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Selection Bias

Selection bias is perennial in statistics.

Examples:

case-control studies;

studies with dropout;

survey response bias;

polling;

after dinner speakers (survivor bias);

...

Possible remedies:

re-weighting with extra information;

bias modelling;

sensitivity analysis;

use the odds-ratio.
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Case-Control Study Example

binary exposure X ;

binary outcome W (e.g. disease presence);

selection indicator S ;
case-control, so selection (S = 1) depends upon W .

X W S

We observe data from p(x ,w | s = 1) = p(x |w)p(w | s = 1).

Equivalent to the conditional p(x |w) with p(w) unknown.

Without further assumptions we cannot recover p(w) nor therefore
p(w | x) = p(w | do(x)).

Well known that we can recover and use the causal odds-ratio.
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Structural Information

However, with background information we might be able to do better.

Suppose that there is a covariate Y , known to be independent of X .

Example: X gene, Y background environmental effect, W disease.
(Moerkerke et al., 2010)

X W

Y

X ⊥⊥ Y but generally X 6⊥⊥ Y |W due to ‘explaining away’.

So true weighting p(w) of p(x , y |w) tables gives X ⊥⊥ Y :∑
w

p(w) · p(x , y |w) = f (x) · g(y).
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Concrete Example
Suppose we observe +ve correlation under W = 0, −ve given W = 1.

W = 0 0 1 W = 1 0 1

0 0.4 0.1 0 0.2 0.3

1 0.1 0.4 1 0.3 0.2

True marginal table p(x , y) = αp(x , y |w = 0) + (1− α)p(x , y |w = 1)
some unknown α.

Mixture is:

0 1

0 0.25 0.25

1 0.25 0.25

Only value giving independence in this case: α = 0.25.
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True marginal table p(x , y) = αp(x , y |w = 0) + (1− α)p(x , y |w = 1)
some unknown α.

Mixture is:

0 1

0 0.2 + 0.2α 0.3− 0.2α

1 0.3− 0.2α 0.2 + 0.2α

Independence means (0.2 + 0.2α)2 − (0.3− 0.2α)2 = 0.
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Geometric Picture

Surface of independence in 2× 2 probability simplex:
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Idea

It’s common to use background information to augment studies: e.g.
particular re-weightings for groups in a survey.

e.g.:
Bowden and Vansteelandt (2010)
Borboudakis and Tsamardinos (2015).

Can we use structural information to recover a joint distribution, rather
than particular numbers?
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Identifiability

Let pθ : Θ→M be a map from a parameter space Θ to a collection of
probability distributions M.

Say that θ is generically k-identifiable if the fibers

F (θ) = {θ′ : pθ = pθ′}, ∀θ ∈ Θ \ O

have cardinality at most k ∈ N for some O of measure zero.

So ‘almost everywhere’ at most a k-to-one map.
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Identifiability
X Y

W

In the marginal independence example, surface
of independence is quadratic so at most 2 solutions.

Cases with two solutions are manifestations of Simpson’s paradox.

If either X ⊥⊥W |Y or Y ⊥⊥W |X then lose identifiability
(X and Y are analogous to instruments).

Overall: generically 2-identifiable.
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Main Result
Discrete random variables X ,W , with dx , dw states.

p(x ,w) = (p(x), p(w | x))

∈MX ×MW |X .

Separate marginal model for X and conditional model for W |X .

Want conditions on MX and MW |X that lead to (generic)
k-identifiability of p(x ,w) from p(x |w).

Theorem
Suppose

MW |X unrestricted;

MX has codimension `.

Then p(w) generically k-identifiable from p(x |w) if and only if
dw − 1 ≤ `.

i.e. dw − 1 unknowns, ` constraints.
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Example: Marginal Independence

X Y

W

Marginal independence case:

independence is (dx − 1)(dy − 1) constraints;

so works iff
(dx − 1)(dy − 1) ≥ dw − 1.

All binary case: 1 constraint, 1 unknown, so this is just identified
(generically up to 2 solutions).
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Example: Conditional Independence

X Z Y

W

In this case marginal model X ⊥⊥ Y |Z , but we observe p(x , y , z |w).

This model implies (dx − 1)(dy − 1)dz constraints, dw − 1 unknowns.

In the all binary case for example, we have generic 1-identifiability.
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Example: Conditional Independence

X Z Y

W

But more is true!

p(z) · p(x , y , z)− p(x , z) · p(y , z) = 0, ∀x , y , z .

