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Abstract

Stability in cluster analysis is strongly dependent on the data set, especially on how
well separated and how homogeneous the clusters are. In the same clustering, some
clusters may be very stable and others may be extremely unstable.

The Jaccard coefficient, a similarity measure between sets, is used as a cluster-
wise measure of cluster stability, which is assessed by the bootstrap distribution of
the Jaccard coefficient for every single cluster of a clustering compared to the most
similar cluster in the bootstrapped data sets. This can be applied to very general
cluster analysis methods.

Some alternative resampling methods are investigated as well, namely subsetting,
jittering the data points and replacing some data points by artificial noise points.
The different methods are compared by means of a simulation study.

A data example illustrates the use of the cluster-wise stability assessment to
distinguish between meaningful stable and spurious clusters, but it is also shown that
clusters are sometimes only stable because of the inflexibility of certain clustering
methods.

Key words: cluster validation, bootstrap, robustness, clustering with noise,
Jaccard coefficient

1 Introduction

Validation is very important in cluster analysis, because clustering methods
tend to generate clusterings even for fairly homogeneous data sets. Most clus-
tering methods assume a certain model or prototype for clusters, and this may
be adequate for some parts of a data, but not for others. Cluster analysis is
often carried out in an exploratory manner, and the patterns found by cluster
analysis are not necessarily meaningful.
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An important aspect of cluster validity is stability. Stability means that a
meaningful valid cluster shouldn’t disappear easily if the data set is changed in
a non-essential way. There could be several conceptions what a “non-essential
change” of the data set is. In terms of statistical modelling it could be de-
manded that a data set drawn from the same underlying distribution should
give rise to more or less the same clustering (though the true underlying dis-
tribution is unknown). It could also be of interest whether clusterings remain
stable under the addition of outliers, under subsetting or under “jittering”,
i.e., the addition of a random error to every point to simulate measurement
errors.

Given a clustering on a data set generated by a clustering method, the follow-
ing principle is discussed in the present paper:

• Interpret the Jaccard coefficient (Jaccard, 1901) as a measure of similarity
between two subsets of a set based on set membership.

• Resample new data sets from the original one (using various strategies) and
apply the clustering method to them.

• For every given cluster in the original clustering find the most similar cluster
in the new clustering and record the similarity value.

• Assess the cluster stability of every single cluster by the mean similarity
taken over the resampled data sets.

It appears to be quite natural to assess cluster stability by resampling methods,
and this has been done in several recent papers, most of them related to the
analysis of gene expression data. Examples are Ben-Hur et al. (2002), Bryan
(2004), Dudoit and Fridlyand (2002), Grün and Leisch (2004), Lange et al.
(2004), Monti et al. (2001) and Tibshirani and Walther (2005). Many of these
papers use stability or prediction strength measurements as a tool to estimate
the true number of clusters.

The approach taken in the present article has the following two important
characteristics:

• It is applicable to very general clustering methods including methods based
on (not necessarily metric) dissimilarity measures, non-partitioning meth-
ods, and methods that include an estimator of the number of clusters (so
that the determination of this number is not an aim of the present ap-
proach), as well as conventional methods based on Euclidean data with a
fixed number of clusters such as k-means. No particular cluster model is
assumed.

• The approach is cluster-wise. The idea behind this is that many data sets
contain meaningful clusters for which a certain cluster model is adequate,
but they don’t necessarily consist only of such clusters. Therefore the result
of a clustering method could find some important meaningful patterns in
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Fig. 1. First two MDS dimensions of snails distribution ranges data set with clus-
tering generated by normal mixture clustering with BIC and noise (cluster no. 8 is
the packed one in the center). “N” indicates points estimated as noise.

the data set, while other clusters in the same clustering can be spurious.
The reason for this is not necessarily the choice of the wrong clustering
method; it may well be that no single method delivers a satisfactory result
for the whole data set. Note that none of the approaches in the literature
cited above is cluster-wise.

As an example consider the data set in Figure 1, which is described in more
detail in Section 5. The data consists of 366 points in four dimensions and has
been generated by classical multidimensional scaling on a dissimilarity matrix.
Therefore the first two dimensions shown in Figure 1 are the first two principal
components. The plot suggests that there are some patterns in the data set,
but many points do not seem to belong to such a pattern. Neither the more,
nor the less clustered parts clearly suggest a fit with a standard parametric
distribution such as the normal or the uniform distribution. This impression
can be backed up by more sophisticated visual analyses (some patterns become
a bit clearer if all dimensions are considered; not shown).
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The clustering shown in Figure 1 has been obtained by a normal mixture
model with unrestricted covariance matrices for the mixture components and
a noise-component modelled as a uniform distribution on the convex hull of
the data. The number of clusters has been estimated by the Bayesian Infor-
mation Criterion. The procedure is explained in Fraley and Raftery (1998)
and implemented in the package MCLUST for the statistical software R. A
tuning constant for the initial estimation of the noise component has to be
specified and was chosen as h = 10, so that the distinction between noise and
non-noise-points has been made based on the 10th nearest neighbour of every
point, see Byers and Raftery (1998). This is implemented in the R-package
PRABCLUS. Several clustering methods have been carried out on this data
set, but none of these lead to more convincing results.

