project we explored previous work that was done on studying node
neighbourhoods in a network graph. We also studied other network analysis techniques that are
based on graphlets and also correlation methods such as Pearson’s and Spearman’s correlation
coefficients and Canonical Correlation Analysis. Next, we defined the mathematical model for
our novel GCV signature that quantifies the neighbourhood structure around a particular node
in a network graph. We then attempted to normalise each graphlet frequency in the GCV
according to the theoretical maximum frequency of that graphlet in the neighbourhood graph.
However, this turned out to be infeasible because of mathematical complexities, so we decided
to normalise it only by dividing each frequency by the sum of all frequencies in the GCV.

The next step in our project was to implement an algorithm that computes the GCV signa-
ture for all the nodes in an input network. We learnt that using both an adjacency matrix and
an adjacency list for representing the network allows us to perform a variety of graph operations
much faster. However, after implementing the algorithm for computing the GCV signature we
found out that the computation was taking between 5–10 hours for some large input networks
such as PPI networks or un-thresholded World Trade networks. We therefore decided to paral-
lelise the computation across multiple processes, which provided a speedup of order 5 for some
networks that have a large number of nodes.

The GCV signature was then applied to three main classes of networks: World Trade net-
works, Protein-Protein Interaction networks and Metabolic networks. For each of these networks
we computed the Pearson’s GCV correlation matrices and normalised and hierarchically clus-
tered them. We also computed Canonical Correlation analysis between the GCV signature and
various node annotations. We found out that the best correlations and results are obtained for
the WTNs, so we decided to focus more on these networks. We therefore calculated the change
in normalised and un-normalised GCV correlation matrix over the period 1962-2010 and we
found out that this yielded a correlation with the change in Crude Oil price (see sections 4.2.1
and 4.2.7). We also performed two CCA experiments on Economic integration, which showed
that a country that is integrated in a trading bloc has a network of trading partners that is
very clustered (section 4.2.3). Using the GCV cross-loadings obtained from CCA, we computed
a trading partners sparsity index for a variety of countries. This index correlated with major
economic and social events that affected those countries (section 4.2.8).

On the other hand, the results obtained for the yeast Protein-Protein Interaction networks
(section 4.3.4) showed that the neighbourhood structure of a protein is influenced by its in-
volvement in:

• Ribosome translation

• RNA processing
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• Metabolism - mitochondria

• Golgi Endosome vacuole sorting

The CCA analysis on the human Metabolic networks showed that the neighbourhood structure
of a protein is influenced by its involvement in:

• Cellular processes (section 4.4.5): Transport and Catabolism, Cell communication and
Cell growth and death.

• Organismal systems (section 4.4.6): Environmental adaptation, Excretory systems, Di-
gestive system and Circulatory system.

• Human Diseases (section 4.4.7): Cardiovascular diseases and Substance dependence.

In chapter 5, we have evaluated our novel GCV signature against 5 other comparable sig-
natures:

1. Degree Distribution

2. Clustering Coefficient

3. Spectral distribution

4. Relative Graphlet Frequency distance (RGFD) (see definition 25 in section 2.3.3)

5. Graphlet correlation distance (GCD-73) (see definition 36 in section 2.5.3)

We used each of the signatures to cluster random networks generated using 5 different
algorithms: Erdős-Rényi, Erdős-Rényi with the degree distribution of the real network, Geo-
metric, Scale-free Barabási-Albert and Stickiness-based. We found out that the GCV signature
performed worst of them all, meaning that it is unsuitable for being used in a classifier. Its
performance was also relatively poor in robustness testing, when applied to noisy and incom-
plete data. The GCV also had a poor performance when used to classify proteins according
to their function (section 5.6). Nevertheless, the project did not focus on classification but on
implementation and data analysis, where the novel GCV signature helped us get important
insights from the networks we analysed.

