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Abstract

This chapter surveys experimental research on networks in economics. The first

part considers experiments on games played on networks. The second part discusses

experimental research on markets and networks. It concludes by identifying important

directions for future research.
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1 Introduction

Social networks are an important determinant of individual behavior and aggregate out-

comes in a variety of social and economic phenomena. Their study has been a central theme

in the sociology literature leading to a large body of theoretical and survey-based empirical

findings that document their role in different domains1. In contrast, economics has been

largely oblivious to the role of social networks, until two decades ago when the early re-

search on strategic network formation first developed2. Theoretical work on social networks

has witnessed an exponential growth ever since: economists have analyzed the role of net-

works in the context of different games, as well as their importance in markets and a variety

of areas in economics including labor, development, international trade, and finance3.

Empirical research on social networks has lagged significantly behind the theory, and we

still lack empirical validation for the bulk of the theoretical findings accumulated in the last

two decades. The core reason for this lag is the challenges involved in the causal identification

of the impact of network structure on behavior. A first hurdle is that observational data on

social networks is usually unavailable or incomplete, and it remains challenging to identify

the impact of network structure by proxying or imputing the network. Even when complete

cross-sectional data is available, most social networks are constantly evolving leading to

severe endogeneity issues. Finally, longitudinal datasets which include full information on

the network are very rare, but even in these cases identification remains problematic4.

The experimental methodology allows the causal identification of the network structure

by controlling for cofounding factors such as preferences and information. It enables the

researcher to exogenously impose a network of interactions among a group of subjects, and

then vary it in a different treatment to isolate the effect of the structure of the network

on individual behavior and group level outcomes. Recently there has been a rapid growth

of experimental research on social networks, which is proving to be an invaluable tool to

validate existing theoretical findings. Moreover, experiments are revealing how individuals

actually use network information. They are generating behavioral data that relates network

structure to choices which can serve as an input for novel theoretical developments. The

purpose of this chapter is to survey the literature on laboratory and online experiments on

1See Wasserman [1994] for a slightly outdated but comprehensive review.
2Jackson and Wolinsky [1996] and Bala and Goyal [2000] are the seminal papers on network formation.

As is often the case, there have been pioneers whose work preceded the systematic study of social networks
in economics including Myerson [1977], Kirman [1983] and Montgomery [1991].

3See Goyal [2007] and Jackson [2008] for comprehensive reviews.
4See Manski [2000] for a slightly outdated treatment, and Chapter XX in the Handbook by Boucher and

Fortin.
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networks, and identify important directions for future research5.

The next section focuses on experimental investigations of how network structure influ-

ences behavior in a variety of games, which abstract away from prices and market interac-

tions. One channel for incorporating network structure into a game is by making players’

payoffs depend on the neighbors in the network. Sections 2.1-2.3 focus on this channel

and review experimental work on different types of games played on networks including co-

ordination, prisoner’s dilemma, and games with strategic substitutes and complements. A

second channel is for the network to determine the information players have to make choices.

Sections 2.4 and 2.5 focus on this channel by reviewing experimental work on strategic com-

munication and learning in a network context. In reality, full information about the social

network is rarely available to the researchers as well as the individuals embedded in the

network. While the former is mainly a challenge for researchers using observational data,

the latter is a primary concern for theorists who need guidance on what are the realistic

assumptions to be made about a player’s information regarding the network, in order to

construct models that generate behaviorally valid predictions. Section 2.6 reviews exper-

imental studies of games on networks that vary the information subjects have about the

network, and it discusses how they can generate valuable input for further theoretical work.

Section 3 reviews a more recent strand of the literature which explores the role of net-

works in markets. In many decentralized markets there are constraints on who can trade

with whom, and networks are a natural tool to capture these buyer-seller relations and/or

intermediation services. Section 3.1 reviews experimental work in which the network de-

termines the trading opportunities available to market participants. A second function of

social networks is to provide information in markets where it is not available through prices

or some external mechanism. Section 3.2 reviews experimental work on how social networks

can be used to circulate information about traders’ reputations. This information allows

market participants to punish cheaters in environments with weak or non-existent formal in-

stitutions to enforce contracts, and incomplete information about past transactions, thereby

determining who has an informational advantage in the market.

We conclude this chapter in section 4 by taking a holistic view of the current landscape of

research on networks in economics. We identify directions for further experimental research

that we deem important for several contexts in which social networks matter to determine

individual behavior and aggregate outcomes.

5We exclude experiments that test strategic network formation models, which are reviewed in Kosfeld
[2004]. Chapter XX of the Handbook by Breza discusses field experiments.
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2 Games on networks

This section discusses experimental research on games on networks. We organize it

according to the different contexts in which network structure has an impact on behavior:

coordination, provision of local public goods, cooperation, communication and information

exchange, and social learning. The last part discusses evidence on how the information

individuals have about the network matters to determine how network structure affects

behavior in these contexts.

2.1 Coordination and strategic complementarities

A primary purpose of social connections is to help us coordinate our choices to generate

mutual benefits. For instance, we would like to pick the same phone messaging app to

be able to communicate for free with our friends or acquaintances and avoid the charges

from the provider. In other contexts, individuals care not only about choosing the same

action but also on the intensity of the actions because there are strategic complementarities

between an individual and her neighbors’ actions. For example, the value a user obtains

from visiting and contributing to an online review blog (e.g. yelp, tripadvisor) is increasing

in the amount of information provided by other users. These situations are described by

games with strategic complements, and the function of the network is to determine these

strategic complementarities among specific individuals6.

A canonical example of games with strategic complements is coordination games with

Pareto-ranked equilibria. To fix ideas, consider the two-player two-action coordination game

in Table 1. If a > c, d > b then (a, a) and (d, d) are the pure-strategy Nash equilibria, and if

d > a then the latter is efficient or payoff dominant. However, if (a− c)2 > (d− b)2 then the

(a, a) equilibrium is risk dominant à la Harsanyi and Selten [1988]. The experimental litera-

ture has extensively studied this type of coordination game even without the consideration

of networks7. A major finding is that coordination failure is a common phenomenon in the

laboratory8.

The theoretical literature has expanded the scope of coordination problems by considering

6Chapter XX of the Handbook by Bramoulle and Kranton discusses the theoretical work on network
games

7See Ochs [1995] for a comprehensive survey. Seminal experimental studies are Van Huyck et al. [1990,
1991] using order-statistic coordination games and Cooper et al. [1990] using variants of coordination games.

8Devetag and Ortmann [2007] provide a critical review of the literature and identify the major determi-
nants affecting the success/failure of coordination in the laboratory. For instance, payoff structure matters
in the sense of how attractive the secure strategy is and how risky the other actions are. Also, the group
size can affect the incidence of coordination failure and success.
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Table 1: Two-player coordination game.

X Y
X (a,a) (b,c)
Y (c,b) (d,d)

Assume a > c, d > b, d > a and (a− c)2 > (d− b)2 throughout.

a variety of local interaction structures and their impact on coordination. Each individual

in the population plays the baseline coordination game playing a single action with all his

neighbors in the network. The individual’s utility depends on his own action as well as

on the actions played by the neighbors. Ellison [1993] and Morris [2000] prove that, in an

evolutionary learning framework, players converge to the risk-dominant equilibrium in some

stylized structures of local interaction such as circles and lattice.

A handful of experimental studies has investigated the role of local interaction structure

in coordination problems. Keser et al. [1998] reports an experimental study on the effects

of local interaction on coordination. They consider a finite repetition of a three-player game

in which an individual plays the game in Table 1 with payoffs a = 80, b = 60, c = 10 and

d = 90. A player has to use a common strategy with each of the other two players and

gets the minimum of the payoffs that his strategy gains from the two plays. There are two

treatments that vary the network structure: a complete network of 3 players and a circle

network of 8 players. In the latter network, the player plays the coordination game with

his two neighbors, while he is neither informed of the global structure of the network nor

the size of the network. Subjects in the complete network converge quickly to coordinate on

the payoff-dominant (d, d) equilibrium, while those in the circle network coordinate on the

risk-dominant (a, a) equilibrium.

Berninghaus et al. [2002] investigate a game with the same payoffs as Keser et al. [1998]

but they extend the experimental set-up by enriching the size and structure of interaction

and the payoff function. Specifically, they include local interaction in a lattice as well as in

a circle with 2 neighbors and 4 neighbors. They also allow the payoff function to depend

on the minimum as well as the average of the payoffs from local interactions. Berninghaus

et al. [2002] find that while the payoff-dominant d action is an experimental regularity in the

complete network, the risk-dominant action a is chosen more often in the circle network and

the lattice. While the results of Keser et al. [1998] and Berninghaus et al. [2002] provide nice

evidence on network effects on coordination, they keep constant the number of neighbors of

each player but not the overall network size, making comparisons across network treatments
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problematic.

