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Abstract

We study social learning by boundedly rational agents. Agents take

a decision in sequence, after observing their predecessors and a private

signal. They are unable to make perfect inferences from their predeces-

sors’ decisions: they only understand the relation between the aggregate

distribution of actions and the state of nature and make their inferences

accordingly. We show that, in a discrete action space, even if agents

receive signals of unbounded precision, convergence to the truth does

not occur. In a continuous action space, compared to the rational case,

agents overweight early signals. Despite this behavioral bias, conver-

gence to the truth eventually obtains.
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In many economic and social situations, people learn from observing the

decisions of others. While they learn from others, they can decide to imitate

what others do, and follow the crowd. Indeed, a central message of the social

learning literature (Banerjee, 1992; Bikhchandani et al., 1992) is that perfectly

rational agents can decide to neglect their private information and simply

herd on the decisions of previous decision makers, thereby leading to long run

inefficiencies.

While the social learning literature offers many insightful results, it also

reaches some unsettling conclusions. The herding phenomenon suggested

above is indeed obtained in the full rationality paradigm when agents’ action

space is discrete and the private signals agents receive have bounded precision.

The process of social learning is, instead, eventually efficient in the discrete

action space case whenever signals can have unbounded precision (and agents

are fully rational) (Smith and Sørensen, 2000). In this case, even if a “herd”

of one million people occurs, the decision of the next agent with a very pre-

cise signal to go against the herd overturns the weight of the long sequence of

predecessors, thus allowing the followers to take advantage of his precise infor-

mation. This is what Smith and Sørensen (2000) refer to as the overturning

principle.

In another important modification of the basic herd model, agents choose

an action (in a continuous action space) that matches their expectation about

the state of the economy (Lee, 1993). When agents are fully rational, the

process of social learning is eventually efficient because agents can perfectly

infer the history of signals from the observation of the previous actions. As a

result, all private information is perfectly aggregated. In this setting, history

does not matter, in two senses: the action of the immediate predecessor al-

ready contains all the public information an agent needs to make the optimal
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decision; the actions of the early agents in the sequence do not have any long

lasting effect on the decisions of the following decision makers.

Some of the conclusions reached in the full rationality paradigm sound un-

intuitive. For example, it does not sound fully convincing that human subjects

would make the right inference after seeing one agent breaking a long herd in

Smith and Sørensen’s model, nor does it sound fully convincing that human

subjects would perfectly infer the sequence of past signals just by observing

past actions in Lee’s continuous action space model. There are several routes

to address this: either modify some aspects of the game while maintaining the

rationality assumptions,1 or stick to the original game and try to propose al-

ternative approaches (say with bounded rationality) to model the interaction.

We follow the second route with the view that no matter what the most

realistic social learning model is, it is likely that the type of inferences required

in the full rationality paradigm goes beyond what real subjects can reasonably

be expected to do.2 Specifically, we develop an equilibrium approach in which

agents make their inferences based only on the knowledge of how the state

of the world affects the distribution of actions. In simple words, this means

that each agent understands the frequency with which each action is taken in

a given state of the world, but does not make inferences based on how the

1For example, to overcome the overturning principle, Smith and Sørensen (2000) consider

the possibility that with small probablity agents would choose their decision at random

irrespective of the history. Alternatively, Smith and Sørensen (2008) dispense with the

assumption of perfect observability of the history of actions and propose a model in which

agents only observe unordered samples from past history. We will discuss these approaches

and how they differ from ours after we have presented our main results.
2For example, if along with Smith and Sørensen (2008), we assume the order of moves

is not observed, the rational inferences in such a model are even more complex than in the

standard model.
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frequency of the action depends on the specific history of decisions and on the

private signals that agents receive. It is an equilibrium approach because the

agents’ understanding, although partial, is assumed to be correct: the state-

dependent distribution of actions assumed by the agents matches the aggregate

long run frequencies of actions in each state. From a learning perspective,

such an approach requires that agents (only) keep track of (or pay attention

to) how the frequencies of actions depend on the state. Agents do not need

any further knowledge about other agents’ preferences, information, or modes

of reasoning. In fact, an important motivation for our approach is that, in

a number of real life social interactions, individuals do not really know other

agents’ exact structure of information, preferences or modes of reasoning.3

Formally, our analysis relies on the Analogy Based Expectation Equilib-

rium, developed by Jehiel (2005), in which agents use payoff-relevant analogy

partitions (as defined in Jehiel and Koessler, 2008) to form their expectations

about others’ behaviors and make inferences from observed actions as to the

likelihood of the state of the economy. Agents use the payoff-relevant analogy

partition in that they relate others’ behaviors to what they only care about in

terms of payoffs, that is, the state of the economy.

We apply the Analogy Based Expectation Equilibrium both to the discrete

and to the continuous action space setups of Smith and Sørensen (2000) and

Lee (1993). In both setups, our analysis provides new insights. A key finding

3Such a motivation is related to the theme of robust mechanism design (Bergmann and

Morris, 2005) which explicitly acknowledges that beliefs of agents are not easily accessible.

Relatedly, one may argue that even if such information is available, looking at previous

social learning experiences it is probably easier to remember how actions are distributed as

a function of the state of the world than to know how actions depend on the private history

of decisions.
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in the case of discrete action space is that the overturning principle does not

hold when signals are of unbounded precision. Longer “herds” are less fragile

and a single deviation is not enough to destroy it. The long run consequence

is that actions do not settle on the correct one with probability close to 1, a

result in stark contrast with the existing literature. In the case of a continu-

ous action space, we find an interesting behavioral bias. Early actions have an

overwhelming importance for subsequent decisions. In that sense, in contrast

with the standard approach, history does matter even in a continuous action

space. Observing the entire history of actions leads the decision maker to make

(biased) choices that he would not make, were he only able to observe his im-

mediate predecessor(s). Despite this bias, though, in this set up, convergence

to the truth eventually obtains.

Related literature Almost all the literature on social learning assumes full

rationality. Nevertheless, our approach to bounded rationality is obviously not

the only one that can be applied to study social learning. If agents were fully

cursed, as modelled in Eyster and Rabin (2005), they would base their decision

solely on their own signals, as others’ actions would be (wrongly) thought to

be uninformative about the state of the world. As a result, both in a discrete

or in a continuous action space, the beliefs would not converge to the truth

and decisions would not settle on a particular action. More generally, if agents

were partially cursed (as considered in Eyster and Rabin, 2005), early signals

could not have a stronger effect than later signals on subsequent actions. Such

results should be contrasted with our finding in the continuous action space

model that early signals have significantly more impact than later signals on

current decisions when agents rely on the payoff relevant model of reasoning.4

4Note that the fully cursed equilibrium can be viewed as an Analogy Based Expectation

Equilibrium in which agents use the private information analogy partition (see Jehiel and
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Elaborating on their previous work, in a recent paper, Eyster and Rabin

(2010) consider a framework in which agents wrongly believe that other play-

ers are cursed, whereas they are not, which combines ideas from the cursed

equilibrium and the subjective prior paradigms. It turns out that in a frame-

work with continuous action and signal space, this approach coincides with a

heuristic approach in which subjects would interpret past actions as if they

were signals of various precisions. A key observation in their model is that early

signals are overwhelmingly influential, leading to asymptotic inefficiencies. In

our model with continuous action space, instead, despite the behavioral bias

that assigns a higher weight to early signals, eventually beliefs converge to

the true state of nature and actions settle on the correct one. It should be

noted that there is no analog of our treatment of the discrete action space with

varying precision in Eyster and Rabin (2010).

A common feature of Eyster and Rabin (2010) and our paper is that agents

do not fully understand other agents’ strategies. But, there are important

qualitative differences in the two approaches. Eyster and Rabin’s approach

implicitly requires that agents have a good knowledge and understanding of

others’ preferences and of the distribution of private signals. Our approach

requires instead some form of learning, but is less demanding in terms of what

agents must know about other agents’ private information and motivation for

their choices (preferences).5

Koessler, 2008). We believe the payoff relevant analogy partition is more suited to the

analysis of social learning given that it is more salient to remember from past interactions

how actions are distributed as a function of the underlying state than it is to remember

how actions are distributed as a function of the own private information. The payoff-

relevant analogy partition also allows for some form of non-trivial inference unlike the private

information analogy partition.
5Approaches based on subjective priors are difficult to justify from a learning perspective
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Another paper that applies subjective priors to social learning is Bohren

(2009). In her model, some agents only use private signals to make their

choices, while others use all the available (public and private) information.