6.2 Critique

The novel GCV signature we have developed has several deficiencies we were aware of from the
very beginning. First of all, it is only able to quantify the topological structure in the immediate
vicinity of the node. As a result, it cannot capture the structure in the neighbours of a node
that are at distances 2,3, . . . away from it. Another deficiency of the GCV signature is that it
doesn’t assign a weight to each of the vector frequencies that would quantify how important a
frequency is. A closer analysis might find that some of the frequencies are redundant or contain
little information, in which case a low weight would be suitable for these frequencies. A similar
analysis has been done on the GDV signature by Yaveroğlu et al. [37] and found that only
11 orbits out of 73 contained non-redundant information. This has resulted in an 11-element
signature called GCD-11 that outperformed all other signatures in random graph clustering
[37]. However, the timescale of our project did not allow us to study redundancies in the GCV
signature.

In the evaluation section, we evaluated the performance of the GCV and several other
signatures on random network clustering. One problem with our methodology is that we only
ran the experiments on 5 random networks and using only 150 generated networks (excluding
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the rewired and incomplete networks). The reason for this is because computing the signatures
on all these networks takes around three hours and a total of 14GB of hard drive space, so
scaling is not straightforward. These problems can be overcome by more efficient parallelisation
techniques, such as running our experiments on a cluster of machines or using a Map-Reduce
framework such as Hadoop that performs sharding.

Other problems we have experienced in this project have been related to inconsistencies
between results when using the unnormalised GCV and the normalised GCV respectively. These
inconsistencies have occurred for example when correlating the change in GCV correlation
matrix with the changes in Crude Oil price (sections 4.2.1 and 4.2.7). We do not yet have an
explanation for these inconsistencies and have commented on the results as they are. Moreover,
for some of the results we also could not find a reason why several graphlets correlate with each
other. More research needs to be done into these areas.

6.3 Future work

The GCV signature is one possible method to quantify the neighbourhood structure around a
particular node but it is by no means the only signature one could develop for such purposes.
As future work, one could try to derive several related signatures using different normalisation
procedures or even combine the GCV with the older GDV signature into one composite signa-
ture. This allows for efficient use of both signatures at the same time. These newly developed
signatures could be evaluated and applied on different networks in order to find out what hidden
structures they can uncover.

Another idea that was suggested by Zoran Levnajić, one of Nataša Pržulj’s collaborators, is
to find out how important each of the elements from the Graphlet Cluster Vector is and assigning
a weight to each of them. Redundant elements could get a low weight, while non-redundant
elements could get a high weight. Using machine learning techniques or linear regression,
optimal weights could be derived which make the signature more efficient for network clustering
or classification. As it was previously mentioned, this kind of analysis has already been done
on the other GDV signature by Yaveroğlu et al. [37], which identified a set of 11 non-redundant
orbits and created a short signature made of these frequencies. This signature outperformed its
counterparts and was then successfully applied to World Trade networks.

Another avenue for continuing research is to perform more experiments on each of the three
main classes of networks in order to confirm the results obtained in this project and find poten-
tially better interpretations for the observed phenomena. The timespan of the project did not
allow us to run more experiments and tests on our data. For instance, one can do more case
studies on the economic networks or correlate the GCV with other economic indices. Moreover,
one could also apply the GCV signature for data analysis of other classes of networks, such
as social networks (Facebook), hyperlink networks (World Wide Web), telecommunication net-
works or other types of biological networks such as gene regulatory networks, neuronal networks
or signalling networks.

Finally, we hope that our work will help the scientific community better understand local
properties of complex networks that can be used for data analysis. Ultimately, network analysis
is a never-ending task: one can always find better ways to explain phenomena or behaviour.
As networks change over time or become more complex, new models need to be developed that
reproduce them as closely as possible.
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Statistical results
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Figure A.1: The change in the un-normalised GCV of Saudi Arabia along with the change in
Crude Oil price. The un-normalised GCV is not suitable for correlating the GCV of Saudi
Arabia with the change in crude oil price, because Spearman’s rank correlation coefficient is
small (less than 0.13), while the p-value is large (bigger than 0.35). This is the case for all shifts
in GCV in the range [−2, 2]
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Appendix B