Cassar [2007] experimentally studies the coordination game with payoffs a = 1, b = 4,

c = −1 and d = 5. She considers the three network structures in Figure 1 chosen to typify

(a) local, (b) random, and (c) small world types of networks. The networks keep constant

relevant characteristics of the group such as the number of players and the total number of

connections. She finds that 70% of subjects prefer the payoff-dominant d to the risk-dominant

a action. Despite the high frequency of successful coordination, there are notable differences

across networks. The small-world network achieves the highest level of coordination on the

efficient outcome, while the random network has the lowest level of coordination. Also,

the convergence rate of coordination differs across networks. Coordination on the payoff-

dominant equilibrium occurs faster in the small world network than in the random network.

Figure 1: (a) Local, (b) random, and (c) small world type of networks examined in Cassar
[2007].

The findings in Cassar [2007] on the relatively high incidence of the payoff-dominant

d action seem at odds with those in Keser et al. [1998] and in Berninghaus et al. [2002].

Frey et al. [2012] examine a coordination game with payoffs a = 780, b = 660, c = 120

and d = 900 on 10 different network structures of 6 nodes, including the complete, star,

line, circle and bipartite-type of networks. In agreement with Cassar [2007] they find con-

vergence to the payoff-dominant outcome in almost all cases. They also find no significant

difference across network structures. The conflicting evidence on convergence to the payoff

or the risk-dominant outcome across the studies may result from the difference in relative

attractiveness/riskiness of the payoff-dominant action between the designs, and it can only

be resolved with further experimentation.

A common drawback shared by the above studies is the focus on small networks of at

most 8 nodes, while in many contexts we are interested in coordination in large groups.
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Kearns et al. [2009] examine experimentally a simple coordination game in which groups of

36 subjects have 1 minute to coordinate either on blue or red, which are chosen to frame

the experiment in the context of a presidential election in the US9. The treatments were the

assigned strength of preference for a color and the network structure. In all treatments sub-

jects can only see their neighbors with their respective choices, but not the overall network.

They find that coordination is more frequent in networks with a fat-tailed degree distribution

compared to random networks. Moreover, a minority of well-connected subjects can make

the whole network coordinate on their common preferred choice. In a follow-up study, Judd

et al. [2010] examine a richer coordination problem: groups of 36 subjects have 3 minutes

to coordinate on one colour out of a set of 9 choices. They run 6 network treatments which

systematically vary the level of cliquishness, i.e the extent of tight-knittedness of equally

sized subgroups in the network. The intuitive result is that consensus is decreasing in the

level of cliquishness.

Coordination games are a special case of the class of games with strategic complementar-

ities in which a player’s benefit from an action is increasing in the actions of her neighbors.

In a seminal contribution, Ballester et al. [2006] analyze a game of strategic complements on

any network. The model belongs to a class of games of strategic complements in which in-

dividuals have linear best replies. It offers a way of decomposing the payoff interdependence

into a global and a local interaction component. The global interaction effect is uniform

across all players and reflects a strategic substitutability in players’ choices, whereas the

local interaction effect varies across pairs of players and captures strategic complementarity

in players’ decisions. They show that there is a unique Nash equilibrium as long as the

complementarity effects are lower than a threshold determined by the largest eigenvalue of

the adjacency matrix of the network. The key result is the closed-form characterization of

this equilibrium, which shows that a player’s action is proportional to a (transformation of

a) network centrality metric first defined by Bonacich [1987]. In equilibrium a player’s action

increases in her connectedness, her neighbors’ connectedness, her neighbors’ neighbors con-

nectedness, and so on. This result provides a tractable, rich and intuitive relation between

equilibrium play and network position.

Gallo and Yan [2015b] examine experimentally the Ballester et al. [2006] game of strategic

complements on four different networks: circle and wheel networks with 9 nodes, a 15-node

network with two completely connected clusters joined by a single node, and the 21-node

network in Figure 2. A notable result of the experiment is that subjects depart from Nash

9Chapter XX of the Handbook by Aral also reviews this study as well as other large experiments with a
particular focus on web-based experiments.
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Figure 2: 21-node network in Gallo and Yan [2015b]. Given the calibration in the experiment,
the equilibrium predictions for subjects’ efforts are e(B) = 78, e(H) = 77, e(C) = 38,
e(F ) = 33 and e(P ) = 33.

equilibrium and coordinate on a more efficient outcome in the symmetric circle network,

but on average they converge to the (inefficient) equilibrium predictions in the asymmetric

networks. This is a demanding test of the equilibrium predictions in the Ballester et al.

[2006] model, so the convergence on average is evidence of the behavioral validity of the

theory. Looking more closely into subjects’ behavior, Gallo and Yan [2015b] found that

subjects appear not to incorporate the network interactions fully into their decisions and

tend to base their choices on the local structure of the network as captured by the degree.

For example, in the network in Figure 2 play according to Bonacich would predict that the

ranking of subjects’ efforts is e(C) > e(F ) = e(P ), while play according to degree would

predict e(C) = e(F ) > e(P ). The results show that degree is a highly significant predictor of

subjects’ play on nodes F , P and C while Bonacich centrality is not. The boundedly rational

rule of only focusing on local network information may make sense in large, complex, and

asymmetric networks. Whether human subjects adopt such a simple, boundedly rational rule

of decision making in a complex network is an interesting question. A fuller investigation

of this question will require one to use much larger networks than Gallo and Yan [2015b]

used, with a careful selection of parameters of the games in order to drive a wedge between

equilibrium choices fully reflecting the global structure of networks and choices made via

such a bounded rational rule.

In all the studies reviewed in this section, the network structure is exogenously imposed

by the experimenter. However, in reality coordination is facilitated by the fact that we

actively choose our connections. Riedl et al. [2011] examine experimentally a weakest-link

game played in two groups of 8 and 24 nodes, which we can think of as complete networks.

They compare these treatments to an identical set-up in which groups of 8 and 24 subjects
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can choose their connections endogenously. There is a clear difference in the dynamics of

play irrespective of group size: subjects converge to the inefficient risk-dominant equilibrium

in the complete network, but they overwhelmingly converge to the efficient payoff-dominant

equilibrium when they can pick their connections. The resulting networks in the treatments

with endogenous connections converge to the complete networks, but in the early rounds

subjects can use the ability to exclude low contributors as a punishment mechanism to

ensure convergence to the efficient equilibrium. This study shows that the inclusion of a

network formation stage has a clear effect on behavior, and further experimental work in

this vein is desirable both in coordination and other types of games as we will see in the next

sections.

2.2 Public goods and strategic substitutes

The problem of the provision of public goods has a central role in different areas of the

social sciences (e.g. Ostrom [1990]) including experimental research where there is a vast

literature on experiments on public goods10. In the standard public goods game, subjects

in a group have to decide how much of their initial endowment to contribute to a common

pool. The sum of the contributions is scaled up by a common factor and distributed to

all group members in equal shares independent of their contribution. A large number of

studies has documented that subjects contribute significantly above Nash equilibrium in

the one-shot version and the over-contribution pattern declines, but it does not converge

to Nash, when the public goods game is repeated11. The tendency to contribute above

the Nash prediction is often attributed to social preferences and, in particular, a form of

conditional cooperation in which the contribution to the public good is positively correlated

with individuals’ beliefs about other members’ contributions. Experimental research has also

investigated how subjects in the lab respond to a variety of environmental and institutional

factors such as production technology, payoff structures, punishment, communication, and

so forth.

Several types of public goods are local in the sense that an individual’s contribution

benefits others who are nearby either geographically or in a social network. Examples include

neighbors who benefit from a well-kept garden and non-excludable innovations which can be

imitated by others who observe or learn about them. Bramoullé and Kranton [2007] analyze

a public good game on a network in which links capture strategic substitutabilities between

10See, a bit outdated, Ledyard [1995] for a comprehensive review, and Chaudhuri [2011] for a recent survey.
11A series of early studies by Marwell and Ames [1981] show that contribution rates in the one-shot are

in the 40− 60% range. See Fehr and Gächter [1999] for a study on a repeated public goods game.
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an agent’s and her neighbors’ actions. They show that there is a large number of equilibria

including specialized equilibria in which agents exert either no effort or provide the public

good for all their neighborhood, distributed equilibria in which everyone exerts the same

effort, and combinations of the two. Bramoullé and Kranton [2007] show that specialized

equilibria are the only stable ones, and they relate the class of specialized equilibria to the

graph theoretic concept of maximal independent sets, which allows one to check whether a

specific action profile is a stable equilibrium just by checking if the set of specialists belongs

to a maximal independent set of order 212.

