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Bayesian Persuasion

• Classical question: How (much) can a sender persuade a
rational receiver to take a particular action? (e.g., seller-buyer,
media-voters, prosecutor-judge, entrepreneur-investor.....)

• An important assumption: Commitment
• Achieved by instantaneous and unrestricted experimentation.

• We relax the commitment assumption.
• In our model, persuasion takes time and is costly:
• To be informative takes real time.
• Information is costly for sender to generate and for receiver to process.

• No commitment to future actions: For instance, sender may not be
able to credibly carry out sustained persuasion.

• Key issue: How to persuade the receiver to listen rather than
walk away?

• Questions:
• Is dynamic persuasion possible? What payoffs can be achieved?
• Behavioral Implications: Dynamic Choice of Information Structures
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Model — actions and preferences

• Two States: ω ∈ {L,R}, common prior p0 that ω = R.

Receiver

• Takes irreversible action a ∈ {`, r}, or waits.
• Payoff from action a in state ω: uω

a
• Prefers to “match” the state: uL` > uLr , uRr > uR`

• Notation:

Ua(p) = puRa + (1− p)uLa , a ∈ {`, r}
U(p) = max {Ur (p),U`(p)}

Sender

• Receives state-independent payoff v · 1{a=r}, v > 0.

• Performs experiments over time to “persuade” receiver.
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Static Benchmark: Kamenica-Gentzkow Model

• Sender picks an arbitrary Blackwell experiment, wlog: 2 signals.

• Notation: p̂ solves U`(p) = Ur (p).

0 p0 p̂ 1

v
Sender Receiver

0 p0 p̂ 1

uL`

uLr
uR`

uRr

Observations

• “Fully-revealing of L” in case of L-signal

• R-signal sent excessively compared to full information.

• The receiver enjoys no rents.
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Our Model: Dynamic Extension

• Continuous time, infinite time horizon.

• Flow cost c > 0 for sender and receiver.
• Payoffs if a ∈ {`, r} is taken at time T when belief is pT :
• Receiver: Ua(pT )− c T
• Sender: v · 1{a=r} − c T

Timing

At each point t in time,

1 Sender picks an information structure (described later) at flow
cost c or “passes” (=null information, costless).1

2 Receiver observes the information structure and its outcome,
and either takes an irreversible action a ∈ {`, r}, or waits.
• If she waits and listens to next experiment she incurs cost c .
• No cost is incured if the sender passes.

1“partial passing” is possible
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Our Model: Dynamic Extension

Comparison to KG

• In KG-benchmark: Arbitrary information structure can be
implemented instantaneously without cost.

• Information structure in our model:
• Information takes time to arrive.
• No other restriction: Feasible information structures will allow to

generate arbitrary distribution over posteriors.

• Important difference from KG:
• Receiver can take game-ending action at any time.
• Sender’s information must make it worthwhile to wait.

(⇒ commitment issue)
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Feasible Information Structures: General Poisson Models

Basic Poisson Experimennt

The sender chooses arrival rates of a signal:

• λL := νL + µ (in state L)

• λR := νR + µ (in state R)

where νL + νR ≤ λ and µ ≥ 0.

Interpretation of (νL, νR) and µ:

• Real Signal: arrival rate constrained by λ.

• Noise (“inflation”): same arrival rate µ in each state.

Feasible Information Structures

Mixtures of experiments (λL
i , λR

i ) with weights ∑i αi ≤ 1 feasible.

• Arrival rates scaled by weight: e.g. (α1λ, 0) and (0, α2λ)

• Signals from different experiments can be distinguished
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Feasible Information Structures: General Poisson Models

0

λR

λLλ

λ

µ1

λ + µ1

µ2

λ + µ2

Figure: Arrival rates of feasible Poisson experiments.
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Choosing “Jump Targets” for Posterior Beliefs

Reformulation in Terms of Beliefs

• Fix a current belief p and target posterior belief q.
• S can choose a feasible (λL, λR) so that, jump leads to

posterior q.

⇒ Resulting arrival rate:
p(1−p)
|q−p| λ.

• Important Feature: Large jumps are preferred to small jumps.

Summary: Feasible Information Structures

• Nests conclusive good news and conclusive bad news.