There is, however, uncertainty on the proportions of the two types of agents.

Moreover, agents can have incorrect beliefs about these proportions. In a set

up with discrete action space, when agents overestimate the proportion of the

first type of individuals, incorrect herds can persist forever. In contrast, when

they overestimate the proportion of the second type of individuals, correct

herds may break and beliefs fluctuate forever.

Other models of social learning with bounded rationality include Bala and

Goyal (1998), De Marzo et al. (2003), Acemoglu et al. (2009) and Ellison and

Fudenberg (1993). In Bala and Goyal (1998), agents in a network choose after

observing their neighbors’ actions and payoffs. There is private information in

their model, but agents are assumed to ignore it to some extent. By assump-

tion, each agent learns from his neighbor’s actions (experiments) but does not

ask what information might have led the neighbor to choose those actions. De

Marzo et al. (2003) and Acemoglu et al. (2009) also focus on networks, but

learning in these models is non-Bayesian whereas our approach maintains the

basic ingredients of Bayesian updating even if applied to a misspecified model

(as motivated by incomplete learning considerations). In Ellison and Fuden-

berg (1993) agents consider the experiences of their neighbors and learn using

rules of thumb. In some cases, even naive rules can lead to efficient decisions,

but adjustment to an innovation can be slow.

The paper is organized as follows. In Section 2 we present the economy with

a discrete action space, define the solution concept and analyze both the short

(Dekel et al., 2004), in contrast with the equilibrium approach pursued here.
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and the long run properties. In Section 3 we study the case of a continuous

action space. Section 4 concludes. An Appendix contains the proofs.

I. Social Learning with Discrete Action Space

Imagine we run the following experiment. A group of subjects have to choose

in sequence either action “a” or action “b” (with action a (b) giving the highest

payoff when the state is A (B)). Before making his decision, a subject observes

previous decisions and receives a signal with varying precision on whether the

true state of the world is A or B. The experiment is repeated many times.

After each repetition, each subject is informed of the true state of the world

and of his payoff. Suppose now at the end of the experiment, we consider all

the repetitions in which the state of the world was A. We count the total

number of a actions and of b actions (in all periods) and find out that action a

was chosen 67% of the time, while action b was chosen 33% of the time. When

the state of the world was B, instead, action a was chosen 35% of the time

and action b 65%. Suppose you were told these empirical frequencies. How

would you play in this experiment if you had the possibility of participating

in it?

Our approach assumes that agents expect that the probability of action a

conditional on the state A is 67% and that the probability of action b condi-

tional on the state B is 65% irrespective of the time when the action is taken

and the specific sequence of actions that the agent has observed until then.

Moreover, agents best respond to these frequencies, that is, they choose the

best action assuming others’ actions in state A or B are distributed according

to these aggregate frequencies, no matter what specific sequence of actions was

observed.

Putting the example of the laboratory experiment aside, such a mode of
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reasoning is – we believe – plausible when, in social interactions, agents

have doubts about what drives the behavior of others, or simply do not know

the payoff or the information that previous agents had when they made their

decisions. Instead of making complicated and speculative inferences, these

agents simply connect the state of the world (they care about) to the empirical

frequencies of actions that they observe. In our formal analysis, we consider a

steady state of such a dynamic process, in which the behaviors induced by the

past empirical frequencies of actions by state give rise to the same empirical

frequencies. As we said in the introduction, this idea is formalized in a solution

concept called the Analogy Based Expectation Equilibrium. We define it in

subsection 2.1 and analyze it in subsection 2.2.

A. The Model

In our economy there are T agents who make a decision in sequence. Time is

discrete and indexed by t = 1, 2, ..., T . The sequential order in which agents

act is exogenously, randomly determined. Each agent, indexed by t, is chosen

to take an action only once, at time t (in other words agents are numbered

according to their position).

Agent t takes an action at in the action space {0, 1}. The agent’s payoff

depends on his choice and on the true state of the world ω ∈ {0, 1}. The two

states of the world are equally likely. If ω = 1, an agent receives a payoff of 1

if he chooses action 1, and a payoff of 0 otherwise; vice versa if ω = 0.

We denote the history of actions until time t − 1 by ht, that is, ht =

{a1, a2, ..., at−1} (and h1 = ∅). We denote the set of such histories by Ht.

We assume that agent t observes the entire history of actions ht. In addition

to observing the sequence of actions taken by the predecessors, each agent
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observes a symmetric binary private signal st, distributed as follows:

Pr(st = 1 | ω = 1) = Pr(st = 0 | ω = 0) = qt,

where qt represents the precision of the signal (and is private information to

agent t). We also assume that each signal’s precision qt is distributed on the

support [0.5, 1] according to a density function f(qt) with cumulative distri-

bution F (qt), where f(.) is continuous and f(1) > 0. The random variables qt

and qt′ for t′ �= t are independent of each other; given qt and qt′ , and condi-

tional on the realized state ω, the private signals st and st′ are independently

distributed.6 Agent t’s information set is represented by the triple (ht, st, qt).

Given the information (ht, st, qt), the agent chooses at to maximize his expected

payoff.

The main innovation of our work is in modelling how agents make infer-

ences from past actions as to the likelihood of ω. We adopt the Analogy Based

Expectation Equilibrium concept first introduced by Jehiel (2005) using, more

specifically, the payoff-relevant analogy partition (Jehiel and Koessler, 2008).

We assume that agents are unable to understand other agents’ strategies in

their finest details, thereby making it impossible for them to assess how the

choice of action depends on the public history and the private signal at every

date t. Instead, agents are assumed to make their inferences from past play

based only on the knowledge of how the state of the world ω affects the distri-

bution of actions. This is referred to as the payoff-relevant analogy partition,

given that final payoffs depend on the state of the world ω and the actions but

not on the signals directly.

6Observe that we are considering a time-independent distribution of precisions. Further-

more, the distribution of the likelihood ratio qt
1−qt

has support [0,∞), which means that the

distribution of beliefs is unbounded.
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Formally, let us denote a strategy profile by σ, that is, σ = (σ1, σ2, ...σT ),

where an agent’s strategy σt maps (ht, st, qt) into a distribution of possible

actions, that is, σt : Ht × {0, 1} × [0.5, 1] → ∆{0, 1}. For consistency with

later sections, and with a slight abuse of notation, we denote by σt(a|ht, st, qt)

the probability that agent t picks action a ∈ {0, 1} when the history is ht, the

signal is st, and the precision is qt.

Let us consider a vector of realized precisions q ≡ (q1, q2, ..., qT ), and let

µσ(ht, st, q|ω) denote the probability that history ht is realized, st is the signal

at t, and q is the vector of precisions when ω is the state of the world. Observe

that, for any t, there are finitely many (ht, st), so that, for a given vector

of precisions q, µσ(ht, st, q|ω) > 0 only for finitely many (ht, st). Given the

strategy σ, the aggregate distribution of action i = 1, 2 as a function of the

state of the world ω can be expressed as

(1) σ(a = i|ω) =
Eq

∑T
t=1

∑
ht,st

σt(a = i|ht, st, qt)µ
σ(ht, st, q|ω)

T
,

where Eq denotes the expectation over the possible realizations of q. The

right-hand side of (1) is the empirical frequency of action a = i that would

result in the long run if agents kept behaving according to the strategy σ.7

Note that the aggregate distribution is obtained considering all periods, not

only the preceding periods, since agents bundle all decision nodes in the two

analogy classes.8

In an Analogy Based Expectation Equilibrium with payoff-relevant analogy

partitions, every agent t assumes that when the state is ω other agents choose

7Observe the endogenous weight of the behavior at (ht, st, q) in this expression, which

reflects the fact that according to σ various histories have different frequencies of visit.
8This also explains our choice of presenting the model first with a finite number T of

agents (before considering the limit of it as T goes to infinity).
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action a = i with probability σ(a = i|ω), that is, the probability that matches

the aggregate distribution of the action. Agents also assume that these behav-

iors are randomized independently across periods, and that the signal st (and

its precision qt) is independent of the actions of his predecessors (conditional

on the state of the world). He chooses a best-response accordingly:9

Definition 1 An Analogy Based Expectation Equilibrium with payoff-relevant

analogy partitions (ABEE) is a strategy profile σ such that for every t, σt is a

best response to the conjecture that other agents follow the strategy σ as defined

in (1), and that, conditional on ω, agent t’s signal st (and its precision qt) is

independent of his predecessors’ actions.