Despite the nice correspondence between maximal independent sets and specialized equi-

librium profiles, the size of the equilibrium set remains quite large. Experiments can therefore

shed light on whether some of these equilibria are more salient and how saliency depends on

the network structure. Rosenkranz and Weitzel [2012] examine experimentally the Bramoullé

and Kranton [2007] local public good game on all six possible connected networks of four

nodes. The first order finding is that the frequency of equilibrium play is very low even on

these simple and small networks, although it is higher than what one would expect with

completely random play. Moreover, local coordination occurs 6-7 times more frequently

than equilibrium play. Rosenkranz and Weitzel [2012] observe low frequency of equilibrium

convergence in networks with stable specialized equilibria, but whenever convergence occurs

it is almost always to stable specialized equilibria. An intriguing result is that equilibrium

coordination varies with network structure in a non-monotonic way, as it is highest in the

complete and star networks, which are at opposite ends of the set of four node networks in

terms of density and the spread of connectivity across nodes. Finally, subjects’ actions are

negatively correlated with their degree, which nicely mirrors the positive correlation found

by Gallo and Yan [2015b] in the game of strategic complements on a network.

Galeotti and Goyal [2010] extend the Bramoullé and Kranton [2007] model by making

the network endogenous. Agents play a network formation game à la Bala and Goyal [2000]

as well as choosing a level of contribution to the local public good on the resulting network.

The key result is that the introduction of a network formation stage drastically reduces the

size of the equilibrium set: in every strict Nash equilibrium, the network has a core-periphery

structure in which the agents at the core contribute while the agents at the periphery free

ride. The introduction of a slight heterogeneity in the cost of providing the public good

12An independent set I of a network is a set of agents such that no two agents who belong to I are linked.
An independent set is maximal when it is not a proper subset of any other independent set. A maximal
independent set of order r is a maximal independent set I such that any individual not in I is connected to
at least r individuals in I.
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leads to a unique equilibrium, which is the star network with the central agent providing

the public good and everyone else free riding. Moreover, the star network also maximizes

welfare.

Goyal et al. [2014] test the predictions of the model for groups of four subjects. The

baseline has homogeneous costs of providing the public good, and they compare this with

a treatment in which one agent has a lower cost of providing the public good. The results

provide only weak support for the theoretical prediction that the star network is the unique

equilibrium. The low cost individual is more likely to be a well-connected hub compared

to the high cost individuals, but the number of hubs is unchanged from the baseline, and

the contribution to the public good of the low cost individual is lower than predicted by the

theory. Moreover, the resulting network has an average connectivity of about 5 links, which

is significantly higher than the 3 links in the star network.

Further experimental work on public good games on networks is necessary to validate the

theory and shed light on the features of network structure which determine equilibrium. A

promising starting point is a paper by Bramoullé et al. [2014] which provides a unified frame-

work to analyze games of strategic complements and substitutes on networks, and nests the

Bramoullé and Kranton [2007] and the symmetric case of the Ballester et al. [2006] models

as special cases. The key result is the role of the lowest eigenvalue of the adjacency matrix

of the network which captures how much the network amplifies the direct effects of one indi-

vidual’s actions on his neighbors’ actions. This result can inform the design of experiments

to test behavior in network games with the presence of both strategic complements and

substitutes, which would constitute a bridge between the work by Rosenkranz and Weitzel

[2012] and Gallo and Yan [2015b]. It can also inform the design of public good games on

networks which are larger than the four node networks in Rosenkranz and Weitzel [2012]

to explore the relation between structural features of the network and behavior in a richer

setting13.

2.3 Cooperation

The emergence and sustenance of cooperative behavior is a defining characteristic of hu-

man societies. Social scientists and evolutionary biologists have extensively investigated the

determinants of cooperation using the prisoners’ dilemma game as an abstract representation

of the trade-offs involved in an individual’s decision to cooperate with or defect on others.

13Suri and Watts [2011] report the results of a public good game played on networks of 24 nodes, but the
choice of payoffs and the specific design they adopt makes it difficult to interpret their results in light of the
Bramoullé et al. [2014] model.
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In the simplest setting with two players interacting repeatedly, cooperation emerges if the

players can condition their strategies on the other players’ past behavior and the probability

of another interaction is high enough14. An alternative mechanism for the emergence of

cooperation is what is known as indirect reciprocity which operates when there are repeated

encounters within a group and there is a reputation mechanism which allows a player to

know someone’s past choices with a high probability15. Cooperation is costly but leads to

the reputation of being a cooperative individual, and therefore may increase the chances of

being the recipient of cooperative behavior.

An extensive number of experiments have tested these theoretical predictions. Murnighan

and Roth [1983], amongst others, show that repetition in the prisoner’s dilemma game be-

tween two individuals leads to cooperative behavior which is increasing in the payoffs of the

game as well as in the probability that the game will continue. Dal Bó and Fréchette [2011]

validate these results and they show that cooperation may prevail in infinitely repeated

games, but the conditions under which this occurs are more stringent than the subgame

perfect conditions usually considered or even a condition based on risk dominance. In order

to study indirect reciprocity, subjects play the game with randomly matched partners and

they are informed about the partner’s choices in previous rounds. There is plenty of evidence

that subjects condition their behavior on the partner’s past choices, and thus individuals

who have cooperated in the past tend to receive more cooperation16.

Different dimensions of social network structure play a role in the emergence of cooper-

ative activity. As a first dimension, a crucial element for indirect reciprocity to emerge is

the presence of a mechanism to share reputational information about third parties, and a

natural channel to provide this information is communication through the social network.

A second dimension is that in many instances cooperative activity is local, so the decision

to cooperate or defect affects only an agent’s neighbors in a geographical or social network

rather than the whole society.

As the review in Chapter XX (ref to Nava’s chapter) of this Handbook makes clear, there

is no theoretical paper which provides a general characterization of a repeated prisoner’s

dilemma game on general network structures in the way that, e.g., Ballester et al. [2006]

and Bramoullé and Kranton [2007] do for one-shot games of strategic complements and

substitutes respectively. Haag and Lagunoff [2006] analyze the problem of a social planner

who designs the optimal network for a group of individuals with heterogeneous discount

14See, e.g., Fudenberg and Maskin [1986] and Binmore and Samuelson [1992].
15See Nowak and Sigmund [2005] for a review.
16See, e.g., Wedekind and Milinski [2000], Milinski et al. [2002] and Seinen and Schram [2006].
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factors. By restricting the attention to a specific type of trigger strategies, they show that

greater social conflict may arise in more connected networks, and the optimal design exhibits

a cooperative core and an uncooperative fringe when the individuals’ discount factors are

known to the planner. Several simulation-based studies17 show that the structure of the

social network has an effect on the level of cooperation, but they make specific behavioral

assumptions on the agents’ strategies which would need validation in experimental data.

Chapter XX by Jackson (ref here) identifies the study of the interplay between network

structure and cooperation as one of the promising areas for future theoretical work, and we

believe experiments can be an invaluable tool to provide guidance on the features of the

network structure that are behaviorally relevant as well as the strategies that subjects use

in this context.

The paper by Cassar [2007] we already reviewed in section 2.1 was one of the first experi-

mental studies to examine the prisoner’s dilemma game in Table 2 with payoffs c = 5, a = 4,

d = 1 and b = 0 played on the three networks in figure 1. Cooperation rates on all networks

decrease to 20− 30% in the last rounds. There is some evidence that the cooperation rate is

higher in the small world network compared to the local and random networks, and there is

no difference between the local and random networks. Kirchkamp and Nagel [2007] report

the results of a prisoner’s dilemma game played on two different network structures of 18-20

subjects: regular networks of degree four and networks composed by two or three completely

connected components. The first order finding is that there is no effect of network struc-

ture on cooperation levels. Gracia-Lázaro et al. [2012] confirm that network structure has

no impact on cooperation in a large-scale lab experiment with subjects playing a prisoner’s

dilemma game with payoffs c = 10, a = 7, and b = d = 0 on two networks of more than 600

subjects each with a regular and fat-tailed degree distributions respectively18.

Table 2: Two-player prisoner’s dilemma game.

Cooperate Defect
Cooperate (a,a) (b,c)

Defect (c,b) (d,d)

Assume c > a > d ≥ b throughout.