Usually, in such an analysis, the normal components are interpreted as clusters,
but this doesn’t seem to be reasonable for all components in the given data set.
This motivates the cluster-wise approach: it would be very helpful to know to
what extent the normal components can be interpreted as stable patterns of
the data, and it can reasonably be suspected that this applies to some but not
all of the components. The methods suggested in the present paper confirm
stability only for the clusters no. 1, 7 and 8, see Section 5.

Stability is not the only aspect of cluster validity, and therefore a stable cluster
is not guaranteed to be a meaningful pattern. With another clustering of the
same data set, it will be illustrated why meaningless clusters sometimes are
stable.

Some alternative methods of cluster validation are homogeneity and/or separation-
based validation indexes, comparison of different clustering methods on the
same data, visual cluster validation, tests of homogeneity of the data set
against a clustering alternative and use of external information, see Gordon
(1999); Haldiki et al. (2002); Hennig (2005); Milligan and Cooper (1985) and
the references given therein.

The analysis of the sensitivity of a clustering against perturbations of the data
has a long history as well, see, e.g., Rand (1971); Milligan (1996). The adjusted
Rand index (Hubert and Arabie, 1985) has been used often to measure the
similarity between two complete clusterings.

Some work on robustness properties in cluster analysis (e.g., Garcia-Escudero
and Gordaliza (1999); Hennig (2004a)) is also related to the assessment of
stability in cluster analysis. It turns out in this work that classical robustness
concepts such as the finite sample breakdown point (Donoho and Huber, 1983)
are heavily data dependent when applied to cluster analysis.

The paper proceeds as follows. The basic method, based on a nonparametric
bootstrap, is introduced in Section 2. Section 3 discusses some alternative
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approaches to carry out the resampling. The approaches are compared in
Section 4 by means of a simulation study. Section 5 applies the methodology
to the snails distribution range data and a concluding discussion is given in
Section 6.

2 Bootstrapping the Jaccard coefficient

A sequence of mappings E = (En)n∈IN is called a general clustering method,
if En maps a set of entities xn = {x1, . . . , xn} (this is how xn is always defined
throughout the paper) onto a collection of subsets {C1, . . . , Cs} of xn. Note
that it is assumed that entities with different indexes can be distinguished.
This means that the elements of xn are interpreted as data points and that
|xn| = n even if, for example, for i 6= j, xi = xj in terms of their values. It is not
assumed how the entities are defined. This could be, e.g., via a dissimilarity
matrix or via p Euclidean variables.

Most clustering methods generate disjoint clusterings, i.e., Ci ∩ Cj = ∅ for

i 6= j ≤ k. A partition is defined by
k⋃

j=1

Cj = xn. The methodology defined

here does not necessarily assume that the clustering method is disjoint or a
partition, but the interpretation of similarity values between clusters is easier
for methods that don’t generate a too rich clustering structure. For example,
if the clustering method generates a full hierarchy, every subset containing
only one point is always a cluster and these clusters will be perfectly stable,
though totally meaningless.

To assess the stability of a cluster of the initial clustering with respect to a new
clustering, a similarity measure between clusters is needed. Because the mea-
sure should be applicable to general clustering methods (even methods that
don’t operate on the Euclidean space), it has to be based on set memberships.

There exist many similarity measures between sets, see e.g. Gower and Legen-
dre (1986). I suggest the Jaccard coefficient, which originated in the analysis
of species distribution data (Jaccard, 1901):

γ(C, D) =
|C ∩ D|

|C ∪ D|
, C, D ⊆ xn.

The Jaccard coefficient gives the proportion of points belonging to both sets
of all the points involved in at least one of the sets, and it is therefore easily
directly interpretable. It has several good properties, e.g., being independent
of the number of points not belonging to any of the two sets. 1− γ is a metric
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(Gower and Legendre, 1986). Hennig (2004c) suggested the use of the Jaccard
coefficient to compare cluster analysis methods theoretically, and he defined
the value 1

2
as a critical value for so-called “dissolution” of a cluster under

addition of points to the data set. It can be shown that 1

2
is the smallest value

so that every cluster in a partition consisting of more than one cluster can be
dissolved by a new partition, and it is also the smallest value so that whenever
an initial cluster has s clusters and a new clustering has r < s clusters, then
at least s−r clusters of the original clustering are dissolved (equivalent results
are shown in Hennig (2004a)). The Jaccard coefficient has also been used by
Ben-Hur et al. (2002) in the context of cluster validation with resampling
methods, though not for cluster-wise evaluation.

