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1 Introduction

The purpose of this paper is to give a brief survey the implications of the theories
of modern physics for the doctrine of determinism. The survey will reveal a curious
feature of determinism: in some respects it is fragile, requiring a number of enabling
assumptions to give it a fighting chance; but in other respects it is quite robust and
very difficult to kill. The survey will also aim to show that, apart from its own
intrinsic interest, determinism is an excellent device for probing the foundations of
classical, relativistic, and quantum physics.

The survey is conducted under three major presuppositions. First, I take a realistic
attitude towards scientific theories in that I assume that to give an interpretation of
a theory is, at a minimum, to specify what the world would have to be like in order
for the theory to be true. But we will see that the demand for a deterministic
interpretation of a theory can force us to abandon a naively realistic reading of the
theory. Second, I reject the “no laws” view of science and assume that the field
equations or laws of motion of the most fundamental theories of current physics
represent science’s best guesses as to the form of the basic laws of nature. Third, I take
determinism to be an ontological doctrine, a doctrine about the temporal evolution
of the world. This ontological doctrine must not be confused with predictability,
which is an epistemological doctrine, the failure of which need not entail a failure of
determinism. From time to time I will comment on ways in which predictability can
fail in a deterministic setting. Finally, my survey will concentrate on the Laplacian
variety of determinism according to which the instantaneous state of the world at any
time uniquely determines the state at any other time.

The plan of the survey is as follows. Section 2 illustrates the fragility of determin-
ism by means of a Zeno type example. Then sections 3 and 4 survey successively the
fortunes of determinism in the Newtonian and the special relativistic settings. The
implications of ordinary non-relativistic quantum mechanics and relativistic quantum
field theory for determinism are taken up on section 5. Determinism in classical gen-
eral relativistic physics is discussed in section 6. Section 7 contains some, necessarily
speculative, comments on how determinism may fare in a quantum theory of gravity.
Conclusions are presented in section 8.
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2 Zeno’s revenge: an illustration of the fragility of
determinism

Suppose that the world is populated with billiard balls. And suppose that the laws of
motion for this world consist precisely of the specifications that when two balls collide
they obey the standard laws of elastic impact and that between collisions they move
uniformly and rectilinearly. And finally suppose that atomism is false so that billiard
balls of arbitrarily small size can exist. Then à la Zeno we can string a countably
infinite number of unit mass billiard balls in the unit interval. Assume that at t = t∗

all the balls in this infinity are at rest and that coming from the right is a cue ball of
unit mass moving with unit speed (see Fig. 1a). In a unit amount of time an infinite
number of binary collisions take place, at the end of which each ball is at rest in the
original position of its left successor in the series (see Fig. 1b).1 The time reverse of
this process has all the balls initially at rest. Then suddenly a ripple goes through
the string, and the cue ball is ejected to the right. Futuristic Laplacian determinism
is violated since it is consistent with the laws of elastic impact that the string does
not self-excite but remains quiescent for all time (see Laraudogoitia (1996)).2

I see no non-ad hoc way to save determinism in this setting. If we cherish de-
terminism we can only thank the Creator that he did not place us in a world where
atomism is false and where Zeno can have his revenge.

3 Determinism in Newtonian physics

One theme that will be sounded again and again in this section is that classical space-
times provide unfriendly and even hostile environments for determinism. A related
theme is that determinism in classical physics is inextricably linked to basic philo-
sophical issues about the nature of space, time, and motion. To illustrate the latter
theme I assert that Laplacian determinism implies that it cannot be the case that both
(i) space is “absolute” in the sense that it is a “container” for bodies (e.g. shifting all
the bodies in the universe one mile to the east results in a new state distinct from the
original state), and (ii) all motion is the relative motion of bodies. The argument is
simple. Assumption (ii) implies that only relative particle quantities, such as relative
particle positions, relative particle velocities, relative particle accelerations, etc., and
not absolute position, velocity, acceleration, etc. are well-defined quantities. The ap-
propriate classical spacetime setting that supports this conception of motion has three
elements: planes of absolute simultaneity, which reflect the observer-independent na-
ture of co-existence; a metric (assumed to be E3) on the instantaneous three-spaces,
which measures the spatial distance between simultaneous events; and a time met-
ric, which measures the lapse of time between non-simultaneous events.3 But if (i) is
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maintained in this spacetime setting, not even a weakened form of Laplacian deter-
minism can hold for particle motions. In coordinates adapted in the natural way to
the spacetime structure, the symmetries of the spacetime have the form

x → x′ = R(t)x + a(t) (1a)
t → t′ = t + const (1b)

where R(t) is a time dependent orthogonal matrix and a(t) is an arbitrary smooth
function of time. We can choose a(t) and R(t) such that a(t) = 0 = R(t) for t ≤ t∗

but a(t) 6= 0 or R(t) 6= 0 for t > t∗. Since a symmetry of the spacetime should be a
symmetry of the laws of motion, the image under (1) of a solution of the equations of
motion should also be a solution. But for the chosen forms of a(t) and R(t) the two
solutions will agree for all t ≤ t∗ but will disagree for t > t∗ since the two solutions
(as indicated by the solid and the dashed world lines of Fig. 2) entail different future
positions for the particles in the container space.