Canonical Correlation Tables

Canonical Correlation 0.89595
p-value 0.00000

X variate Y variate

POP 0.76667 G1 0.82332
LE 0.75818 G2 0.80569

KIxRGDPLxPOP 0.72552 G6 0.80315
RGDPCHxPOP 0.71889 G7 0.79365
RGDPLxPOP 0.71877 G3 0.78361
RGDPL2xPOP 0.71683 G4 0.78270

KCxRGDPLxPOP 0.69962 G17 0.77813
KGxRGDPLxPOP 0.69344 G22 0.76781

KCxRGDPL 0.42077 G23 0.76656
RGDPCH 0.26634 G24 0.76458
RGDPL 0.26629 G14 0.76293
RGDPL2 0.26616 G26 0.75734

KGxRGDPL 0.21884 G8 0.75020
KIxRGDPL 0.17869 G13 0.74857

XRAT 0.11999 G19 0.74581
KC 0.09780 G28 0.74525
KI -0.05999 G18 0.74056

BCAperRGDPL -0.14775 G12 0.74053
KG -0.17422 G11 0.73369

BCA -0.20019 G10 0.72915
OPENK -0.24745 G9 0.72424

G27 0.70899
G29 0.68727
G21 0.67142
G5 0.66142
G25 0.63754
G16 0.62203
G15 0.57546
G20 0.44454

G1

G2

G6

...

G16

G15

G20

Figure B.1: Canonical Correlation Analysis between economic indicators (X variate) and
the unnormalised GCV signature (Y variate) on the 2010 World Trade network. Openness
(OPENK), Balance Current Account (BCA) a few other indicators correlate negatively with
all the graphlets, because their cross-loadings have different signs. On the other hand, the rest
of the indicators such as Population (POP), Level of Employment (LE) and GDP per capita
(RGPDL, RGDPCH) correlate positively with all the graphlets, since their cross-loadings have
the same sign. The overall correlation is 0.89 with a p-value of 0.0. In reality, the p-value is
extremely small but it has been truncated to zero because of floating point approximations.
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Canonical Correlation 0.94594
p-value 0.00000

X variate Y variate

POP 0.73628 G12 0.90456
LE 0.71650 G10 0.89337

KI x RGDPL x POP 0.66038 G14 0.87536
RGDPCH x POP 0.65383 G17 0.85955
RGDPL x POP 0.65376 G9 0.84692
RGDPL2 x POP 0.65226 G11 0.83708

KG x RGDPL x POP 0.64238 G19 0.70966
KC x RGDPL x POP 0.63303 G4 0.69198

KC x RGDPL 0.29252 G16 0.67490
XRAT 0.17083 G3 0.63019

RGDPCH 0.16079 G18 0.60564
RGDPL 0.16071 G24 0.59760
RGDPL2 0.16038 G13 0.59247

KG x RGDPL 0.15848 G22 0.54531
KI x RGDPL 0.10411 G23 0.47154

KC 0.08634 G15 0.43876
KI -0.01620 G21 0.32221

BCA per RGDPL -0.10953 G20 0.28966
KG -0.12868 G26 0.27068

BCA -0.14935 G6 0.23057
OPENK -0.26502 G27 0.15386

G25 0.14823
G5 0.11232
G28 -0.15016
G1 -0.16367
G7 -0.21277
G2 -0.48656
G29 -0.52462
G8 -0.63741

G12

G10

G14

...

G2

G29

G8

Figure B.2: CCA between the economic indicators and the normalised GCV signature on the
2010 World Trade network. Each graphlet has been colour-coded according to its density, from
sparse graphlets in blue to dense graphlets and cliques in red. One can notice how the sparse
graphlets have a positive cross-loading, while the dense graphlets have a negative cross-loading.
Sparse graphlets are correlated with good economic indicators such as Population (POP), Level
of Employment (LE) and GDP per Capita (RGDPL), while dense graphlets are correlated with
bad indicators such as the Balance of Current Account (BCA).