The idea behind the use of the nonparametric bootstrap for the assessment
of cluster stability is the following: assume that there is an underlying mix-
ture distribution P =

∑s
i=1

ǫiPi where Pi, i = 1, . . . , s, are the distributions
generating s “true” clusters, and ǫi is the probability that a point from Pi is
drawn. For a given data set with n points, the “true” clustering would then
consist of s clusters each of which contains exactly the points generated by
Pi, i = 1, . . . , s. When a data set generated from P is clustered, the found clus-
ters differ from the “true” clusters, because the clustering method introduces
a certain bias and variation. This can depend on the cluster Pi, for example
if two different clusters are weakly separated or if Pi deviates strongly from
the cluster model assumed by the clustering method. Bias and variation can
be expressed by the maximum Jaccard coefficient between the set of all the
points generated by Pi and the most similar cluster in the actually obtained
clustering.

The bootstrap is usually used to give an idea of bias and variation caused by
a certain statistical method, because in reality no true underlying distribution
and no true clustering is known. The empirical distribution of the observed
data set is then taken to simulate P . Points can be drawn from the data set
and the originally found clusters can be treated as the “true” ones. The mean
maximal Jaccard coefficient can be interpreted as indicating the stability of
the original clusters.

Given a number B of bootstrap replications and a cluster C from the original
clustering En(x), the scheme works as follows. Repeat for i = 1, . . . , B:

(1) Draw a bootstrap sample xi
n of n points with replacement from the orig-

inal data set xn.
(2) Compute the clustering En(xi

n).
(3) Let xi

∗
= xn ∩ xi

n be the points of the original data set that are also in
the bootstrap sample. Be Ci

∗
= C ∩ xi

∗
, ∆ = En(xi

n) ∩ xi
∗
.

(4) If Ci
∗
6= ∅, compute the maximum Jaccard similarity between the in-

duced cluster Ci
∗

and the induced new clustering ∆ on xi
∗

: γC,i =
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maxD∈∆ γ(Ci
∗
, D) (i.e., D is the maximizer of γ(Ci

∗
, D); else γC,i = 0).

This generates a sequence γC,i, i = 1, . . . , B. I suggest the mean

γ̄C =
1

B∗

B∑

i=1

γC,i

as stability measure (B∗ being the number of bootstrap replications for which
Ci

∗
6= ∅ and is used here because in all other cases γC,i = 0).

Other summary statistics such as the median, a trimmed mean or the number
of dissolutions (γC,i ≤ 0.5) or good recoveries (γC,i > 0.75, say) can be used as
well. Experience suggests that the mean is a good choice here; in all examples
in which I examined further statistics, I didn’t find any results that deviated
strongly from what could be expected by looking at the mean alone. The
value range and therefore also the size of possible outliers affecting the mean
is restricted to [0, 1] and if moderate outliers occur, they may be treated as
informative and need presumably not to be downweighted or trimmed.

The given scheme compares clusters based on the data set xi
∗

in which every
point of the original data set appears only once. An alternative would be to
compare clusters on the bootstrap data set xi

n with a version of the original
cluster in which points are repeatedly included if they also occur repeatedly
in the bootstrap sample. This, however, would have the disadvantage that
clusters dominated by multiple points would be upweighted in the computation
of γ̄C .

Note that a parametric bootstrap doesn’t suggest itself for the aim of the
present paper, because parametric methods discover structures really gener-
ated by the underlying model (what the resampled data sets in parametric
bootstrap are) much better than patterns in real data for which the mod-
els don’t hold. Therefore, the parametric bootstrap can be expected to yield
much too optimistic stability assessments at least for methods based on the
used parametric model.

3 Alternative resampling and simulation schemes

The nonparametric bootstrap isn’t the only possibility to generate new similar
but somewhat distorted data sets from the original data set, which can be used
to assess stability. As already observed by Monti et al. (2001), a disadvantage
of nonparametric bootstrap particularly in connection with cluster analysis is
the occurrence of multiple points in the bootstrapped data set. Multiple points
can be seen as mini-clusters in itself. For some implementations of clustering
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and multidimensional scaling methods multiple points cause numerical prob-
lems. The following schemes avoid multiple points. Note that subsetting is as
general as bootstrapping because it can be applied with arbitrary data formats
including dissimilarity matrices. The other two alternative schemes, replacing
points by noise and jittering, can in the present state only be applied to p-
dimensional Euclidean data (though suitable versions for dissimilarity data
are conceivable).

3.1 Subsetting

The simplest idea is to draw a subsample of xn without replacement instead
of a bootstrap sample. This avoids multiple points and shortens computation
times, which can be an issue with large data sets. The scheme of Section 2
can be carried out as before with xi

∗
now being the drawn subsample of xn.