To save determinism one can reject (i) and claim that the alleged violation of
determinism is spurious on the grounds that once the container view of space is
rejected there is no temptation to see the dashed and solid lines of Fig. 3 as different
future histories rather than as different representations of the same history. To make
good on this point of view it would have to shown how to concoct deterministic and
empirically adequate equations of motion that are formulated entirely in terms of
relative particle quantities. As the history of mechanics shows, this is not an easy
row to hoe. But that is a story I don’t have time to recount here.

The alternative way to save determinism is to reject (ii) and beef up the structure
of the spacetime by adding, say, inertial structure to make well-defined quantities like
absolute acceleration. This additional structure linearizes the transformations (1) to

x → x′ = Rx + vt + c (2a)
t → t′ = t + const (2b)

where R is now a constant orthogonal matrix and v and c are constants. The trans-
formations (2) are, of course, the familiar Galilean transformations. In this space-
time setting (aka neo-Newtonian spacetime) the above construction that undermines
Laplacian determinism doesn’t work since if a transformation from (2) is the identity
map for all t ≤ t∗ it is the identity map for all time.

However, in neo-Newtonian spacetime other threats to determinism arise. Con-
sider Newtonian gravitational theory written as a field theory. The gravitational
potential ϕ is governed by the Poisson equation
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∇2ϕ = 4πρ (3)

where ρ is the mass density. The gravitational force acting on a massive test body
moving in the Newtonian gravitational field is proportional to−∇ϕ. Even the weakest
form of Laplacian determinism fails because if ϕ is a solution to (3), then so is
ϕ′ = ϕ + f , where f(x, t) is any function linear in x. By choosing f(x, t) to be 0 for
all t ≤ t∗ but different from 0 for for t > t∗ we produce solutions for which the test
body feels exactly the same gravitational force and has exactly the same motion in
the past but feels different forces and, hence, executes different motions in the future.
The non-deterministic solutions can be killed by excluding the homogeneous solutions
to (3). This exclusion amounts to a declaration that the Newtonian gravitational field
has no degrees of freedom of its own and is only an auxiliary device for describing
direct particle interactions. Let us then turn to the pure particle description of
Newtonian gravitation.

Consider a finite number of point mass particles interacting via Newton’s 1/r2

force law. Let’s simply ignore problems about collision singularities by focusing on
solutions that are collision free. Nevertheless, after many decades of work, it has been
established that non-collision singularities can occur; that is, drawing on the infinitely
deep 1/r potential well, the particles can accelerate themselves off to spatial infinity
in a finite amount of time (see Xia (1992)). The time reverse of such a process is
an example of “space invaders,” particles appearing from spatial infinity without any
prior warning. To put it crudely, you can’t hope to have Laplacian determinism for
open systems, and for the type of interaction under discussion, the entire universe is
an open system.

To save determinism from this threat three tacks can be taken. The first, and
least interesting, is to impose boundary conditions at spatial infinity to rule out space
invaders. This smacks of making determinism true by making a postulate of wishful
thinking. The second is to maintain the idealization of point mass particles while
adding to Newton’s 1/r2 attractive force a short-range repulsive force which doesn’t
affect predictions for particles with large spatial separations but which is such that
the total potential well is no longer infinitely deep. One would then have to show that
the combined force law gives rise to a well-posed Laplacian initial value problem. I am
not aware of any results to this effect, but I see no in-principle obstacles to achieving
them. The third alternative is to move from point mass particles to particle with a
finite radius and to postulate that when two particles collide they obey, say, the laws
of elastic impact. Even if it is assumed that atomism is true in a form that excludes
the Zeno examples of section 1, this tack can run aground on at least two shoals. (a) If
triple collisions occur the result is generally underdetermined since there will be more
unknowns than there are governing equations. (b) Even if attention is restricted to
binary collisions the uniqueness of solutions can fail if an infinite number of particles
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are present in the universe. Turn off the gravitational interactions of the particles and
suppose that they interact only upon contact. Lanford (1974) constructed a solution4

in which all the particles are at rest for all t ≤ t∗ but for any t > t∗ all but a finite
number of particles are in motion. Thus, the equations of motion don’t determine
whether a quiescent past is to be extended into the future by a “normal” solution in
which the particles continue to be quiescent or by an “abnormal” solution in which the
particles appear to self-excite. Determinism can be saved either by banning infinities
of particles or by imposing boundary conditions at infinity which prevent a too rapid
increase in the velocities of particles as one goes out to infinity. Either move smacks
of making the world safe for determinism by fiat. A more interesting saving move
would be to show that analogues to Lanford’s solution cannot be constructed if elastic
collisions are replaced by a smooth short range repulsive force. I am not aware of any
results to this effect.

Let us now leave particles to consider pure field theories. A familiar field equation
in Newtonian physics is the Fourier heat equation

∇2Φ = κ
∂Φ
∂t

(4)

where κ is the coefficient of heat conduction. That (4) fails to be invariant under
the Galilean transformations (2) is no cause for concern since the Φ-field is supposed
to a property of a medium, and this medium picks out a distinguished rest frame.
What is of concern is that disturbances in the Φ-field are propagated infinitely fast.
As a result, (4) admits smooth solutions Φ∗ with the by now familiar determinism
wrecking property that Φ∗ = 0 for all t ≤ t∗ but is non-zero for t > t∗–the field
theoretic version of space invading particles. Because of the linearity of (4), if Φ is a
solution, so is Φ+Φ∗ . Once again determinism can be saved by pairing down the set
of solutions by imposing boundary conditions at infinity. Perhaps a more interesting
move is to declare that heat is nothing but the kinetic energy of molecules and, thus,
that the indeterminism in (4) is not disturbing since (4) is not a fundamental law.
The fate of determinism then reverts to properties of the fundamental laws, which
are taken to be the laws governing particle motion. Even if one is inclined to follow
this line, it should not be allowed to disguise the disturbing point that the Newtonian
setting is inimical to deterministic field laws. The natural language for formulating
laws governing field quantities is that of partial differential equations. But the type of
pde that admits existence and uniqueness for a Laplacian initial value problem are of
the hyperbolic type, and hyperbolic pdes require a null cone structure for spacetime
that exists naturally in the relativistic setting but can only be artificially introduced
in the Newtonian setting.