B.1 The 17 experiments

In this section we only show the results that were statistically significant. All the other results
can be found in the source code under final_results/all_ppi/
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Canonical Correlation 0.53013
p-value 0.00000

X variate Y variate

Ribosome translation 0.91618 G2 0.89916
RNA processing 0.08561 G8 0.86246

Protein degredation -0.01381 G29 0.83575
Cell cycle -0.01819 G7 0.81776

Nuclear cytoplasmic transport -0.07635 G1 0.81549
ER Golgi traffic -0.10132 G28 0.79973
Protein folding -0.10205 G26 0.76710

Chromatin segmentation -0.12005 G27 0.75955
Signaling stress response -0.12897 G5 0.74980

Cell polarity morphogenesis -0.14394 G6 0.73719
Chromatin transcription -0.14560 G22 0.72618

DNA replication -0.17095 G24 0.71387
Metabolism mitochondria -0.17109 G25 0.70796

Golgi endosome vacuole sorting -0.20098 G23 0.67823
G4 0.65612
G20 0.65406
G17 0.63899
G21 0.61750
G19 0.59378
G3 0.59369
G16 0.54884
G14 0.54406
G18 0.53288
G15 0.52898
G12 0.52683
G11 0.49169
G13 0.41908
G10 0.41706
G9 0.38194

G2

G8

G29

...

G13

G10

G9

Figure B.3: CCA Analysis on Collin’s AP-MS Yeast PPI network. The X variate is represented
by Boone’s protein annotations (see section 2.7.1), while the Y variate is represented by the
GCV signature. The correlation value is 0.53 and the p-value is shown as 0.0 due to floating
point approximations, although in reality it is very low but not exactly 0.0. RNA processing and
Ribosome translation correlate positively with all the graphlets because their weights have the
same sign, while the rest of the protein annotations correlate negatively with all the graphlets.
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Canonical Correlation 0.34590
p-value 0.00000

X variate Y variate

Metabolism mitochondria 0.14787 G11 -0.05518
Ribosome translation 0.07535 G10 -0.08810

Cell polarity morphogenesis 0.05944 G9 -0.09217
RNA processing 0.05671 G14 -0.10260

Protein folding glycosylation cell wall 0.04637 G16 -0.11486
Signaling stress response 0.04030 G13 -0.11736

Cell cycle progression meiosis 0.03541 G12 -0.11781
Nuclear cytoplasmic transport 0.01806 G15 -0.11783
Golgi endosome vacuole sorting 0.01673 G4 -0.12001
Protein degredation proteosome -0.00325 G3 -0.13304

ER Golgi traffic -0.01553 G20 -0.13733
Chrom seg kinetoch spindle microtub -0.03107 G18 -0.13930
DNA replication repair HR cohesion -0.21915 G17 -0.13935

Chromatin transcription -0.23242 G21 -0.14204
G19 -0.14416
G25 -0.16429
G5 -0.16538
G22 -0.16542
G24 -0.16634
G6 -0.16798
G23 -0.16926
G1 -0.17776
G27 -0.18491
G26 -0.19023
G7 -0.20120
G28 -0.20952
G2 -0.23224
G29 -0.23269
G8 -0.23425

Figure B.4: CCA Analysis on the BioGRID Yeast genetic network. The X variate is repre-
sented by Boone’s protein annotations (see section 2.7.1), while the Y variate is represented
by the GCV signature. The correlation value is 0.34 and the p-value is shown as 0.0 due to
floating point approximations, although in reality it is very low but not exactly 0.0. Chro-
matin transcription and DNA replication correlate positively with all the graphlets because
their weights have the same sign while Metabolism mitochondria correlates negatively. This
suggests that genes involved in Chromatin transcription and DNA replication have a relatively
dense neighbourhood, while genes involved in Metabolism mitochondria have a relatively sparse
neighbourhood.
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Canonical Correlation 0.45880
p-value 0.00000

X variate Y variate

Metabolism mitochondria 0.15861 G11 -0.03350
Golgi endosome vacuole sorting 0.09172 G14 -0.03915

Protein folding glycosylation cell wall 0.08794 G10 -0.04096
Cell polarity morphogenesis 0.07806 G4 -0.04261

DNA replication repair HR cohesion 0.07679 G9 -0.04999
Signaling stress response 0.06513 G16 -0.05459

ER Golgi traffic 0.05000 G20 -0.05641
Chrom seg kinetoch spindle microtub 0.04864 G12 -0.05703

Cell cycle progression meiosis 0.03944 G17 -0.06682
Nuclear cytoplasmic transport -0.01002 G3 -0.07415

Protein degredation proteosome -0.01574 G13 -0.07585
Chromatin transcription -0.02837 G22 -0.08361

