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Abstract

This paper provides a tractable characterization of feasibility of asymmetric
reduced form auctions. Using this, auction design problems can be stated
in terms of the reduced form only. This allows to solve optimal auction
problems when classical solution techniques fail.
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1. Introduction

The classical approach to solve optimal auction problems is a two-step
procedure (Myerson, 1981). Bayesian incentive constraints are used to elim-
inate the payment rule from the designer’s objective function. Then, the
objective is maximized point-wise for each profile of types, subject to a fea-
sibility or capacity constraint. This procedure avoids the problem that the
feasibility constraint is formulated point-wise for each type-profile, whereas
Bayesian incentive constraints are expressed in terms of the reduced form
allocation rule. (The reduced form allocation rule is given by the interim
winning probabilities of the bidders.) When the classical approach fails, a

IThis paper was written while I was visiting Paris School of Economics. I would like to
thank PSE for its hospitality. Financial support of the Bonn Graduate School of Economics
and the German Academic Exchange Service is gratefully acknowledged. I would like to
thank Benny Moldovanu for his advice and Susanne Ohlendorf and Thomas Viehmann for
helpful discussions.
∗email-address: mierendorff@iew.uzh.ch, phone: +41 (0)44 634 55 63, fax: +41 (0)44

634 49 07

Preprint submitted to economics letters September 22, 2010



characterization of feasible reduced form allocation rules is needed to solve
the optimization problem.1

Proving a conjecture of Matthews (1984), Border (1991) solved this ques-
tion for the case of symmetric allocation rules. Symmetric reduced form
allocation rules are feasible if and only if for each measurable subset A of the
type-space, the probability that the object is allocated to a bidder with type
in A does not exceed the probability that there is a bidder with type in A.
Following Border (2007), we call this condition the Maskin-Riley-Mathews
(MRM) condition. Border also shows that it is sufficient to check the MRM
condition on a one-dimensional family of sets A—the level sets of the reduced
form allocation rule. This yields a tractable characterization for feasibility.

Border (2007) generalizes the first result to asymmetric environments with
finite type spaces. In this paper, we identify a low dimensional family of sets
of type profiles such that the MRM condition is sufficient for feasibility when
applied to this family. The family is a suitable generalization of the family of
level sets in Border (1991). In this way, we obtain a tractable characterization
of feasibility in the asymmetric case with Border (1991) as a special case.2
The proof is based on Border (1991) but requires some non-trivial extensions
for the asymmetric case.

2. Definitions and Results

There are N bidders i = 1, . . . , N . Each bidder belongs to one of L ≤ N
groups l = 1, . . . , L. γ(i) denotes the group of bidder i, γ−1(l) denotes the set
of bidders that belong to group l, and N l = |γ−1(l)| denotes the number of
bidders in group l. (The sets γ−1(1), . . . , γ−1(L) partition the set of bidders
{1, . . . , N}. Hence

∑L
l=1N

l = N .) For each group l, there is a probability
space (T l, T l, µl). The type of a bidder i is denoted ti ∈ T γ(i). The types
of all bidders that belong to group l are identically distributed according to
the probability measure µl. The space of all type profiles t = (t1, . . . , tN) is
the product space of all type-spaces and is denoted by (T, T , µ) = (T γ(1) ×
T γ(2) × . . .× T γ(N), T γ(1) ⊗ T γ(2) ⊗ . . .⊗ T γ(N), µ =

∏N
i=1 µ

γ(i)). As usual, a
type profile where the type of bidder i is excluded, is denoted by t−i with
probability space (T−i, T −i, µ−i). θ = (θ1, . . . , θL) denotes a profile of L

1Maskin and Riley (1984) seems to be the first paper that solves an optimal auction
problem when the classical approach fails.

2See Mierendorff (2009) for an application.
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types, one for each group. The associated probability space is (T̂ , T̂ , µ̂) =
(T 1 × . . .× TL, T 1 ⊗ . . .⊗ T L,

∏L
l=1 µ

l).

Definition 1. (a) An allocation rule is a measurable function q : T →
[0, 1]N that satisfies the feasibility condition:

∀t ∈ T :
N∑
i=1

qi(t) ≤ 1. (F)

(b) An allocation rule is group symmetric if for all l ∈ {1, . . . , L}, i, j ∈
γ−1(l) and t ∈ T ,

qi(t) = qj(σi,j(t)),

where σi,j interchanges the ith with the jth component of its argument.

qi(t) is the probability that bidder i gets the object if the profile of types
is t. The set of all group symmetric allocation rules is denoted by Q0. The
(group) reduced form Q̂ : T̂ → [0, 1]L of q ∈ Q0 is given by the interim
winning probabilities

Q̂l(θ) :=

∫
T−i

qi(θl, t−i)dµ−i(t−i), where γ(i) = l.