Although it is outside of my main focus, I will close this section with a few
comments on epistemological matters. Ontological determinism is compatible with
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sensitive dependence on initial conditions. When measurement procedures for ascer-
taining the values of state variables are not error free–as would seem to be the case
for any actual measurement–sensitive dependence on initial conditions means that
the link between determinism and prediction is weakened and even broken. Further-
more, a strong form of sensitive dependence on initial conditions (positive Liapunov
components) plus the compactness of phase space implies “chaos” in the form of
higher order ergodic properties, such as the Bernoulli property (see Belot and Ear-
man (1997)), which means that on a macroscopic scale a deterministic system can
behave in a seemingly random and stochastic fashion. This raises the issue of whether
and how critters such as us can be justified in believing that the stochastic behav-
ior we are observing is due to indeterminism in the form of an irreducibly stochatic
element or to deterministic chaos (see Suppes (1993)).

4 Determinism in special relativistic classical physics

The prospects for determinism brighten considerably when we leave classical space-
times for Minkowski spacetime, the spacetime setting for special relativistic theories.
The combination of the null cone structure for Minkowski spacetime plus the prohibi-
tion of superluminal propagation kills space invaders and solves in a non ad hoc way
the open systems problem. Fudge free examples of Laplacian determinism–no bound-
ary conditions at infinity needed–are now possible. Indeed, physicists are so convinced
that Laplacian determinism is the norm in this setting that they sometimes use it to
draw a distinction between fundamental and non-fundamental fields. A “fundamen-
tal field” (such as the source-free electromagnetic field and the scalar Klein-Gordon
field) is one whose field equations (respectively, the source-free Maxwell equations
and the massive Klein-Gordon equations) have a Laplacian initial value problem that
admits global existence and uniqueness proofs: given the appropriate initial data on a
Cauchy surface (a spacelike hypersurface which intersects each timelike curve without
end point) there exists one and only one global solution (i.e. a solution valid for all
of Minkowski spacetime) whose restriction to the chosen Cauchy surface agrees with
the given initial data. The failure of field equations to admit even local existence and
uniqueness proofs is taken as an indication of an incompleteness of description. The
failure of global existence and uniqueness–say, because the solutions develop singu-
larities after a finite amount of time–is taken as an indication of an illicit idealization
of description.

A feel for why the relativistic setting is friendlier to Laplacian determinism than
the Newtonian setting can be gained by introducing the notion of the domain of
dependence D(Σ) of some subset Σ ⊂ M of points Σ of the spacetime manifold M .
The future (respectively, past) domain of dependence D+(Σ) (respectively, D−(Σ)) is
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defined as the set of all p ∈ M such that every past (respectively, future) inextendible
causal curve through p intersects Σ. The total domain of dependence D(Σ) of Σ
is then defined as D+(Σ) ∪ D−(Σ). The idea is that, if the laws of physics are
cooperative, the state on Σ suffices to fix the state throughout D(Σ); but for a point
q /∈ D(Σ) it is hopeless to try to determine the state at q from the state on Σ
since events at q can be influenced by a causal process that does not register on
Σ. Using D(Σ) we can give a general definition of a Cauchy surface that applies to
general relativistic spacetimes (to be discussed in section 6) as well as to Minkowski
spacetime and also–with suitable allowances–to classical spacetimes: it is a global
time slice Σ (i.e. a spacelike hypersurface without edges) such that Σ is achronal (i.e.
is not intersected more than once by any future directed timelike curve) and such that
D(Σ) is the entire spacetime M . The t = const level surfaces of any inertial time
t for Minkowski spacetime are, of course, Cauchy surfaces. But the level surfaces of
absolute simultaneity of Newtonian spacetime are not Cauchy (see Fig. 3); indeed,
in this case D(Σ) = Σ for Σ as t = const.

If determinism fares better in Minkowski spacetime, prediction certainly does
not. The basic problem is that the very null cone structure that helps to make
the special relativistic setting friendly to determinism makes it impossible to acquire
the information needed for a prediction prior to the occurrence of the events to be
predicted. To make this precise a few additional definitions are needed. Define the
causal (respectively, chronological past) of a point p ∈ M , J−(p) (respectively, I−(p))
to be the set of all q ∈ M such that there is a future directed causal (respectively,
timelike) curve from q to p. Then for a point p ∈ M take the domain of prediction
P (p) of p to be the set of all q ∈ M such that (i) every past inextendible causal
curve through q enters J−(p), and (ii) I−(q) * I−(p).5 Condition (i) is needed to
assure that an observer at p can, in principle, have causal access to all the processes
that can influence the events at q, and condition (ii) is needed to assure that from
the perspective of an observer at p the events to be predicted at q have not already
occurred. The reader can now verify that for any point p of Minkowski spacetime,
P (p) = ∅.

