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Overview

• Local Independence for Processes

• Local Independence Graphs and δ–Separation

• Notion of Causal Validity (= Extended Stability)

• Re–Weighting for Processes

• Identification Results

• Example: Norwegian cancer screening study



Local Independence

A Notion of Dynamic Independence among Processes
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Notation

Multi-state process Y (t) / marked point process (MPP);

⇒ represented by (collection of) counting processes {Nj(t)} for each

type of state change;

Note: will not always clearly distinguish Y (t) and {Nj(t)}.

Mostly: time-to-event, e.g. C = censoring time ⇒ N c(t) = I{C ≤ t}.
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Aim: Graphical Representation of Dynamic Relations

For stochastic processes X(t), Y (t), Z(t), represent and investigate

(conditional) independencies of the type

present of X⊥⊥ past of Y | past of (X,Z)

or (a little) more formally

X(t)⊥⊥FY
t− | FX,Z

t−

where Fk
t filtrations, i.e. information becoming available over time.

Note: Asymmetric independence!
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Links to Other / Earlier Work

Granger (1969): “Granger non–causality” for time series

Schweder (1970): “Local independence” for Markov processes

−→ extended by Aalen (1987) and Didelez (2006, 2007, 2008)

Graphical representations:

Eichler (2000, 2006) for time series.

Nodelman et al. (2002, 2003) for Markov processes.
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Idea of Local Independence

Example (cf. Aalen et al., 1980) — Transition graph

Initial
State

Only
Skin disease

Only
Menopause

Skin disease
& Menopause

)0 M,(α

)0 S,(α

)MSS ,(α

)MSM ,(α

Note: no transition 0 → MS (composable Markov process)

Local independence: α(0,M) = α(S,MS) while α(0, S) < α(M,MS)
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Sneak preview: Local Independence Graph

... quite simple:

menopause skin disease

V = vertices = events E = edges / arrows = local dependence

Bivariate case: dependence ↔ independence

Multivariate case: conditional local in/dependence
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Local Independence for Markov Processes

Consider for example Markov process with three components

Y(t) = (Y1(t), Y2(t), Y3(t))

— states y = (y1, y2, y3) ∈ S = S1 × S2 × S3

— s.t. any change of state of Y is always within one component yi

⇒ e.g. transition (y1, y2, y3) to (y1, y
′
2, y3) has intensity α2(t; (y, y

′
2)).

Local Independence: e.g. Y1 →/ Y2|Y3 iff transition intensities satisfy

α2(t; (y, y
′
2)) independent of y1

for all y ∈ S and y2 6= y′2 and for all t.
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Why Local Independence?

For small h > 0

α2(t; (y, y
′
2)) · h ≈ P (Y2(t+ h) = y′2|Y(t) = y)

so that Y1 →/ Y2|Y3 implies for small h

Y2(t+ h)⊥⊥Y1(t)|(Y2(t), Y3(t)).

Note: Not true in general for any h > 0.
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Local Independence for Multi-State Processes

Preliminaries

Multi–state processes (or MPP more generally), K components

YV (t) = (Y1(t), . . . , YK(t)), V = {1, . . . ,K}.

Under mild regularity conditions: Doob–Meyer decomposition

Yk(t) = Λk(t)
︸ ︷︷ ︸

predictable

+ Mk(t)
︸ ︷︷ ︸

martingale

where Λk(t) predictable based on history FV
t− of whole YV .

Note: will always assume intensity processes λk(t) exist.
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Local Independence for Multi-State Processes

...Doob–Meyer decomposition

Yk(t) = Λk(t) +Mk(t)

where Λk(t) predictable based on history FV
t−

of whole YV .

Local independence: Yj →/ Yk|YV \{j,k} ⇔

Λk(t) (or λk(t)) is the same if information on past of Yj is omitted

i.e. Λk(t) is F
−j
t –measurable.
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Aside: Independent Censoring

Let Y (t), X(t) be marked point processes, C(t) indicates censoring.

Censoring is independent for Y given X if C →/ Y |X.

Often: independent if C →/ (X,Y ).

Example: violated if ‘common cause’ for censoring and event
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Local Independence Graphs

and δ–Separation
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Local Independence Graphs

Y1 Y2

Y4 Y3
Death

Visit

Health

Hospital
G = (V,E)

V = nodes = components of process;

E = arrows = local dependence.

