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HETEROGENEOUS DATA SETS MEASURING THE SAME SYSTEM UNDER STUDY

Variables | Thrombosis -~ Contraceptives Protein C Breast Cancer Protein Y Protein Z
il ' \ Quts Ve
Study @ *{J 5’
2 ey
Yes No 10.5 Yes - -
g No Yes 5.3 No - -
observational data ) )
No Yes 0.01 No - -
2 - - - Yes 0.03 9.3
observational data _ ~ _ No 34 22.2
No No 0 (Control) No 3.4 -
3 Yes No 0 (Control) Yes 2.2 -
experimental data Yes Yes 5.0 (Treat.) Yes 7.1 -
No Yes 5.0 (Treat.) No 8.9 -
No No (Ctrl) - - - -
2 No No (Ctrl) - - - -
experimental data ) ) ) )
Yes Yes(Treat) - - -
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INTEGRATIVE CAUSAL ANALYSIS

Thrombosis Contraceptives
S

Protein C
>

e
/B

Breast Cancer

/Data can not be pulled
together:

Missing variables cannot

1egi Wt :

be treated as missing A E?te.zz
Rk D ghgel

values. !\ -

Protein E
‘%g}
W

They come from different
experimental conditions

(different distributions).
A \_ -
i) Data come from the

same causal
mechanism.
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INTEGRATIVE CAUSAL ANALYSIS

&

-

-

~

Identify the
causal graphs
that
simultaneously

fit all data.
J

Thrombosis

Protein C
8 .

Breast Cancer
e b

/B

Contraceptives
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CAUSAL MODELS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

What

connects
the two?

* Edges represent direct causal relations.
* Both edges allowed for a single pair of variables.

* No directed cycles (no causal feedback).

JPD P

No

Yes Yes 0,01 0,04

Yes No 0,01 0,04

No Yes 0,000045 0,044955

No No 0,000855 0,854145

« P(Y|V,Z) = P(Y|V)or Yisindependent of
ZgivenV : Ind(Y,Z | V)

* Otherwise: Dep(Y,Z |V)

* The set of conditional independencies entailed
by the JPD is called the independence model

Introduction Proposed Approach Performance Validation
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Dep(Y,Z | ©)
Dep(X,Z | ©)
Dep(X,Z|Y)
Dep(Y,X | 0)
Dep(Y,X | Z)

Causal Markov Assumption:

Every variable is independent of its non-effects
(non-descendants in the graph) given its direct
causes (parents).

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.

All independencies in J can be identified in G
using the graphical criterion of m-separation.

Introduction Proposed Approach
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m-SEPARATION

A path X, ..., X;, between X; and X,, is m-connecting given V if for every triple (X;_4, X;, X;+1) on the path:

© X x> X ex Xy,
X; or one of its descendants € V

* Otherwise, X; ¢ V

m-connecting path => information flow => dependence

No m-connecting path => no information flow =>independence (m-separation)

Introduction Proposed Approach Performance Validation




m-SEPARATION

Y <> X —>1Z Y <> X —>1Z
is m-connecting given @ is NOT m-connecting given X
< Dep(Y,Z|0) e Ind(Y,Z|X)
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REVERSE ENGINEERING CAUSAL MODELS

— Dep(4,D|®)p,
_____ Dep(A,D|B)p,

— - === Depts. DI, —p
_____ Dep(A,D|C)p,

_____ Ind(A,mEI(D)Dz

3 m-connecting path from A to D given® in S
3 m-connecting path from A to D givenB in S

3 m-connecting path from A to Bgiven® in S

A m-connecting path from A to E given @ in S

Dataset D; measuring Path constraints on the
: Independence model J; :
a set of variables underlying causal graph
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INTERVENTIONS / MANIPULATIONS IN CAUSAL MODELS

Graph (SMCG) S

Values of B are set solely by the manipulation procedure.