Subsetting requires the choice of the size m < n of the subsample. If m is
too large, subsetting will not generate enough variation to be informative. If
m is too small, the clustering results can be expected to be much worse than
that obtained from the original data set. I always worked with m = [n

2
], where

“[x]” denotes the integer part of x.

An alternative subsetting method would be to discard multiple points in a
bootstrap scheme.

3.2 Replacing points by noise

The instability of statistical methods can often be demonstrated by replacing
some points in the data set by “noise points” or outliers. The definition of
the finite sample replacement breakdown point (Donoho and Huber, 1983) is
based on this idea as well. In cluster analysis, the replacement of points by
noise can be seen as an exploration of the strength of a pattern. It is stable in
this sense if it can still easily been found by a clustering algorithm in spite of
the contamination of the data set.

Instead of drawing a bootstrap sample, a certain number m of points from xn

can be drawn without replacement. These points then have to be replaced by
points drawn from a noise distribution.

The basic scheme from Section 2 can again be applied. The subset xi
∗
, on

which the clusterings are to be compared, is now the set of the remaining
n − m non-noise points.
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Two choices have to be made, namely the number m of points to be replaced,
and the noise distribution. The noise distribution is difficult to choose. Noise
points should be allowed to lie far away from the bulk (or bulks) of the data,
but it may also be interesting to have noise points in between the clusters,
possibly weakening their separation.

I suggest the following strategy:

(1) Sphere and center the data set so that it has the identity matrix as
covariance matrix and the zero vector as mean vector (this is done for
notational convenience in the next step).

(2) Draw noise points from a uniform distribution on a hyperrectangle with a
not too small range in all directions. I used two versions in the simulations,
namely a range of [−3, 3] together with m = 0.05n and [−4, 4] together
with m = 0.2n.

(3) If a clustering method is used that is not affine equivariant, rotate the
data back to the original coordinate system.

This is based on the classical covariance matrix, which I suggest because it
contains information of all points including different clusters and outliers in
the data, so that this scheme usually can generate extreme points as well as
points between clusters. An alternative would be the convex hull of the data
set (possibly blown up by a factor), which is more likely to generate only
outliers in the case that there are already extreme outliers in the data.

3.3 Jittering and Bootstrap/Jittering

“Jittering” means that a small amount of noise is added to every single point.
This represents the idea that all points may include measurement errors and
the information in them is therefore somewhat fuzzy. It is then interesting
whether clusters are stable with respect to the addition of further measurement
error.

In the scheme from Section 2, xi
n = {y1, . . . , yn} has to be the jittered data

set with yk = xk + ek, k = 1, . . . , n, ek being the simulated measurement
error. In Step (3), Ci

∗
= {k : xk ∈ C} is now the set of index numbers of

points in cluster C and ∆ is a clustering of index numbers consisting of sets
D∗ = {k : yk ∈ D} for all clusters D ∈ En(xi

n). An additional set xi
∗

is not
needed.

By analogy to Section 3.2, a measurement error distribution has to be chosen.
Here is a suggestion:

(1) Sphere and center the data set so that it has the identity matrix as
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covariance matrix and the zero vector as mean vector.
(2) For all p dimensions, compute the n − 1 differences dij between (one-

dimensionally) neighboring points: for i = 1, . . . , n− 1, j = 1, . . . , p, dij
is the difference between the (i + 1)th and the ith order statistic of the
jth component of the data set xn. For j = 1, . . . , p, let qj be the empirical
q-quantile of the dij (q is a tuning constant).

(3) Draw noise ek, k = 1, . . . , n, i.i.d. from a p-dimensional normal distribu-
tion with a zero mean vector and a diagonal matrix as covariance matrix
with diagonal elements σ2

1
= q2

1
, . . . , σ2

p = q2

p and compute yk = xk + ek

for k = 1, . . . , n.
(4) If a clustering method is used that is not affine equivariant, rotate the

data back to the original coordinate system.

The normal distribution is traditionally used as measurement error distri-
bution. Two versions for the component-wise standard deviation have been
chosen for the simulations, namely the 0.1- and 0.25-quantile of the one-
dimensional distances between neighboring points. It is important that the
chosen quantile is smaller than the distance between two points from different
clusters which are well separated from each other. The idea is that the order
of points (along a single dimension) should change from time to time but not
often by the introduction of the measurement error.

The jittering idea can also be combined with the bootstrap scheme from Sec-
tion 2, so that a simulated measurement error is added to the bootstrap data
set. This avoids the problem of multiple points in the bootstrap scheme. The
choice of the small 0.1-quantile above may be suitable for this application.

4 A simulation study

To assess the performance of a method for cluster stability assessment, it
is necessary to find out whether the method can distinguish “better” from
“worse” clusters in the same clustering. Therefore data sets have to be con-
structed in which there are well defined “true” clusters. Clustering methods
have to be applied which make some sense for this kind of data, but which
don’t necessarily find all of the clusters, and which don’t necessarily have to
be the best methods for these data.

