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Abstract

Causality has been recently introduced in
databases, to model, characterize and pos-
sibly compute causes for query results (an-
swers). Connections between query causality
and consistency-based diagnosis and database re-
pairs (wrt. integrity constrain violations) have
been established in the literature. In this work
we establish connections between query causal-
ity and abductive diagnosis and the view-update
problem. The unveiled relationships allow us to
obtain new complexity results for query causality
-the main focus of our work- and also for the two
other areas.

Causality is an important notion that appears at the foun-
dations of many scientific disciplines, in the practice of
technology, and also in our everyday life. Causality is un-
avoidable to understand and manage uncertainty in data,
information, knowledge, and theories. In data management
in particular, there is a need to represent, characterize and
compute the causes that explain why certain query results
are obtained or not, or why natural semantic conditions,
such as integrity constraints, are not satisfied. Causality
can also be used to explain the contents of a view, i.e. of
a predicate with virtual contents that is defined in terms of
other physical, materialized relations (tables).

In this work we concentrate on causality as defined for-
and applied to relational databases. Most of the work on
causality has been developed in the context of knowledge
representation, and little has been said about causality in
data management. Furthermore, in a world of big uncer-
tain data, the necessity to understand the data beyond sim-
ple query answering, introducing explanations in different
forms, has become particularly relevant.

The notion of causality-based explanation for a query re-
sult was introduced in (Meliou et al., 2010a), on the basis

of the deeper concept of actual causation.1 Intuitively, a
tuple (of constants) t is an actual cause for an answer ā to
a conjunctive query Q from a relational database instance
D if there is a “contingent” subset of tuples Γ, accompany-
ing t, such that, after removing Γ from D, removing t from
D r Γ causes ā to switch from being an answer to being
a non-answer (i.e. not being an answer). Usually, actual
causes and contingent tuples are restricted to be among a
pre-specified set of endogenous tuples, which are admissi-
ble, possible candidates for causes, as opposed to exoge-
nous tuples.

A cause t may have different associated contingency sets Γ.
Intuitively, the smaller they are the strongest is t as a cause
(it need less company to undermine the query answer). So,
some causes may be stronger than others. This idea is for-
mally captured through the notion of causal responsibility,
and introduced in (Meliou et al., 2010a). It reflects the rel-
ative degree of actual causality. In applications involving
large data sets, it is crucial to rank potential causes accord-
ing to their responsibilities (Meliou et al., 2010b,a).

Furthermore, view-conditioned causality was proposed in
(Meliou et al., 2010b, 2011) as a restricted form of query
causality, to determine causes for a set of unexpected query
results, but conditioned to the correctness of prior knowl-
edge about some other set of results.

Actual causation, as used in (Meliou et al., 2010a,b, 2011),
can be traced back to (Halpern & Pearl, 2001, 2005), which
provides a model-based account of causation on the ba-
sis of counterfactual dependence.2 Causal responsibility
was introduced in Chockler & Halpern (2004), to provide
a graded, quantitative notion of causality when multiple
causes may over-determine an outcome.

1In contrast with general causal claims, such as “smoking
causes cancer”, which refer some sort of related events, actual
causation specifies a particular instantiation of a causal relation-
ship, e.g., “Joe’s smoking is a cause for his cancer”.

2As discussed in (Salimi & Bertossi, 2015), some objections
to the Halpern-Pearl model of causality and the corresponding
changes (Halpern, 2014, 2015) do not affect results in the con-
text of databases.



Model-based diagnosis (Struss, 2008, sec. 10.3), an area of
knowledge representation, addresses the problem of, given
the specification of a system in some logical formalism and
a usually unexpected observation about the system, obtain-
ing explanations for the observation, in the form of a diag-
nosis for the unintended behavior. Since this and causal-
ity are related to explanations, a first connection between
causality and consistency-based diagnosis (Reiter, 1987), a
form of model-based diagnosis, was established in (Salimi
& Bertossi, 2014, 2015): Causality and the responsibility
problem can be formulated as consistency-based diagnosis
problems, which allowed to extend the results in (Meliou
et al., 2010a). However, no precise connection has been es-
tablished so far between causality and abductive diagnosis
(Console et al., 1991; Eiter & Gottlob, 1995), another form
of model-based diagnosis.

The definition of causality for query answers applies to
monotone queries (Meliou et al., 2010a,b). However, all
complexity and algorithmic results in (Meliou et al., 2010a;
Salimi & Bertossi, 2015) have been restricted to first-order
(FO) monotone queries. Other important classes of mono-
tone queries, such as Datalog queries (Ceri et al., 1989;
Abiteboul et al., 1995), possibly with recursion, require fur-
ther investigation.

In (Salimi & Bertossi, 2015) connections were established
between query causality, database repairs (Bertossi, 2011),
and consistency-based diagnosis. In particular, complexity
results for several causality problems were obtained from
the repair connection. In the line of this kind of research,
in this work we unveil natural connections between ac-
tual causation and abductive diagnosis, and also the view-
update problem in databases (more on this latter connection
later in the section).