If you know direct causal relations, remove all edges into
the manipulated variable.
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INCA: OVERLAPPING VARIABLES, INTERVENTIONS

LITEEETT>
LITHETT e
m

=

LITEET T o

Dataset D; measuring a
subset of variables, some of
which are manipulated

independence model J;

Ind(A,D|®)p,

Ind(A, DIB)p,

Ind(4,D|C),,
Ind(A, D|B, C)p,

Dep(B! C|®)D2

Manipulated

A m-connecting path from A to D given @ in S8
A m-connecting path from A to D given B in S8

A m-connecting path from A to D given B, C in S

3 m-connecting path from B to C given ® in S

Path constraints on the
manipulated underlying
causal graph
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PROBLEM DEFINITION

Causal Markov Assumption
Causal Faithfulness Assumptlon

m

o'o o'o o'o

Graphs S that simultaneously fit all data

LT P

[HETTTP 1 |

HHTTHF e o

LT (R

LR |

Data sets Dy, ..., D,, measuring
overlapping variables under
different manipulations
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PROPOSED APPROACH

LT P

[HETTTP 1 |

HHTTHF e o

LT (R

LR |

m

Data sets D4, ..., D,

D

Independence models J4, ...

Dep(A,D|®
Ind(4,D19)p,

In

In(
Ind

De

Ind(A,D|®)p,
Dep(A,BI®)p,
Dep(4,BIC)p,
Dep(4,B|D)p,
Ind(B,C|®)p,

=)

3 m-connecting path from A to D given @ in S™
3 m-connecting path from A to D given B in S"

3 m-connecting path from A to B given® in S'

4 m-connecting path from B to C given @ in S™

path constraintsin Sq,...,S,

Graphs S that simultaneously fit all data

Introduction Proposed Approach
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CONSTRAINTS AS BOOLEAN FORMULAE

* Suppose you know nothing about the structure § of the three variables.

* In a data set where B is manipulated, Ind(A, C|®)

* In path terms:

A m-connecting path between 4 and C given @ in S8

A-C does not exist

—edge(4,C)
AND
In SATisfiability terms: A <B—C does not exist
—edge(A,C) A
[-edge(A, B) V —tail(A,B) V —edge(B,C) V —tail(C, B)] [—edge(A, B)
V —tail(A, B)
vV —edge(B,C)

V —tail(C, B)]

Introduction Proposed Approach Performance Validation 15



PROPOSED APPROACH

m

Graphs S that simultaneously fit all data

LT P
[HETTTP 1 |
HHTTHF e o
TR IE | m

LR |

Data sets D4, ..., D,

Dep(A,D|®
Ind(A,D|9) | 3 m- J h from A to D gi in Sh
n D, m-connecting path from A to D given® in S ledge(A-D) V ( edge(A-C)

In 3 m-connecting path frc:)mA to D given B in S™ A edge(C-D)A tail(C, A) ...] A

Ind(A,D|®)p,

Ind
D{ 1nd De;r)(A,BlQ))D3 i
De Dep(4,B|C)p, 3 m-connecting path from A to Bgiven® in S I :
: ledge(A-D) v (edge(A-C) ...] A

DeP(A,BlD)93 :
Ind(B, C19)p, # m-connecting path from B to C given ® in S™

[— edge(A-D) A (.—| edge(4-0) ...)]

Independence models J1, ..., J, path constraintsin S, ..., S, Formula ® encoding path constraints in S
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SCALING UP

LT P

[HETTTP 1 |
HHTTHF e o

LT (R

LR |

m

Data sets D4, ..., D,

D

Dep(A,D|®
Ind(4,D19)p,

In

In(
Ind

De

Independence models J4, ...

Ind(A,D|®)p,
Dep(A,BI®)p,
Dep(4,BIC)p,
Dep(4,B|D)p,
Ind(B,C|®)p,

=)

3 m-connecting path from A to D given @ in S™
3 m-connecting path from A to D given B in S"

3 m-connecting path from A to B given® in S' Ij

4 m-connecting path from B to C given @ in S™

path constraintsin Sq,...,S,

Graphs S that simultaneously fit all data

[edge(A-D) v ( edge(A-C)
A edge(C-D)A tail(C,A) .1 A

[edge(A-D) v ('edge(A-C) A

[— edge(A-D) A (‘ﬁ edge(4-0) ...)]