17See, e.g., Ohtsuki et al. [2006] and Taylor et al. [2007].
18A recent contribution by Rand et al. [2014] finds an effect of network structure on cooperation by

comparing several regular networks. The difference with previous studies may be driven by the particular
payoffs chosen, the regularity of the networks or the specification of the game. This is an area that deserves
further investigation.
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In reality, individuals choose their partners and homophily is pervasive in social networks

so we would expect cooperators to be more likely to be connected to other cooperators,

which may generate a relation between cooperation and the structural properties of the

network that is largely absent in experiments on fixed networks. Rand et al. [2011] examine

experimentally a prisoner’s dilemma game on an endogenous network with payoffs c = 100,

a = 50, d = 0 and b = −50. In each round there is a first stage in which subjects can form

or sever links followed by a prisoner’s dilemma game played on the resulting network. The

main treatment variable is the rate at which subjects can update the network: a baseline

with a fixed network, a random mixing condition, and “viscous” and “fluid” conditions in

which 10% and 30% of links can potentially be updated in each round respectively. They find

that cooperation level in the fluid condition stays at about 60%, which is significantly higher

than in any of the other conditions indicating that the ability to choose connections has a

positive impact on the level of cooperation19. Jordan et al. [2013] show that this is because

the possibility to form new connections with cooperative individuals encourages defectors to

switch to cooperative behavior even if many of their neighbors are defecting.

An interesting question is whether there are some structural properties of the emerging

networks that are associated with high cooperation. Unfortunately, most of the studies

choose asymmetric payoffs which lead to the emergence of overconnected networks, because

in absolute terms the losses of being connected to a defector are lower than the gains of being

connected to a cooperator. An exception is Gallo and Yan [2015a] who examine a prisoner’s

dilemma game with symmetric payoffs c = 5, a = 3, d = −3 and b = −5 in a setting where

subjects can form or sever links in the first stage of each round at no cost. They examine

how variations in the information about the network and information about past actions of

other subjects affect the emergence of cooperative activity20. They validate the findings in

Rand et al. [2011] in a similar condition, and they show that the rate of cooperative activity

is positively associated with the density and the level of clustering in the network.

2.4 Communication and information exchange

Communication and information exchange is common in many instances of social inter-

action. People exchange messages and information in order to avoid miscoordination and

efficiency loss whenever a coordination problem is present. Game theorists model pure com-

munication as “cheap talk”: players’ messages have neither direct payoff implications nor

19Wang et al. [2012] and Cuesta et al. [2015] confirm the validity of these findings in similar studies.
20See section 2.6 for further details.
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are binding for actions (Crawford and Sobel [1982]). While theorists recognise the fact that

cheap talk can play no role in strategic interaction because uninformative “babbling” equi-

libria always exist, they also provide conditions under which communication via cheap talk

can signal players’ intentions or private information to others and thus can improve upon

how to play an underlying game. However, the problem of multiple equilibria is prevalent

in cheap talk games and standard refinement arguments cannot help much in resolving the

issue.

Experimental research on cheap talk models has shown that communication can be effec-

tive in guiding subjects’ behavior and information in equilibrium selection.21 As a precursor

of the experimental literature of communication networks, Cooper et al. [1989, 1992] study

the effect of (one-way vs. two-way) pre-play communication structure on coordination in

several two-player coordination games. An overall finding is that one-way communication

increases coordination in the Battle of the Sexes, whereas two-way communication is more

effective in coordination on an efficient outcome in games with Pareto-ranked equilibria. The

reason is that each of the communication structures plays a distinct role and has a differential

impact in resolving strategic uncertainty.

While Cooper et al. [1989, 1992] are seminal in considering the effect of communication

structure on coordination, their settings are limited in terms of the scope of the network

structure. Choi and Lee [2014] extend them by considering a richer set of communication

networks in a multi-player game. Specifically, they consider a four-player version of the Bat-

tle of the Sexes game in which the four players have a common interest to coordinate but

each player has his own preferred outcome. Prior to playing the underlying game, the players

engage in finite periods of pre-play communication. In addition to varying communication

length, Choi and Lee [2014] investigate four networks of communication–the complete, star,

kite, and line networks. The complete network represents a horizonal structure of com-

munication in which all players communicate with each other, whereas the star network

describes a vertical, centralized structure of communication in which one player takes the

advantage of collecting information and influencing the group-level communication. The

other two networks can be interpreted as representing communication structures lying in

between, with less concentration of communication power on a single player. Because of

the diversity in network positions in the setup, the experiment can address the effect of

communication structure on equity of coordination outcomes as well as efficiency. Choi and

Lee [2014] report substantial variations in both efficiency and equity across networks. Given

21For a survey see Crawford [1998].
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the length of communication, the likelihood of efficient outcomes is highest in the complete

network and lowest in the line network. Asymmetric networks tend to generate asymmetric

coordination outcomes in favor of those who are better connected. However, the length of

communication has an important influence on coordination outcomes. While increasing the

length of communication improves the chance of coordination, it also makes the coordination

outcome more equitable in the networks that produce asymmetric coordination outcomes.

The studies by Kearns et al. [2009] and Judd et al. [2010] we reviewed in section 2.1

can also be seen as having a cheap talk element prior to the play in a coordination game.

In Kearns et al. [2009] subjects have one minute to change their choice between blue and

red, but these choices can be reversed at no cost until the end of the minute so they can be

interpreted as cheap talk about their final choice. Similarly, in Judd et al. [2010] they have

three minutes and a choice among nine possible colors. Subjects differ in their preferences

for the consensus color and are only informed about the current choices of their immediate

neighbors. The results in Kearns et al. [2009] show that in networks generated using a

preferential attachment process it is easier for subjects to reach global consensus than in

random networks, and that the global consensus was frequently the preferred option of well-

connected individuals.

Choi et al. [2011] explore the potential role of information networks in equilibrium selec-

tion in a dynamic game of public good provision. Networks are also used in describing various

forms of observation structures of the history of play in dynamic games. The presence of

asymmetric information about the play history can be an obstacle in achieving coordination.

However, asymmetric information structure can make a certain outcome salient, as similar

insights emerged from communication networks, and thus can make it easier for subjects to

overcome coordination failure. Motivated by this idea, Choi et al. [2011] consider a simple

dynamic game with three players in which players make voluntary contributions to the pro-

vision of a threshold-level public good over a finite number of periods. Players’ contributions

are irreversible and not refundable. The authors examine the empty network in which none

of the players are informed of others’ previous actions, and the complete network in which

all players have full access to the history of play. In addition, they investigate a series of

incomplete networks describing different asymmetric structures of information. While stan-

dard equilibrium analysis provides little guidance due to the multiplicity of equilibria, the

experiments reveal that the degree to which subjects coordinate on efficient outcomes varies

across different networks. Patterns emerging from the experimental data are overall consis-

tent with two strategic incentives: those whose actions are observed may have an incentive
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to make contributions in early periods (strategic commitment) and those who can observe

others’ behavior delay their decisions (strategic delay). Asymmetries in the structure of

information networks make these strategies salient.

Despite being still relatively small, the experimental literature on communication and

information networks has already accumulated insightful evidence on the role of network

structure in equilibrium selection and coordination outcomes. A first direction to explore in

future research is the role of communication network structure in multi-player coordination

games with Pareto-ranked equilibria. In such underlying games, Peski [2010] proposes the

concept of ordinal generalized-risk dominance to generalize Harsanyi and Selten [1988]’s risk

dominance notion. An open question is whether there is a relation between the structure

of the communication network and the selection of the efficient over the generalized-risk

dominant equilibrium. A second direction is an experimental test of the predictions in

Hagenbach and Koessler [2010] and Galeotti et al. [2013], who extend the Crawford and

Sobel [1982] cheap talk model to a network setting. Some key predictions of these models

rely on the assumption that individuals’ decisions to communicate depend on how many

other individuals the recipient listens to, i.e. her in-degree. This requires individuals to take

into account the network structure beyond their neighborhood and make inferences based

on this information, which may not hold experimentally as section 2.6 will elaborate on.

The relation between the in-degree distribution of the equilibrium communication network

and the ranking of equilibria in terms of their efficiency is another example of a theoretical

prediction that warrants an experimental investigation.

2.5 Social learning

In many social and economic situations individuals learn from others by observing their

decisions and/or learning about their beliefs on an underlying unknown state of the world.

Economists use the umbrella term social learning to describe this phenomenon. A general

message from the economics literature on social learning is the emergence of cascades that

lead everyone in the society to converge to the same behavior. There may be inefficient

information aggregation and convergence to a sub-optimal outcome despite the fact that

individuals maximize their own utility given beliefs formed in a Bayesian fashion.

The classical social learning model, introduced by Banerjee [1992] and Bikhchandani et al.