5 Determinism in non-relativistic quantum mechan-
ics and relativistic quantum field theory

To illustrate how using determinism to probe the foundations of physics can lead
to interesting results, consider the following little puzzle. No field equation for a
scalar field ψ that is first order in time and Galilean invariant can be Laplacian
deterministic. For we can choose a Galilean transformation (2) with the property
that it is the identity on the slice t = 0 but non-identity for t > 0. By Galilean
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invariance this transformation will carry a solution of the field equation to another
solution, but the new solution has the same initial data ψ(x, 0) as the original solution
but different values for t > 0. The puzzle concerns the Schrödinger equation

Ĥψ = i~∂ψ
∂t

(5)

where Ĥ is the Hamiltonian operator. For a particle with mass m moving in an
external potential V (x), Ĥ = −~2

2m ∇
2 + V . This equation seems to contradict what

was said above since it is first order in time, is (presumably) Galilean invariant, and
is Laplacian deterministic in that ψ(x, 0) uniquely determines ψ(x, t) for t > 0. The
resolution is that ψ does not behave like a scalar under a Galilean transformation. In
fact, the transformation properties of ψ needed to guarantee Galilean invariance of
(5) implies a “superselection rule” for mass which means that states corresponding
to different mass cannot meaningfully be superposed.

In some respects quantum systems behave more deterministically and more pre-
dictably than their classical counterparts. As an example of the former, consider
again the problem of a finite number of point mass particles interacting via New-
ton’s 1/r2 law. The quantum Hamiltonian operator Ĥ for this system is (essentially)
self-adjoint, which implies that the evolution operator Û(t) := exp(−i~Ĥ) is unitary
and is defined for all t. QM has magically smoothed away the both the collision and
non-collision singularities of classical mechanics! This magic does not work for all of
the singularities of classical mechanics. For example, one could try to overcome the
Lanford type singularity discussed above in section 3 for infinite billiards by model-
ing the collisions of the balls with a short range repulsive force and then quantizing.
Unfortunately, there is no well-defined quantum dynamics for such a system if the
repulsive force is sufficiently strong (see Radin (1977)).

QM also overcomes one form of unpredictability that haunts classical mechan-
ics since, in one sense, QM does not recognize any sensitive dependence on initial
conditions. From the linearity and unitarity of the time evolution operator, it fol-
lows that ||ψ1(0) − ψ2(0)|| = ||U(t)(ψ1(0) − ψ2(0))|| = ||U(t)ψ1(0) − U(t)ψ2(0)|| =
||(ψ1(t) − ψ2(t))||: in words, if at t = 0 two states are nearby, they remain nearby
for all t > 0 in the Hilbert space norm || • ||. This simple fact has caused some
consternation since it isn’t evident how, consistent with the correspondence principle,
chaos can emerge from QM in some appropriate classical limit (see Belot and Earman
(1997)).

None of the remarks so far touches the core problem of determinism in QM. But
that problem is difficult to discuss, or even to formulate, because it is bound up with
a contentious issue about the nature of quantum observables; namely, under what
conditions do the quantum observables, as represented by self-adjoint operators on a
Hilbert space, take on definite values? One answer endorsed by standard textbooks
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on QM is that an observable A takes the definite value a at t iff the state ψ(t) is
an eigenstate of the operator Â with eigenvalue a.6 This eigenvector-eigenvalue rule–
or any value assignment rule which says that an observable has a specified definite
value just in case the state vector has some specified characteristic–together with
deterministic Schrödinger evolution for ψ would mean that Laplacian determinism
holds for quantum systems.7

The well-known difficulty with the eigenvector-eigenvalue value assignment rule is
that it implies the unacceptable result that after an interaction with an object sys-
tem, the pointer on the dial of a measuring instrument that couples to the observable
whose value for the object system we wish to ascertain, has no definite value if the
initial state of the object system was a superposition of eigenstates of the observable
being measured. One attempt to overcome this embarrassment involves “state vector
reduction”: at some juncture during the measurement process, Schrödinger evolution
ceases and the state vector jumps into a simultaneous eigenstate of the object observ-
able and the macro pointer-position observable that serves as an indicator of the value
of the object observable. The violation of the Schrödinger equation is, of course, a
violation of Laplacian determinism; but statistical determinism is maintained by the
assumption that the propensity of the state vector to collapse into a given eigenstate
is governed by the Born rule probability calculated from the state vector just before
collapse.

The collapse solution to the measurement problem comes at a high cost. The
original theory with an embarrassing consequence has been replaced by a non-theory:
the objection is not simply that the state vector reduction is a miracle–a violation
of the Schrödinger equation–but that since “measurement” is a term of art whose
application is not specified by the theory, exactly when and under what circumstances
the reduction takes places is left dangling. Some physicists have proposed to bridge
this gap by describing a mechanism for state vector reduction by means of a non-
linear wave equation or a stochastic differential equation (see Ghirardi et al. (1986)
and Pearle (1989)). The extant state vector reduction schemes are non-deterministic;
but it is an open question whether they must have this property.

The major alternative route to a solution of the measurement problem involves
a modification of the eigenvector-eigenvalue value assignment rule rather than of the
state vector dynamics. The different paths that branch off this no-collapse route
can lead to quite different conclusions about determinism, as is illustrated by the
Bohm interpretation, the modal interpretations, and the many worlds/many minds
interpretations. According to the first, particles always have definite positions, and
these positions evolve deterministically via an equation of motion that is parasitic
on the Schrödinger evolution of the state vector. Assuming that all laboratory mea-
surements can be reduced to recording positions, the Bohm interpretation offers a
deterministic explanation of how and when other quantum mechanical observables,
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such as spin, take on definite values. It is shown that the orthodox quantum me-
chanical probabilities are recovered for all times on the assumption that the initial
probability distribution at t = 0 over particle positions q is equal to the quantum
mechanical prescription |ψ(q, 0)|2.