Formula @ encoding path constraints in S

Introduction Proposed Approach

Performance Validation
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SCALING UP

Independence model: 2™ conditional (in)dependencies.
* You only need a subset that entail all others ((’21)).

* FCI (Spirtes, Glymour, Scheines 2000, Zhang 2008) finds this subset of
conditional (in)dependencies

* also outputs a graph that summarizes the characteristics of every possible causal structure
that entails them.

e Use FCl and only convert
* (non) adjacencies to (#)3 inducing path.
* Colliders with order to (#)3 inducing and directed paths.

Introduction Proposed Approach Performance Validation

18



SCALING UP

m

Graphs S that simultaneously fit all data

LT P

[HETTTP 1 |

HHTTHF e o

LT (R

LR |

Data sets D4, ..., D,

How many paths?

Dep(4,D|®)p, |
Ind(4,D|@) I m- 7 h from A to D oi in Sl
n 0, m-connecting path from A to D given @ in S ledge(4-D) v ( edge(A-0)

In 3 m-connecting path fr?mA to D givenB in S"t A edge(C-D)A tail(C,A) .1 A

Ind(A,D|0)p,

1
D In;u Dep(4,B|®)p, ) : ) o
pel  Dep(A,BIC)p, 3 m-connecting path from A to B given® in S :
: ledge(A-D) v (edge(A-C) ...] A

Dep(A, BID), ;
Ind(B, C10)p, A m-connecting path from B to C given @ in S

[ edge(A-D) A (= edge(A-C) ...)]

Independence models J4, ..., ], path constraintsin S, ..., Sy, Formula ® encoding path constraintsin §
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SCALING UP

How many paths?

Reduce the number of paths.
= Remove edges based on preprocessing.
= Restrict the path length.

Introduction Proposed Approach Performance Validation 20



SCALING UP

m

Graphs S that simultaneously fit all data

LT P

[HETTTP 1 |
HHTTHF e o

LT (R

LR |

How many solutions?

Data sets D4, ..., D,

Dep(A,D|®
Ind(4,D|@) | 3 m- J h from A to D gi in Sl
n D, m-connecting path from A to D given® in S ledge(A-D) v ( edge(4-C)

In 3 m-connecting path fr?mA to D givenB in S"t A edge(C-DIA tail (G, A) ] A

Ind(A,D|0)p,

I
D m:; Dep(4,B|®)p, ) : ) o
De Dep(4,B|C)p, 3 m-connecting path from A to B given @ in S'2 :
: ledge(A-D) v (edge(A-C) ...] A

Dep(A, BID), ;
Ind(B, C19)p, # m-connecting path from B to C given ® in S™

[— edge(A-D) A (‘ﬁ edge(4-0) ...)]

Independence models J4, ..., J,, path constraintsin Sy, ..., S, Formula @ encoding path constraints in S
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SCALING UP - QUERY-BASED LEARNING

How many solutions?

Thrombosis Contraceptives
: . S solid endpoints:
solid ed*‘?es' same orientation in
Spgfjﬁgaén all all solutions
s:g::t?:g;;e \ dfa\shed endpoints:
_ . different
solutions orientation in
different solutions

Introduction Proposed Approach Performance Validation 22



STATISTICAL ERRORS

B C D E| ® ® ®
re ooy oRN oY o
=EEEEE. apap 4P
- .. phs S that simultaneously fit all data
Data sets Dy, ..., Dn Statistical Errors

Dep(A,D|®
Ind(4,D|@) | 3 m- J h from A to D gi in Sl
n D, m-connecting path from A to D given® in S ledge(A-D) v ( edge(4-C)

In 3 ti th from A to D given B in St
onnecting pa r?m oDgivenB in A edge(C-D)A tail(C, A) ..] A

Ind(A,D|0)p,

I
D Inzc Dep(4,B|®)p, :
pel  Dep(A,BIC)p, m-connecting path from A to B given ® in S' (edge(A-D) ('a’ 40 .1
: edge(A-D) V (edge(A-C) ...] A

Dep(A, BID), ;
Ind(B, C19)p, # m-connecting path from B to C given ® in S™

[— edge(A-D) A (‘ﬁ edge(4-0) ...)]