We think of the ABEE as representing a steady state of a learning process

and not as a result of introspective reasoning. The consistency required by the

equilibrium concept, that is, that the conjecture about σ(a = i|ω) matches

the empirical frequency as defined in the right-hand side of (1), should thus be

viewed as the outcome of a dynamic process in which agents would eventually

know how actions are distributed as a function of the state the economy. Such

a learning process only requires that agents be informed of the state of the

world as well as of the actions chosen in previous plays (together with the

structure of their own payoffs and the precision of their own signal). Agents

need not have a prior knowledge about the payoffs or information structure

of other players, nor of their ways of reasoning (as we have already informally

discussed above).

9Compared to the framework developed in Jehiel and Koessler (2008), there are a few

differences. First, we consider a multi-stage, multi-player setup, whereas Jehiel and Koessler

consider two-person, simultaneous move games. Second, the analogy partitions as defined

above include the decision nodes of all players and not just those of the other players.
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B. Equilibrium Analysis

An ABEE in our environment is fully characterized by the aggregate distri-

butions of actions in each state of the world ω, that is, βT (ω) := σ(a = ω|ω),

where we make it explicit that the distribution depends on T . Given the

symmetry of our game, we further restrict attention to ABEE in which the

aggregate distribution of action a = ω in state ω is the same for ω = 0 and

ω = 1, and we denote it by β∗T ≡ β∗T (0) = β∗T (1).

Given β∗T , it is readily verified that agent t in an ABEE chooses his best

response on the basis of the following likelihood ratio:

(2)
PrSUBJ(ω = 1|ht, st, qt)

PrSUBJ(ω = 0|ht, st, qt)
=

(
β∗T

1− β∗T

)|a=1|−|a=0|(
qt

1− qt

)(2st−1)
,

where |a = i| denotes the number of times action i was chosen from period 1

to period t− 1 (so that the sum |a = 1|+ |a = 0| is obviously equal to t− 1).

(We use the superscript “SUBJ” in the probability to emphasize that each

agent forms a subjective probability.) More precisely, if this likelihood ratio is

greater than 1, then he finds it optimal to choose action 1, if it is lower than

1, he chooses action 0 (otherwise he is indifferent between the two actions).

As we will show, in an ABEE, it is always the case that β∗T > 1
2
. Agents’

strategies are then derived as follows. Agent 1 obviously follows his signal,

whatever its precision, given that he has no predecessors and thus no other

information on which to base his decision. The decision of agent t to follow

his signal or not depends on the following trade-off. Given that β∗T > 1
2
, in

the absence of any private signal, this agent would follow the action chosen

by the majority of predecessors. With a private signal, this agent would, of

course, continue to follow the majority if the private signal agreed with the

choice of the majority; and he may consider following his own signal against

the majority if the private signal were sufficiently precise. The exact cut-off
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precision is determined by the value of qt for which the likelihood ratio as

defined in (2) is equal to 1.

In the next proposition we show that an equilibrium exists, and that any

symmetric equilibrium is of the form just described. We also derive important

asymptotic properties of the equilibrium as the number T of periods grows

large.

Proposition 1 a) For any T , there exists a symmetric ABEE with β∗T (0) =

β∗T (1) ≡ β∗T ∈ (1/2, 1). There exists no symmetric ABEE with β∗T ≤ 1/2.

That is, an action chosen by the majority is more likely to be followed by the

next agent in line.

b)There exists no sequence β∗T (ω) of corresponding ABEE such that as

T → ∞, β∗T (ω) −→ 1 for ω = 0 and ω = 1. That is, there are asymptotic

inefficiencies.

The argument for the existence of a symmetric ABEE is standard in this

finite environment (Jehiel, 2005; Jehiel and Koessler, 2008). In the proof we

simply invoke the intermediate value theorem to show the existence of a fixed

point. The fixed point cannot be β∗T < 1/2, as it would lead agents either to go

against the majority (thereby leading to a long run frequency of 1
2
) or to follow

their own signal, implying that the overall frequency of action a = ω in state

ω would be no less than 1/2, which contradicts the premise that β∗T < 1/2.10

As for the asymptotic properties of our economy, as stated in the second

part of the proposition, when T grows large, the actions cannot settle on

10It is interesting to note that in our model the evolution of beliefs contains a bias towards

the more popular action. By contrast, in the model with rational agents, beliefs evolve

according to a martingale, and sometimes the minority is followed (because it is inferred

that the minority choice results from high precision signals–see the following subsection).
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the correct one with probability close to 1. In the Appendix we show that

assuming that β∗T (ω) converges to 1 as T goes to∞ implies that the probability

of taking the incorrect action is bounded away from 0, thereby leading to a

contradiction. Intuitively, if the aggregate distribution of the correct action

converged to 1, it would mean that in an ABEE all agents except the first one

would disregard their own signal and follow the decision that was most popular

among the predecessors: that is, the first agent would follow his own signal

and all subsequent agents would imitate him. Since there is a strictly positive

probability (equal to 1−Eq1) that the first agent makes the incorrect choice,

this implies that the probability that everyone chooses the incorrect action

would be bounded away from zero, contradicting the assumed convergence to

efficiency.11

In order to understand more concretely the asymptotic properties of our

social learning problem, we have simulated the equilibrium value of βT for var-

ious T , assuming the qt’s are uniformly distributed on [
1
2
, 1].12 The equilibrium

value β∗T is approximately equal to 0.79 when T = 3, and changes only slightly

when we increase T . For large T , β∗T tends towards 0.82. This means that

there is a rather significant inefficiency, since approximately 18% of agents are

making the wrong decision. Moreover, the probability that the agent makes

a mistake is approximately the same whether an agent acts at time 10 or at

time 200, since the impact of early actions becomes soon overwhelming.

11Such an intuition is somehow reminiscent of the Grossman-Stiglitz paradox (Grossman

and Stiglitz, 1980): our economy cannot be informationally efficient since otherwise all

agents but the first one would neglect their signals, contradicting the efficiency.
12To find the fixed point, for a given βT we have set ω = 1 and simulated the agents’

choices according to the best response described above. We have repeated the simulation

100, 000 times. We have then computed the empirical frequency of a = 1. We have repeated

the procedure until the empirical frequency was indeed equal to βT .
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C. Discussion

It is instructive to compare our result to that of a model with fully rational

agents. We know from Smith and Sørensen (2000) that in a model like ours

(with possibly unbounded precisions of signals) but with fully rational agents,

beliefs converge to the truth and the actions settle on the correct one (see

their Theorems 1 and 3). The bias introduced by the coarse inference has,

therefore, a long-lasting effect, impeding complete learning. One may wonder

what causes these differences. Intuitively, note that in the case of fully ra-

tional agents, unbounded precisions of signals have a very powerful effect for

the decision of an agent and of his successors. Even after a large majority of

agents have chosen one alternative, an agent with a high precision signal that

contradicts the previous history chooses an action against the majority. The

probability of this event is never zero. Moreover, after observing the deviation

of this agent, the following one updates his belief knowing that the previous

agent had received a very high precision signal. Thus, this agent may decide

to go against the majority even upon receiving a low precision signal, because

the action of the predecessor is viewed as highly informative on what the cor-

rect state is. In other words, even if a “herd” of one million people occurs, the

decision of the next agent with a very precise signal to go against the herd

overturns the weight of the long sequence of predecessors, thus allowing the

followers to take advantage of his precise information (the “overturning prin-

ciple,” as defined by Smith and Sørensen, 2000). In our model, when an agent

receives a very precise signal contradicting the consensus, he goes against the

majority as in the standard case, but the following agent does not do so unless

he himself receives a very precise signal. The reason is that, by considering

the aggregate distributions only, he misses the inference that if someone went
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against a strong majority it must be that he received a very precise signal. In

other words, in an ABEE, even though private signals can have unbounded

precision, the observed actions always have a bounded informational content,

and long run inefficiencies may prevail.

Clearly, our model assumes a form of bounded rationality in that agents

do not make the right inference from what they observe. Alternatively, one

can try to modify the basic setup (either the preferences or the information)

while maintaining the rationality assumption and see how the insights thus

obtained differ from ours.