By contrast, modal interpretations don’t seek to preserve determinism but settle
for the more modest aim of breaking the eigenvector-eigenvalue link open wide enough
to make sure that measurements have definite outcomes. This aim is accomplished by
a value assignment rule which makes use of a special decomposition of the vector for
composite systems (the “biorthogonal decomposition”). This decomposition identi-
fies a privileged class of observables which are said to possess definite values without
saying which particular values are possessed. Some modal theorists want to add to
their value assignment rule a dynamics for possessed values. There is a plethora of
such dynamical schemes (see Dickson (1998)). Typically these schemes are not deter-
ministic. However, a recent proposal by Ax and Kochen (1999) restores determinism
by construing the phase of the state vector as an additional hidden parameter–the
different unit vectors in a ray of Hilbert space are taken to correspond to different
members of an ensemble, and the apparent indeterminism of QM is due to a random
distribution of initial phases.

Many worlds interpretations come in two main versions: the literal version accord-
ing to which a measurement event corresponds to a physical splitting of the world
+ observer (qua physical object), and the figurative version according to which it is
not the physical world but the mind or mental state of the observer that splits. On
the literal version determinism fails if there is a fact of the matter about which post-
measurement observer (qua physical object) is identical with the pre-measurement ob-
server. By the same token, measurement is not an indeterministic process if geniden-
tity of observers is denied. A parallel conclusion holds for the many minds version,
with minds in place of bodies. It is hard to take any of this seriously, not so much be-
cause of the metaphysical extravagances, but because it is not at all evident that the
many worlds/many minds interpretation does resolve the measurement problem: it
doesn’t explain exactly when and under what circumstances the splitting takes place,
and it doesn’t explain why the splitting takes place in some bases of the Hilbert space
but not others.

There is no easy way to summarize the status of determinism in QM, but two
points need to be underscored. The proponents of the Bohm interpretation claim that
it recovers all quantum mechanical predictions, statistical and non-statistical, about
experiments. If this is correct, it means that in a world of ordinary non-relativistic
QM the fate of Laplacian determinism would have to be decided by non-empirical
factors. The second remark concerns the claim, sometime heard, that determinism
is defeated by various no-go results for hidden variables–e.g. those of the Kochen-
Specker type and those that flow from the Bell inequalities. What these no-go results
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show is that, consistent with certain plausible mathematical restrictions on value
assignments and/or with the statistical predictions of QM, some set of quantum ob-
servables cannot be assigned simultaneously definite values lying in the spectra of
these observables. By itself this hardly defeats Laplacian determinism; nor is it even
a terribly surprising conclusion–after all, many classical quantities are best construed
as having a dispositional character in that they only take on definite values in limited
contexts. That it is impossible to view the values of quantum observables as su-
pervening on more fundamental quantities whose temporal evolution is deterministic
would require a different kind of proof, a proof whose existence is highly dubious in
view of the example of the Bohm interpretation.

We saw that moving classical mechanics from the Newtonian setting to the special
relativistic setting improves the fortunes of determinism. The same cannot be said
for quantum mechanics; for the fortunes of determinism in QM are bound by the
knots of the measurement problem and the value assignment problem, and in the
relativistic setting these knots are drawn even tighter. State vector reduction is
supposed to take place instantaneously. Transposing this notion to the relativistic
setting seems to require either breaking Lorentz invariance or relativizing states to
spacelike hyperplanes (see Fleming (1996)), neither of which is an attractive option.
The relativistic setting is also unkind to the modal interpretation because it is difficult
to reconcile the value assignment rule of this interpretation with Lorentz invariance
(see Dickson and Clifton (1997)). Nor does the Bohm interpretation fit comfortably
with relativistic quantum field theory (QFT) since the ontology of this theory is
best construed not in terms of particles but in terms of local field observables. The
general idea of Bohmian dynamics can be applied to observables other than particle
position. But in the absence of a demonstration that in measurement contexts the
field observables chosen for Bohmian treatment will exhibit the localization needed
to explain measurement outcomes, one of the major reasons for finding the Bohm
interpretation attractive has been lost (see Saunders (1999)). Furthermore, when
QFT is done on curved spacetime the dynamics for the quantum field may not be
unitarily implementable (see Arageorgis et al. (2001)), making it harder to construct
a field theoretic analogue of the Bohm dynamics for particle position.

6 Determinism in classical general relativistic physics

In Einstein’s general theory of relativity (GTR) we have to deal not with one space-
time setting but many since different solutions to the Einstein gravitational field
equations (EFE)

Rab −
1
2
Rgab = κTab (6)
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give different spacetime structures. (Here gab is a Lorentz signature metric, Rab is
the Ricci tensor (which is constructed from gab and its derivatives), R := Tr(Rab) is
the Ricci curvature scalar, and Tab is the stress-energy tensor (which describes the
distribution of the matter-energy).) A model of GTR is a triple M, gab, Tab, where
M is a four-dimensional manifold (without boundary) and the metric gab is defined
on all of M . A dynamically possible model is one that satisfies (6) for all points of
M . (Additionally, one may want to impose on Tab various so-called energy conditions
that guarantee, for example, non-negative energy densities.)