Independence models J4, ..., J,, path constraintsin Sy, ..., S, Formula @ encoding path constraints in S
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STATISTICAL ERRORS

\\\II/,’/
E@? Select non conflicting constraints! ]

How?

constraint.

Introduction Proposed Approach

Performance

Assign confidence to every

Conflicts make SAT
instance unsatisfiable!

What happens with
statistical errors?

Validation
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p-VALUES TO PROBABILITIES

low p-values high p-values

suggest — suggest

dependence independence

Hy:p~Beta(¢, 1), §e(0,1) Hy: p~Beta(1,1)

Folmy, &) Zmo (1 — m)épt ™!

The proportion of p-values coming@

If you know T, fyou can find posterior
probabilities

5
(1 —m)épt-9
Ty
+ _ _
(1 —mp)ép=9)
P(Hylp) =1 - P(Hylp)

P(Holp) =

Introduction Proposed Approach Performance Validation 25



ALGORITHM PROPeR

PROPeR

identify 7T,:
(Storey and Tibshirani,
2003)

D 4

Identify &:
Minimize negative log
likelihood of
fplmo, §) = o +
(1 - 1p)épt

b 4

Estimate
P(Hylp), P(Hy|p)

Constraints correspond to adjacencies (or absence thereof),
not (in) dependencies

= adjacent(X, Y): The maximum p-value for X, Y was < «

= — adjacent(X, Y): The maximum p-value for X, Y was > «

Maximum p-values may not follow a uniform distribution
Samples (p-values) are not i.i.d.

Did we cut too many corners?

Calibration of probability estimates compared to

= BCCD: Posterior probability of a feature is obtained by the
weighted sum of the likelihoods of all networks with < 6 variables
[Claassen and Heskes, 2012]

* DP+MCMC: Exact method, scales up to ~20 variables, MCMC priors
[Eaton and Murphy, 2007]

Introduction Proposed Approach

Performance
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Discrete variables

sample size: 100 sample size: 1000 sample size: 5000
1 : 1 . - - - | - _ _ _ 1
0.9 0.9 0.9 PROPeR =11
- - BCCD AH

. - ** .2 DP+MCMC
O—iﬁ 0.6 - Q-('H 0.6 Q-(:- 0.6
g 0.5 g na ié 0.5 -

:1: 0.4 _ - ;j 0.4 ) /: 04 -
7 F].ﬂs‘(:ima.t()dL P) h 7. Es‘rc’imat(idrlpnl, 7 | Es£il]]a.t(td Pn ’

* PROPeR has no significant computational overhead
— y = = -] . .
e * PROPeR performs on par with more expensive
=) Bayesian methods

100 L] SO0

sample size
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CONFLICT RESOLUTION STRATEGIES

P(constraint)

constraint

0.999

0.998

0.510

3 m-connecting path
from A to D given @ in S'»

A m-connecting path
from A to D given @ in St

3 m-connecting path
from A to B given @ in St

= MMR: Estimate confidence using PROPeR,
satisfy constraints in decreasing order of
confidence.

= BCCDR: Estimate confidence using BCCD,
satisfy constraints in decreasing order of
confidence.

= maxSAT: satisfy maximum number of
constraints.

= wMaxSAT: satisfy constraints with maximum
sum of weights, where weights are PROPeR
estimates.

Introduction Proposed Approach Performance
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o-Precision

CONFLICT RESOLUTION STRATEGIES

20 variables, 5 overlapping data sets, 100 samples each

10 20* 30* 40* 50%
number of variables

20 30

40

number of variables

50*

C
o
=)

0.7 100

= 50

Proportion of dashed edges

10 20 30* 40 50%
number of variables

7]

dashed endpoints

Greedy strategies
perform similarly

Max/ weighted max
strategies do not

scale up.