Data have been simulated from two models:

Model 1 This model is designed to generate data in which a clustering is
clearly visible, but the data should include some realistic problems such as
outliers and cluster distributions with different shape. The first two dimen-
sions of data generated from Model 1 are shown on the left side of Figure

10
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Fig. 2. Simulated data from Model 1 (dimensions 1 and 2, left side) and Model 2
(right side).

2. Dimensions 3 and 4 look similarly.
The model generates six-dimensional data. The dimensions 5 and 6 are

noise, dimension 5 distributed i.i.d. N(0, 1), dimension 6 i.i.d. t2, so that
large outliers may occur in dimension 6. The clustering is present in the
dimensions 1-4.

The model for these dimensions consists of six submodels. Submodel 1-4
correspond to four clusters, submodels 5 and 6 generate “noise” not belong-
ing to any cluster.
Submodel (cluster) 1 (150 points): normal distribution with mean vec-

tor (0, 2, 0, 2) and covariance matrix 0.1I4.
Submodel (cluster) 2 (250 points): normal distribution with mean vec-

tor (3, 3, 3, 3) and a covariance matrix with diagonal elements 0.5 and
covariances 0.25 in all off-diagonals.

Submodel (cluster) 3 (70 points): a skew cluster with all four dimensions
distributed independently exponentially(1) shifted so that the mean vec-
tor is (−1,−1,−1,−1).

Submodel (cluster) 4 (70 points): 4-variate t2-distribution with mean
vector (2, 0, 2, 0) and covariance matrix 0.1I4 (this is the covariance matrix
of the normal distribution involved in the definition of the multivariate
t-distribution).

Submodel (noise) 5 (10 points): uniform distribution on [−2, 5]4.
Submodel (noise) 6 (10 points): 4-variate t2 distribution with mean vec-

tor (1.5, 1.5, 1.5, 1.5) and covariance matrix 2I4.
Model 2 This is a two-dimensional toy example which is designed to find out

whether “real” clusters that are found easily are more stable than clusters
which are erroneously split up by the clustering method. Data generated
from Model 2 are shown on the right side of Figure 2.
Cluster 1 (15 points): normal distribution with mean vector (−4, 0) and
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covariance matrix 0.1I2.
Cluster 2 (20 points): uniform distribution on [2, 6] × [−2, 2].
Cluster 3 (25 points): uniform distribution on [−6,−2] × [5, 9].

Model 1 has been analysed by three clustering methods, namely the normal
mixture plus noise approach (Fraley and Raftery, 1998) as explained in the
Introduction, 10% trimmed 5-means on data scaled to variance 1 for all vari-
ables (Cuesta-Albertos et al. (1997); the best out of four local minima iterated
from random initial partitions has been taken) and 4-means on the unscaled
data (for k-means only one iteration has been carried out - this method has
been included to show the performance on a fast and simple but not very
adequate standard method).

Model 2 has been analysed by 6-means and between-groups average linkage
clustering on Euclidean distances from scaled data. For average linkage, a
partition was obtained by cutting the tree so that there are 5 clusters. As
an example for overlapping clustering, the resampling schemes have also been
applied to the full cluster hierarchy from average linkage, i.e., all clusters
occurring in any stage of the hierarchy have been used, omitting only the
trivial clusters with all points and only one point.

For a given model and cluster analysis method, 50 data sets have been gen-
erated from the model (called “model data” from now on), and then B = 50
repetitions have been taken for every resampling scheme. For each scheme, the
average maximum Jaccard coefficients γ̄C have been recorded for all clusters
found in the model data. Furthermore, for every “true” cluster from the model,
the most similar cluster found in the model data has been determined to find
out how well the true clusters have been recovered by the clustering methods.
The desired result is then that the found clusters in the model data that match
a true cluster well yield high stability values γ̄C , while “meaningless” clusters
not corresponding well to any true submodel should yield low stability values.
Note, though, that γ̄C is not an “estimator” for the similarity of C to a true
cluster in any technical sense. It may happen that true clusters are inherently
instable (generally, or with respect to a particular clustering method), and in
this case γ̄C should be small even if a found C matches the truth almost per-
fectly. It may also happen that the underlying cluster model of some methods
don’t match the true cluster model, and such methods may generate quite
stable partitions of the data which don’t match the true clusters. Note that,
without any parametric assumption, “true clusters” could even be mixtures
and are therefore, strictly speaking, not uniquely identified.

For every simulation setup, the following information is shown:

• Correlation and scatterplot of γ̄C (y-axis) versus the Jaccard coefficient
between C and the most similar true cluster over all clusters found in the
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model data (x-axis). The identity line is added to help the eye. Note that
more than 50 clusters are present in each scatter diagram, because more
than one cluster has usually been found in the model data. Therefore there
is dependence between results for clusters belonging to the same model data
set. In model 1 the submodels 5 and 6 were allowed to be found as “most
similar true cluster” as well.