To first approximation we can take a spacetime M, gab of a dynamically possible
model as a fixed background on which a test field propagates. And we can ask whether
this propagation exhibits Laplacian determinism. For some spacetimes coming from
dynamically possible models of GTR the issue of global Laplacian determinism for a
test field cannot even be stated since there may not exist any global time slices, as
is the case with Gödel spacetime. In other cases the issue can be posed but has a
negative answer because the spacetime admits global time slices but none of them is
a Cauchy surface, as illustrated by the (covering space) of anti-de Sitter spacetime
(see Fig. 4) where, in effect, the space invaders of Newtonian physics have returned
in a general relativistic guise. Here again we have an illustration of the moral that
determinism succeeds only with a little–or a lot–of help from its friends. Here the
friends must find a non-question begging way to exclude such pathologies from the
causal structure of general relativistic spacetimes.

Treating spacetime as a fixed backdrop against which non-gravitational physics
takes place is inimical to the spirit of GTR which implies that spacetime structure is
dynamical. Strictly speaking, the evolution of the test field has to be treated as part
of the general problem of the coevolution of the metric and matter fields as governed
by the coupled Einstein-matter field equations. For sake of simplicity I will initially
concentrate on the initial value problem for the source-free (Tab ≡ 0) EFE

Rab −
1
2
Rgab = 0 (7)

Specifying the metric field and its normal derivative on some spacelike slice Σ does
not suffice to to determine, via (7), the values of the field at points of M to the future
or the past of Σ. Indeed, specifying gab on Σ and the the entire causal past of Σ does
not suffice to determine gab at points to the future. For if M, gab is a solution to the
(7) and d : M → M is any diffeomorphism of M, then M,d∗gab is also a solution.8 By
now you know the trick: choose d such that d = id for all points of M on or to the
past of Σ but d 6= id for points of M to the future of Σ. Thus we get two solutions of
(7) such that the metric fields are the same in the past but different in the future.9

Determinism can be saved by requiring of it only that the values of genuine physical
magnitudes or “observables” be determined, via the field equations, from initial data.
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What then are the observables of GTR? If we have faith in determinism we can close
the circle and require that whatever counts as an observable be such that its future and
past values be determined by appropriate initial data (see Bergmann (1961)). From
the above construction we see that the observables of GTR must be diffeomorphically
invariant quantities.10 This means that none of the familiar local field quantities–such
as the metric field or scalar fields formed from the metric field–are observables. And
in some situations, such as solutions with compact time slices, not even quasi-local,
quantities such as the integral of the Ricci curvature over a time slice, are observables.

Here I want to emphasize the contrast between the Newtonian and general rela-
tivistic cases. In the Newtonian case it was possible to save determinism from the
kind of threat under discussion either by abandoning the notion that the spacetime
manifold is a container for events or alternatively by retaining this notion and adding
sufficient absolute background structure to the spacetime. But in the general rela-
tivistic setting which eschews absolute objects, there is no choice; making GTR a safe
haven for Laplacian determinism necessitates a radical revision of the surface level
ontology and ideology of GTR as a theory of tensor fields on manifolds. One of the
disconcerting features of the revision is that it seems to entail a completely frozen
block universe–not only is there no shifting nowness but there is a total absence of or-
dinary change since the values of observables of GTR do not change with time (see my
(2001)). So as not to side track the discussion into these interesting but controversial
matters, I will continue to discuss determinism in GTR in terms of the vocabulary of
the surface level structure, which means that the statement of uniqueness results will
have to contain an escape clause of “up to a diffeomorphism.”

Suppose then we are given a three manifold Σ and and initial data on Σ for the
source-free gravitational field. Does this data fix an appropriately unique solution of
the source-free field equations (7)? The answer is yes, at least locally: there exists
a unique (up to diffeomorphism) maximal development M, gab of the initial data for
which Σ is a Cauchy surface; that is, M, gab cannot be extended as a solution to the
source free equations in any way that keeps Σ a Cauchy surface.11

Extending this local result, which gives no information about the size of the max-
imal solution for which Σ is a Cauchy surface, to a global result–especially to the
very strong global result that requires the unique maximal development for which the
initial value hypersurface is a Cauchy surface to be maximal simpliciter–can run into
various kinds of problems. First, we might have made a poor choice of the initial value
hypersurface; for instance, we might have chosen Σ to be the spacelike hyperboloid
of Minkowski spacetime pictured in Fig. 5. Obviously the maximal development of
the initial data, induced on Σ by the Minkowski metric, for which Σ is a Cauchy
surface–namely D(Σ)–can be properly extended as a solution of the source-free field
equations. Second, and more interestingly, there might be no good choice for the
initial value surface, as in the case of an inextendible spacetime which is a solution
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of (7) and which does not possesses any global Cauchy surfaces. This is disturbing
possibility can arise for two reasons. (a) The causal structure might be like that
illustrated in Fig. 4. (b) A singularity might develop in a finite time from regular
initial, as is indicated schematically in Fig. 6. Singularities can arise, of course, in
the Newtonian and special relativistic settings, but because of the existence of a fixed
background metric these singularities are easily characterizable–e.g. they occur at
regions of spacetime where some physical field “blows up” or becomes discontinuous.
But in the general relativistic setting there is no fixed background metric, and the
singularities at issue are singularities in the metric structure of spacetime itself. Since
by definition a spacetime is a pair M, gab where gab is defined at all points of M , we
cannot think of singularities as objects that have spacetime locations. Attempts have
been made to characterize spacetime singularities in GTR as boundary points that
are attached to the manifold M ; but these constructions all seem to involve coun-
terintuitive features–e.g. the boundary points may not be Hausdorff separated from
interior points. And to make things even more complicated, the singularities that lead
to a breakdown of Laplacian determinism need not be of the intuitive sort involving,
say, a “blow up” or wild oscillation of curvature scalars. In fact, one could simply
dub any spacetime pathology which prevents moving from the local to global versions
of Laplacian determinism in GTR a “naked singularity.” Then the task would be to
classify and characterize these pathologies.12