Graphs: directed, possibly cyclic,

possibly two edges between pair of

nodes.

Note: pa(k)∩ch(k) 6= ∅ possible.

Example: Home visits by nurses to elderly:

Y1(t) home visits by nurses at ‘regular’ intervals, increased rate only after

hospitalisation, Y2(t) hospitalisation, Y3(t) health status, Y4(t) death.
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Pairwise Dynamic Markov Property

Y1 Y2

Y4 Y3
Death

Visit

Health

Hospital
Definition: (j, k) /∈ E ⇒ Yj →/ Yk|YV \{j,k}.

Hence, can see from graph: Y1 →/ Y4|(Y2, Y3).

Want to know if Y1 →/ Y4|Y2?

I.e. does Y2 alone ‘separate’ Y1 from Y4?

⇒ will call this δ–separation.
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Construct undirected graph in four steps

1. Delete edges starting in B;

(because: want to separate present

of B from past of A, not interested

in future of B)
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Construct undirected graph in four steps

1. Delete edges starting in B;

2. Delete nodes not in An(A ∪B ∪ C);

An(S) = set S and all its ‘ancestors’

(1. and 2. are interchangeable.)
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Construct undirected graph in four steps

1. Delete edges starting in B;

2. Delete nodes not in An(A ∪B ∪ C);

3. ‘Marry’ parents of common children;

(due to ‘selection effect’)
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Construct undirected graph in four steps

1. Delete edges starting in B;

2. Delete nodes not in An(A ∪B ∪ C);

3. ‘Marry’ parents of common children;

4. Make all edges undirected.
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Construct undirected graph in four steps.

In final undirected (moral) graph (GB
An(A∪B∪C)

)m

check if C separates A and B in usual way.

Note: Still need to show that δ–separation meaningful in terms of local

independence!
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δ–Separation

Checking that C δ–separates A from B in a directed graph G = (V,E):

C
B

A
Equivalently: every ‘allowed’ trail

from A to B must be

‘blocked’ by C.

‘allowed’ = must end in −→ B.

‘blocked’ = same as in DAGs.
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Global Dynamic Markov Property

Pairwise dynamic Markov property is (under regularity conditions)

equivalent to

whenever C δ–separates A from B then A →/ B|C.

Proof: relies on asymmetric graphoid properties. (Didelez, 2006, 2008)
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Home Visits Example

Y1 Y2

Y4 Y3
Death

Visit

Health

Hospital
Back to initial example.

Does Y1 →/ Y4|Y2?
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Home Visits Example

Y1 Y2

Y4 Y3
Death

Visit

Health

Hospital
Back to initial example.

Does Y1 →/ Y4|Y2?

No!

A history of hospitalisation with prior home visit carries a different

information on the health status than a history of hospitalisation without

prior home visit.

Here, Y3 time-varying confounder.
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Comments

• Local Independence Graphs and δ–separation assume each process

depends on its own past whatever other processes are included, hence,

no ‘self loops’ shown.

• Meek (2014) extends this to allow a distinction between presence or

absence of self-loops;

– defines δ∗–separation

– additional separations obtain in absence of self loop
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Causal Interpretation

≈ ‘Extended Stability’

28



Causal Validity

Analogous to many formulations of causality:

• Intervention: change intensity of one (or more) type(s) of event(s);

• Assume that in ‘sufficiently’ detailed system remaining intensities stay

the same;

• Identification: what needs to be observed to estimate properties under

intervened system?

⇒ Similar to ‘Extended Stability’ of Dawid & Didelez (2010).
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Causal Validity

Joint density restricted to events before t: ∃ functionals Z1, . . . , ZK s.t.

joint density is given by
K∏

i=1

Zi(µi, t)

where µi local characteristics, e.g. Zi(λi, t) =
∏

λi(sr) exp(−
∫
λi(s)ds).

Note: each λi(s) F
cl(i)–measurable.

Causal Validity:

A specific intervention in i replaces µi by µ̃i, rest stays the same.

Note: can use intervention indicator σi in the spirit of Dawid (2002).
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Intervention Indicator

Y1 Y2

Y3Y4

σ1

Augmented graph Gσ with

indicator σi ∈ {o, e}, where

σi = o means “observational regime”

σi = e means “interventional regime”,

i.e. change to µ̃i.