• Allows for any directionality and any degree of accuracy, and
can mix different Poisson experiments.

• Important feature: Real information takes time; the more
precise the posterior q, the longer it takes for signals to arrive.
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Feasible Experiments: Three Building Blocks

L-drifting experiment (with right-jumps q+ > pt)

• R-signals: belief jumps to q+, arrival rate: pt (1−pt )
|q+−pt | λ

• L-signals: belief drifts to the left: ṗt = −λpt(1− pt)

0 1pt q+

L R

• Sender may choose the “precision” of R-evidence.
• For example this allows to target q+ = p̂!
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Feasible Experiments: Three Building Blocks

R-drifting experiment (with left-jumps to q− < pt):

• L-signals: belief jumps to q−, arrival rate: pt (1−pt )
|q−−pt | λ

• R-signals: belief drifts toward right, ṗt = λpt(1− pt)

0 1q− pt

RL

“Stationary” Experiment

• Splitting attention (α = 1/2), we obtain 2 jumps and no drift

• Jumps to q− and q+ at rates λpt (1−pt )
2|q•−pt | ,—no drift.

0 1pt q+

R

q−

L

10 / 32



Our Model: Dynamic Extension

Equilibrium

• We study: Markov Perfect equilibria (MPE)
• Subgame Perfect Equilibrium in which
• strategies only depend on payoff relevant state p.

• Additional Restriction: MPE should be a limit of discrete time
equilibria.
• Sender maximizes continuous time flow payoff even when receiver

stops immediately.

• Continuous time game: admissible strategy profiles defined
similarly to Klein and Rady (2011).
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Overview

1 Illustration of the Commitment Problem

2 Main result: Characterization of Equilibrium Payoffs

3 Equilibrium Construction and Persuasion Dynamics
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Dynamic Implementation of Optimal Static Experiment

• Fix p0 < p̂.

• replicate KG: dynamic experiment that leads to beliefs 0 and p̂

• For example: R-drifting experiment until belief reaches p̂.

uL`

uLr

uR`

uRr

0 p0 p̂ 1

U`(p0)

• Problem: Receiver does not wait if she does not get rent that
compensates for flow cost.
⇒ KG experiment does not keep receiver engaged.
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Fix: Dynamic Commitment

• What if a dynamic commitment is possible?
• Example: Commit to R-drifting until the belief reaches p∗ > p̂.

uL`

uLr

uR`

uRr

0 p0 p̂ 1p∗

U`(p0)

• Similar to KG except to offer “rents” to compensate for
Receiver’s flow cost.

• But will this work without commitment?
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Is Persuasion Possible Without Commitment?

Persuasion Failure

• There is an MPE with total persuasion failure regardless of
c > 0.

Persuasion

• Some dynamic commitment can be supported in MPE if cost is
low enough.

• As c → 0, a KG experiment as well as full revelation (and
anything in between) is dynamically credible.
⇒ Folk Theorem

Skip: No Persuasion
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MPE: Persuasion Failure

Theorem (Persuasion Failure MPE)

For any c > 0, there exists a MPE in which no persuasion occurs.

Proof.

MPE strategy profile:

• Receiver never waits—he picks r if p ≥ p̂ and ` for p < p̂.

• Sender passes if p ≥ p̂ (and if p < p̂ is very low)

• Sender performs L-drifting experiment with jumps to p̂ if p < p̂
(not too low).

• Remark: satisfies refinement since sender maximizes flow payoff.
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Folk Theorem

Theorem (Folk Theorem)

Any sender payoff between KG benchmark and “full revelation” is
supported by an MPE for c sufficiently small.