All strategies are

Fos e equally conservative.
5 0.2 = 4 BCCDR
20 1 € maxSAT
' = |4 wMaxSAT
U1 207 30 107 50* 107 20 30 1 s 10 20 30 10 50*
number of variables number of variables number of variables
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PERFORMANCE EVALUATION

= ~2000 runs in simulated networks

= vs maximum path length, number of variables, sparseness of the ground truth
networks, sample size, number of input data sets, proportion of non-overlapping
variables.

= Performance improves with more data sets.
= Performance improves with more samples.
= Performance is better for sparser networks.
= COmbINE scales up to 100 variables.

= Maximum path length and number of non-overlapping variables do not influence
COmbINE’s performance.

Introduction Proposed Approach Performance Validation
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APPLICATION ON MASS CYTOMETRY DATA

cd4+ T-cells cd8+ T-cells
O observed in some data set

manipulated in some data set

e NOt Measured in Dy, Dy, D5

not measured in Dy

e 4 data sets.
e 3 different manipulations.

b 14 VvVa ria bles Data. set Source latent (L;): manipulated (I;)
. D, Bodenmiller et al. (2012) pMAPK pAkt
(phosphorylated proteins). D, | Bodenmiller et al. (2012) PMAPK pBik
. Dg Bodenmiller et al. (2012) pMAPK pErk
°
2 d Iffe rent Ce” Dy Bendall et al. (2011) pAkt, pLat, pStatl pErk

populations.

Introduction Proposed Approach Performance Validation 32



INCA RULE

Independence
Dataset D, model J;

Predict X and Y are associated

X Yy z w Dep(X,Y|9)p,
- — — Dep(X, WIY)p, — even though they are never e
— — — Dep(X, ZI0), measured together! /s Massively test the assumptions
—_ = —_ Ind(X,W|Y)p,
—_ — _ Dep(Y,W|®)p,
— — — Dep(Y,W|X N .
eV, WiX)o, DA = Find data sets D, D,
b where the rule holds.
s ! = Predicty, Zare
Independence ,'II ! dependent. (given 0)
Dataset D, model J, /
Y Dep(X, W10)p, ! = Checkinan

Dep(X,W|Z)p,

Dep(X, ZI0),, independent data set
Ind(X,W|2)p, \

Dep(Z, WI0),, Y Dr.s+ Where Y, Z are

NERRERRE
NERRRRRR
LTI =

Dep(Z,WIX)y, measured.
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FURTHER INFERENCE: PREDICT CORRELATION STRENGTH

@~@i
E
@-0-G-018 B ®
@~@i
@@@@i

O e O e Oz

Introduction Proposed Approach Performance Validation
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MAKING IT WORK ON REAL DATA

2.Splitto D,, D,and D,., 3.Find X, ¥, Win D, and X, Z W, in
1.Original Dataset containing different samples D, such that the INCA rule applies

} >Predict
) . — >

Association?

Test

* Restrict inferences only to cases where the probability of errors is small, i.e. p-values

are extreme

Pyyz < 0.05accept Dep(X,Y|Z)
Pyyz > 0.3 accept Ind(X, Y|Z)
Else, undecided (forgo making any inferences)