• A “true cluster”-wise table showing the mean Jaccard coefficient between a
true cluster and the most similar cluster found in the model data (“Best”)
and the mean of the γ̄C-values for the corresponding most similar clusters
in the 50 model data sets. “Boot” refers to bootstrap, “Sub” refers to sub-
setting, “N0.05/3” refers to an addition of noise with m = 0.05n and range
[−3, 3] for the uniform distribution (“N0.2/4” by analogy), “J0.1” refers to
jittering with 0.1-quantile (“J0.25” by analogy) and “B/J” refers to boot-
strapping plus jittering with 0.1-quantile.

4.1 Model 1, normal mixture plus noise
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Jittering0.25
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0.0 0.6

0.
0

0.
6

Bo./Jittering

Cor= 0.939

True Best Boot Sub N0.05/3 N0.2/4 J0.1 J0.25 B/J

1 0.949 0.944 0.95 0.973 0.973 1 1 0.943

2 0.935 0.937 0.955 0.957 0.957 0.998 0.998 0.928

3 0.771 0.764 0.568 0.813 0.813 0.978 0.978 0.776

4 0.778 0.8 0.569 0.888 0.888 0.98 0.98 0.82

The true clusters 1 and 2 were generally found successfully by the cluster-
ing method and this has been confirmed by all resampling schemes. The true
clusters 3 and 4 have been identified fairly well, but this was often instable un-
der Subsetting. Bootstrap and Bootstrap/Jittering performed best in terms of
correlation. Jittering alone didn’t produce useful results. Note that the scatter
diagrams are clustered along the x-axis, because a clear distinction in terms
of the Jaccard similarity can be made between properly found true clusters
in the model data and some meaningless clusters occurring in the mixture
clusterings.
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4.2 Model 1, 10%-trimmed 5-means
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True Best Boot Sub N0.05/3 N0.2/4 J0.1 J0.25 B/J

1 0.832 0.851 0.855 0.87 0.78 0.889 0.894 0.858

2 0.562 0.789 0.782 0.83 0.706 0.851 0.875 0.793

3 0.761 0.885 0.886 0.889 0.799 0.938 0.95 0.888

4 0.784 0.886 0.886 0.893 0.742 0.935 0.939 0.887

Trimmed k-means assumes all within-cluster covariance matrices to be spher-
ical and equal. Therefore it tends to split up cluster 2 into two parts. This was
done quite consistently, and therefore the stability values corresponding to the
true cluster 2 look better than the recovery of cluster 2 really is. However, the
schemes detect that the model data clusters corresponding to cluster 2 are less
stable than the others. In terms of correlation, Noise 0.2/[−4, 4] is the best
scheme; Jittering alone performs badly again.

The three clusters along the x-axis of the scatter diagram now correspond to
meaningless clusters in the trimmed k-means solution, parts of the cluster 2
and clusters corresponding to the model clusters 1, 3, and 4. The γ̄C-values
are rather higher than the values for true cluster recovery. Only in some cases
(points close to the identity line) their values are similar.

4.3 Model 1, 4-means
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True Best Boot Sub N0.05/3 N0.2/4 J0.1 J0.25 B/J

1 0.749 0.74 0.74 0.743 0.662 0.761 0.721 0.746

2 0.918 0.913 0.92 0.927 0.86 0.937 0.919 0.915

3 0.576 0.643 0.644 0.646 0.615 0.659 0.652 0.65

4 0.489 0.631 0.629 0.636 0.576 0.654 0.644 0.641

4-means seems to find cluster 2 reliably, the recovery of cluster 1 is fairly good,
and the clusters 3 and 4 are not found properly. Generally, this is detected by
all resampling schemes, with Bootstrap, Subsetting and Bootstrap/Jittering
performing better than Noise and Jittering alone. The four clusters along the
x-axis of the scatter diagrams correspond to meaningless clusters, versions of
cluster 4, versions of cluster 3, versions of cluster 1 and 2.