[1992], and extended by Smith and Sørensen [2000], analyzes a sequence of agents making

successive, once-in-a-lifetime decisions under incomplete and asymmetric information. That

is, agents are uncertain about the underlying decision-relevant event, and the information
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about it is shared asymmetrically among them. The typical conclusion is that, despite the

asymmetry of information, eventually every agent imitates her predecessor, even though she

would have chosen a different action on the basis of her own information alone. In this

sense, agents rationally ‘ignore’ their own information and ‘follow the herd’. Furthermore,

since actions aggregate information poorly, herds often adopt an action that is suboptimal

relative to the total information available to agents. This is an important result that helps

us understand the basis for (possibly inefficient) uniformity of social behavior. Following

Anderson and Holt [1997], a number of papers22 investigate social learning experimentally

and demonstrate that herd behavior can be replicated in the laboratory.

In practice, individuals are located in complex social networks and learn mainly from

observing the decisions of their neighbors and/or learning their beliefs about the underlying

state of the world. The classical model of social learning can be seen as the very special

case of a directed line network, in which information flows and/or observations about others’

decisions only happens once for each agent and in one direction from the beginning to the end

of the line. The theoretical literature has explored the impact of social network structure

on two different types of social learning: observational learning in which a link between

two individuals represents their ability to observe each other’s actions, and communication

learning in which a link between two individuals indicates that they can (truthfully) share

their beliefs about the underlying state of the world23.

Bala and Goyal [1998] and Gale and Kariv [2003] are the first theoretical models of ob-

servational social learning on networks. The key methodological difference in their approach

is whether agents are fully Bayesian or there are exogenously imposed limitations in the

agents’ ability to make Bayesian inference on the network. Bala and Goyal [1998] assume a

boundedly rational form of Bayesian updating in which agents only take into account actions

and outcomes of neighbors’ actions, and ignore any information that may be inferred by the

sequence of neighbors’ actions. Instead, Gale and Kariv [2003] investigate a fully Bayesian

set-up in which agents are able to make inferences about non-neighbors’ actions from their

observation of neighbors’ actions and their knowledge of the overall social network24. A

general result is the convergence to an equilibrium in which all agents play the same action.

Moreover, this action is the optimal action as long as one imposes some restrictions on the

22Selected contributions include Hung and Plott [2001], Kübler and Weizsäcker [2004], Çelen and Kariv
[2004], Goeree et al. [2007] and Weizsäcker [2010].

23Chapter XX of the Handbook by Golub and Sadler reviews learning in networks, and Chapter XX by
Breza surveys studies of social learning using field data.

24Other more recent contributions in this vein include Acemoglu et al. [2011] and Mueller-Frank [2013]

17



network structure.25

Choi et al. [2005, 2012] and Choi [2012] have undertaken an experimental investigation of

learning in three-person, directed networks and focus on using the theoretical framework of

Gale and Kariv [2003] to interpret the data generated by the experiments. The experiment

design utilizes three networks–the complete, the star, and the circle network– along with

variations in the structure of private information about the unknown state of the world.

In each period, players simultaneously choose which state is more likely to have occurred

at the beginning. This guess is made on the basis of the individual’s private signal and

the history of the play of their neighbors. As the game continues, the inference problem

becomes more demanding because it requires a player to form higher order beliefs. Since

noises in experimental data are inevitable, Choi et al. [2012] extend the Bayesian model to

allow for the possibility of subjects making mistakes. This was done by adopting the model

of Quantal Response Equilibrium of McKelvey and Palfrey [1995, 1998]. While the Bayesian

model overall performs well, there are instances of networks and information structures in

which the Bayesian model has a limitation in interpreting the data. Also, the heterogeneity

of individual behavior in the data is hardly ignorable.

Choi [2012] develops a method for estimating a mixture model of heterogeneous rules of

learning in networks. His approach is based on the observation that the sequence of tasks

of learning constitutes a ‘cognitive hierarchy,’ which in turn suggests a natural hierarchy of

cognitive types. Each cognitive type corresponds to the number of periods in which a player

processes new information: starting from the lowest type who randomly guesses the state

of nature, the next lowest type would only process his private signal but make no use of

information obtained from the observations of his neighbors’ decisions; the next lowest type

would process his signal in period 1 and make an inference about his neighbors’ signals from

their decisions in the first period, but could not make any higher order inferences from then

on, and so on. The estimation results show that this structural approach does a very good

job of interpreting subjects’ behavior and accommodating the heterogeneity of individual

behavior in the data.

In contrast to the observational learning literature, the prevalent approach in theoretical

work on communication learning on networks has been the assumption of boundedly rational

learning. The most widely used rule was first proposed by DeGroot [1974]: each agent

updates her beliefs by taking a weighted average of her neighbors’ beliefs with the weight

determined by the strength of the link in the communication network. DeMarzo et al. [2003]

25Mueller-Frank [2014] shows that convergence may also fail if there is one fully Bayesian agent in a society
of non-Bayesian agents due to the ability of the fully Bayesian agent to influence the consensus.
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formulate a model in which agents receive signals at time 0, they truthfully communicate

their belief to their neighbors at each time period, and they update their beliefs by using

DeGroot [1974]’s rule. They show that in the long-run all agents would converge to the same

belief about the underlying state of the world, and the influence of each agent in determining

the limit belief is tied to the agent’s position in the communication network. This means

that there will not be convergence to an unbiased aggregation of the initial signals except for

the very special case in which the informativeness of each initial signal is exactly aligned with

the influence of the recipient in the network26. Acemoglu et al. [2014] analyze a Bayesian

communication learning model by assuming that agents can tag information, and they show

that the presence of “information hubs” is a sufficient condition for asymptotic learning.

The predictive power of models based on the DeGroot [1974] set-up hinges on the specific

assumption of bounded rationality in the updating rule, which is ultimately an issue that

can only be resolved empirically. The experimental method can be particularly helpful in

shedding light on this question as it would be very challenging to identify the updating rule

in observational data. Corazzini et al. [2012] examine experimentally how individuals learn

in two networks of 4 nodes: a circle with directed links arranged in a clockwise pattern

so that each individual has one incoming and one outgoing link, and a hub-type network

obtained from the circle network by adding two links so that the choices of one subject are

observed by all the others. In the first round each subject receives an integer signal drawn

from a commonly known distribution, and in each one of 12 rounds she has to guess the mean

of the 4 signals after learning her neighbors’ guesses in the previous round. The predicted

outcomes for Bayesian and DeGroot-type updating are the same in the circle, but they differ

in the hub network: Bayesian updating gives each subject’s signal the same weight, while

DeGroot-type gives a clear ranking in the importance of signals depending on the network

position of the subject who received the signal. The results clearly show that in the hub

network subjects give different weights to signals in broad agreement with the predictions

of the DeGroot dynamics. The authors also propose a generalized updating rule in which

individuals give weight to individuals who are listened to, as well as listen to many others,

which nests DeGroot as a special case, and they show that it gives a good fit to the data.

A drawback of the Corazzini et al. [2012]’s set-up is that they only investigate one network

in which there is a difference between the outcomes of the Bayesian and DeGroot learning,

making it difficult to generalize their findings. In a recent working paper, Grimm and

Mengel [2014] report an experimental study testing the predictive power of Bayesian and

26Other more recent contributions using the DeGroot [1974] rule include Golub and Jackson [2010], Ace-
moglu et al. [2010], and Gallo [2014b].
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DeGroot-type learning in 5 different networks with 7 nodes. They find that subjects make

decisions consistent with Degroot-type updating in 80 − 98% of the cases in which the

predictions of the two models differ for specific positions in the network. However, the

dynamics of convergence to a limit belief suggests that subjects may be using rules-of-thumb

that are more sophisticated than simple DeGroot, and the authors propose an alternative

non-Bayesian model of learning that extends the DeGroot model by allowing individuals to

adjust the weight placed on their previous behavior according to their clustering coefficient,

which captures the proportion of an individual’s neighbors who are connected to each other.

This adjusted model of non-Bayesian learning appears to perform better than the DeGroot

model.27

A major theme in the literature of learning in social networks is understanding which

model of updating best describes individuals’ decisions, and, consequently, group outcomes.

Bayesian updating is a natural benchmark case, but it has the drawback of not being very

tractable and it requires individuals to exercise increasingly demanding inferences from the

observation of neighbors’ behavior. DeGroot-type updating provides sharp predictions, but

it makes ad hoc assumptions on the specific type of bounded rationality that individuals

have when they process information. Further experimental research is required to identify

the type of bounded rationality, which would be invaluable input for further theoretical

work. A first step forward would be to identify which dimensions of information about the

network the participants use in their updating, which is a topic we will discuss further in

sections 2.6 and 4. A second step would be to investigate how this updating varies with

the size and complexity of the network as the largest network explored so far has only 7

individuals. Finally, there are econometric issues that require careful consideration: subjects

in an experiment tend to make mistakes and display significant individual-level heterogeneity

of learning behavior, which makes a clean identification strategy more challenging.