As opposed to consistency-based diagnoses, which is usu-
ally practiced with FO specifications, abductive diagnosis
is commonly performed under a logic programming (LP)
approach (in the general sense of LP) to knowledge rep-
resentation (Denecker & Kakas, 2002; Eiter et al., 1997;
Gottlob et al., 2010b). Since Datalog can be seen as a form
of LP, we manage to extend and formulate the notion of
query-answer causality to Datalog queries via the abduc-
tive diagnosis connection, in this way extending causality
to a new class of queries, e.g. recursive queries, and obtain-
ing complexity results on causality for them.

Abductive reasoning/diagnosis has been applied to the view
update problem in databases (Kakas & Mancarella, 1990;
Console et al., 1995), which is about characterizing and
computing updates of physical database relations that give
an account of (or have as result) the intended updates on
views. The idea is that abductive diagnosis provides (ab-
duces) the reasons for the desired view updates, and they
are given as changes on base tables.

In this work we also explore fruitful connections of causal-

ity with this view-update problem (Abiteboul et al., 1995),
i.e. about updating a database through views. An impor-
tant aspect of the problem is that one want the base, source
database, i.e. the base relations, to change in a minimally
way while still producing the view updates. Put in differ-
ent terms, it is an update propagation problem, from views
to base relations. This classical and important problem in
databases.

The delete-propagation problem (Buneman et al., 2002;
Kimelfeld, 2012; Kimelfeld et al., 2012) is a particular case
of the view-update problem where only tuple deletions are
allowed on/from the views. If the views are defined by
monotone queries, only database deletions can give an ac-
count of view deletions. So, in this case, a minimal set (in
some sense) of deletions from the base relations is expected
to be performed. This is “minimal source-side-effect” case.
It is also possible to consider minimizing the side-effect on
the view, which also requires that other tuples in the (vir-
tual) view contents are not affected (deleted) (Buneman et
al., 2002).

In this work we provide a precise connection between dif-
ferent variants of the delete-propagation problem and query
causality. In particular, we show that the minimal source-
side-effect problem is related to the most-responsible cause
problem, which was formulated and investigated in (Salimi
& Bertossi, 2015); and also that the “minimal view side-
effect problem” is related to view-conditioned causality we
already mentioned above.

More precisely, our main results are as follows:3 (the com-
plexity results are all in data complexity)

1. We establish precise connections between causality
for Datalog queries and abductive diagnosis. More
precisely, we establish mutual characterizations of
each in terms of the other, and computational reduc-
tions, between actual causes for Datalog queries and
abductive diagnosis from Datalog specifications.

We profit from these connections to obtain new al-
gorithmic and complexity results for each of the two
problems separately.

(a) We characterize and obtain causes in terms of-
and from abductive diagnoses.

(b) We show that deciding causality for Datalog
queries, possibly recursive, is NP-complete.

(c) We introduce a class of Datalog queries for
which deciding causality is tractable.

2. We establish and profit from precise connections be-
tween delete-propagation and causality. More pre-
cisely, we show that:

3The possible connections between the areas and problems in
this paper were suggested in (Bertossi & Salimi, 2014), but no
precise results were formulated there.
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(a) Most-responsible causes and view-conditioned
causes can obtained from solutions to different
variants of the delete-propagation problem and
vice-versa.

(b) Computing the size of the solution to a min-
imum source-side-effect problem is hard for
FPNP(log(n)).

(c) Deciding weather an answer has a view-
conditioned cause is NP-complete.

(d) We can identify some new classes of queries for
which computing minimum source-side-effect
delete-propagation is tractable.

1 PRELIMINARIES AND DECISION
PROBLEMS

We consider relational database schemas of the form S =
(U,P), where U is the possibly infinite database domain
and P is a finite set of database predicates4 of fixed arities.
A database instance D compatible with S can be seen as
a finite set of ground atomic formulas (in databases aka.
atoms or tuples), of the form P (c1, ..., cn), where P ∈ P
has arity n, and the constants c1, . . . , cn ∈ U .

A conjunctive query (CQ) is a formula Q(x̄) of the first-
order (FO) language L(S) associated to S of the form
∃ȳ(P1(s̄1) ∧ · · · ∧ Pm(s̄m)), where the Pi(s̄i) are atomic
formulas, i.e. Pi ∈ P , and the s̄i are sequences of terms,
i.e. variables or constants of U . The x̄ in Q(x̄) shows all
the free variables in the formula, i.e. those not appearing in
ȳ. A sequence c̄ of constants is an answer to query Q(x̄) if
D |= Q[c̄], i.e. the query becomes true in D when the vari-
ables are replaced by the corresponding constants in c̄. We
denote the set of all answers to an open conjunctive query
Q(x̄) with Q(D).

A conjunctive query is boolean (a BCQ), if x̄ is empty, i.e.
the query is a sentence, in which case, it is true or false in
D, denoted by D |= Q and D ̸|= Q, respectively. When Q
is a BCQ, or contains no free variables, Q(D) = {yes} if
Q is true, and Q(D) = ∅, otherwise.