4.4 Model 2, 6-means
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True Best Boot Sub N0.05/3 N0.2/4 J0.1 J0.25 B/J

1 0.85 0.75 0.754 0.793 0.808 0.762 0.755 0.755

2 0.661 0.654 0.674 0.673 0.679 0.673 0.658 0.658

3 0.598 0.644 0.638 0.657 0.629 0.656 0.667 0.64

6-means doesn’t do a very good job here. Cluster 1 is found often, but some-
times split up. Even if it is found perfectly, this is often not stable under the
resampling schemes. Therefore its stability is underestimated. However, the
stability values from Noise 0.2/[−4, 4] correlate almost perfectly with the sim-
ilarities to the true clusters. In the scatter diagrams it can be seen that model
clusters have been perfectly recovered several times (value 1 on the x-axis),
but even these clusters were not perfectly stable under resampling.
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4.5 Model 2, average linkage partition
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True Best Boot Sub N0.05/3 N0.2/4 J0.1 J0.25 B/J

1 1 1 1 0.992 0.48 1 1 1

2 0.698 0.812 0.813 0.753 0.651 0.972 0.929 0.813

3 0.741 0.798 0.793 0.784 0.477 0.972 0.929 0.795

The average linkage partition always finds the true cluster 1 perfectly, and
this is reproduced by the resampling schemes except of the addition of noise
points. Replacing 20% of the points by noise seems to destroy this cluster com-
pletely, indicating a serious robustness problem of average linkage (with fixed
number of clusters) in this situation. This is informative, even though Noise
0.05/[−3, 3] is the best method in terms of correlation. Subsetting is better
than the Bootstrap schemes here and Jittering is bad, as almost always.

4.6 Model 2, average linkage full hierarchy
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The means table is omitted in this situation because it consists only of ones.
This means that the true clusters have always been found somewhere in the
hierarchy, for the model data and for the resampled data. The problem is that
it is difficult for the user to figure out which of the many sets in the hierarchy
the good clusters are (given that it is not as easy to visualise the data in reality
as it is in the given toy example). Therefore the correlation analysis is still
informative, and it seems that almost all γ̄C-values are larger than or about
equal to the similarities of the found clusters to the true clusters. Therefore,
a small γ̄C-value is a reliable indicator that a cluster is not meaningful here,
while meaningless clusters could easily produce high stability values because
of the richness of the clustering structure. In terms of correlation, Subset-
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ting is the best scheme here, followed by Bootstrap/Jittering, Bootstrap, the
(somewhat disappointing) Noise schemes and Jittering.

4.7 Simulation results: summary

Generally, large stability values don’t necessarily indicate valid clusters, but
small stability values are informative. Either they correspond to meaningless
clusters (in terms of the true underlying models), or they indicate inherent
instabilities in clusters or clustering methods.

The two “Jittering alone”-schemes were always outperformed by the other
schemes. The ranking among the other schemes depends on data and cluster-
ing method, so that no clear recommendation can be given. The Noise methods
brought different (but valuable) information to light than the other methods.
The correlations between Bootstrap and Subsetting (not shown) have gen-
erally been 0.8 and higher, so that it may be worthwhile to use one Noise
scheme and one scheme out of Bootstrap, Bootstrap/Jittering and Subsetting
in practice. Subsetting was the best of these three for the two setups with
average linkage; Bootstrap/Jittering was usually a bit better than Bootstrap
alone, but the latter can be applied more generally.

5 Data example

Every point in the data set shown in Figure 1 represents a distribution range
of a species of snails in North-Western Europe. The data have been generated
from a 0-1 matrix indicating whether each of the 366 species (data points)
involved are present on each of 306 grid squares of a grid spanning a map of
North-Western Europe. Clustering of such distribution ranges is interesting
because some theories about the species differentiation process predict the
occurrence (and a particular decomposition) of such clusters. Dissimilarities
between the distribution ranges (i.e., a 366 ∗ 366-dissimilarity matrix) have
been computed by the Kulczynski coefficient, see Hausdorf and Hennig (2003),
Hennig and Hausdorf (2004) for details.

Table 1 gives stability results for the 8 clusters and the noise component
estimated by a normal mixture method with noise as explained in the Intro-
duction and shown in Figure 1. The initial data set consists of dissimilarities.
Therefore, the applied clustering method is in fact a two-step method, the first
step being the application of a multidimensional scaling method. Because the
Kulczynski coefficient is not a metric (Gower and Legendre, 1986), Kruskal’s
nonmetric MDS as implemented in the R-package MASS suggests itself. Af-
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ter we published results from these data first (Hausdorf and Hennig, 2003),
it turned out that this method for the given data suffers from numerical in-
stabilities. Sometimes, numerical precisions of different machines led to quite
different MDS solutions. Therefore, and because Kulczynski dissimilarities for
this kind of data usually don’t contain dangerous outliers, I now prefer the
classical metric MDS for these data. This can be backed up by the stability
results in Table 1, which show that the bootstrapped stability γ̄C is clearly
higher for the classical MDS for all but one cluster and especially for the stable
ones. Note that on my computer Kruskal’s MDS leads to the same clustering
as classical MDS, but I have seen machines on which this doesn’t hold.

Noise and Bootstrap/Jittering cannot be carried out on distance data. There-
fore these schemes have been applied only to the Euclidean data which resulted
from the MDS. This means that they diagnose the stability of the normal mix-
ture with noise clustering, but can’t detect instabilities in the MDS (Jittering
results were not very informative). “Boot(Eu)” gives the corresponding Boot-
strap results, so that the differences between this column and “Boot” illustrate
the instabilities that stem from the MDS.