2.6 Incomplete information about the network

A common assumption of many theoretical and experimental studies that we have consid-

ered so far has been that individuals have complete information about the network structure.

This is rarely the case when we consider applications as individuals would usually have access

to information about local features of the network, e.g. their degree, and aggregate statistics

27Using a similar set-up, Mueller-Frank and Neri [2013] investigate networks of 5 and 7 nodes. They find
that individuals’ decisions do not satisfy three properties which are required by a class of non-Bayesian
updating rules in order to achieve consensus, which may explain the lack of convergence to consensus in
their experiment.
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about the overall network structure, but no detailed information on the exact pattern of who

is connected to whom. Even if the complete information about the network is available, a

number of studies in social psychology show that the process of memorizing and recalling

information about real social networks is affected by several biases28, some of which have

been confirmed in an experimental setting29. These biases may influence how individuals

make decisions in network games, especially in contexts in which equilibrium play requires

the knowledge of the network beyond the immediate neighborhood as in Bayesian learning

in networks.

Galeotti et al. [2010] explore the role of incomplete information about the network in

the context of games of strategic complements and substitutes, which we have reviewed in

sections 2.1 and 2.2. In their set-up an agent knows her degree and the degree distribution

of the whole network, but she does not have information on any other characteristic of the

network including the identity of her neighbors. This is a rather severe form of incomplete

information about the network, and an interpretation is that it applies to contexts in which

an agent makes a decision before the specific identity of the neighbors is realized. Their model

defines a game of incomplete information in which a player’s type is her degree, and it nests

the incomplete information versions of the Ballester et al. [2006] and Bramoullé and Kranton

[2007] set-ups. Recall from sections 2.1 and 2.2 that in the complete information set-up the

game with strategic complements has a unique equilibrium in which an agent’s play depends

on her Bonacich centrality, while the game with strategic substitutes has a multiplicity of

equilibria. Galeotti et al. [2010] show that the introduction of incomplete information allows

to prove the existence of monotone equilibria: actions are non-increasing (non-decreasing) in

players’ degrees under strategic substitutes (complements). Moreover, these are the unique

symmetric equilibria if one puts some restrictions on the payoffs. This result is intuitive for

the game of pure strategic complements, but in the case of strategic substitutes it reduces the

equilibrium multiplicity present in the game with complete information, thereby significantly

increasing the predictive power of the model.

Charness et al. [2014] test the predictions of the Galeotti et al. [2010] model in a series of

experiments on a variety of networks with 5 nodes and a small set of networks with 20 nodes.

Aside from the network structure, the two treatment variables are whether it is a game of

strategic substitutes or complements, and the presence of complete or incomplete information

about the network. They restrict their attention to active/inactive binary strategies which

28Examples include Krackhardt [1987, 1990], and Kumbasar et al. [1994].
29The only two experimental studies we are aware of in network cognition are Janicik and Larrick [2005]

and Dessi et al. [2014].
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implies that one of the binary actions leads to a secure outcome because a player receives a

fixed payoff by choosing this action, regardless of her degree and the neighbors’ decisions. In

the incomplete information treatments with the small networks, subjects’ play is in agreement

with the predictions in Galeotti et al. [2010]: subjects use threshold strategies and the

frequency of active players is monotonically increasing (decreasing) with connectivity for

the case of complements (substitutes). Whenever incomplete information induces a unique

equilibrium, subjects almost always make choices that are consistent with the equilibrium.

In the context of strategic complements, Charness et al. [2014] find that when there are

multiple equilibria, network properties are predictive of subjects’ behavior and thus serve as

an equilibrium selection tool. Specifically, connectivity and clustering influence the likelihood

of activity: high connectivity and more clustering tend to increase coordination on the

efficient equilibrium rather than the secure but less efficient one. They also find evidence

that the introduction of uncertainty drives play to the most secure equilibrium.

The experiment by Charness et al. [2014] is a very good illustration of how the compar-

ison of treatments with complete and incomplete information about the network can help

in understanding the role of uncertainty about the network as well as shed light on other

experimental results in the complete information set-up. In the context of strategic com-

plements, the high frequency of equilibrium play when there is a unique equilibrium in the

complete information setting is consistent with the results in Gallo and Yan [2015b] who

find convergence on average to the equilibrium play on large networks when subjects have a

large, non-binary set of actions at their disposal. The introduction of incomplete informa-

tion about the network does not significantly alter the finding. In the context of strategic

substitutes, the introduction of incomplete information helps to reduce the strategy space

and acts as an equilibrium selection device both theoretically and experimentally: Charness

et al. [2014] find high convergence to equilibria in contrast to the results in Rosenkranz and

Weitzel [2012] who find low frequency of equilibrium play. An important caveat is that sub-

jects in Rosenkranz and Weitzel [2012] have a large set of actions to select from, so an open

question is whether the results in Charness et al. [2014] hold in a setting with non-binary

actions.

Gallo and Yan [2015a] examine the role of incomplete information about the network in

the context of the prisoner’s dilemma game on an endogenous network which we reviewed in

section 2.3. In each round of a repeated game, subjects first form costless links with other

subjects and then play a prisoner’s dilemma game on the resulting network. The authors vary

the information that subjects have about the network as well as the information about others’
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previous actions. In the baseline, subjects only know the identity and previous five actions

of their neighbors. The network information treatment adds information on the full network

to the baseline, the reputation treatment adds information on the previous five actions by

everyone to the baseline, and the final treatment has full information on the network and

others’ previous five actions. Mouse-movement tracking data shows that subjects make

active use of the network information, but the availability of full information about the

network has no effect on the aggregate level of cooperation which is solely driven by the

availability of information on everyone’s previous five actions. The availability of information

about the network in addition to information on everyone’s actions affects the distribution

of cooperative activity: it allows cooperators to find each other and form their own separate

community by excluding defectors to a separate community using the information about the

network in the network formation process. Being part of the community of cooperators is

highly beneficial, it allows a subject in the cooperative community to earn a payoff per round

that is 23% higher than if she were in a community of defectors of equal size. These results

also show that the choice made in other experimental studies of the prisoner’s dilemma game

on an endogenous network to only give subjects information about neighbors, rather than

the whole network, is not without consequence.

Experimental designs that vary the information about the network available to subjects

can also be useful to differentiate between competing models. The experiment by Grimm

and Mengel [2014], which we already described in section 2.5, also varies information about

network structure by allowing subjects to know only their own degrees in the network, or

the degree distribution of the network as well as their own degree, or the complete structure

of the network. The key insight is that fully Bayesian updating is responsive to the differ-

ential information about the network structure, but DeGroot-type updating is not, because

it disregards the knowledge about the network structure beyond the neighbors in the belief

updating process. As we have seen in section 2.5, subjects’ decisions are very consistent

with DeGroot updating. However, subjects make more correct guesses in some networks

when they have more information about the network structure, which cannot be explained

by DeGroot updating. Grimm and Mengel [2014] show that if subjects have complete infor-

mation about the network then the weight they place on their belief is increasing in their

clustering coefficient, which captures the extent to which their neighbors are connected with

each other. In other words, subjects take into account correlations in neighbors’ beliefs in a

rudimentary way rather than ignoring them as assumed by DeGroot updating.

The variation of the information about the network available to participants reveals novel
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insights about the network games reviewed in sections 2.1, 2.2, 2.3 and 2.5. It sheds light on

a range of issues including how equilibrium selection depends on the network, how agents

update their beliefs using network information, and how decisions are distributed in the

population. A fertile avenue for further research would be a systematic examination of what

information about the network individuals make use of and how it matters in their decisions:

the studies we have reviewed vary the network information in an ad hoc fashion which is not

grounded in evidence of how individuals memorize, recall and use this type of information.

We will explore further this theme in section 4.

3 Markets and Networks

This section discusses existing experimental research on markets and networks. We or-

ganize it by two distinct strands of the literature. In the first strand, networks are used as

a tool of representing the trading relation among market participants. The second strand

reviews a couple of studies that investigate the impacts of communication and information

networks on trading behavior and market outcomes.

3.1 Trading frictions

The Walrasian theory of market equilibrium is a cornerstone of economics in understand-

ing markets. It postulates that trade takes place on a centralized exchange mediated by a

fictitious auctioneer. Competitive equilibrium in this frictionless economy has been a signifi-

cant basis of understanding the workings of markets and economists’ advice of public policy.