A first modification that concerns preferences is proposed by Smith and

Sørensen (2000) themselves. They consider a model in which with positive

but small probability agents choose their decisions at random (such agents are

called crazy types). In such a variant, an agent who would not follow the herd

could either be a crazy type or, as in the basic case, a normal type having

received very precise information (that contradicts the previous history). Ra-

tional agents weigh correctly the two events so as to make the correct inference

from what they observe. The resulting behavior may depend in a complex way

on the history of play, but, eventually convergence to the correct action would

prevail (essentially because the fine knowledge of the proportion of crazy types

and of the distributions of precisions and of the equilibrium strategy would

allow a rational observer to infer the true state of the economy from long

sequences of actions). Such a model and results differ from ours in several

respects. First, in our model, we do not obtain convergence to the correct

action. Second, behaviors in our model depend in equilibrium only on the

number of 0 and 1 actions in the history of play, which would typically not

be so in the variant studied in Smith and Sørensen (2000). Third, and maybe

more importantly, the inferences made by the agents in our model require only
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the knowledge of the aggregate proportion of actions being observed in the two

states of the economy (as resulting from the observation of many similar social

learning games), which sounds far less demanding than the knowledge required

in the above proposed variant (that goes even beyond the knowledge required

in the classic unperturbed setup).13

Another modification that concerns observability is proposed in Smith and

Sørensen (2008) who maintain (together with the rationality assumption) the

same preferences for agents as in the basic Smith and Sørensen (2000), but

assume that agents only observe unordered samples from past history. In a

similar vein, Callander and Hörner (2009) propose a model in which agents

do not know the order in which previous actions have been made. Again,

with imperfect observability, the inference process is typically much harder

than with perfect observability (as, for example, it typically involves weigh-

ing possible sequences of actions as a function of the precisions of signals as

opposed to just considering a given sequence in the basic set up).14 Despite

these difficulties (which apply both to the modeler and the agents), Callander

and Hörner (2009) were able to make progress in the special case in which

signals only have two possible precisions. One interesting result they obtain is

13Observe that in our analysis, the aggregate distributions are determined as a fixed point,

which is not so in the basic or modified setup of Smith and Sørensen (2000). This may induce

some difficulties for the researcher in finding out this fixed point. Yet, it is not a difficulty

encountered by the agents who are assumed to have acquired this knowledge by observing

(many) other similar social learning interactions (learning interpretation).
14Other work with imperfect observability of the predecessors’ actions includes Çelen

and Kariv (2004) (agents only observe the immediate predecessor’s action), Guarino et al.

(2011) (agents only observe the total number of predecessors who have chosen one of the

two actions) and Larson (2011) (agents only observe a summary statistic of predecessors’

actions).
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that it may be optimal for an agent to neglect his own private information and

follow the minority (rather than the majority). In their model, they observe

that learning is asymptotically efficient, since the herd on the minority action

is eventually broken.15 Smith and Sørensen (2008) also obtain asymptotic

efficiency results under their finite sampling assumptions (and unbounded be-

liefs). In recent papers, Acemoglu et al. (2011) and Monzon and Rapp (2012)

also show complete learning when beliefs are unbounded. In Acemoglu et al.

(2011) complete learning obtains when agents observe an ordered sample of

predecessors (to whom they are linked in a network) as long as it is not the

case that an infinite number of agents only observe the same (finite) number

of predecessors. Monzon and Rapp (2012) show that complete learning ob-

tains even in the case in which agents do not know their own position in the

sequence of decision makers (neither that of the sample of predecessors they

observe).

These results are again in sharp contrast with ours. In our set-up, agents

never follow the minority (remember that β∗T > 1/2), and asymptotic ineffi-

ciencies necessarily arise. Besides, our analysis does not depend on whether

agents observe the order of the previous actions or not, since their behavior in

an ABEE depends only on the number of various actions previously observed

(not their order). Even though we did not consider the possibility of finite

sampling, it is not hard to see that we would a fortiori obtain asymptotic

inefficiencies with finite sampling in the ABEE setup.

So far we have analyzed the case in which agents receive signals with vary-

ing precision. One may wonder what happens in the canonical model with

signals of deterministic and equal precision (i.e., qt = q ∈ (0.5, 1) for all t). In

15For this result, Callander and Hörner (2009) specifiy even further their model by con-

sidering one signal precision of 1/2 and the other of 1.
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the standard Perfect Bayesian Equilibrium, first considered by Bikhchandani

et al. (1992), agents follow their private signals, unless their predecessors hav-

ing chosen one option outnumber those in favor of the other by at least two.16

This is the case in which an informational cascade (i.e., a situation in which

agents neglect their private information) arises. In our set-up, with agents

making inferences according to the payoff-relevant analogy reasoning, instead,

there exists a unique ABEE in which an informational cascade starts already

at time 2, with the first agent choosing the action dictated by his signal and

all the following ones imitating him.17 While the strategies in the standard

equilibrium and in the ABEE are similar, still there is an interesting differ-

ence. In the standard equilibrium, when the cascade starts, no information

is aggregated. As a result, after a cascade of one million people, agents have

the same beliefs as after a cascade of two people (i.e., the public belief never

exceeds the belief arising from having two signals in favor of the chosen state),

a quite unsettling conclusion. In the ABEE, as more and more agents choose

the same action, agents’ beliefs are updated every time in favour of the cho-

sen action. The likelihood in favor of the chosen action, similar to that in 2,

keeps increasing. Eventually, agents put weight 1 on the state corresponding

to the action chosen by the first agent – not necessarily the correct one. In

the standard set-up, since it is built on very limited information, a cascade is

fragile. If after a cascade of one million people there is a small shock (e.g.,

public information), in the canonical model, the cascade is broken. In our set-

up, instead, the herd becomes less and less fragile, and bigger shocks would be

16This is true under any tie-breaking rule so that, if indifferent, an agent plays the action

in agreement with his signal with some positive probability.
17We refer the reader to the working paper version of the article (Guarino and Jehiel,

2009) for a complete analysis.
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required to make successors switch to the alternative action. This is consistent

with experimental findings, according to which longer cascades are less fragile

(Kübler and Weizsäcker, 2005).

II. Social Learning with Continuous Action Space

We now turn to illustrate which insights our bounded rationality approach

offers when agents can choose their action in a continuous space, in a model

similar to Lee’s (1993). Specifically, we assume that agent t takes an action

at in the space [0, 1]. The agent’s payoff function is quadratic and equal to

−(ω−at)
2. This ensures that agents want to take an action as close as possible

to what they believe the state is (given what they observe and what they infer

from it). As in Section 2, we assume that agent t observes previous actions

ht = (a1, ....at−1) together with a binary signal st distributed as follows:

Pr(st = 1 | ω = 1) = Pr(st = 0 | ω = 0) = qt ∈
(
1
2
, 1
)
,

where qt is the precision of signal st. As before, conditional on the state of

the world, the signals are independent over time. In contrast with Section 2,

however, we assume that each signal has a given precision, lower than 1, that

may deterministically vary from one period to another. Later on, when we

will consider large T , we will assume that all qt’s are bounded from above by

some q < 1 (i.e., the distribution of beliefs is bounded).

For convenience, we denote the ratio Pr(si|ω=1)
Pr(si|ω=0)

=
(

qi
1−qi

)2si−1
by m(si). As

will prove useful in the following analysis, we make the following (genericity)

assumption:18

18Such an assumption is met for almost every (q1, ...qT ), whatever the Lebesgue measure

on (12 , 1)
T . (Note that Z denotes the set of integers.) Essentially, the assumption means

that, whatever the weight given to two or more signals, they never cancel out, giving a
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(A1) For (n1, n2, ..., nT ) ∈ Z
T , if

T∏
i=1

(
qi

1− qi

)ni

= 1, then ni = 0 for all i.

Such an assumption means that receiving ki signals si of precision qi for i =

1, ...T must result in a different belief than that resulting from receiving k′i

signals s′i of precision qi for i = 1, ...T unless for all i, ki = k′i and si = s′i.

Since the bias highlighted below takes the form of multiple counting of signals,

such an assumption will guarantee that no two different sequences of signals

can generate the same action (thereby making the inference process much

simpler).

Given the information (ht, st), agent t chooses at to maximize the expected

payoff ESUBJ [−(ω − at)
2|ht, st]. That is, he chooses a∗t = ESUBJ [ω|ht, st].