A query Q is monotone if for every two instances D1 ⊆
D2, Q(D1) ⊆ Q(D2), i.e. the set of answers grows mono-
tonically with the instance. For example, CQs and unions
of CQ (UCQs) are monotone queries. Datalog queries (Ceri
et al., 1989; Abiteboul et al., 1995), although not FO, are
also monotone.

CQs can be expressed as Datalog queries, e.g. the CQ
∃ȳ(P1(s̄1) ∧ · · · ∧ Pm(s̄m)) as the rule: Ans(x̄) ←
P1(s̄1), . . . , Pm(s̄m), where x̄ are the free variables in Q.
If the Datalog query is boolean (e.g. a BCQ), then the
Datalog query program Π contains a top answer-collecting

4As opposed to built-in predicates (e.g. ̸=) that we assume do
not appear, unless explicitly stated otherwise.

rule of the form ans ← P1(s̄1), . . . , Pm(s̄m), with ans
a propositional atom. When the query is true, Q(D) =
{ans}, and empty otherwise. Q(D) = {ans}, which can
also be denoted as Π∪D |= ans , means that ans belongs to
the minimal model of Π ∪D (Ceri et al., 1989; Abiteboul
et al., 1995).

1.1 CAUSALITY AND RESPONSIBILITY

In the rest of this work, unless otherwise stated, we will
assume that a database instance D is split in two disjoint
sets, D = Dn ∪Dx, where Dn and Dx denote the sets of
endogenous and exogenous tuples, respectively; and Q is a
monotone query.

Definition 1.1. A tuple τ ∈ Dn is a counterfactual
cause for an answer ā to Q in D if D |= Q(ā) and
Dr {τ} ̸|= Q(ā). A tuple τ ∈ Dn is an actual cause for ā
if there exists Γ ⊆ Dn, called a contingency set, such that
τ is a counterfactual cause for ā in D r Γ. �

When the query is boolean and is true in D, we look for
causes for the answer yes . Notice that this definition can be
applied without any conceptual changes to Datalog queries.
In this case, D |= Q(ā) means Π ∪ D |= Ans(ā), where
predicate Ans is defined by an answer-collecting top rule
in program Π; and entailment (|=) means belonging to the
minimal model.

Causes(D,Q(ā)) denotes the set of actual causes for ā.

Given a τ ∈ Causes(D,Q(ā)), we collect all subset-
minimal contingency sets associated with τ :

Cont(D,Q(ā), τ) := {Λ ⊆ Dn |D r Λ |= Q(ā),

D r (Λ ∪ {τ}) ̸|= Q(ā), and
∀Λ′ $ Λ, D r (Λ′ ∪ {τ}) |= Q(ā)}.

The responsibility of actual cause τ for answer ā, denoted
ρQ(ā)

(τ), is 1
(|Γ|+1) , where |Γ| is the size of the smallest

contingency set for τ . Responsibility can be extend to all
tuples in Dn by setting their value to 0, and they are not
actual causes for Q.

In (Meliou et al., 2010a), causality for non-query answers
is defined on basis of sets of potentially missing tuples that
account for the missing answer. Computing actual causes
and their responsibilities for non-answers becomes a rather
simple variation of causes for answers. In this work we
focus on causality for query answers.

Example 1.1. Consider a database D with relations
Author(Name,Journal) and Journal(JName,Topic,#Paper), and
contents as below:

Author Name Journal
Joe TKDE

John TKDE
Tom TKDE
John TODS

Journal JName Topic #Paper
TKDE XML 30
TKDE CUBE 31
TODS XML 32
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Consider the query:

AnsQ(Name, Topic) ←− Author(Name,Journal),
Journal(JName,Topic,#Paper),

with the following answers:

Q(D) Name Topic
Joe XML
Joe CUBE
Tom XML
Tom CUBE
John XML
John CUBE

Assume ⟨John, XML⟩ is an unexpected answer to Q, and
we want to compute its causes assuming that all tuples are
endogenous.

It turns out that Author(John, TODS) is an actual cause,
with contingency sets Γ1 = {Author(John, TKDE)}
and Γ2={Journal(TKDE, XML, 32)}, because
Author(John, TODS) is a counterfactual cause for an-
swer ⟨ John, XML⟩ in both of D r Γ1 and D r Γ2.
Therefore, the responsibility of Author(John, TODS) is 1

2 .

Likewise, Journal(TKDE, XML, 32), Author(John, TKDE),
Journal(TODS,XML, 32) are actual causes for ⟨John, XML⟩
with responsibility 1

2 .

Now, under the assumption that the tuples in Journal
are the endogenous tuples, the only actual causes
for answer ⟨John, XML⟩ are Author(John, TKDE) and
Author(John, TODS). �

The complexity of the computational and decision prob-
lems that arise in query causality have been investigated in
(Meliou et al., 2010a; Salimi & Bertossi, 2015). Here we
present some problems and results that we use throughout
this paper. The first is the causality problem, about decid-
ing whether a tuple is an actual cause for a query answer.