Experimental research has also deepened our understanding on markets by investigating the

properties of market institutions in a controlled environment. Starting from Chamberlin

[1948] and Smith [1962, 1965], a large literature of market experiments has accumulated

evidence that certain institutions in laboratory markets have remarkable properties of ap-

proximating an efficient allocation, predicted by the Walrasian theory, even with a small

number of subjects30. One prominent such institution is the continuous double auction with

a centralized process of trading.

In practice, there are many markets in which exchange is organized by decentralized

trade and intermediation. In those environments, networks are a natural tool to represent

the trading relationships among market participants. When the network is complete, ev-

ery possible trading opportunity is present and therefore there is no constraint on trading

30See Sunder [1992] for a slightly outdated but comprehensive survey.
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patterns. On the other hand, the incompleteness of the network signifies that some traders

are unable to trade with each other. It implies either the pure loss of trading opportunities

or the fact that an intermediation service is required for trading. When intermediation is

costly, the incompleteness of the network becomes a source of trading frictions and a cause

of inefficient allocation.

A number of theoretical studies use networks to understand the effects of network struc-

ture on market outcomes in a variety of situations, including two-sided networked markets

with bargaining (e.g., Kranton and Minehart [2003] and Corominas-Bosch [2004]), finan-

cial contagion (e.g., Allen and Gale [2000]), and intermediated trade (e.g. Condorelli and

Galeotti [2012])31. A general takeaway from this body of work is that networks are a sig-

nificant determinant of market efficiency and the division of trading surplus. Nevertheless,

theory alone has limited predictive power and it is not very informative for policy due to

the complexities of networks and the multiplicity of equilibria. Experimental research can

complement these theoretical advances by shedding some light on equilibrium selection and

the behavioral rules individuals adopt when facing the complexities of networks.

A first branch of the experimental literature examines two-sided networked markets.

Charness et al. [2007] is an experimental test of the model by Corominas-Bosch [2004]. The

market is described by a bipartite network of buyers and sellers, representing the limited

set of trading opportunities, and by a protocol of sequential alternating bargaining over a

shrinking value of a homogeneous and indivisible good. Corominas-Bosch [2004] provides a

theoretical method of decomposing any network of buyers and sellers into relatively simple

subgraphs, plus some extra links. A nice feature of the decomposition result is that any

network is decomposed into a union of smaller networks, each one either a complete network

in which the short side of the market induced by that network receives all the surplus, or

an even network in which traders split the surplus nearly evenly. Charness et al. [2007]

employ two separate simple networks–a three-person network, which is competitive, and a

four-person network, which is even– and combinations of these two resulting in a variety of

seven-person networks. They observe such a high degree of bargaining efficiency that 75% of

the possible agreements are reached in the first round and the total payoffs received are 96%

of the maximum attainable. The decomposition result predicts stark difference in bargaining

outcomes, depending on how a link is added between two simple networks. The experimental

31Applications of networked markets are presented in Chapter XX (for financial contagion) and Chapter XX
of the Handbook by Condorelli and Galeotti discusses the theoretical literature on strategic intermediation
in networks. Chapter XX of the Handbook by Manea discusses the theoretical literature on buyer and seller
networks.
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data qualitatively validate the theoretical predictions.

Judd and Kearns [2008] also study experimentally bipartite exchange in large networked

markets. The experiment examines a range of 36-person bipartite networks including regular

and random networks as well as networks generated using a preferential attachment process,

which means that the structure varies in terms of aggregate network properties such as the

degree distribution. The main focus of the experiment is testing the predictions on the

mapping of structural asymmetries in network topology into pricing behavior and efficient

outcomes. They find that the level of efficiency is quite high across all network treatments

and those with more links (and with more trading opportunities) obtain higher benefits from

trading. Nevertheless, there is evidence of equality seeking or inequity aversion, despite that

asymmetry in network positions results in unequal distribution of gains from trading.

Figure 3: An example of a network in Gale and Kariv [2009].

A second branch of the experimental literature explores the impact of networked inter-

mediation on efficiency and surplus division. Gale and Kariv [2009] study a simultaneous

bid-ask model of trading in networks. A buyer and a seller need to trade a commodity or

asset through a set of intermediaries. Traders are located on a rectangular network consisting

of rows and columns of intermediaries. Figure 3 shows an example with three columns and

three rows of intermediaries connecting the seller (CGS) at the top with the buyer (CGB)

at the bottom. Trades are restricted to adjacent rows and links represent potential trading

opportunities. Each intermediary simultaneously chooses a bid (the price at which he is

willing to buy the asset) and an ask (the price at which he is willing to sell the asset). Each
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member of traders in a given row can trade with every member of traders in an adjacent

row with whom he has a link. The variations of trading networks in the design of Gale

and Kariv [2009] feature essentially Bertrand competition amongst horizontally positioned

traders. Thus, from a given network, adding rows increases the amount of intermediation

required to capture the surplus available, whereas adding columns increases the amount of

competition. Due to Bertrand competition, in an efficient equilibrium the asset’s transaction

price is equal to its value after traversing the first row. Gale and Kariv [2009] report that

the level of efficiency is very high and that the pricing behavior observed in the experiment

converges to competitive equilibrium behavior in a variety of treatments. However, the rate

of convergence varies depending on networks and other parameters of the design.

Choi et al. [2014] propose a static model of posted prices in networks and test its empirical

relevance in the laboratory. In their model, there are a set of intermediaries lying between

a buyer and a seller. The passage of a commodity from the seller to the buyer generates

value. Intermediaries simultaneously set a price to get a share of this value. The model

deals with both a trading situation of complete information where intermediaries know the

value of exchange, and a situation of incomplete information where intermediaries choose

a price prior to knowing the value of exchange. Trading occurs through a least cost path

and an intermediary earns payoffs only if he is located on it. Choi et al. [2014] offers a

complete characterization of Nash equilibria under both information cases. Theory allows

both efficient and inefficient equilibria and predicts that node criticality32 is a necessary

condition for the extraction of intermediation rents. Due to the multiplicity of equilibria,

theory alone cannot make sharp predictions on efficiency and surplus division.

Figure 4: (a) Ring 6 and (b) ring with hubs and spokes in Choi et al. [2014].

32A node is critical if it lies on all paths between the buyer and the seller.
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In the experimental part, Choi et al. [2014] examine several networks which vary in size

and in absence/presence of critical nodes. Figure 4 show two networks with or without critical

nodes: (a) ring 6 network and (b) ring with hubs and spokes. They also investigate variation

of information on the value of exchange. The experimental data report a remarkably high

level of efficiency across all networks in the benchmark model of complete information, in

favor of an efficient equilibrium against an inefficient one. For instance, the efficient outcome

occurs with probability 1 in the ring 6 network and with probability 0.95 in the ring with

hubs and spokes. With regard to surplus division, the experimental results show that critical

intermediaries set high prices and extract most of the surplus. As a result, intermediation

costs are small in the ring 6 network (less than 15%) and are quite high in the ring with

hubs and spokes (60% to over 95%). Thus, the model and the experiment taken together

establish that the presence of critical intermediaries is both necessary and sufficient for large

surplus extraction by intermediaries and that most of the intermediation rents accrue to

critical intermediaries.

Experimental research on networked markets is an exciting research area. In experi-

mental markets, one can control traders’ preferences, technology, and private information,

as well as network structure. It is practically impossible to achieve this level of control in

observational market data. Because of such a methodological advantage, experiments on

trading in networks can address issues that are hard to test using real market data.

3.2 Information flows

Information plays a key role in the well-functioning of markets. As we have already

seen in sections 2.4 and 2.5, social networks are a channel for information to flow among

individuals and therefore the structural features of the communication network may be

related to the outcomes that we observe in the market. Furthermore, the social network

will create heterogeneities across individuals depending on their position in the network,

which may result in some of them having an informational advantage. Here we focus on

two functions of communication networks in markets. The first function is to monitor other

market participants in a market environment in which contracts are not perfectly enforceable

and therefore information about other individuals’ conduct is critical to ensure that cheaters

are punished. The second function is to provide information about the value of goods in

markets where this information is not common knowledge through publicly displayed prices,

but it is only shared privately by the participants in a market transaction.

The first function of communication networks in markets has received significant attention
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in the economic history and development literatures to explain the existence of active trading

markets in contexts where there are no formal institutions to enforce contracts. For instance,

Greif [1993] provides historical evidence that monitoring through communication networks

allowed the Maghribis to become the main traders in the Mediterranean in the 13th century.