RNA processing -0.24003 G15 -0.08681
Ribosome translation -0.35281 G18 -0.10240

G19 -0.10562
G1 -0.11901
G21 -0.12887
G6 -0.13115
G23 -0.14507
G5 -0.17207
G24 -0.19117
G25 -0.19158
G26 -0.25346
G27 -0.26491
G7 -0.27551
G28 -0.28974
G29 -0.29937
G8 -0.32430
G2 -0.34523

Figure B.5: CCA on the BioGRID Yeast Full PPI network using Boone’s annotations. Ribosome
translation and RNA processing correlate positively with all the graphlets, while Metabolism
mitochondria correlates negatively.
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Canonical Correlation 0.48063
p-value 0.00000

X variate Y variate

Metabolism mitochondria 0.17069 G11 -0.01198
Cell polarity morphogenesis 0.10073 G4 -0.01502

Protein folding glycosylation cell wall 0.09465 G14 -0.01640
Golgi endosome vacuole sorting 0.08758 G10 -0.02782

Signaling stress response 0.08547 G17 -0.09114
DNA replication repair HR cohesion 0.08337 G1 -0.11310

ER Golgi traffic 0.05669 G23 -0.11908
Chrom seg kinetoch spindle microtub 0.05617 G12 -0.12373

Cell cycle progression meiosis 0.04399 G19 -0.12738
Nuclear cytoplasmic transport 0.01631 G16 -0.13678

Ribosome translation 0.00935 G9 -0.13785
Protein degredation proteosome -0.05797 G18 -0.13982

Chromatin transcription -0.24617 G15 -0.13997
RNA processing -0.35707 G6 -0.14677

G20 -0.14790
G13 -0.15208
G22 -0.15693
G21 -0.16237
G3 -0.16500
G25 -0.16723
G24 -0.17420
G27 -0.17604
G26 -0.18436
G28 -0.18795
G29 -0.19033
G5 -0.19553
G7 -0.23313
G8 -0.25140
G2 -0.32264

Figure B.6: CCA on the BioGRID Yeast high-confidence PPI network using Boone’s annota-
tions. Chromatin transcription and RNA processing correlate positively with all the graphlets,
while Metabolism mitochondria and cell polarity morphogenesis correlate negatively.
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Canonical Correlation 0.54489
p-value 0.00000

X variate Y variate

Cellular organisation 0.10410 G9 -0.21203
Uncharacterised 0.10038 G13 -0.23080

Genome maintenance 0.09481 G10 -0.23560
Other - metabolism 0.07261 G11 -0.27911

Cellular fate / organisation 0.06208 G15 -0.28931
Energy production 0.05791 G18 -0.29083

Protein fate 0.04958 G12 -0.29679
Amino acid metabolism 0.04792 G14 -0.30518
Transcriptional control 0.04232 G16 -0.30604

Stress and defence 0.03592 G3 -0.32479
Transport and sensing 0.03174 G19 -0.32981

Transcription 0.02139 G21 -0.34018
Translation -0.54273 G17 -0.35616

G4 -0.36201
G20 -0.36383
G23 -0.38103
G25 -0.39269
G24 -0.39272
G22 -0.39991
G6 -0.40577
G5 -0.41118
G27 -0.42175
G26 -0.42604
G1 -0.44139
G28 -0.44763
G7 -0.45248
G29 -0.47622
G8 -0.48968
G2 -0.50543

Figure B.7: CCA Analysis on Collin’s AP-MS Yeast PPI network [69]. The X variate is
represented by von Mering’s protein annotations (see section 2.7.1), while the Y variate is
represented by the GCV signature. The correlation value is 0.54 and the p-value is shown as
0.0 due to floating point approximations, although in reality it is very low but not exactly
0.0. Translation has the strongest negative cross-loading and is the only annotation possitively
correlated with all the graphlets from the Y variate. All other annotations are negatively
correlated with all the graphlets.
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Canonical Correlation 0.27203
p-value 0.00000

X variate Y variate

Uncharacterised 0.11238 G11 -0.00263
Translation 0.07793 G14 -0.04931

Other - metabolism 0.06314 G4 -0.05327
Transport and sensing 0.06161 G10 -0.06615