19

We can restrict attention to pure strategies, given that ESUBJ [ω|ht, st] reduces

to the choice of a single action.

A. Equilibrium Analysis

An agent’s strategy σt maps (ht, st) into an action, that is, σt : Ht × {0, 1} →

[0, 1]. Similarly to the previous section, σt(a|ht, st) denotes the probability

that agent t picks action a when the history is ht and the signal is st. Since,

as already mentioned, we will consider equilibria in pure strategies, σt(a|ht, st)

will either be equal to 0 or to 1. Given a particular strategy profile σ =

posterior likelihood ratio of 1. One obvious case in which the assumption is not satisfied is

when all signals have the same precision. In that case, for instance, a signal 1 and a signal

0 taken with equal weight (i.e., ni = 1) would offset each other. Of course, one can choose

precisions arbitrarily close to each other and still satisfy A1.
19Obviously agent t also knows the (deterministic) precision qt of his signal. We do no

explicitly indicate this in the information set. Whether the agent also knows the other

signals’ precisions or not is instead immaterial, as will become clear in the analysis.
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(σ1, σ2, ...σT ), the probability µσ(ht, st|ω) that history ht is realized and st is

the signal at t when ω is the state of the world is strictly positive only for

finitely many (ht, st) (since st takes values in {0, 1} and the strategies σt’s are

pure). As a result, analogously to the previous analysis, we can define the

aggregate distribution of actions as a function of the state of the world ω as

(3) σ(a|ω) =

∑T
t=1

∑
ht,st

σt(a|ht, st)µ
σ(ht, st|ω)

T
.

Given this aggregate distribution of actions, an ABEE is defined analo-

gously to the previous section. Based on the history of actions ht = (a1, ....at−1)

and the signal st at date t, the agent forms the subjective likelihood ratio

(4) LR(ht, st) =
t−1∏
i=1

σ(ai | ω = 1)

σ(ai | ω = 0)
m(st),

and chooses action at so that

(5)
at

1− at
= LR(ht, st).

We now start the construction of an ABEE. Let α(s1, s2, ..., sk) denote the

equilibrium action taken after the sequence of signal realizations {s1, s2, ..., sk}.

We conjecture that the agents’ strategies are such that, in equilibrium, for any

two different sequences of signal realizations, {s1, s2, ..., sk} �= {s
′
1, s

′
2, ..., s

′
l}, an

agent chooses two distinct actions in [0, 1], that is, α(s1, s2, ..., sk) �= α(s′1, s
′
2, ..., s

′
l).

Note that this requirement comprises both the case in which k = l and st �= s′t

for at least one t = 1, 2, .., k, and the case in which k �= l. Given this conjec-

ture, we construct an equilibrium and then we verify that, because of A1, it

satisfies the conjecture.

Specifically, consider a sequence of signals {s1, ...st−1} and the correspond-

ing actions a1 = α(s1),.., at−1 = α(s1, ...st−1). Given our conjecture that all

α’s are different, it is readily verified that a given action is observed only at
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one time and after one sequence of signals. Thus, σ(ai|ω=1)
σ(ai|ω=0)

= Pr(s1,...,si|ω=1)
Pr(s1,...,si|ω=0)

,

which (given the independence of sk’s conditional on ω) simplifies into

(6)
σ(ai | ω = 1)

σ(ai | ω = 0)
=

i∏
k=1

m(sk).

A simple rewriting of LR(ht, st) yields
20

(7) LR(ht, st) =
t−1∏
i=1

m(si)
t−im(st).

Note that in this updating, signal s1 is counted t − 1 times, signal s2 is

counted t−2 times and so on. Thus, agent t chooses action α(s1, s2, .., st) such

that

(8)
α(s1, s2, .., st)

1− α(s1, s2, .., st)
= Πt−1

i=1m(si)
t−im(st).

In other words, agent t chooses his action as if he had observed signal s1 t− 1

times, signal s2 t− 2 times,..., signal si t− i times. The reason is that, in this

construction, a signal si affects the aggregate distribution of actions at every

time t ≥ i. This overweight of early signals is the essence of the bias induced

by the (boundedly rational) reasoning the agents use.

To ensure that the construction of this equilibrium is correct, we still need

to check our conjecture that the actions α(s1, s2...st)’s, as defined by (8), are

all different. This is clearly implied by our genericity assumption (A1), thereby

allowing us to conclude:21

20We use the convention that Π0i=1x
i is equal to 1.

21Essentially, the genericity assumption A1 ensures that the private likelihood ratio is

distinct at every possible history, and thus there is a one to one correspondence between

the history and the action choice. Therefore, the probability of each action is determined

by the probability of the sequence of signals that leads to that action. A natural question is
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Proposition 2 There exists an ABEE in which, after a sequence of signals

{s1, s2, ..., st}, agent t chooses action a∗t = α(s1, s2, ..., st) such that a∗
t

1−a∗
t

=

α(s1,s2,..,st)
1−α(s1,s2,..,st)

= Πt−1
i=1

(
qi
1−qi

)(2si−1)(t−i) (
qt
1−qt

)2st−1
. That is, the agent at time t

acts as if he received (t− i) times the signal at time i (drawn from independent

distributions of precisions qi).

In the above proposition, the strategy of agent t is not explicitly con-

structed as a function of the history and of agent t’s private signal. Yet,

such a strategy is easily determined for the histories {a1, a2, .., at−1} such that

a1 = α(s1), a2 = α(s1, s2), ..., at−1 = α(s1, s2...st−1) and by the signal st, by

identifying the strategy σt(a| {a1, a2, .., at−1} , st) with the choice of the action

a = α(s1, s2, ..., st) with probability 1. For other histories, the strategy is not

specified, but this is irrelevant for the analysis of the equilibrium path.22 23

whether there are other ABEE and what happens if assumption A1 is violated. Since these

are mainly technical issues, we refer the reader to the working paper version of the article

(Guarino and Jehiel, 2009). Here we only mention our main findings: generically, the ABEE

constructed in the previous section is unique. Moreover, when A1 is violated, like in the

case of signals of equal precision, there is no guarantee that an ABEE exists. This does not

contradict the previous existence results by Jehiel (2005) and Jehiel and Koessler (2008),

since they consider cases in which the space of actions is finite. The reason why an ABEE

may not exist when A1 is not satisfied is that the action space is continuous.
22Obviously, the construction presented above is only our way (i.e., the modelers’ way) of

constructing the equilibrium strategies. Boundedly rational agents do not go through our

steps of reasoning to choose their actions. The premise is that they have learned σ(a|ω) for

the various a and ω through past observations, and choose their actions according to the

likelihood ratio LR as defined in (4).
23From this construction it should be clear that agents need not know the precisions of

other agents’ signals (neither they need to know their realizations, of course). Indeed, the

equilibrium is constructed considering the aggregate distributions of actions given the state

of the world, which does not require knowledge of others’ precisions.
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It is worth contrasting the result in Proposition 2 with what happens in the

case in which agents are fully rational. As we know from Lee (1993), in the case

of fully rational agents, in the Perfect Bayesian Equilibrium (PBE), after a se-

quence of signals {s1, s2, .., st}, agent t chooses action aPBE = αPBE(s1, s2, ..., st)

such that aPBE
t

1−aPBE
t

= αPBE(s1,s2,...,st)
1−αPBE(s1,s2,...,st)

= Πt
i=1

(
qi
1−qi

)2si−1
. In the PBE, agents

perfectly infer the signals observed by their predecessors from their actions.

As a result, agents pick the action that corresponds to the expected value of

the state of the world conditional on the signals received by themselves and

all their predecessors.24 The comparison between the expressions obtained for

the ABEE and for the PBE makes it very easy to appreciate the difference

between the two approaches. Essentially, while in the ABEE earlier signals

receive a higher weight, in a PBE they all have the same weight. In the ABEE,

history matters, in that a signal (and thus an action) early in the game has

more impact than later signals (actions).

The behavioral bias we have identified implies that if early in the history of

play agents receive the incorrect signals, this will have a more severe effect on

future actions in an ABEE than in the PBE, since these signals receive more

weight. A natural question is whether this effect will persist over time, so that

beliefs may converge to the wrong value, or whether, eventually, despite the

behavioral bias, convergence of beliefs to the truth obtains. And if convergence

obtains, obviously we are also interested in whether boundedly rational agents

learn as fast as rational agents do.