The lth component of Q̂(θ) is the probability that a bidder from group l gets
the object when his type is θl. For all l, Q̂l does not depend on θ−l. In what
follows, a function with this property shall be called diagonal. A measurable
diagonal function Q̂ : T̂ → [0, 1]L is called feasible if it is the reduced form
of a group symmetric allocation rule q ∈ Q0. The set of all such functions is
denoted by Q̂.

Let F denote the set of L-tuples of measurable subsets of the individual
type-spaces3

F :=
{

(A1, . . . , AL)
∣∣ ∀l : Al ∈ T l

}
.

Two elements A,B ∈ F are called F -disjoint (denoted A∩F B = ∅) if for all
l = 1, . . . , L: Al ∩Bl = ∅.

3For each A ∈ F , A1 × . . . × AL is a subset of T̂ . The converse, however, is not true.
This is a difference to the approach taken by Border (2007) who considers general subsets
of T̂ (and assumes N = L).
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Theorem 2. Let Q̂ : T̂ → [0, 1]L be measurable and diagonal. Then Q̂ ∈ Q̂
if and only if for each A ∈ F ,

L∑
l=1

N l

∫
Al
Q̂l(tl)dµl(tl) ≤ 1−

L∏
l=1

(
1− µl(Al)

)N l

. (MRM)

This generalizes Theorem 3.1 in Border (1991). As in the symmetric case,
the family of sets A ∈ F for which (MRM) must be checked can be reduced.
In the group symmetric case, the reduced family has dimension L.

Theorem 3. Let Q̂ : T̂ → [0, 1]L be measurable and diagonal. For each
α ∈ [0, 1]L let Eα = (E1

α, . . . , E
L
α ) be given by El

α := {tl ∈ T l | Q̂l(tl) ≥ αl}.
Then Q̂ ∈ Q̂ if and only if for each α ∈ [0, 1]L, (MRM) is satisfies for
A = Eα.

3. Proofs

For the proofs, we use the bidder reduced form Q : T → [0, 1]N of a
feasible group-symmetric allocation rule q is defined as

Qi(ti) :=

∫
T−i

qi(ti, t−i)dµ−i(t−i).

The set of bidder reduced forms of feasible and group symmetric allocation
rules is denoted by Q. Each Q ∈ Q is called feasible. Each Q ∈ Q is diagonal
and group-symmetric (Qi(t) = Qj(t) for all t ∈ T if i ∈ γ(j)). Hence, each
Q ∈ Q has a representation Q̂ ∈ Q̂ that satisfies Q̂l = Qi if l = γ(i) and vice
versa.

As in Border (1991), hierarchical allocation rules are an important tool
in the proofs. This notion has to be generalized to fit the asymmetric case.

Definition 4. Let A1, . . . , AK ∈ F be a family of pairwise F-disjoint sets.
The hierarchical allocation rule generated by A1, . . . , AK, and denoted by
qA1,...,AK , is defined as

qiA1,...,AK
(t) :=

{
1

|{j: tj∈Aγ(j)k }|
if ti ∈ Aγ(i)k and @j : tj ∈ Aγ(j)1 ∪ . . . ∪ Aγ(j)k−1

0 otherwise.
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A1, . . . , AK define a hierarchy of types. Alk is the set of types of bidders in
group l that are at the kth level of the hierarchy. qA1,...,AK works as follows.
If there are bidders with types at the first level, the object is given to one
of these bidders with equal probability. Otherwise, the auctioneer checks
whether there are bidders with types at the second level, and allocates the
object with equal probability to one of them. The auctioneer continues until
either he has allocated the object or until he has checked for bidders at all
levels of the hierarchy. In the latter case the object is not sold.

3.1. Proof of Theorem 2
The general approach is the same as in Border (1991). Since µ is a finite

measure, Q0 andQ are subsets of the Hilbert space L2(T, µ,RN).4 For Q, f ∈
L2(T, µ,RN) the scalar product is denoted 〈Q, f〉 =

∫
T

(Q(t), f(t))dµ(t),
where (., .) denotes the Euclidean scalar product in RN . L2(T, µ,RN) will be
abbreviated as LN2 , and L2(T, µ,R) as L2.

We define the vector of indicator functions for (A1, . . . , AL) = A ∈ F ,
as χA(t) := (χAγ(1)(t

1), . . . , χAγ(N)(tN)) so that χA : T → {0, 1}N . Clearly,
χA ∈ LN2 if A ∈ F . Furthermore, define B(A) := 1 −

∏L
l=1

(
1− µl(Al)

)N l

.
If Q is diagonal, group symmetric, and a representation of Q̂, then (MRM)
can be rewritten as

〈Q,χA〉 ≤ B(A).