Any receiver payoff between KG benchmark and “full revelation” is
supported by an MPE for c sufficiently small.
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Folk Theorem: Sender’s Payoffs as c → 0

MPE payoffs

feasible

non-MPE payoffs

0 p̂ 1

v

• Feasible payoffs outside “blue region” cannot be supported as
MPE as c → 0.
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Equilibrium Construction

Definition (Simple Markov Perfect Equilibrium — SMPE)

In an SMPE the receiver waits if any only if p ∈ (p∗, p∗) :

|
p=0

`︷ ︸︸ ︷
——————— p∗

“wait”︷ ︸︸ ︷
——————p̂——— p∗

r︷ ︸︸ ︷
—————— |

1

Feasible Payoff Vectors
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Equilibrium Construction: Preview

0←− p∗ p̂ p∗ 1

v

• Dashed line: Equilibrium payoffs for fixed p∗ as c → 0

• Folk Theorem: Can choose p∗ ↘ p̂ or p∗ ↗ 1 as c → 0
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Equilibrium Construction

Construction Depends on Two Conditions

• How demanding is the “persuasion target” p∗?

p∗ ≤ η ≈ 0.943 (C1)

• Who benefits more from information revealed in equilibrium?

v > Ur (p
∗)− U`(p

∗) (C2)

• Note: (C2) always holds in equilibria that approximate the KG
benchmark (p∗ ≈ p̂).
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Equilibria when (C1) and (C2) hold

Proposition (Fix p∗ ∈ (p̂, η] such that (C2) holds.)

If c > 0 is sufficiently small, then there exists a unique SMPE with
p∗. The sender’s strategy has the following structure:

|
0
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗−→−→−→−→−→−→︸ ︷︷ ︸
R-drift, jump: 0

p∗————————︸ ︷︷ ︸
“pass”

|
1

• p∗ → 0 as c → 0. Proof
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Equilibria when (C1) and (C2) hold

Proposition (Fix p∗ ∈ (p̂, η] such that (C2) holds.)

If c > 0 is sufficiently small, then there exists a unique SMPE with
p∗. The sender’s strategy has the following structure:

|
0
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗−→−→−→−→−→−→︸ ︷︷ ︸
R-drift, jump: 0

p∗————————︸ ︷︷ ︸
“pass”

|
1

Power of Beliefs provides Incentives for Sender

• What happens if the Sender stops experimenting at p̂?

• Receiver believes in continuation sender follows equilibrium.

• Facing “optimistic” receiver, sender does not benefit from
deviating.

(reminiscent of Che and Sákovisz, ECMA, 2004)
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Equilibria when (C1) and (C2) hold

Proposition (Fix p∗ ∈ (p̂, η] such that (C2) holds.)

If c > 0 is sufficiently small, then there exists a unique SMPE with
p∗. The sender’s strategy has the following structure:

|
0
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗−→−→−→−→−→−→︸ ︷︷ ︸
R-drift, jump: 0

p∗————————︸ ︷︷ ︸
“pass”

|
1

Persuasion Dynamics

• p ∈ [p∗, p∗): receiver is already interested in listening.

⇒ Confidence building, try to rule out state L.
⇒ Persuasion backloaded.

• p < p∗: Receiver is skeptical Details

⇒ Sender is desperate: Throws a “Hail Mary”
⇒ Persuasion almost surely fails.
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Equilibria when (C1) and (C2) hold

Proposition (Fix p∗ ∈ (p̂, η] such that (C2) holds.)

If c > 0 is sufficiently small, then there exists a unique SMPE with
p∗. The sender’s strategy has the following structure:

|
0
——︸︷︷︸
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p∗−→−→−→−→−→−→︸ ︷︷ ︸
R-drift, jump: 0

p∗————————︸ ︷︷ ︸
“pass”

|
1

Why not opposite dynamics? (L-drifting until belief reaches p∗)

• Sender “spends confidence” while trying to get breakthrough.

• Leads to stopping at p∗ when the confidence becomes too low.

• Advantage: Avoids costly experimentation if p ≈ p∗
• Disadvantage: Lower persuasion probability

• (C2) =⇒ Receiver stops early (at high p∗):

⇒ Lower persuasion probability outweighs cost advantage.
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Equilibria when (C1) fails and (C2) holds

• The persuasion target p∗ is now more demanding.

Proposition (Fix any p∗ > η such that (C2) holds.)

If c > 0 is sufficiently small, there exists a unique SMPE with p∗.
The sender’s strategy has the structure:

|
0
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗−→−→−→︸ ︷︷ ︸
jump: 0

ξ1←−←−←−︸ ︷︷ ︸
jump: p∗

πLR−→−→︸ ︷︷ ︸
jump: 0

p∗ ——︸︷︷︸
“pass”

|
1

At ξ1: stationary strategy with jump targets q− = 0, q+ = p∗.