Absence of other edges with σi ⇒ causal validity

(= extended stability: Dawid & Didelez, 2010).

Example: as in home visits example, may want to know effect of

changing rate of visits on survival; Y3 unobserved.
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Re–Weighting

to Investigate Interventional Scenarios
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Recall: Causal DAGs and IPTW

YX

C
Observed data from:

p(y, x, c) = p(y|x, c)p(x|c)p(c)

YX

CWanted: some aspect of hypothetical

p̃(y, x, c) = p(y|x, c)p̃(x)p(c)

Weights:
p̃(y, x, c) = p(y, x, c)W (x, c), W (x, c) =

p̃(x)

p(x|c)
and e.g.

1

#{Xi = 1}

∑

Yi I{Xi = 1}W (Xi, Ci) estimates E(Y |do(X = 1))
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Recall: Causal DAGs and IPTW

• Does hypothetical scenario make sense?

⇒ subject matter; e.g. realistic interventions?

C identifies p(y | do(X = x)).

• IPW = change of measure

• ... related to importance sampling

• ... also used in financial maths for ‘risk-neutral pricing’;

• alternative: estimate p(y|c, x), p(c), substitute – “g-computation”.
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Re-Weighting for MPPs

Given: MPP with local independence graph G, causally valid wrt. Yi.

P original model, P̃ model under intervention, P̃ << P ⇔

W (t) :=
∏

s≤t

(

λ̃i(s)

λi(s)

)∆Ni(s)

exp

(∫ t

0

λi(s)− λ̃i(s)ds

)

uniformly integrable

e.g. λi(s), λ̃i(s) not too different, e.g. unif. bounded (Girsanov)

Note:

to be useful make λ̃i(t) measurable wrt. observed & relevant processes.
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Causal Validity and Censoring

Folklore: “independent censoring yields K-M curves as if censoring had

been prevented.”

Counterexample: processes / times D,C,U ; ‘common cause’ U ignored

DC

U

DC

K-M estimand in marginal model different from K-M estimand in model

where ‘intervention’ prevents censoring.

Note: C → D often implausible if suitable (latent) processes included.

36



Identification

Eliminate Censoring and Modify ‘Treatment’ Process

37



Notation

Processes V = V0 ∪ L ∪ U ∪ {N c, Nx}

V0(t) outcome processes of interest

L(t) observed but not of interest

U(t) unobserved

N c(t) counting process for censoring

Nx(t) or X(t) ‘treatment’ process
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Causal Validity and Censoring

LV0

NC

U

Processes V = V0 ∪ L ∪ U ∪ {N c}

Consider P causal wrt N c;

intervention replacing λc by

(V0-predictable) λ̃
c yielding P̃ ; P̃ ≪ P .

Theorem 1 (Røysland et al, 2015):

de(N c) = ∅; if U →/ N c|(L, V0) ⇒ (censoring) weights W (t) and

V0-intensity of any N ∈ V0 identified without U .

LV0

NC

U

Stabilised weights

W (t) := exp(
∫ t

0
λc(s)− λ̃c(s) ds)

⇒ ‘deletes’ arrows from L to N c.
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Causal Validity and ‘Treatment’

Let processes V = V0 ∪ L ∪ U ∪ {Nx, N c}

will ignore censoring N c here

Consider P causal wrt Nx;

intervention replacing λx by (V0-predictable) λ̃
x yielding P̃ ; P̃ ≪ P .

Theorem 2 (Røysland et al, 2015):

If U →/ Nx|(L, V0) ⇒ (treatment) weights W (t) and V0-intensity of any

N ∈ V0 identified without U .

L

D

Nx

U

L

D

Nx

U
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More General: Simple Stability

Conjecture 3 (Røysland & Didelez, 2015?):

Using augmented local independence graph Gσ, a more general

identifying criterion is

σX →/ (V0 ∪ L) | X

≈ simple stability (Dawid & Didelez, 2010)

⇒ is implied by Theorem 2

⇒ is also implied by ‘sequential irrelevance’: U →/ (V0 ∪ L) | X.
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Simple Stability — Example

U = (U1, U2), check σX →/ (V0 ∪ L) | X!