With this notation, Lemmas 5.1 and 5.3 from Border (1991) can be re-
produced for the asymmetric case.

Lemma 5 (cf. Lemma 5.1, Border (1991)). For all A ∈ F and all Q ∈ Q,

〈Q,χA〉 ≤ B(A).

Lemma 6 (cf. Lemma 5.3, Border (1991)). Let Q : T → [0, 1]N be measur-
able and suppose that the function f =

∑M
j=1 αjχAj with α1, . . . , αM ∈ R and

A1, . . . , AM ∈ F separates Q from Q. That is, for all Q̃ ∈ Q:〈
Q,

M∑
j=1

αjχAj

〉
>

〈
Q̃,

M∑
j=1

αjχAj

〉
.

Then for some set A ∈ F , 〈Q,χA〉 > B(A).

4Border (1991) uses L∞and L1 but of course his proofs are still valid if we use L2.
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In Lemma 6, the simple function f =
∑M

j=1 αjχAj is diagonal and group
symmetric. The following Lemma implies that whenever a function f̃ ∈ LN2
separates Q from Q, and Q is diagonal and group symmetric, then there
exists a diagonal group symmetric function f ∈ LN2 that separates Q from
Q. Lemma 7 is not needed in the symmetric case.

Lemma 7. For every f̃ ∈ LN2 , there exist a diagonal and group symmetric
f ∈ LN2 such that

〈
Q, f̃

〉
= 〈Q, f〉 for all diagonal and group symmetric

Q ∈ LN2 .
Proof. Let Q ∈ LN2 be diagonal and group symmetric with representation
Q̂ : T̂ → [0, 1]L. Then,〈

Q, f̃
〉

=

∫
T

N∑
i=1

f̃ i(t)Qi(t)µ(t),

=
N∑
i=1

∫
T i

(∫
T−i

f̃ i(ti, t−i)Qi(ti, t−i)dµ−i(t−i)

)
dµγ(i)(ti),

=
N∑
i=1

∫
T i

(∫
T−i

f̃ i(ti, t−i)dµ−i(t−i)

)
︸ ︷︷ ︸

=:ξi(ti)

Qi(ti)dµγ(i)(ti),

=
N∑
i=1

∫
T i
ξi(ti)Qi(ti)dµγ(i)(ti),

=
L∑
l=1

∑
i∈γ−1(l)

∫
T l
ξi(tl)Q̂l(tl)dµl(tl),

=
L∑
l=1

∫
T l

 ∑
i∈γ−1(l)

ξi(tl)


︸ ︷︷ ︸

=:N lf̂ l(tl)

Q̂l(tl)dµl(tl),

=
N∑
i=1

∫
T i
f i(ti)Qi(ti)dµγ(i)(ti),

= 〈Q, f〉 .

ξ : T → [0, 1]N is diagonal by definition and therefore f̂ : Θ → [0, 1]L

is also diagonal. With f : T → [0, 1]N defined as f i(t) = f̂γ(i)(ti) =
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1
Nγ(i)

∑
j: γ(j)=γ(i) ξ

j(ti), the desired diagonal and group symmetric function
is obtained.

Lemma 8. Q0 and Q are weakly compact subsets of LN2 .

Proof. The proof is very similar to the proof of Lemma 5.4 in Border (1991).
Since we work with the Hilbert-Space LN2 and Q0 is bounded, we have that
every sequence (qn) in Q0 has a weakly convergent subsequence (with limit in
LN2 ). Following Border, it can be shown that Q0 is weakly closed and hence
weakly compact. Furthermore, the mapping Λ, that associates an allocation
rule with its reduced form is weakly continuous. As Q is the image of a
compact set under Λ, it is also weakly compact.

Proof of Theorem 2. Let Q̂ : T̂ → [0, 1]L be diagonal. Then it is the repre-
sentation of a diagonal and group symmetric function Q : T → [0, 1]N .

Lemma 5 shows that condition (MRM) is necessary for feasibility. Con-
versely suppose Q /∈ Q. Q is a convex and weakly compact subset of LN2 .
By a standard separation theorem,5 there exists a function f ∈ LN2 such that
〈Q, f〉 > max

{〈
Q̃, f

〉∣∣∣Q̃ ∈ Q}. By Lemma 7, f can be chosen to be diago-
nal and group symmetric. Furthermore, as the simple functions are dense in
L2, we can take each component f i to be a simple function. Hence f satis-
fies the conditions of Lemma 6 and there exists A ∈ F such that (MRM) is
violated. It remains to be shown that for every Q ∈ Q there exists a q∗ ∈ Q0

such that Λ(q∗)(t) = Q(t) for every t ∈ T (so far this has been shown for
almost every t ∈ T ). The proof can be found in Border (1991) and is omitted
here.