• p∗ → 0 as c → 0

• πLR → 1 and ξ1 → 1/2 as p∗ → 1.
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Equilibria when (C1) fails and (C2) holds

Proposition (Fix any p∗ > η such that (C2) holds.)

If c > 0 is sufficiently small, there exists a unique SMPE with p∗.
The sender’s strategy has the structure:

|
0
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗−→−→−→︸ ︷︷ ︸
jump: 0

ξ1←−←−←−︸ ︷︷ ︸
jump: p∗

πLR−→−→︸ ︷︷ ︸
jump: 0

p∗ ——︸︷︷︸
“pass”

|
1

At ξ1: stationary strategy with jump targets q− = 0, q+ = p∗.

Intuition:
• Sender uses strategy that ...

... leads to “optimal posteriors” 0 and p∗ and

... minimizes cost of experimentation.

• Buildup of “confidence” up to p∗ takes long time.
• Seeking breakthroughs (jump to p∗) has lower average delay.
• Gradual loss of reputation stops at ξ1.
• Persuasion less backloaded compared to p∗ < η.
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Summary: Main Contributions

1 Introduce sequential information production into Bayesian
Persuasion model:
• Relax commitment power.
• Power of beliefs allows to sustain persuasion.

2 Folk Theorem yields large set of equilibrium outcomes:
• Any outcome between KG and full revelation can arise.
• Despite sender’s control over information, sender optimal

information structure is not unique outcome.

3 Characterize Persuasion Dynamics.
• Building confidence vs. spending confidence.
• Persuasion dynamics depend on type of equilibrium.

4 Tractable model of dynamic strategic information choice.
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Thank you!
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Persuasion MPE: Folk Theorem — Feasible Payoff Vectors

• Consider equilibria with convex persuasion region.

• Feasible payoff vectors in the limit as c → 0 are:

U`(p0) p0u
R
r + (1− p0)u

L
`

0

v

p0
p̂ v

p0v

p0 < p̂

Ur (p0) p0u
R
r + (1− p0)u

L
`

0

v

p0v

p0 > p̂

Back
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Equilibrium Construction (C1 & C2 hold) — IR
The Persuasion Region: Sender and Receiver Individual Rationality

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Determine p∗ for given p∗ ∈ (p̂, η)

• Receiver’s utility from R-drifting strategy for p < p∗:

UR(p) =
p

p∗
Ur (p

∗) +

(
1− p

p∗

)
uL` − C (p, p∗)

• Derive p∗ from indifference condition:

U`(p∗) = UR(p∗)

Back
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Equilibrium Construction (C1 & C2 hold) — IR
The Persuasion Region: Sender and Receiver Individual Rationality

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

p* p*
0.0

0.2

0.4

0.6

0.8

1.0

U(p)

UR(p)

Back
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Equilibrium Construction (C1 & C2 hold) — IR
The Persuasion Region: Sender and Receiver Individual Rationality

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Lemma (Receiver’s Individual Rationality)

The Receiver prefers waiting to stopping for all p ∈ [p∗, p∗] if

p∗ < p = 1− 1

uL` − uR`

c

λ
.

and p∗ is given by the indifference condition U`(p∗) = UR(p∗).

• p → 1 as c → 0.

Back
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Equilibrium Construction (C1 & C2 hold) — IR
The Persuasion Region: Sender and Receiver Individual Rationality

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Lemma (Sender’s Individual Rationality)

The Sender’s payoff is positive for p ∈ [p∗, p∗], if

v > Ur (p
∗)− U`(p

∗). (C1)

Back

28 / 32



Equilibrium Construction (C1 & C2 hold) — IR
The Persuasion Region: Sender and Receiver Individual Rationality

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

p* p*
0.0

0.5

1.0

1.5

2.0

Vstop(p)

VR(p)

Back
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Equilibrium Construction (C1 & C2 hold) — Experiments
The Persuasion Region: Sender’s Optimal Experiment

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Consider HJB Equation

c = max
α,q− ,q+

{
λp(1− p)

[
α
V (q+)−V (p)

|q+ − p| + (1− α)
V (q−)−V (p)

|q− − p| − (2α− 1)V ′(p)

]}

• Optimal downward jump minimizes V (p)−V (q−)
p−q−

• Optimal upward jump maximizes V (q+)−V (p)
q+−p

• Optimal jumps are q− = 0 and q+ = p∗.