Roger Penrose’s cosmic censorship conjecture surmises that the pathologies of
naked singularities are not as bad in practice as they might seem in principle. Cos-
mic censorship comes in two versions, weak and strong. The weak version asserts
that, generically, if naked singularities do develop from the gravitational collapse of
suitable matter fields, then they will be contained inside black holes so that those
fortunate observers who remain outside the black hole event horizon cannot “see” the
singularity and are, thus shielded by the one-way causal membrane of the horizon
from whatever non-deterministic effects emanate from the singularity.13 The strong
version of cosmic censorship conjectures that, generically, naked singularities do not
develop from suitable matter fields, so that even the unfortunate observers who fall
into a black hole do not “see” the singularity. The the strong and weak versions
are illustrated respectively in Figs. 7a and 7b, which represent back hole formation
in spherical gravitational collapse.14 The weasel phrases “generically” and “suitable
matter fields” are essential to warding off potential counterexamples. For instance,
the weak version of cosmic censorship can be violated using collapsing dust matter.
But it seems wrong to lay the blame for the resulting naked singularity on the process
of gravitational collapse itself since even in Minkowski spacetime singularities in dust
matter fields can develop from regular initial data. Thus, “suitable” matter fields
should be restricted to the “fundamental” matter fields for which global existence
and uniqueness properties hold in Minkowski spacetime (see section 4). But this re-
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striction is not by itself enough to save weak cosmic censorship since special initial
configurations of the Klein-Gordon field (certainly a fundamental field) can lead to
naked singularities in gravitational collapse. Making precise the notion of non-special
or generic initial conditions would require either a suitable measure on the space of
solutions to Einstein’s equations (in which case generic = except for a set of measure
zero) or a suitable topology (in which case generic = complement of a set whose clo-
sure has empty interior). Since it is not clear what the relevant measure or topology
is, the cosmic censorship conjecture is also unclear. Despite these difficulties however,
a growing body of inductive evidence–for example, from the stability of black holes–
suggests that some interesting form of weak cosmic censorship is probably true (see
Wald (1998)). Opinion on the strong cosmic censorship conjecture is more mixed, in
part because it is harder to state in a form that is both general and free of obvious
counterexamples. Proving a general form of either the weak or strong version seems to
be beyond the capabilities of present techniques for investigating the global existence
and uniqueness of the solutions to non-linear pdes.

Supposing that cosmic censorship fails, it remains unclear how the fortunes of de-
terminism are affected. Classical GTR places no restrictions on what non-deterministic
influences can emerge from the naked singularities. But this does not mean that any-
thing goes. If we are optimistic, we can suppose that even at the pre-quantum level
there are additional lawlike regularities, beyond those codified in Einstein GTR, that
govern these influences. And a quantum theory of gravity may add further restrictions
or, even better, get rid of the singularities altogether.

In closing this section I will note that while the fortunes of determinism becomes
more perilous in passing from special to general relativistic physics, the fortunes
of prediction perk up. For example, in various general relativistic spacetimes it is
possible to have non-empty domains of prediction; indeed, it is possible for there to
be points p ∈ M such that P (p) = M (see Hogarth (1993)).

7 Implications of quantum gravity

Among the challenges facing physics in the 21th century, that of producing a quan-
tum theory of gravity is one of the most important and the most difficult. At the
present moment there are two leading approaches: the loop formulation, which is a
version of the canonical quantization program that aims to produce a quantum theory
of gravity by quantizing GTR, and string theory, which does not start with classical
GTR but seeks to explain it as an outcome of some low energy limit of vibrating
string or branes. Both programs hold out the hope that the singularities of classical
GTR will be smoothed away, which would be a boon for determinism. This hope is
fueled by the ability of the quantum to smooth away classical singularities. In section
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5 we saw a demonstration of this ability at work in ordinary QM which smooths
away some of the collision and non-collision singularities of Newtonian point mass
mechanics. Another demonstration comes from the fact that quantum particles shot
at the timelike singularities (which violate comic censorship) of some general rela-
tivistic spacetimes have a well-defined temporal evolution (see Horowitz and Marolf
and (1995)). However, there is an argument to the effect that we shouldn’t hope
that quantum gravity will smooth away all of the singularities of classical GTR; for
if, for instance, a quantum theory gravity smoothed away the singularity of the neg-
ative mass Schwarzschild solution, the theory would admit a non-singular solution
with an unstable ground state, which is a physical disaster (see Horowitz and Myers
(1995)). String theorists can remain optimistic on the basis of the fact that their
theory must entail a stable ground state; thus, insofar as string theory smooths away
classical singularities, it must also contain a mechanism that excludes solutions such
as a smoothed version of negative mass Schwarzschild (see Johnson et al. (2000)).