Energy production 0.04926 G9 -0.07092
Amino acid metabolism 0.04349 G16 -0.08171

Stress and defence 0.02417 G13 -0.08263
Cellular fate / organisation -0.02093 G12 -0.08266

Transcription -0.03456 G15 -0.08365
Protein fate -0.04871 G17 -0.08782

Cellular organisation -0.05765 G18 -0.08831
Transcriptional control -0.15356 G20 -0.09333
Genome maintenance -0.17739 G21 -0.09469

G19 -0.09568
G22 -0.09842
G3 -0.09996
G24 -0.10265
G23 -0.10486
G25 -0.10563
G26 -0.11266
G27 -0.11286
G6 -0.11476
G5 -0.11659
G28 -0.12217
G7 -0.13098
G29 -0.13446
G1 -0.13664
G8 -0.14762
G2 -0.16769

Figure B.8: CCA Analysis on the BioGRID Yeast genetic network. The X variate is represented
by von Mering’s protein annotations (see section 2.7.1), while the Y variate is represented by
the GCV signature. The correlation value is 0.27 and the p-value is shown as 0.0 due to
floating point approximations, although in reality it is very low but not exactly 0.0. Genome
maintenance and Transcriptional have a strong positive correlation with all the graphlets, while
Uncharacterised, Translation and Other - metabolism have the strongest negative correlation
with all the graphlets.
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Canonical Correlation 0.45779
p-value 0.00000

X variate Y variate

Uncharacterised 0.10778 G10 -0.03270
Other - metabolism 0.07615 G11 -0.03591

Transport and sensing 0.05434 G14 -0.03844
Energy production 0.04007 G4 -0.03870

Amino acid metabolism 0.03615 G9 -0.03897
Stress and defence 0.03498 G12 -0.05272

Cellular organisation 0.03431 G16 -0.05320
Cellular fate / organisation 0.03385 G20 -0.06397

Genome maintenance 0.02838 G3 -0.06528
Protein fate 0.02763 G17 -0.06662

Transcriptional control 0.01393 G13 -0.07353
Transcription -0.11721 G22 -0.08133
Translation -0.44068 G15 -0.08314

G18 -0.10240
G1 -0.11299
G19 -0.12026
G6 -0.13576
G21 -0.13844
G23 -0.17370
G5 -0.18434
G24 -0.21368
G25 -0.22380
G26 -0.29604
G7 -0.30569
G27 -0.31089
G28 -0.34844
G2 -0.37043
G29 -0.37099
G8 -0.37849

Figure B.9: CCA on the BioGRID Yeast Full PPI network using von Mering’s annotations.
The p-value is smaller than 0.05, suggesting that the correlation is statistically significant.
Transcription and Translation correlate positively with all the graphlets, while Uncharacterised
and Other - metabolism have the strongest negative correlation with the Y variate.
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Canonical Correlation 0.42449
p-value 0.00000

X variate Y variate

Other - metabolism 0.09993 G11 0.00615
Transport and sensing 0.07195 G4 0.00505

Energy production 0.06707 G14 0.00443
Uncharacterised 0.06638 G10 0.00385

Cellular fate / organisation 0.05957 G9 0.00132
Amino acid metabolism 0.05531 G16 0.00025

Stress and defence 0.04321 G20 -0.00029
Cellular organisation 0.03877 G12 -0.01000

Protein fate 0.03514 G3 -0.01132
Genome maintenance 0.00376 G15 -0.01285

Translation 0.00362 G13 -0.01787
Transcriptional control -0.08091 G17 -0.02307

Transcription -0.40724 G1 -0.03294
G23 -0.04304
G19 -0.04477
G6 -0.05256
G21 -0.05642
G5 -0.05950
G25 -0.06383
G18 -0.07042
G27 -0.07725
G22 -0.07798
G24 -0.09178
G26 -0.10001
G28 -0.10303
G29 -0.11274
G7 -0.13958
G8 -0.16503
G2 -0.22352

Figure B.10: CCA on the BioGRID Yeast high-confidence PPI network using von Mering’s
annotations. The p-value is smaller than 0.05, suggesting that the correlation is statistically
significant. Transcription and Transcriptional control correlate positively with all the graphlets,
while Other - metabolism and Transport and sensing have the strongest negative correlation
with the Y variate.
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