In the next Proposition, we consider the case in which for all t, precision

24Also in the case of the PBE agents do not need to know the other agents’ signal preci-

sions. The reason is quite different from the case of the ABEE, though. Here this knowledge

is not required since rational agents can infer the precision of the signals (as well as their

realizations) from the observation of the sequence of actions.
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qt ∈ [q, q] where q and q are such that

(9)

(
q

1− q

)q (
1− q

q

)(1−q)
> 1

Observe that (9) is always satisfied whenever q and q are not too far apart

from each other.25 When (9) is met, we show that, in the ABEE, beliefs

converge almost surely to the true state of the world, and, eventually, actions

settle on the correct one. Furthermore, convergence occurs exponentially fast

in the ABEE as it does in the PBE. These results are reported in the next

proposition (where, of course, we keep assuming that T ≥ t):

Proposition 3 Suppose condition (9) is satisfied. In the ABEE, the public

belief converges almost surely to the true state of the world, that is, for t→∞,

when ω = 1, PrSUBJ(ω = 1|ht)
a.s.
→ 1 (and, similarly, when ω = 0, PrSUBJ(ω =

1|ht)
a.s.
→ 0). Moreover, the action becomes arbitrarily close to the efficient one

with a probability arbitrarily close to one. Precisely, for any ε > 0, there exist

a c > 0 and a t′ such that, for any t > t′, Pr (1− a∗t < ε|ω = 1) ≥ 1− e−ct and

Pr (a∗t < ε|ω = 0) ≥ 1− e−ct.

Despite the bias in our ABEE, the signals are taken into account in the

choice of each action. Since the distribution of signals is markedly different

in the two states, eventually the true state of the world is discovered almost

surely.26 Given that early signals receive a higher weight, clearly, for histories

in which early signal realizations happen not to be representative of the true

state, convergence will be slowed down. If the early signal realizations are

representative of the state, instead, convergence will be faster. Our proposition

25It is easy to check that

(
q

1− q

)q (
1− q

q

)(1−q)
> 1 for all 0.5 < q < 1.

26The result would hold a fortiori if we considered unbounded beliefs.
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shows that, for almost all sequences of signal realizations, the bias does not

affect the form of long run convergence, since it occurs exponentially in the

ABEE as it does in the PBE.27 Our boundedly rational agents learn in the

long run, as fully rational agents do.28

To gain further intuition on this result, consider the case in which all qt

are close to q. Consider the first n consecutive signals. We know from the

analysis of the standard case that when n is large enough, the probability

that the difference between q and the frequency of signal realizations 1 in

state ω = 1 (0 in state ω = 0) is higher than ε is exponentially small in n.

Now, in our ABEE, at time t > n the first signal is counted t − 1 times and

the n-th signal is counted t − n times. When t grows large, the difference of

weight between the first and the n-th signal becomes, however, negligible since

(t− n)/t approximates 1. In other words, since the over-counting determined

by the bias takes a polynomial form, it vanishes in the limit and convergence

takes an exponential form in the ABEE as it does in the PBE.

Figure 1 here

We have simulated the model for various parameter values. Figure 1 shows

the average distance of the public belief from the true state of the world (i.e.,

27Indeed, the analogous result for the PBE is that convergence to the truth obtains, with

Pr
(
1− aPBEt < ε|ω = 1

)
≥ 1−e−2tΦ(ε)

2

, where Φ(ε) :=
log

1 + ε

ε
−log

(
1− q

q

)

log




q

1− q



−log

(
1− q

q

) . The proof

of this result is standard and available on request from the authors.
28Another way to understand this convergence result is to observe that beliefs evolve by

putting excessive weight on the overall correct Bayesian belief, as opposed to just adding

the extra inference from the new signal. In the long run, however, such a bias vanishes,

given that the Bayesian belief becomes arbitrartily concentrated on the correct state.
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|Pr(ω|ht) − ω| and |PrSUBJ(ω|ht) − ω|) in the case in which all signals are

drawn randomly from the interval (0.69, 0.71). The average distance at any

time t is taken over 100, 000 replications (the same number of repetitions is

also used for the other simulations presented below). Essentially this figure

is a graphical representation of our proposition. The two graphs in the figure

are almost overlapping, indicating that the long run properties of our ABEE

are not dissimilar from those of the PBE.

Figure 2 here

Figure 2 shows the average distance between belief and fundamental in

the ABEE and the PBE, conditional on the first five signals being incorrect.

In the PBE, starting at time 6, when signal realizations are randomly drawn

(from the same interval as before, and, therefore, are correct approximately

70% of the repetitions), the belief starts approaching the true state of the

world: the distance between belief and state of the world decreases quickly

and monotonically. The graph for the ABEE looks rather different. First,

after the first wrong signals, the agents become almost certain of the wrong

state of the world (the distance is close to 1). After time 5, despite signals

are now correct with frequency close to 70%, the difference between subjective

public belief and the true state of the world remains close to one. This is

because agents put more and more weight on early signals. It takes 25 periods

before the impact of the first signals is offset by the later signals and the belief

starts converging to the truth.29

29While Figures 1 and 2 were obtained for the case in which qt ∈ (0.69, 0.71), we have

run further simulations for the case in which qt is drawn according to a uniform distribution

between 0.5 and 1, and we have obtained very similar graphs. This suggests that the results
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B. Discussion

The inability of agents to understand the fine details of the inference problem

from the predecessors’ actions could lead, in principle, to different predictions.

For instance, suppose agents essentially ignore the information content of past

history. Then, we would observe no convergence of actions (even though a

Bayesian external observer would, of course, learn the true state of the world).

On the other hand, suppose agents put a lot of weight on previous actions.

Then they may be prone to a sort of herding and, although actions would

settle, there would be no information aggregation. We view our results as

somehow in between these two extremes. In our model, coarse inference does

determine a behavioral bias. This, however, does not preclude the aggregation

of information, which actually occurs as in a world of rational agents.

It is also worth noting that our result on convergence, similar to that of the

PBE, is instead in sharp contrast with what happens if agents use the heuristic

reasoning that upon observing action a ∈ (1
2
, 1) of one of his predecessors, the

agent believes this corresponds to an independent signal s = 1 having precision

q(a) such that q(a)
1−q(a)

= a. In this case (which corresponds to the case studied

in Eyster and Rabin, 2010), the weight of the first signal is approximately

equal to the sum of the weights of all other signals. Given the overwhelming

weight of the (possibly wrong) early signals – growing at an exponential rate

with t, as opposed to a linear rate in our model – there must be asymptotic

inefficiencies.

The analysis we have presented can be extended in several directions. One

can consider the case in which agents are not aware of the order of moves; the

on convergence summarized in our proposition hold also when our sufficient condition is not

satisfied.
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case in which agents can only observe some (e.g., a sample of, or the immediate)

predecessor(s); the case in which more than one action is taken at the same

time. Our finding that early signals have more weight continues to hold in

these extensions. One notable exception is when agents only observe their

immediate predecessor, in which case ABEE and PBE offer the same result.

In fact, according to the PBE, different assumptions on the observability of

past actions do not change the agents’ behavior: observing the entire sequence

or a number n ≥ 1 of immediate predecessors leads anyway to efficient learning.

In the ABEE, instead, the longer the sequence of immediate predecessors an

agent can observe, the higher the bias in favor of early signals. We refer the

reader to the working paper version of the article (Guarino and Jehiel, 2009)

for a comprehensive analysis of these cases.

III. Conclusion

Social learning in real economies is a fascinating and complex phenomenon.

The models of rational social learning have helped us in understanding many

mechanisms through which people learn from others. They have shed light

on phenomena such as fads, fashion and cultural change. While a number of

insights obtained in that literature sound intuitively appealing (such as the

explanation of herding), others are less so (such as the overturning principle),

and many of the obtained insights rely on inference processes that seem too

complex to describe accurately the mode of reasoning of real subjects.

In this paper, we have proposed an alternative model of inference based on

coarse knowledge about how others’ choices relate to the state of the economy.

We have developed the corresponding analysis in two classic extensions of

the basic social learning model, and shown how and when biases and long

run inefficiencies could arise in such frameworks. While the type of coarse
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knowledge assumed in this paper sounds plausible to us in that it requires

that agents link only the state of the economy to the distribution of individual

actions (as opposed to the profile of actions in their detailed sequencing), there

are obviously alternative forms of coarse inferences that could be considered.