In the absence of a completed theory of quantum gravity, some insight into what
may result from combining GTR and QM can be obtained from attempting to do QFT
on a curved spacetime background. In even the simplest case of a linear scalar field,
determinism is crucial to the attempt: the standard construction of the algebra of
field observables relies on the deterministic character of (real) solutions to the Klein-
Gordon equation, which holds when the spacetime background is globally hyperbolic
(= admits a Cauchy surface). When global hyperbolicity fails, there is no accepted
procedure for constructing the field algebra, and when the reason for failure of global
hyperbolicity is the presence of nasty causal structure–such as closed timelike curves–
there may exist no field algebra consistent with the natural demand that the algebra,
when restricted to sufficiently small globally hyperbolic neighborhoods, should agree
with the algebra obtained by applying standard construction to those neighborhoods
(see Fewster (1999)).

The next step up the ladder to quantum gravity involves the so-called semi-
classical approximation in which the expectation value of the (renormalized) stress-
energy tensor for quantum fields on a curved spacetime is inserted on the right hand
side of the EFE (6), and the backreaction effects on the spacetime metric are cal-
culated. Hawking found that the presence of quantum fields means that black hole
is not black but radiates with a thermal spectrum and that the backreaction effect
of this Hawking radiation is to cause the black hole to evaporate (see Wald (1994)).
If the evaporation is complete the likely outcome–insofar as it can be described in
terms of classical general relativistic spacetime structure–is a naked singularity (see
Fig. 8). As a consequence a pure quantum state at the time Σ1 before black hole
formation evolves into a mixed state at the post-evaporation time Σ2. This pure-to-
mixed transition is necessarily non-unitary, and the “information loss” it involves has
been the subject of a heated discussion in the physics literature (see Belot, Earman,
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and Ruetsche (1999) for a review). If the pure-to-mixed transition survives in the
final quantum theory of gravity, then so does a semblance of singularities as a sink
for the missing information (see Wald (1999)).

8 Conclusion

One might have hoped that this survey would provide an answer to the question: If
we believe modern physics, is the world deterministic or not? But there is no simple
and clean answer. The theories of modern physics paint many different and seemingly
incommensurable pictures of the world; not only is there no unified theory of physics,
there is not even agreement on the best route to getting one. And even within a
particular theory–say, QM or GTR–there is no clear verdict. This is a reflection of
the fact that determinism is bound up with some of the most important unresolved
foundations problems for these theories. While this linkage makes for frustration if
one is in search of a quick and neat answer to the above question, it also makes
determinism an exciting topic for the philosophy of science.
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Notes

1. There is, of course, a violation of conservation of energy and momentum in
the overall process even though both energy and momentum are conserved in each
collision.

2. This example also illustrates a violation of even the weakest version of Laplacian
determinism according to which the future state of the world is determined by its
entire past history.

3. For more details on various classical spacetime structures, see my (1992).
4. Solution in the sense that only binary collisions occur and each such collision

obeys the laws of elastic impact.
5. This is a slight modification of the definition given in Geroch (1977). Other

definitions of prediction for general relativistic spacetimes are studied in Hogarth
(1993).

6. This rule implies that an observable with a pure continuous spectrum never
takes on a definite value. This awkwardness can be overcome by talking about ap-
proximate eigenstates.

7. At least on the reasonable understanding that the failure of the theory to
determine the non-existent value of an observable does not represent a failure of
determinism.

8. A diffeomorphism of M is a one-one map of M onto itself that preserves the
differentiable structure (e.g., if M is a C∞ manifold, the mapping must be C∞). d∗gab

denotes the dragging along of gab by d.
9. This is a version of the notorious “hole argument” which led Einstein to aban-

don his search for generally covariant field equations from 1913 until late 1915; see
Norton (1987).

10. In 1916 Einstein took the “observables” of GTR (although he did not use
this use this term) to be spatio-temporal coincidences, such as the intersection of two
light rays (see Einstein (1916) and Howard (1999)). In order to be adequate to the
content of GTR, Einstein’s notion of coincidence observables has to be extended to
fields.

11. M ′, g′ab is said to be a (proper) extension of M, gab iff the latter can be
isometrically embedded as a (proper) subset of the former. For the details of the
initial value problem in GTR see Wald (1984).
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12. For a more detailed discussion of spacetime singularities, as well as the cosmic
censorship hypothesis (introduced below), see my (1995).

13. Being visible is not sufficient to make a singularity “naked” in the relevant
sense; for example, the initial big bang singularity in Friedmann-Robertson-Walker
spacetimes is not “naked” because all of these spacetimes possess Cauchy surfaces.

14. Figures 7 and 8 use the conventions of conformal diagrams, which preserve
causal relations but distort metrical relations in order to bring infinities in to a finite
distance; namely, null directions lie at 45o with respect to the vertical; T + stands for
future null infinity, the terminus of outgoing light rays; and ιo stands for spacelike
infinity. The center of the spherical symmetry is labeled by r = 0.
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Figure captions

Fig. 1 Zeno’s revenge
Fig. 2 An apparent violation of Laplacian determinism
Fig. 3 Domain of dependence in classical spacetime
Fig. 4 Behavior of null cones in anti-de Sitter spacetime
Fig. 5 A bad choice of initial value hypersurface
Fig. 6 A naked singularity
Fig. 7 Weak and strong cosmic censorship in black hole formation
Fig. 8 Black hole evaporation
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