3.2. Proof of Theorem 3
As in the symmetric case, the proof of Theorem 3 starts by showing the

result for simple functions. For A ∈ F and χA : T → [0, 1]N as above, let
χ̂A : T̂ → [0, 1]L denote the representation of χA.

Lemma 9. Let Q̂ : T̂ → [0, 1]L be a diagonal simple function with Q̂ =∑K
k=1 αkχ̂Ak where α1 > α2 > . . . > αK ≥ 0, the Ak ∈ F are pairwise F-

disjoint and Al1 ∪ . . . ∪ AlK = T l for all l. For l = 1, . . . , L and k = 1, . . . , K

5cf. Theorem 3.4 in Rudin (1973)
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set El
k := Al1 ∪ . . . ∪ Alk and set El

0 := ∅.
If for each (k1, . . . , kL) ∈ {0, 1, . . . , K}L:

L∑
l=1

N l

∫
Elkl

Q̂(tl)dµl(tl) ≤ B(E1
k1
, . . . , EL

kL
), (1)

then Q̂ ∈ Q̂.

Proof. Define f : [0, 1]L → [0, 1] as f(x) := 1 −
∏L

m=1(1 − xm)N
m . This

implies

∂2l f(x) = −N l(N l − 1)(1− xl)N l−2
∏
m6=l

(1− xm)N
m ≤ 0, (2)

and B(A) = f(µ1(A1), . . . , µL(AL)), for A ∈ F . (3)

To simplify notation define clk := µl(El
k). In order to bound the left hand

side of (MRM), define g : [0, 1]L → [0, 1] as a continuous and piecewise linear
function with g(0) = 0. For x ∈ (c1k1−1, c

1
k1

)×. . .×(cLkL−1, c
L
kL

), let the gradient
of g be given by

∇g(x) =

N1αk1
...

NLαkL

 .

With this definition, g(x) ≤ f(x) on the grid of pointsG0 := {(c1k1 , . . . , c
L
kL

) | ki ∈
{0, 1, . . . , L}}:

∀x ∈ G0 : g(x) =
L∑
l=1

N l

kl∑
k=1

αkµ
l(Alk)

=
L∑
l=1

N l

∫
Elkl

Q̂l(tl)µl(tl)

≤ f(µl(E1
k1

), . . . , µL(EL
kL

)) = f(x).

The second equality follows from the definition of Q̂ and the inequality follows
from (1) and (3).

Now it is shown inductively, that g(x) ≤ f(x) on the sets

Gn :=
{
x ∈ [0, 1]L

∣∣∣ L− n ≤ |{j | ∃kj : xj = cjkj}|
}
,
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for n = 1, . . . , L.6 Observe that GL = [0, 1]L. Suppose that g(x) ≤ f(x)
for all x ∈ Gn−1. Let x ∈ Gn. Then there exist l and kl such that x =
(x1, . . . , xl−1, clkl−1, x

l+1, . . . , xL) and x = (x1, . . . , xl−1, clkl , x
l+1, . . . , xL) are

in Gn−1 and x = x(δ) = (1 − δ)x + δx for some δ ∈ [0, 1]. As x and x
differ only in the lth coordinate, f(x(δ)) is weakly concave as a function
of δ by (2). Furthermore, as the gradient of g is constant on sets of the
form (c1k1−1, c

1
k1

) × . . . × (cLkL−1, c
L
kL

), g(x(δ)) is linear as a function of δ. By
the induction hypothesis, g(x) ≤ f(x) and g(x) ≤ f(x). Therefore also
g(x) ≤ f(x).

Now, for A ∈ F define h : [0, µ1(A1)] × . . . × [0, µL(AL)] → [0, 1] as a
continuous and piecewise linear function with h(0) = 0. For x ∈ (µ1(A1 ∩
E1
k1−1), µ

1(A1∩E1
k1

))× . . .× (µL(AL∩EL
kL−1), µ

L(AL∩EL
kL

)) let the gradient
of h be given by

∇h(x) =

N1αk1
...

NLαkL

 .

With this definition,

h(A) =
L∑
l=1

N l

∫
Al
Q̂l(tl)dµl(tl).

Furthermore for all x and all l: ∇lh(x) ≤ ∇lg(x). Therefore h(x) ≤ g(x) ≤
f(x) which implies (MRM) for all sets A ∈ F and therefore Q̂ ∈ Q̂ by
proposition 2.

Proof of Theorem 3. The proof works as the proof of proposition 3.2 in Bor-
der (1991). For the asymmetric case Q̂ is approximated by the sequence of
simple functions Q̂n : T̂ → RL which is constructed such that Q̂l

n(t) = k
2n

on
{t | k

2n
≤ Q̂l(t) < k+1

2n
}.
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