X U1

V0L

σX

U2

Crucial: no edges U1 −→ X, U2 −→ (L, V0) , U1 −−− U2
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Simple Stability ctd.

Pro: no need to refer to U

i.e. characterises a wide range of identifiable situations

Con: does not refer to U ...

i.e. does not give intuition about what kind of U prevents identification
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Simple Stability ctd.

Pro: no need to refer to U

i.e. characterises a wide range of identifiable situations

Con: does not refer to U ...

i.e. does not give intuition about what kind of U prevents identification
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Application

Cancer Screening Process in Norway
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Motivation: Cancer Screening Process in Norway

Norway: cervical cancer screening,

– women aged 25-69,

– every 3 years

7% “inconclusive” ⇒ “triage”: follow-up cytology and HPV-tests

⇒ (1) referred to invasive diagnostic procedure

(2) more tests “soon”

(3) return to 3-year testing
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Motivation: Cancer Screening Process in Norway

HPV-tests: 3 types (brands): A/B, and C.

Type C:

negative test results more often followed by cytology = “lesions / worse”

⇒ unsuitable HPV-test?

But,

Type C: also subject to more frequent / sooner testing due to

manufacturer’s recommendation (twice as many in the first year)

Note: Government withdrew funding for company C’s tests; company

C was going to sue...
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Target of Inference

Comparison of incidents of alarming cytology results (CIN2+) after

negative HPV-test from A/B versus C in hypothetical scenario where

test-type C has subsequent testing as (in)frequent as types A/B.

⇒ replace hazard rate αC by αA/B for ‘subsequent testing’;

⇒ then look at re-weighted system;

⇒ all conditional on ‘in triage’ and ‘negative first HPV’ result.

48



Assumptions

latent 

progression

latent 

disease

HPV 

result
HPV 

test-type

cytology

subs.

test

s.test

result

histology

censoring

Censoring: registry data; censored at first CIN2+ result / end follow-up

⇒ Theorem 1 satisfied.
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Assumptions

latent 

progression

latent 

disease

HPV 

result
HPV 

test-type

cytology

subs.

test

s.test

result

histology

censoring

HPV-test type (A/B versus C) like ‘randomised’

Tests work differently ⇒ potentially different results

Type C known to be followed by more subsequent testing
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Assumptions

latent 

progression

latent 

disease

HPV 

result
HPV 

test-type

cytology

subs.

test

s.test

result

histology

censoring

Subsequent testing follows protocol.

This is the process whose intensity we want to replace = Nx.

Note:

HPV test-type not regarded as treatment; but indirectly predictive.
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Assumptions

latent 

progression

latent 

disease

HPV result 

= negative
HPV 

test-type

cytology = ‘inconclus.’

subs.

test

s.test

result

histology

censoring

Want to make subsequent testing independent of test-type.

Theorem 2 satisfied: subsequent testing loc. independent of latent

variables / processes given observed processes.
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Weights

Tj = 1st time individual j subject to subsequent testing.

Likelihood ratio in type-C group:

W j(t) =

(

αA/B(Tj)

αC(Tj)

)I{Tj≥t}

exp

∫ t∧Tj

0

αC(s)− αA/B(s) ds

Nelson-Aalen estimates ÂC(s) and ÂA/B(s) of cum. hazards.

⇒ smooth with splines, differentiate, plug-in to estimate W j(t).

Re-weighted K-M; events and ‘at’ risk

N̂(t) =
∑

j

∫ t

0

Ŵ j(s−) dN j(s), Ŷ (t) =
∑

j

Ŵ j(t−)Y j(t).
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Weights

solid line: before test dotted line: after test
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Results

Re-weighted log-rank test: p-value=0.004.
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Summary

• Local independence graphs useful to represent dynamic dependence

structure in event histories.

• δ–separation suitable to investigate which independencies are

preserved under marginalisation.

• Extension to causal reasoning: parallel to decision theoretic approach

advocated by Dawid (2002); use intervention indicator for more

general identification result ⇒ t.b.continued

• Need to think ‘causally’ about censoring.

• Application to Norwegian cancer screening programme.

Company C has withdrawn their law suit against government...

• For more complex applications / general processes, practical details

to be worked out.
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