Definition 1.2. For a boolean monotone query Q, the
causality decision problem (CDP) is (deciding about
membership of):
CDP := {(D, τ) | τ ∈ Dn, and τ ∈ Causes(D,Q)}. �

This problem is tractable for UCQs (Salimi & Bertossi,
2015). The next is the responsibility problem, about de-
ciding responsibility (above a given bound) of a tuple for a
query result.

Definition 1.3. For a boolean monotone query Q, the
responsibility decision problem (RDP) is (deciding about
membership of):
RDP(Q) = {(D, τ, v) | τ ∈ Dn, v ∈ {0} ∪

{ 1k | k ∈ N+}, D |= Q and ρQ(τ) > v}. �

This problem is NP-complete for UCQs (Salimi &
Bertossi, 2015), but tractable for linear CQs (Meliou et
al., 2010a). Roughly speaking, a CQ is linear if its atoms
can be ordered in a way that every variable appears in

a continuous sequence of atoms that does not contain a
self-join (i.e. a join involving the same predicate), e.g.
∃xvyu(A(x) ∧ S1(x, v) ∧ S2(v, y) ∧ R(y, u) ∧ S3(y, z))
is linear, but not ∃xyz(A(x)∧B(y)∧C(z)∧W (x, y, z)),
for which RDP is NP-complete. The class of CQs for which
RDP is tractable can be extended to weakly linear.5

The functional, non-decision version of RDP, about com-
puting the responsibility, i.e. an optimization problem, is
complete for FPNP(log(n)) for UCQs (Salimi & Bertossi,
2015).

Finally, we have the problem of deciding weather a tuple is
a most responsible cause:

Definition 1.4. For a boolean monotone queryQ, the most
responsible cause decision problem (MRDP) is:
MRCD(Q) = {(D, τ) | τ ∈ Dn and

0 < ρQ(τ) is a maximum for D}. �

For UCQs this problem is complete for PNP(log(n)) (Salimi
& Bertossi, 2015).

1.2 VIEW-CONDITIONED CAUSALITY

A form of conditional causality was informally introduced
in (Meliou et al., 2010b), to characterize causes for a query
answer that are conditioned by the other answers to the
query. The notion was made precise in (Meliou et al.,
2011), in a more general, non-relational setting that in par-
ticular includes the case of several queries. In them the no-
tion of view-conditioned causality was used, and we adapt
it in the following to the case of a single query, possibly
with several answers.

Consider an instance D = Dn ∪ Dx, and a monotone
query Q with Q(D) = {ā1, . . . ān}. Fix an answer, say
āk ∈ Q(D), while the other answers will be used as a con-
dition on āk’s causality. Intuitively, āk is somehow unex-
pected, and we look for causes, by considering the other
answers as “correct”. The latter assumption has, in tech-
nical terms, the effect of reducing the spectrum of contin-
gency sets, by keeping Q(D)’s extension fixed, as a view,
modulo the answer āk at hand.

Definition 1.5. (a) A tuple τ ∈ Dn is called a view-
conditioned counterfactual cause (VCC-cause) for an-
swer āk to Q if D r {τ} ̸|= Q(āk) and D r {τ} |=
Q(āi), for i ∈ {1, . . . , n}r {k}.

(b) A tuple τ ∈ Dn is an view-conditioned actual cause
(VC-cause) for āk if there exists a contingency set, Γ ⊆
Dn, such τ is a VCC-cause for āk in D r Γ.

(c) vc-Causes(D,Q(āk)) denotes the set of all VC causes
for āk. �

5Computing sizes of minimum contingency sets is reduced to
the max-flow/min-cut problem in a network.
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Intuitively, a tuple τ is a VC-cause for āk if there is a con-
tingent state of the database that entails all the answers to
Q and τ is a counterfactual cause for āk, but not for the
rest of the answers. Obviously, VC-causes for āk are also
actual causes, but not necessarily the other way around:
vc-Causes(D,Q(ak)) ⊆ Causes(D,Q(ak)).

Example 1.2. (ex. 1.1 cont.) Consider the same instance
D, query Q, and the answer ⟨John, XML⟩, which does not
have any VC-cause. To see this, take for example, the tuple
Author(John, TODS) that is an actual cause for ⟨John, XML⟩,
with two contingency sets, Γ1 and Γ2. It is easy to verify
that none of these contingency sets satisfies the condition
in Definition 1.5, e.g. the original answer ⟨John, CUBE⟩ is
not such anymore from D r Γ1. The same argument can
be applied to all actual causes for ⟨John, XML⟩. �

This example shows that it makes sense to study the com-
plexity of deciding whether a query answer has a VC-actual
cause or not.

Definition 1.6. For a monotone query Q, the view-
conditioned cause problem is (deciding about membership
of):
VCP(Q) = {(D, ā) | ā ∈ Q(D) and

vc-Causes(D,Q(ā)) ̸= ∅ }. �

1.3 DATALOG ABDUCTIVE DIAGNOSIS

In this section we will establish connections between ab-
ductive diagnosis and database causality.6 For that, we have
to be more precise about the kind of abduction problems we
will consider.