The stability results confirm the clusters no. 1, 7 and 8, which also have a clear
biogeographical interpretation (1: species concentrated in the eastern Alpes,
7: widespread species present almost everywhere, 8: species concentrated in
the Carpathes). Some further clusters can be interpreted biogeographically (3:
western European, 4: Pyrenean), but unfortunately they don’t turn out to be
stable. A deeper analysis of the clustering results under resampling shows that
sometimes 3 and 4 are put together and sometimes the demarcation between
them is drawn differently, so that there is certainly a pattern corresponding to
3 and 4, but it is very unstable whether this is only one or two clusters (and
if two, which species belongs to which one).

The decision that only two points are assigned to the noise component is
obviously very unstable and it seems to make sense to interpret more species
as not belonging to any meaningful cluster.

Figure 3 provides an illustration why a high stability value doesn’t necessarily
guarantee a meaningful cluster. The clustering shown there has been gener-
ated by complete linkage carried out directly on the Kulczynski dissimilarities
(the MDS is only used for visualisation here). A partition was obtained by
cutting the tree so that there are 5 clusters. This is certainly not a very useful
partition, with 354 out of 366 points belonging to cluster 1. But cluster 1
reaches a bootstrap γ̄C-value 0.9225 (γ̄C for the other four clusters is smaller
than 0.15 - they are obviously instable; other resampling schemes lead to sim-
ilar results). What is stable is the fact that complete linkage with number
of clusters fixed to 5 consistently produces one very large cluster. But this is
rather due to the inflexibility of the method than due to the meaning of this
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Cluster Boot Boot(Kr) Sub Boot(Eu) N0.05/3 N0.2/4 B/J

1 0.769 0.653 0.773 0.743 0.843 0.834 0.785

2 0.439 0.467 0.417 0.42 0.57 0.556 0.457

3 0.516 0.416 0.325 0.494 0.725 0.537 0.532

4 0.59 0.546 0.634 0.596 0.726 0.673 0.591

5 0.502 0.447 0.49 0.471 0.63 0.697 0.536

6 0.56 0.442 0.482 0.494 0.688 0.514 0.501

7 0.819 0.786 0.86 0.869 0.923 0.928 0.905

8 0.867 0.845 0.88 0.845 0.995 0.872 0.932

Noise 0.0768 0.0547 0.0546 0.121 0.223 0.162 0.0684

Table 1
Stability results for normal mixture with noise-solution for snails data; cluster num-
bers as in Figure 1. “Noise” denotes the estimated noise by the clustering method.
“Boot(Kr)” refers to the use of Kruskal’s nonmetric MDS (“Boot” and “Sub” have
been computed with classical metric MDS), “Boot(Eu)”, the noise schemes and
“B/J” have been applied to Euclidean data, i.e., the stability of the MDS has been
taken for granted.

cluster. Generally, inflexible methods can produce very stable but meaningless
clusters, and stability alone is not enough to make a valid pattern.

6 Discussion

The simulation study and the example suggest that the various schemes to
measure the stability of the clusters by computing the average maximum Jac-
card coefficient over resampled (or modified) data sets can be very informa-
tive. Only the “Jittering alone” schemes cannot be recommended. A good
strategy in practice can be the use of one of the schemes Bootstrap, Boot-
strap/Jittering and Subsetting together with one of the Noise schemes. The
number of bootstrap replications B doesn’t have to be very large. A mean of
Jaccard coefficients between 0 and 1 (often with small standard deviations,
at least for the larger means) can be fairly precisely estimated with 50 repli-
cations. In data mining applications with large data sets, even 5 replications
may be informative.

It is important to keep in mind that stability alone is not sufficient to validate
a cluster. Inflexible methods can yield meaningless but stable clusters. There-
fore it is recommended to complement stability analyses with other cluster
validation methods such as visual or subject-matter based validation. On the
other hand, detected instabilities almost always point to serious problems so
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Fig. 3. First two MDS dimensions of snails distribution ranges data set with clus-
tering generated by complete linkage (5-cluster partition).

that instable clusters should not be interpreted or only with caution. Cluster
validity cannot be sufficiently assessed without reference to the aim of clus-
tering, so that even instable clusters may be accepted if there is no need for
stability (for example in “organisational clustering” such as for the location
of storerooms to serve groups of shops).

The issue of stability in cluster analysis is complex. Instabilities can stem from
inherent instabilities in the data, lack of robustness of the clustering method
or just an unfortunate choice of a generally good clustering method which is
inadequate for the data at hand.

An implementation of the suggested resampling schemes will be included in
the R-package FPC available as all other packages mentioned in this article
on CRAN (www.R-project.org) in the near future.
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