It would be of interest, in future research, to explore experimentally the extent

to which the mode of inference assumed in this paper captures the mode of

reasoning of human subjects and in which circumstances.
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Appendix: Proofs

Proof of Proposition 1 (Point ”a”)

First, we prove the existence of a symmetric equilibrium in which βT (0) =

βT (1) ≡ βT ∈ (1/2, 1). The argument is standard. Let us define the function

φ : [0.5, 1] → [0.5, 1] that, for a given βT , gives the aggregate distribution of

actions conditional on a state of the world (in the best response to βT ), φ(βT ).

We want to prove that there exists a βT such that βT = φ(βT ). Recall that

for a given βT the best response of agent t consists in choosing action at = 1

(0) when the likelihood ratio

Pr(ω = 1|ht, st)

Pr(ω = 0|ht, st)
=

(
βT

1− βT

)|a=1|−|a=0|(
qt

1− qt

)2st−1

is greater (lower) than 1.

Consider, first, the case of βT = 1/2. In this case, other agents’ deci-

sions are perceived as uninformative. Therefore, each agent just follows his

private signal. As a result, the aggregate distribution of a = ω in state ω is

φ(1/2) = E(qt) > 1/2. Consider, now, the case of βT = 1. In this case, other

agents’ decisions are perceived as perfectly informative. Therefore, after the

first agent chooses (by following his own signal), all the others simply imitate

him. As a result, the aggregate distribution of a = ω in state ω is again

φ(1) = E(qt) < 1. Finally, notice that, at any time t, the probability that

an agent receiving signal ω chooses a = ω is 1 if |a = ω| ≥ |a = 1 − ω| and

is 1 − F

(
(1−βT )

|a=ω|−|a=1−ω|

(1−βT )
|a=ω|−|a=1−ω|+β

|a=ω|−|a=1−ω|
T

)
otherwise. Since qt is distributed

according to a continuous density function, φ(βT ) is a continuous function.

By the intermediate value theorem, there exists a βT ∈ (1/2, 1) such that

φ(βT ) = βT .
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Now we prove that there does not exist an ABEE with βT < 1/2.

By contradiction, suppose βT < 1/2. Without loss of generality, let us

consider the case in which ω = 1. Let us define β̃t as the aggregate distribution

of actions at time t. Note that βT =
1
T

∑T

t=1
β̃t.

Observation: an agent who observes |a = 1| − |a = 0| = n > 0, chooses

action 1 with probability Eqt
(
1− F

(
(1−βT )

n

βn
T
+(1−βT )

n

))
and action 0 with com-

plementary probability (1− Eqt) + EqtF
(

(1−βT )
n

βn
T
+(1−βT )

n

)
. Similarly, an agent

who observes |a = 1| − |a = 0| = −n < 0, chooses action 0 with probabil-

ity (1− Eqt)
(
1− F

(
(1−βT )

n

βn
T
+(1−βT )

n

))
and action 1 with complementary prob-

ability Eqt + (1− Eqt)F
(

(1−βT )
n

βn
T
+(1−βT )

n

)
. (Of course, an agent who observes

|a = 1| − |a = 0| = 0, chooses action 1 with probability Eqt and action 0 with

complementary probability 1− Eqt.

Now, consider any time t. Observe that for odd t, the total number of

actions 1 minus the total number of actions 0 until time t included (let us

denote it by θt), can take the following values ±1, ±3,.., ±(t − 1). For even

t, the values are 0, ±2, ..., ±(t − 1). Note that for each history of actions

(a1, a2, a3, .., at) leading to θt = −m < 0, there exists the history of actions

(1− a1, 1− a2, 1− a3, .., 1− at) leading to θt = m > 0. By using the expres-

sions in the above Observation, it is immediate to verify that the probability

of the latter history is always higher than the probability of the former. (The

only remaining histories are such that θt = 0.) Therefore, at each time t,

β̃t > 1/2. It is then immediate to conclude that βT > 1/2, a contradiction.

Proof of Proposition 1 (Point ”b”)

Without loss of generality, suppose the state of the world is ω = 0. Suppose

β∗T (0)→ β̂ and β∗T (1)→ β̂, for β̂ = 1− ε, and for a small ε.

First, note that if β∗T (0)→ β̂, then an agent receiving a signal of precision
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qt < β̂ always follows the majority. Consider the least favorable case in which

the majority is by only one. Clearly, the likelihood ratio is
(

β̂

1−β̂

)I (
qt
1−qt

)2st−1
,

where I takes value 1 if the majority action is 1 and −1 if it is 0. This likelihood

ratio is higher or lower than 1 (and so the action chosen by the agent is either

1 or 0) depending only on the choice of the predecessors, since qt < β̂. The

argument holds a fortiori if the majority is by a number greater than one.

Now, we find a lower bound for the probability of the incorrect action.

Consider the event that the first agent receives the signal s1 = 1 (an event

that occurs with probability 1−Eq1). The first agent obviously chooses a1 = 1.

Now, consider the second agent. If he receives the signal s2 = 1, he chooses

a2 = 1. If he observes s2 = 0, he chooses a2 = 1 with the same probability as

the probability that q2 < β̂, F (β̂), as we know from the previous reasoning.

Using Taylor’s expansion, it is easy to show that this probability is F (β̂) >

1− 2f(1)ε, for ε < ε and some ε > 0.

Similarly, if the third agent receives the signal s2 = 1, he chooses a3 = 1,

and if he observes s3 = 0, he chooses a3 = 1 with a probability equal to

F

(
β̂
2

β̂
2
+(1−β̂)2

)
. Note that β̂

2

β̂
2
+(1−β̂)2

> β̂
2
and so F

(
β̂
2

β̂
2
+(1−β̂)2

)
> F (β̂

2
).

Using again Taylor’s expansion, it is easy to prove that F (β̂
2
) is greater than

1 − 4f(1)ε2 for ε < ε and some ε > 0. A similar analysis proves that if

agent t observes st = 0, he chooses at = 1 with a probability not lower than

1− 2t−1f(1)εt.

Therefore, the probability that every agent t chooses action at = 1 is higher

than

(1−Eq1)
T∏

k=2

(
1− 2k−1f(1)εk−1

)
.
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Taking the logarithm of
T∏

k=1

(
1− 2kf(1)εk

)
, we obtain

log
T∏

k=1

(
1− 2kf(1)εk

)
=

T∑

k=1

log
(
1− 2kf(1)εk

)
,

which, using again Taylor’s expansion, can be shown to be greater than

T∑

k=1

−a2kf(1)εk,

for some a > 1. Therefore, the probability that every agent chooses the

incorrect action is bounded below by

(1−Eq1) exp{−af(1)
T∑

k=1

2kεk},

which, for T →∞, is equal to

(1−Eq1) exp{−af(1)
2ε

1− 2ε
}.

This expression is close to (1−Eq1) > 0 for ε close to zero, thus contradicting

that β∗T (0)→ β̂ = 1− ε.

Proof of Proposition 3

To prove our result, we first prove a Lemma. Let us define Zt :=
∑

t

i=1 ui
t(t+1)/2

,

where the random variables ui are distributed as follows: Pr(ui = i|ω = 1) =

Pr(ui = 0|ω = 0) = q, Pr(ui = 0|ω = 1) = Pr(ui = i|ω = 0) = 1 − q, for

q ∈ (0.5, 1). For interpretation, note that in an ABEE, at time t + 1, the

subjective public belief is obtained by counting the first signal t times, the

second t− 1 times, etc. These are the numbers taken by the random variable

ui (for i = t, t − 1, ...) when the first signal takes value ut
t
, the second signal

takes value ut−1
t−1

, etc. Therefore, Zt summarizes the subjective public belief at
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time t + 1 in our ABEE in the limit case in which all signals’ precisions tend

to the same value q. We have the following lemma:

Lemma 1 Consider the limit case in which the precisions of all signals have

the same value q ∈ (0.5, 1). Then, Pr (|Zt − q| > ε) ≤ 2e−tm
∗ε2, where m∗ is

the value of m that solves the equation (q + ε)m = log ((1− q) + qem).

Proof of Lemma 1

We consider the case of ω = 1. We prove the proposition in four steps.