A Datalog abduction problem (Eiter et al., 1997) is of
the form AP = ⟨Π, E,Hyp,Obs⟩, where: (a) Π is a
set of Datalog rules, (b) E is a set of ground atoms (the
extensional database), whose predicates do not appear in
heads of rules in Π, (c) Hyp, the hypothesis, is a finite set
of ground atoms, the abducible atoms in this case,7 and
(d) Obs , the observation, is a finite conjunction of ground
atoms. As it is common, we will start with the assumption
that Π ∪ E ∪Hyp |= Obs .

The abduction problem is about computing a minimal ∆ ⊆
Hyp (under certain minimality criterion), such that Π∪E∪
∆ |= Obs . More specifically:

Definition 1.7. Consider a Datalog abduction problem
AP = ⟨Π, E,Hyp,Obs⟩

6In (Salimi & Bertossi, 2015) we established such a con-
nection between another form of model-based diagnosis (Struss,
2008), namely consistency-based diagnosis (Reiter, 1987). For re-
lationships and comparisons between consistency-based and ab-
ductive diagnosis see (Console et al., 1991).

7It is common to accept as hypothesis all the possible ground
instantiations of abducible predicates. We assume abducible
predicates do not appear in rule heads.

(a) An abductive diagnosis (or simply, a solution) for AP
is a subset-minimal ∆ ⊆ Hyp, such that Π∪E ∪∆ |=
Obs . This requires that no proper subset of ∆ has this
property. Sol(AP) denotes the set of abductive diag-
noses for problem AP .

(b) A hypothesis h ∈ Hyp is relevant for AP if h
contained in at least one diagnosis of AP . Rel(AP)
collects all relevant hypothesis for AP . �

We are interested in deciding, for a fixed Datalog program,
if an hypothesis is relevant or not, with all the data as input.

More precisely, we consider the following decision prob-
lem.

Definition 1.8. Given a Datalog program Π, the relevance
decision problem (RLDP) is (deciding about the member-
ship of):
RLDP(Π) = {(E ,Hyp,Obs, h) | h ∈ Rel(AP), with

AP = ⟨Π, E,Hyp,Obs⟩ and h ∈ Hyp}. �

As it is common, we will assume that |Obs|, i.e. the number
of atoms in the conjunction, is bounded above by a numer-
ical parameter p. It is common that p = 1 (a single atomic
observation).

The following result immediately follows from the NP -
completeness of the relevance problem for abduction with
propositional Horn theories (Friedrich et al., 1990). This
is a particular case of a more general result in (Eiter et al.,
1997).

Proposition 1.1. RLDP is NP-complete in |E|+|Hyp|. �

A tractable case of Datalog abduction is identified in (Got-
tlob et al., 2010b), on the basis of the notions of tree-
decomposition and bounded tree-width, which we now
briefly present.

Let H = ⟨V,H⟩ be a hypergraph. V is the set of vertices,
and H the set of hyperedges, i.e. of subsets of V . A tree-
decomposition T ofH is a pair (T , λ), where T = ⟨N,E⟩
is a tree and λ is a labeling function that assigns to each
node n ∈ N , a subset λ(n) of V (λ(n) is aka. bag), i.e.
λ(n) ⊆ V , such that, for every node n ∈ N , the following
hold: (a) For every v ∈ V , there exists n ∈ N with
v ∈ λ(n). (b) For every h ∈ H , there exists a node n ∈ N
with h ⊆ λ(n). (c) For every v ∈ V , the set of nodes
{n | v ∈ λ(n)} induces a connected subtree of T .

The width of a tree decomposition (T , λ) of H = ⟨V,H⟩,
with T = ⟨N,E⟩, is defined as max{|λ(n)|−1 : n ∈ N}.
The tree-width tw(H) of H is the minimum width over all
its tree decompositions.

Intuitively, the tree-width of a hypergraph H is a measure
of the “tree-likeness” of H. A set of vertices that form a
cycle in H are put into a same bag, which becomes (the
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Figure 1: (a) H(D). (b) A tree decomposition ofH(D).

bag of a) node in the corresponding tree-decomposition.
If the tree-width of the hypergraph under consideration
is bounded by a fixed constant, then many otherwise in-
tractable problems become tractable (Gottlob et al., 2010a).

It is possible to associate an hypergraph to any finite struc-
ture D (think of a relational database): If its universe
(the active domain in the case of a relational database) is
V , define the hypergraph H(D) = (V,H), with H =
{ {a1, . . . , an} | D contains a ground atom P (a1 . . . an)
for some predicate symbol P}.
Example 1.3. Consider instance D in Example 1.1.
The hypergraph H(D) associated to D is shown in
Figure 1(a). Its vertices are the elements of adom(D) =
{John, Jone,Tom,TODS ,TKDE ,XML,Cube, 30 , 31 ,
32}, the active domain of D. For example, since
Journal(TKDE ,XML, 30 ) ∈ D, {TKDE ,XML, 30} is
one of the hyperedges.