Replace p(x , y , z) =
∑

w p(x , y , z |w)α(w), to get series of quadratic
equations in α(w).

All binary case gives two independent quadratics for one unknown.
For distributions not in model, generically these don’t have common
solutions.

=⇒ we have a degree of freedom to test this model.
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Example: Conditional Independence

X Z Y

W

Fitting: given counts can just maximize the conditional log-likelihood:∑
x,w

n(x ,w) log p(x |w) =
∑
x,w

n(x ,w) log p(x ,w)−
∑
w

n(w) log p(w),

use a likelihood ratio test.

Model is irregular and behaves like a latent variable model.
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Example: Bayesian Network

Any Bayesian network (or ancestral graph, nested model, ...) such that
all other variables are parents of W is potentially identifiable:

1 2 3

0

4

W

For binary variables this MX has codimension 19.

Of course, could then recover appropriate causal effects from the joint.

This may appear to contradict Bareinboim and Tian (2015), but they
require strict identifiability.
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Variation Independence

Beware additional independences!

X Z Y

W

In this case

p(x , y , z ,w) = p(w) · p(y , z |w) · p(x | z)

p(x , y , z |w) = p(y , z |w) · p(x | z).

Note that p(x , y , z |w) is in this model if and only if this factorization
holds, regardless of the value of p(w).

Therefore p(w) is clearly unidentifiable.
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Lessons

1 These results are all generic.
There are areas of the joint distribution which need to be avoided
(think of these as faithfulness conditions).

2 In particular: we can’t just ‘weaken’ our assumptions to make life
easier (e.g. adding extra edges on the graph).

3 The constraint was exhibited directly in the observed distribution

p(x , y , z |w) = p(y , z |w) · p(x | z).

so:
I the model can still be tested

(more easily than in the non-degenerate case);
I we can ‘see’ when the procedure fails.
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Parameter Cuts

Proposition

Suppose p(x | y ,w) is variation independent of p(y ,w) in M.
Then p(x , y ,w) identifiable from p(x , y |w) if and only if

p(y ,w) identifiable from p(y |w)

Y X W Y X W

In other words, p(x | y ,w) doesn’t help us to identify p(w).

This sort of variation independence is also called a parameter cut
between (Y ,W ) and X |Y ,W .

Corollary

If p(x |w) is variation independent of p(w), then p(x ,w) is not
identifiable from p(x |w).
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Example

Any undirected (in fact hierarchical) model is therefore not identified:

X2

X4X3

X1

W

p(x1, x2, x3, x4,w) = ψ12(x1, x2) · ψ24(x2, x4) · ψ34w (x3, x4,w) · ψ13(x1, x3).

Note that if I multiply by 1/p(w), the structure of the RHS is preserved.
So no ‘destroyed’ structure to try to recover!
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Bayesian Networks

Lemma

Let M(G) be a Bayesian network model over a DAG G with vertex w .
Then p(xV , xw ) is identifiable from p(xv | xw ) if and only if it is
identifiable from p(xan(w) | xw ).

That is, we can ignore any non-ancestors of w (in any member of the
Markov equivalence class).
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Example

X1

X3X2

W

Reduces to the marginal independence model.
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Choke Points

X

Y

Z W

Suppose W has three states, but Z only two.

p(x , y , z |w) = p(x , y | z)p(z |w).

Now, X ⊥⊥ Y can be used to determine p(z) as before, but{
α(w) :

∑
w

α(w)p(z |w) = p(z)

}

is an under-determinied linear system. So p(w) unidentifiable.

This is a more subtle kind of ‘unfaithfulness’.
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Causal Learning

Schölkopf et al. (2013) look at semi-supervised learning:
few samples from p(x , y), many from p(x).

Their conclusions:

Causal Anti-Causal
X → Y X ← Y

poor performance good performance

separation of input and causal mechanisms:

parameter cut X , Y |X parameter cut Y , X |Y

Note that parameter cut X , Y |X means p(x) gives no information about
p(y | x).
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Summary

Detection of and recovery from selection bias is possible in causal
models.

Could in principle be used for causal discovery.

Some limitations:

Sample size needed may be quite large if selection is dramatic.

Constraints are hard to characterize;

Model is irregular, and likelihood seems hard to maximize in practice.
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Degenerate Conditional Independence

X Z Y

W

This case is not covered by the other results directly.

Can reduce to marginal independence case by considering p(x , y | z ,w)
for fixed levels of Z = z .

In fact: each level of Z gives the same equations, so this is equivalent to
case of marginal independence X ⊥⊥ Y .
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