Step 1. Consider a number a ∈ (q, 1). By applying Chebychev’s inequality,

we obtain

Pr (Zt ≥ a) = Pr

(
λ

t∑

i=1

ui ≥ λa
t(t+ 1)

2

)
= Pr

(
e
λ

t∑
i=1

ui
≥ eλa

t(t+1)
2

)
≤

Ee
λ

t∑
i=1

ui

eλa
t(t+1)
2

,

where λ > 0. Since λ is arbitrary, it is also true that

Pr

(
λ

t∑

i=1

ui ≥ λa
t(t+ 1)

2

)
≤ inf

λ>0
E

(
e
λ(

t∑
i=1

ui−a
t(t+1)
2

)

)
= inf

λ>0
Ee

λ
t∑

i=1
ui
e−λa

t(t+1)
2 .

Now, note that

Ee
λ

t∑
i=1

ui
=
∏n

i=1
Eeλui =

∏n

i=1
((1− q) + qeλi) =

exp

{
t∑

i=1

log((1− q) + qeλi)

}
,

where we use the fact that the random variables ui are independently dis-

tributed. Therefore, we can conclude that

Pr (Zt ≥ a) = Pr

(
λ

t∑

i=1

ui ≥ λa
t(t+ 1)

2

)
≤

inf
λ>0

exp

{
t∑

i=1

log((1− q) + qeλi)− λa
t(t+ 1)

2

}
.
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Step 2. Now we rewrite this upper bound in a more convenient form. First,

let us rewrite the sum in the exponent as follows:

t∑

i=1

log((1− q) + qeλi)− λa
t(t+ 1)

2
=

t∑

i=1

(
log((1− q) + qeλi)− λai

)
.

Now let us replace λ with m = tλ and obtain

t∑

i=1

(
log((1− q) + qeλi)− λai

)
= t

t∑

i=1

1

t

(
log((1− q) + qem

i

t )−ma
i

t

)
.

When t gets large, the sum on the right hand side approaches the Riemann

integral of the function log((1 − q) + qemx) − amx, for x that goes from 0 to

1. For large t the following approximation is, therefore, exact:

t∑

i=1

1

t

(
log((1− q) + qeλi)− λai

)
≈ t

∫ 1

0

(log((1− q) + qemx)− amx) dx.

Hence, we can write

Pr (Zt ≥ a) ≤ inf
m>0

exp

{
−t

∫ 1

0

(amx− log((1− q) + qemx)) dx

}
.

Step 3. Now we look for the m that makes the integral as large as possible,

since we want to make our upper bound tight. Note that the integrand f(y) =

(ay − log((1− q) + qey)) is strictly concave, it takes value 0 when y = 0, it

is then positive and eventually becomes negative. In particular, for x = 1, it

becomes zero in the point m∗ > 0 that solves am∗ = log(1 − q + qem
∗
). To

maximize the integral, we want to integrate the function under all its positive

area. Therefore, we have

Pr (Zt ≥ a) ≤ exp

{
−t

∫ 1

0

(
am∗x− log((1− q) + qem

∗x)
)
dx

}
.

Step 4. Finally, we find an approximation for the integral. The integrand

f(y) is maximized at y = log
a(1− q)

q(1− a)
> 0 (since q < a). Moreover, at the
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maximum, its value is a log
a

q
+ (1 − a) log

(1− a)

(1− q)
:= H(a) ≥ 0. Now, since

(ay − log((1− q) + qey)) is positive in the interval (0,m∗), is concave and has

a maximum value H(a), we can draw a triangle underneath it with a base

[0,m∗] and a height H(a), and the area of this triangle is a lower bound on

our integral. That is,

∫ 1

0

(
am∗x− log((1− q) + qem

∗x)
)
dx ≥

m∗

2
H(a) ≥ m∗(a− q)2,

where the last inequality comes from the fact that H(p + x) ≥ 2x2.

Therefore, we can conclude that

Pr (Zt − q ≥ ε) ≤ e−t
m
∗

2
H(q+ε) ≤ e−tm

∗ε2 .

Analogous arguments show that

Pr (Zt − q ≤ −ε) ≤ e−t
m
∗

2
H(q−ε) ≤ e−tm

∗ε2 .

Finally, we can conclude that

Pr (|Zt − q| ≥ ε) ≤ 2e−tm
∗ε2 .

Proof of Proposition

Equipped with this lemma, we now prove the proposition. As we know,

a∗t+1
1− a∗t+1

= Πt
i=1

(
qi

1− qi

)(2si−1)(t+1−i)( qt+1
1− qt+1

)2st+1−1
.

Let us consider the case in which ω = 1. Suppose all correct signals (i.e.,

si = 1) are received with the lowest precision q and all the incorrect signals

(i.e., si = 0) are received with the highest precision q. Furthermore, assume
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signals are drawn from a Bernoulli distribution with Pr(si = 1 | ω = 1) = q.

Note that this is the worst case for convergence to the true state of the world.

In such a case, the likelihood ratio becomes

a∗t+1
1− a∗t+1

=

(
q

1− q

)
t∑

i=1

ui (1− q

q

)



t(t+1)
2

−

t∑

i=1

ui


(

qt+1
1− qt+1

)2st+1−1
.

By taking the logarithm of both sides we have

log
a∗t+1

1− a∗t+1
=

(
t∑

i=1

ui

)
log

(
q

1− q

)
+

(
t(t+1)
2
−

t∑

i=1

ui

)
log

(
1− q

q

)
+log

(
qt+1

1− qt+1

)2st+1−1
.

By dividing both sides by t(t+1)
2
,

1
t(t+1)
2

log
a∗t+1

1− a∗t+1
=

t∑

i=1

ui

t(t+1)
2

log

(
q

1− q

)
+

(
t(t+1)
2
−

t∑

i=1

ui

)

t(t+1)
2

log

(
1− q

q

)
+

1
t(t+1)
2

log

(
qt+1

1− qt+1

)2st

Zt log

(
q

1− q

)
+ (1− Zt) log

(
1− q

q

)
+

1
t(t+1)
2

log

(
qt+1

1− qt+1

)2st+1−1
.

By our previous proof, Zt
a.s.
→ q as t→∞. Therefore,

lim
t→∞

1
t(t+1)
2

log
a∗t+1

1− a∗t+1
= q log

(
q

1− q

)
+
(
1− q

)
log

(
1− q

q

)
.

By our assumption, the right hand side is positive, which implies that

log
a∗
t+1

1−a∗
t+1

converges almost surely to infinity.

Finally, consider the worst case in which agent t receives the incorrect
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signal, and observe that

Pr(1− a∗t < ε|ω = 1) =

Pr

(
a∗t

1− a∗t
>
1− ε

ε
|ω = 1

)
=

Pr

(
1

t(t−1)
2

log
a∗t

1− a∗t
>

1
t(t−1)
2

log
1− ε

ε
|ω = 1

)
=

Pr

(
Zt−1 log

(
q

1− q

)
+ (1− Zt−1) log

(
1− q

q

)
+

1
t(t−1)
2

log

(
1− q

q

)
>

1
t(t−1)
2

log
1− ε

ε
|ω = 1

)
.

Therefore,

Pr(1− a∗t < ε|ω = 1) =

Pr(Zt−1 > Ψ̃(t, ε)|ω = 1),

where Ψ̃(t, ε) :=

2
t(t−1)


log

1− ε

ε
−log

1− q

q


−log

1− q

q

log




q

1− q


−log



1− q

q




.

By our lemma, for large t, for any δ = q − ε,

Pr(Zt−1 > δ)|ω = 1) ≥ 1− e−m
∗tε2 .

Therefore,

Pr(1− a∗t < ε|ω = 1) =

Pr(Zt−1 > Ψ̃(t, ε)|ω = 1) ≥ 1− e−m
∗t(q−Ψ(ε))

2

,

where Ψ(ε) :=
log
1− ε

ε

log
q

1− q
−log

1− q

q

+ 1 (note that Ψ(ε) is an upper bound

for Ψ̃(t, ε), since Ψ̃(t, ε) is decreasing in t).
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Given that we considered the worst case, the above expression for Pr(1 −

a∗t < ε|ω = 1) is lower than the correct value, and the result of Proposition 3

follows.
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Figure 1: Average distance of the public belief from the fundamental

value. The solid line refers to the PBE. The dotted line refers to the

ABEE.
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Figure 2: Average distance of the public belief from the fundamental

value after 5 incorrect signals. The solid line refers to the PBE. The

dotted line refers to the ABEE.
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