Introduction Proposed Approach Performance Validation 35



DATASETS

Name # instances # variables  Group Size Variables type Scientific domain W
Covtype 581012 55 55 Nominal/Ordinal Agricultural 222
Read 681 26 26 Nominal/Continuous/Ordi Business 0
nal 2
Infant-mortality 5337 83 83 Nominal Clinical study 135
Compactiv 8192 22 22 Continuous Computer science
Gisette 7000 5000 50 Continuous Digit recognition 423
Hiva 4229 1617 50 Nominal Drug discovering S
Breast-Cancer 286 17816 50 Continuous Gene expression 1833
Lymphoma 237 7399 50 Continuous Gene expression 7712
Wine 4898 12 12 Continuous Industrial 4
Insurance-C 9000 84 84 Nominal/Ordinal Insurance 1839
Insurance-N 9000 86 86 Nominal/Ordinal Insurance 226
p53 16772 5408 50 Continuous Protein activity 46647
Ovarian 216 2190 50 Continuous Proteomics 539165
Cc&C 1994 128 128 Continuous Social science 99241
ACPJ 15779 28228 50 Continuous Text mining 0
Bibtex 7395 1995 50 Nominal Text mining 1
Delicious 16105 1483 50 Nominal Text mining 856
Dexter 600 11035 50 Nominal Text mining 0
Nova 1929 12709 50 Nominal Text mining 0
Ohsumed 5000 14373 50 Nominal Text mining 0
Introduction Proposed Approach Performance Validation 36



HOW DID WE DO?

1

0.8 B

=0.05

0.6

0.4

0.2

Accuracy at t

|

0

Covtype Read Infant Compactiv  Gisette

Mortality

Hiva

Breast
Cancer

Lymphoma

Wine Insurance Insurance

N

0.05

0.8

0.6

0.4

Accuracy at t

0.2

=1

=

|

P53 Ovarian C&C ACPJ

Bibtex

Delicious

Dexter

Nova

ﬁ =INCA ruleE=Random Guess ’

About 700000 predictions in 20 datasets.
Accuracy: The percentage of p-values < 0.05.

*  May include false positives and exclude false negatives.

|

98% accuracy vs.
16% of random guessing

Ohc;umed

Introduction Proposed Approach Performance

Validation
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FURTHER INFERENCE: PREDICT CORRELATION STRENGTH
@~@i
E

pxz = Pxv X prz @_@: pxv = Pxz X prz
R E

O OSONO) @@@@i
O-0-0-® |

Only one of

Pzw = Pyz X Pyw

q 1 1/(r r
Predict 77, z5(£+ﬂ)

. =7 1/(r r
Predict 7y~ = = (ﬂ + ﬂ)
rxy Tzw 2

rxz Tyw

1
ryz

’

—~ 2] .
Tyz ||S <1
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VS STATISTICAL MATCHING

Conditional Independence Assumption (CIA)
Non common variables are independent given the
common variables

+ Multivariate Normality

VS.

(Causal) Markov

Acyclicity

RWNPE

(Causal) Faithfulness

Multivariate normality

Data Sets SMR INCA rule *  When predictions are based
ACP] 0.00[0.00;0.01] i on only 2 common variables,
Breast-Cancer 0.25[0.24;0.25] 0.88[0.87;0.90] . L. . .
C&C 0.68 [0.65;0.71] 0.91[0.91;0.91] statistical matching is
Compactiv.  0.49 [0.44,0.54] 0.88 [0.83;0.92] unreliable.
Insurance-C 0.47 [0.42;0.51] 0.90[0.89;0.91]
Lymphoma 0.32[0.31;0.32] 0.50[0.47;0.52] . INCA rule’s predictions are
Ohsumed 0.01 [0.00;0.01] - highly correlated with
Ovarian 0.50[0.50;0.51] 0.14[0.14;0.14] sample estimates (O 89
Wine 0.58 [0.52;0.64] 0.99[0.47;1.00] ) )
p53 0.45 [0.44;0.45]  0.87 [0.87;0.87] correlation.
Mean overdata 0.38 [0.35;0.40] 0.76[0.68;0.77]
‘dfc
L On all predictions  0.58 [0.57;0.58]  0.89 [0.89;0.89
Introduction Proposed Approach Performance Validation 39



CONTRIBUTIONS

= Comparison of causal models under causal insufficiency.

= Introduction of SAT-based causal analysis: exploit 40 years of SAT-solving technology.
= Query-based approach to avoid explosion of possible solutions.

= Method for estimating posterior probabilities from p-values.

= Scalable INCA algorithm.

= A proof of concept that causal assumptions can make testable qualitative and
guantitative predictions.

= Being local and conservative improves applicability of causal methods.