The dashed ovals show four sets of vertices, i.e. hyper-
edges, that together form a cycle. Their elements are put
into the same bag of the tree-decomposition. Figure 1(b)
shows a possible tree-decomposition of H(D). In it, the
maximum |λ(n)| − 1 is 6 − 1, corresponding to the top
box bag of the tree. So, tw(H(D)) ≤ 5. �

The following is a fixed-parameter tractability result for
the relevance decision problem for Datalog abduction prob-
lems with a program Π that is guarded, which means that
in every rule body there is an atom that contains (guards)
all the variables appearing in that body.

Theorem 1.2. (Gottlob et al., 2010b) Let k be an integer,
andAP = ⟨Π, E,Hyp,Obs⟩ a Datalog abduction problem
with guarded Π, and tw(H(E)) ≤ k. It can be decided in
polynomial time in |E| + |Hyp|, for h ∈ Hyp, whether
h ∈ Rel(AP).8 �

This is particular case of the problem in Definition 1.8
where the program is guarded and the fixed parameter is
the tree-width of the extensional database.

1.4 THE DELETE-PROPAGATION PROBLEM

Given a monotone queryQ, we can think of it as defining a
view with virtual contentsQ(D). If ā ∈ Q(D), which may

8This is Theorem 7.9 in (Gottlob et al., 2010b), which can be
traced back eventually to Theorem 4.3 therein.

not be intended, we may try to delete some tuples from D,
so that ā disappears from Q(D). This is a common case of
the problem of database updates through views (Abiteboul
et al., 1995). In this work we consider some variations of
this problem. We consider both the functional and the de-
cision versions of them.

Definition 1.9. For an instance D and a monotone Q:

(a) The minimal source-side-effect problem is about com-
puting a subset-minimal Λ ⊆ D with ā ∈ (Q(D) r
Q(D r Λ)).

(b) The minimal source-side-effect decision problem is
(deciding about the membership of): (superscript s
stands for subset-minimal)

MSSEPs(Q) = {(D,Λ, ā) | ā ∈ Q(D), Λ ⊆ D,
ā ̸∈ Q(Λ), and Λ is subset-maximal}. �

Definition 1.10. For an instance D and a monotone Q:

(a) The minimum source side-effect problem is about com-
puting a minimum-cardinality Λ ⊆ D, such that ā ∈
(Q(D)rQ(D r Λ)).

(b) The minimum source side-effect decision problem is
(deciding about the membership of): (c stands for
minimum cardinality)

MSSEPc(Q) = {(D,Λ, ā) | ā ∈ Q(D),Λ ⊆ D, ā ̸∈
Q(Λ), and Λ has maximum cardinality}. �

Definition 1.11. For an instance D and a monotone Q:

(a) The view side-effect-free problem is about computing a
Λ ⊆ D, such thatQ(D)r{ā} = Q(DrΛ) (Buneman
et al., 2002).

(b) The view side-effect-free decision problem is (deciding
about the membership of):

VSEFP(Q) = {(D, ā) | ā ∈ Q(D), ∃Λ ⊆ D with
Q(Λ) = Q(D)r {ā}}. �

2 CAUSALITY AND ABDUCTION

In general logical terms, an abductive explanation of an ob-
servation is a formula that, together with the background
logical theory, entails the observation. So, one could see an
abductive explanation as a cause for the observation. How-
ever, it has been argued that causes and abductive explana-
tions are not necessarily the same (Psillos, 1996; Denecker
& Kakas, 2002).

Under the abductive approach to diagnosis (Console et al.,
1991; Eiter & Gottlob, 1995; Poole, 1992, 1994), it is com-
mon that the system specification rather explicitly describes
causality information, specially in action theories where the
effects of actions are directly represented by Horn formu-
las. By restricting the explanation formulas to the pred-
icates describing primitive causes (action executions), an
explanation formula which entails an observation gives also
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a cause for the observation (Denecker & Kakas, 2002). In
this case, and is some sense, causality information is im-
posed by the system specifier (Poole, 1992).

In database causality we do not have, at least not initially, a
system description,9 but just a set of tuples. It is when we
pose a query that we create something like a description,
and the causal relationships between tuples are captured by
the combination of atoms in the query. If the query is a
Datalog query (in particular, a CQ), then we have a Horn
specification too.

In this section we show that, for the class of Datalog the-
ories (system specifications), abductive inference corre-
sponds to actual causation for monotone queries. That is,
abductive diagnoses for an observation essentially contain
actual causes for the observation.

2.1 QUERY CAUSALITY FROM ABDUCTIVE
DIAGNOSIS

Assume the relational instance is D = Dx ∪ Dn. Part
of it will serve as the extensional database for a Datalog
program, Π, that represents a boolean, possibly recursive
query. Then, as described above, we use a propositional
top-level atom ans . Let us assume that Π ∪D |= ans .