Cassar et al. [2010] reports the results of an experiment to examine the role of information

networks in trading behavior in a multi-market situation where contracts are not perfectly

enforceable. The market institution is a continuous double auction in which buyers and

sellers are randomly assigned and their values and costs are heterogeneous. There are two

markets running simultaneously: a “local” market where contracts are strictly enforced, and

a “distant” market where cheating is possible with a seller delivering a lower-quality good and

a buyer paying less than promised. In addition to the structure of the two markets, traders

are fully connected with a subset of traders in the distant market via a clique network,

which enables them to observe and thus monitor the past play of their network members’

trading including all bids, asks, and transactions made by them. Thus, traders know whether

and which members of their network cheated, and can build up their reputation within

their network. The clique network further varies with regard to the composition of values

and costs to create networks with potentially high trading surplus and networks with low

trading surplus. The baseline treatment has no network so all trades in the distant market

are anonymized. The results show that the presence of information networks significantly

reduces cheating and increases efficiency, and that, due to the facilitation of monitoring

within a network, networks lure high surplus traders out of the local market and into the

distant market.

A second function of communication networks is to provide market information to traders

in contexts where there is incomplete information because there are no publicly available

prices and information about the value of goods is only circulated within social networks.

For instance, Rauch and Trindade [2002] show that Chinese immigrant networks significantly

increase international trade volumes, and this only happens for commodities whose prices are

not publicly available, providing strong evidence that belonging to the network gives them

an informational advantage. Gallo [2014a] extends the model in Young [1993] to capture this

function of social networks in markets. In a decentralized market one buyer and one seller are

randomly matched to play a Nash demand game in each time period, and, before playing the

game, they receive information about past transactions through their social network. The

process converges to a unique equilibrium where each buyer (seller) gets the same and the

split between buyers and sellers depends on the degree of the least connected individual(s) in
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each network: the lower the degree of the least connected buyer (seller) the lower the share

going to every buyer (seller). The testable predictions are that groups with high density

and/or low variability in the number of connections across individuals allow their members

to obtain a better deal.

Gallo [2014a] also reports the result of an experiment testing the predictions of the model.

He examines four six-person networks of buyers which vary in density and distribution of

connectivity: a regular network of degree 4, the circle, the star and a 4-node circle network

with two spokes. Subjects are assigned to a specific position in a network, which is unchanged

for all the 50 rounds of the experiment, and they are told they are traders in a market and

they will be trading with a seller played by a computer. At the beginning of a trading

round a subject receives a sample of information about the demands made by the seller in

past transactions with the other subjects she is connected to. This information is randomly

sampled by the computer from the history of play and it is the only information a subject

has prior to making a demand. The results of the experiment lend support to the theoretical

predictions. Subjects in the regular network of degree 4, which has the highest density,

converge to a significantly higher demand than subjects in other networks. Subjects in the

star and circle with spokes networks, which are the only ones with a least connected node of

degree 1, are undistinguishable and converge to a lower demand than the other two networks.

4 Future directions

The previous sections have reviewed the main work in the literature on network exper-

iments and identified open questions within specific topics that would benefit from further

research. In this section we take a more holistic view of the current landscape of research

on networks in economics, and identify directions for further experimental research that are

important for several areas where networks matter.

The nature of theoretical modelling in the network literature varies significantly depend-

ing on the size of the network. At one end of the spectrum there are models describing

phenomena in small networks of a few nodes: the standard game theoretic approach ap-

plies well here as strategic considerations are paramount and the small set of players makes

most problems tractable. At the other end of the spectrum there are models describing

phenomena on large networks: the prevailing approach is to use different types of stochastic

processes with no strategic element or a boundedly rational approach based on heuristics.

Theoretical models for the intermediate size case adopt a mix of the game theoretic and
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stochastic approaches, and this is arguably the area where network structure has the most

interesting effects and the literature is less developed. The social learning models we re-

viewed in section 2.5 provide a good illustration of this spectrum with fully Bayesian and

DeGroot-type models being particularly relevant for describing behavior on small and large

networks respectively, and a truly hybrid model between the two arguably still missing.

Up to now the experimental literature in economics has largely focused on small networks

of at most a dozen nodes. This is a limitation to the general validity of the findings as some

of the few experiments which have compared intermediate and small sized networks show

interesting evidence of the importance of network size33. A practical reason to focus on small

networks is to keep session sizes manageable as well as the fact that if the network is the unit

of analysis then the number of independent data points is divided by the network size, which

means that large network experiments would require a large subject pool. However, these

practical considerations have been overcome by several researchers outside of economics34,

and a systematic study of how network structure affects behavior in intermediate and large

sized networks is important to enrich our understanding of their impact on behavior.

A related direction for future experimental research is improving our understanding of

how individuals learn, memorize and recall information about the network, and what heuris-

tics and potential consequent biases are involved in this process. An extensive literature in

cognitive psychology has documented how individuals use heuristics to handle demanding

cognitive tasks and how these heuristics may lead to systematic biases35. This is particularly

relevant for networks of intermediate and large size where the complexity and sheer number

of potential network architectures mean that individuals cannot possibly have complete in-

formation about the network they are embedded in. Dessi et al. [2014] provide some evidence

that individuals tend to underestimate the mean degree and overestimate (underestimate)

the number of rare (frequent) degrees in a 15-node network using a graphical methodology

to generate the network in the lab, and show that these biases are also present in two real

networks mapped through surveys. However, the cognitive processes we use to memorize

and recall network information and the resulting biases are still largely unexplored. As we

have seen in section 2.6, the introduction of incomplete information about the network in

theoretical models can provide novel insights, and experimental evidence on how to model

33Examples include Choi et al. [2014] and Gallo and Yan [2015b].
34Among the studies covered in this review, Judd and Kearns [2008], Judd et al. [2010] and Kearns et al.

[2009] conduct experiments on networks of 30-50 individuals, and Gracia-Lázaro et al. [2012] has networks
of more than one hundred nodes.

35See Tversky and Kahneman [1974] for some examples of this body of work. Kahneman [2011] gives a
comprehensive account accessible to the general public.
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incomplete information would be very valuable to avoid ad hoc assumptions and provide

input to improve the behavioral validity and predictive power of the theory.

A prominent dimension of many social connections is their strength. The reduction of

relations such as friendship, trust, the people we seek advice from and communication to

a binary variable is rather coarse and fails to capture the important role that the strength

of links plays in relating network structure to behavior. The results in several theoretical

models that we have reviewed in section 2 apply to any weighted network, e.g. Ballester

et al. [2006] and DeMarzo et al. [2003] amongst others. However, there is no paper we are

aware of in the network experiments literature within and outside of economics which has

investigated weighted networks. The creation of weighted networks in the lab presents its

own challenges, but overcoming them would allow the exploration of a dimension of network

structure which plays an important role in many contexts where network structure affects

behavior.

In recent years there has been a growing number of experiments showing that culture

matters for play in different games36. Social relations are intertwined with culture, and we

would expect the relation between social network structure and behavior to be dependent

on culture in several contexts. For instance, Currarini et al. [2009] show that the tendency

for individuals to form relations with others who are like them along some dimension, or

homophily, shapes the network structure and in turn this affects individual behavior (e.g.

Golub and Jackson [2012]). McPherson et al. [2001] review evidence that homophily varies

along different dimensions including ethnicity and culture, which suggests a relation between

culture, the networks that form and the way they impact behavior. Ideally the investigation

of the role of culture requires running an experiment with individuals in different geographical

locations, which has become feasible only recently thanks to the development of web-based

experiments37. The development and diffusion of web-based experiments opens up the op-

portunity of novel research on how culture and social networks jointly influence behavior.

Finally, in the introductory perspective on the literature in chapter XX, Goyal (REF)

argues that the economics of networks is transitioning to a “normal science” through the

application of network models to competition, prices and markets across different fields in

economics. Some examples he gives of this transition include recent studies on the role of

networks in product, financial and labor markets which contribute to the gradual integration

of networks into the standard economics framework, and policy-makers’ growing awareness

of their importance. A case in point is the prominence of networks in the discussions among

36Examples include Henrich et al. [2001] and Jackson and Xing [2014].
37Examples of web-based network experiments include Rand et al. [2011] and Gallo and Yan [2015a].
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academics, policy-makers and the general public in the aftermath of the 2008 financial crisis.

A number of theory papers have been written on this topic since38, but we believe that the

inclusion in theoretical models of realistic assumptions about the behavior of market agents is

critical for the application of theoretical results to policy. In an ongoing project, Choi et al.

[2015] examine experimentally how market freeze depends on network structure and the

information agents have about the network in a standard trading market with a continuous

double-auction. The findings in this experiment may shed light on the behavior of individuals

in this environment, which can then be fed into theoretical models to generate predictions

that can be tested experimentally. Our hope is that this type of two-way dialogue between

theoretical and experimental work will continue to grow to increase our understanding of

the relevance of networks in economics and policy-making.
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