CONCLUSIONS AND FUTURE WORK

= Beyond one dataset at a time
= Vision of automatically analyzing a large portion of available datasets in a domain

= Inclusion of Prior Causal Knowledge [ICML 2012, UAI 2013]
= Handling Case-Control Data [UAI 2015]

= Handling batch effects [upcoming]

= Handling temporal data and temporal information

= Improve reliability

= Ability to work with semantically similar data

= Quantitative Algorithms?

Introduction Proposed Approach Performance Validation



PUBLICATIONS

= S. Triantafillou and I. Tsamardinos, Causal Discovery from Multiple Interventions, JMLR, to appear.

= Giorgos Borboudakis, loannis Tsamardinos (2015).Bayesian Network Learning with Discrete Case-Control Data. Uncertainty in Artificial Intelligence
(UAI), 2015.

= S. Triantafillou, I. Tsamardinos and A. Roumpelaki,Finding Neighborhoods of High Confidence in Constraint-based Causal Discovery, PGM 2014.
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in Artificial Intelligence (UAI) 2013

=Borboudakis, G., & Tsamardinos, I. (2012). Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral
Graphs. Proceedings of the 29th International Conference on Machine Learning, ICML 2012

= |. Tsamardinos, S. Triantafillou and V. Lagani ,Towards Integrative Causal Analysis of Heterogeneous Datasets and Studies. JMLR., 13:1097-1157, 2012.

= S. Triantafillou, I. Tsamardinos, and I. G. Tollis. Learning causal structure from overlapping variable sets. In Artificial Intelligence and Statistics, pages
860-867, 2010.

=S, Triantafillou and I. Tsamardinos, Predicting associations from multiple “omics” data sets, HSCBB12, Best Poster Award Recipient.

=V. Lagani, S. Triantafillou, G. Ball, I. Tsamardinos and J. Tegner, Probabilistic Computational Causal Discovery for Systems Biology, In Uncertainty in
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VS STATISTICAL MATCHING

Conditional Independence Assumption (CIA) VS
Non common variables are independent given the
common variables

(Causal) Markov
(Causal) Faithfulness
Acyclicity

Multivariate normality

RWNPE

+ Multivariate Normality

e When predictions are based on

Data Sets SMRqy SMRyxw INCA rule only 2 common variables,
ACP 0.05[0.04;0.05]% 0.00[0.00;0.01] i statistical matching is unreliable
Breast-Cancer  0.55[0.55;0.55] 0.25[0.24;0.25] 0.88 [0.87;0.90]
C&C 0.99[0.99;0.99] 0.68[0.65;0.71] 0.91[0.91;0.91] _
Compactiv.  0.97[0.96;0.98] 0.49 [0.44:0.54] 0.88 [0.83;0.92] * SM is more successful when
Insurance-C 0.83[0.82;0.84] 0.47[0.42;0.51] 0.90 [0.89;0.91] the predictions are based on
Lymphoma 0.60 [0.60;0.60] 0.32[0.31;0.32] 0.50 [0.47;0.52] larger sets of common variables.
Ohsumed 0.02 [0.01;0.03] 0.01 [0.00;0.01] -
Ovarian 0.62[0.62;0.63] 0.50[0.50;0.51] 0.14 [0.14;0.14] , .
Wine 0.83[0.74;0.90] 0.58[0.52;0.64] 0.99 [0.47;1.00] °_|NCA rules’s prEd'_Ct'ons are
p53 0.91[0.91;0.91] 0.45[0.44;0.45] 0.87 [0.87;0.87] highly correlated with sample

Mean over data

sets

0.64 [0.62;0.65]

0.38 [0.35;0.40]

0.76 [0.68;0.77]

| On all gredictions 0.73 [0.73;0.73]

0.58 [0.57;0.58]

0.89 [0.89:0.89] |

estimates (0.89 correlation)
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MPL controls path
length.

Unconstrained MPL
corresponds to
soundness and
completeness.

MPL>1 does not affect
performance, allows
more orientations.
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