We now show that actual causes for ans can be obtained
from abductive diagnoses of the associated causal Datalog
abduction problem (CDAP): APc := ⟨Π, Dx, Dn, ans⟩,
where Dx is the extensional database for Π (and then Π ∪
Dx becomes the background theory), Dn becomes the set
of hypothesis, and atom ans is the observation.

Proposition 2.1. t ∈ Dn is an actual cause for ans iff
t ∈ Rel(APc). �

Example 2.1. Consider the instance D with relations R
and S as below, and the query Π : ans ← R(x, y), S(y),
which is true in D. Assume all tuples are endogenous.

R X Y
a1 a4
a2 a1
a3 a3

S X
a1
a2
a3

APc = ⟨Π, ∅, D, ans⟩ has two (subset-minimal) ab-
ductive diagnoses: ∆1 = {S(a1), R(a2, a1)} and
∆2 = {S(a3), R(a3, a3)}. Then, Rel(APc) = {S(a3),
R(a3, a3), S(a1), R(a2, a1)}. It is easy to see that the
relevant hypothesis are actual causes for ans . �

We are interested in obtaining responsibilities of actual
causes for ans .

9Having integrity constraints would go in that direction, but
we are not considering their presence in this work. However, see
(Salimi & Bertossi, 2015, sec. 5) for a consistency-based diagno-
sis connection.

Definition 2.1. Given a CDAP,APc = ⟨Π, Dx, Dn, ans⟩,
with Sol(APc) ̸= ∅, N ⊆ Dn is a necessary-hypothesis
set if N is subset-minimal such that Sol(APc

N ) = ∅, with
APc

N := ⟨Π, Dx, Dn rN, ans⟩. �
Proposition 2.2. The responsibility of a tuple t for ans is
1

|N | , where N is a necessary-hypothesis set with minimum
cardinality for APc and t ∈ N . �

In order to represent Datalog abduction in terms of actual
causation for query answer, we show that abductive diag-
noses from Datalog queries essentially are formed by actual
causes for the observation.

More precisely, consider a Datalog abduction problem
AP = ⟨Π, E,Hyp,Obs⟩, where E is the underlying exten-
sional database, and Obs is a conjunction of ground atoms.

Now we construct a query-causality setting: D := Dx ∪
Dn, Dx := E, and Dn := Hyp. Consider the program
Π′ := Π ∪ {ans ← Obs} (with ans a fresh propositional
atom). So, Π′ is seen as monotone query on D.

Proposition 2.3. A hypothesis h is relevant for AP , i.e.
h ∈ Rel(AP), iff h is an actual cause for ans wrt. Π′, D. �

In Section 4 will use the results obtained in this section to
obtain new complexity results for Datalog abduction and
query causality.

3 VIEW-UPDATES AND QUERY
CAUSALITY

There is a close relationship between query causality and
the view-update problem in the form of delete-propagation,
which was first suggested in (Kimelfeld, 2012; Kimelfeld
et al., 2012) (see also (Buneman et al., 2002)). In this sec-
tion all tuples in the instances involved are assumed to be
endogenous.

Consider a relational database D, a view V defined by a
monotone query Q. So, the virtual view extension, V(D),
is Q(D).

For a tuple ā ∈ V(D), the delete-propagation problem, in
its most general form, is the task of deleting a set of tuples
from D, and so obtaining a subinstance D′ of D, such that
ā /∈ V(D′). It is natural to expect that the deletion of ā
from the view can be achieved through deletions from D
of its actual causes. However, to obtain solutions to the
different variants of this problem introduced in Section 1,
different sets of actual causes must be considered.

First, we show that an actual cause for ā to be in V(D) with
a contingency set forms a solution to the minimal source-
side-effect problem (cf. Definition 1.9).

Proposition 3.1. Consider an instance D, a view V
defined by a monotone query Q, and ā ∈ V(D):
D′ ⊆ D is a solution to the minimal source-side-effect
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problem, i.e. (D,D′, ā) ∈ MSSEPs(Q), iff there
is t ∈ D r D′, such that t ∈ Causes(D,Q(ā)) and
D r (D′ ∪ {t}) ∈ Cont(D,Q(ā), t). �

Now we show that, in order to minimize the side-effect on
the source (cf. Definition 1.10), it is good enough to pick a
most responsible cause for ā with its minimum-cardinality
contingency set.

Proposition 3.2. Consider an instance D, a view V
defined by a monotone query Q, and ā ∈ V(D):
D′ ⊆ D is a solution to the minimum source-side-
effect problem, i.e. (D,D′, ā) ∈ MSSEPc(Q), iff
there is t ∈ D r D′, such that t ∈ MRC(D,Q(ā)),
Λ := Dr (D′ ∪ {t}) ∈ Cont(D,Q(ā), t), and there is no
Λ′ ∈ Cont(D,Q(ā), t) with |Λ′| < |Λ|. �

Next, we show that in order to check if there exists a so-
lution to the view side-effect-free problem for ā ∈ V(D)
(cf. Definition 1.11), it is good enough to check if ā has a
view-conditioned cause.