Back
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Equilibrium Construction (C1 & C2 hold) — Experiments
The Persuasion Region: Sender’s Optimal Experiment

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

p* p*p
0.0

0.5

1.0

1.5

2.0

V(p)

Back
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Equilibrium Construction (C1 & C2 hold) — Experiments
The Persuasion Region: Sender’s Optimal Experiment

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

• Let VS (p) denote the sender’s value of the stationary strategy
with jumps to zero and p∗.

Lemma (Unimprovability)

If VR(p) ≥ VS (p), then VR(p) satisfies the (HJB) equation.

Lemma (R-drifting Experiment is optimal if p∗ not too high)

If p∗ < η ≈ 0.943, then VR(p) > VS (p) for all p < p∗.

Back
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Equilibrium Construction (C1 & C2 hold) — Experiments
The Persuasion Region: Sender’s Optimal Experiment

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

p* p*
0.0

0.5

1.0

1.5

2.0

V(p)

VS(p)
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Equilibrium Construction (C1 & C2 hold) — Stopping
The Stopping Region: Receiver must have incentive to stop

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗
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jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Construction of Sender’s strategy

• Sender knows receiver will stop: throws “Hail Mary”.

• Optimal upward jump maximizes V (q+)−V (p)
q+−p .

• p > π0: Jump to p∗
• p < π0: Jump to p∗

• Will the receiver stop?
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Equilibrium Construction (C1 & C2 hold) — Stopping
The Stopping Region: Receiver must have incentive to stop
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R-drift, jump: 0
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Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”
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Equilibrium Construction (C1 & C2 hold) — Stopping
The Stopping Region: Receiver must have incentive to stop

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Receiver’s incentives for p ∈ (π0, p∗)

• Waiting yields strictly lower payoff than stopping since
U`(p∗) = UR(p∗)

• We see: Definition of p∗ is crucial for Receiver’s incentives.
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Equilibrium Construction (C1 & C2 hold) — Stopping
The Stopping Region: Receiver must have incentive to stop

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗
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—————︸ ︷︷ ︸

“pass”

|
1

p* p*π0
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Equilibrium Construction (C1 & C2 hold) — Stopping
The Stopping Region: Receiver must have incentive to stop

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

”pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Lemma (Receiver’s incentives for p ≤ π0)

If v > Ur (p∗)− U`(p
∗) and c sufficiently small, then the receiver

has no incentive to wait for any p < π0

Intuition:
• c → 0 implies π0 → 0
• For c → 0, and p → 0, the sender’s value (of “hail mary”) is

zero.
• If v > Ur (p∗)− U`(p

∗): receiver values “hail mary” less than
the sender.
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Equilibrium Construction (C1 & C2 hold) — Summary

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π`L ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

Summary and Limit as c → 0.

• Equilibrium exists if p∗ < η and c sufficiently small.

• As c → 0, p∗ → 0.

• Payoffs converge to p0
p∗ v and p0

p∗Ur (p∗) +
(

1− p0
p∗

)
uL` .

• Can pick sequence p∗ → p̂ as c → 0.

• This concludes the proof for approximation of KG payoffs
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Sender Incentive

|
0

Rec. stops, a=`︷ ︸︸ ︷
——︸︷︷︸

“pass”

π∗ ←−←−︸ ︷︷ ︸
jump: p∗

π0 ←−←−︸ ︷︷ ︸
jump: p∗

p∗

Receiver waits︷ ︸︸ ︷
−→−→−→−→−→︸ ︷︷ ︸

R-drift, jump: 0

p∗

Rec. stops, a=r︷ ︸︸ ︷
—————︸ ︷︷ ︸

“pass”

|
1

0
p∗ 1

v

Flow Payoff:

λp(1− p)V (q)−0
q−p − c

π0 p∗π∗
Back
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