Proposition 3.3. Consider an instance D, a view V
defined by a monotone query Q, and ā ∈ V(D): There is
a solution to the view side-effect-free problem for ā, i.e.
(D, ā) ∈ VSEFP(Q), iff vc-Causes(D,Q(ā)) ̸= ∅. �

Example 3.1. (ex. 1.1 cont.) Consider the same instance
D, query Q, and answer ⟨ John, XML⟩.

Consider the following sets of tuples:

S1={ Author(John, TKDE), Journal(TODS, XML, 32)},

S2={ Author(John, TODS), Journal(TKDE, XML, 30)},

S3={ Journal(TODS, XML, 30), Journal(TKDE, XML, 30)},

S4={ Author(John, TODS), Author(John, TKDE)}.

Each of the subinstances DrSi, i = 1, . . . , 4, is a solution
to both the minimum and minimal source-side-effect
problems. These solutions essentially contain the actual
causes for answer ⟨ John, XML⟩, as computed in Example
1.1. Moreover, there is no solution to the view side-effect-
free problem associated to this answer, which coincides
with the result obtained in Example 1.2, and confirms
Proposition 3.3. �

Now we show, the other way around, that actual causes,
most responsible causes, and VC causes can be ob-
tained from solutions to different variants of the delete-
propagation problem.

First, we show that actual causes for a query answer can
be obtained from the solutions to the minimal source-side-
effect problem.

Proposition 3.4. Consider an instance D, a view V
defined by a monotone query Q, and ā ∈ V(D): Tuple
t is an actual cause for ā iff there is a D′ ⊆ D with
t ∈ (D rD′) ⊆ Dn and (D,D′, ā) ∈MSSEPs(Q). �

Similarly, most-responsible causes for a query answer can
be obtained from solutions to the associated minimum
source-side-effect problem.

Proposition 3.5. Consider an instance D, a view V defined
by a monotone query Q, and ā ∈ V(D): Tuple t is a most
responsible actual cause for ā iff there is a D′ ⊆ D with
t ∈ (D rD′) ⊆ Dn and (D,D′, ā) ∈MSSEPc(Q). �

Finally, VC-causes for an answer can obtained from solu-
tions to the view side-effect-free problem.

Proposition 3.6. Consider an instance D, a view V
defined by a monotone query Q, and ā ∈ V(D): Tuple
t is a VC-cause for ā iff there is a D′ ⊆ D with
t ∈ (D r D′) ⊆ Dn and D′ is a solution to the view
side-effect-free problem associated to ā. �

The partition of a database into endogenous and exoge-
nous tuples used in causality may also be of interest in the
context of delete propagation. It makes sense to consider
endogenous delete-propagation that are obtained through
deletions on endogenous tuples only. Actually, given an in-
stance D = Dn ∪ Dx, a view V defined by a monotone
query Q, and ā ∈ V(D), endogenous delete-propagations
for ā (in all of its flavors) can be obtained from actual
causes for ā from the partitioned instance.

Example 3.2. (ex. 3.1 cont.) Consider again that tuple
⟨ John, XML⟩ must be deleted from the query result; and
assume now the data in Journal is reliable. Therefore,
only deletions from Author make sense. This can be
captured by considering Journal-tuples as exogenous
and Author-tuples as endogenous. With this partition-
ing, only Author(John, TODS) and Author(John, TKDE)
are actual causes for ⟨ John, XML⟩, and each of them
forms a singleton and unique contingency set of the
other as a cause (See Exampleex:cfex1). Therefore,
Dr {Author(John, TODS), Author(John, TKDE)} is a solution
to the associated minimal- and minimum endogenous
delete-propagation of ⟨ John, XML⟩. �

4 COMPLEXITY RESULTS

The established connections between abductive diagnoses,
query causality and delete-propagation problems allow us
to adopt (and possibly adapt) established results for some
of them for application to the others.

First, we establish the complexity of causality decision
problem (cf. Definition 1.2) for Datalog queries (possi-
bly recursive). For this purpose, we take advantages of
the connections in Section 2 between causality and Data-
log abduction. In particular, the following is obtained from
Propositions 1.1 and 2.1:

Proposition 4.1. For Datalog queries, CDP is NP-
complete. �
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This result should be contrasted with the tractability of
same problem for UCQs (Meliou et al., 2010a; Salimi &
Bertossi, 2015).

We now introduce a fixed-parameter tractable case of this
problem. For this we take advantage of the tractable case of
Datalog abduction presented in Section 1. The following is
a consequence of Theorem 1.2 and Proposition 2.1.

Proposition 4.2. For guarded Datalog queries and a set
of exogenous tuples with bounded tree-width, CDP is
fixed-parameter tractable in |D|, with the parameter being
the three-width bound. �

Next, we use the tractability results for causality for
UBCQs (Salimi & Bertossi, 2015)) to obtain a tractability
result for Datalog abduction, via Proposition 2.3.

Proposition 4.3. For recursion-free Datalog abduction
problems deciding if an hypothesis is relevant is tractable.
�

We now investigate the complexity of the view-conditioned
causality problem (cf. Definition 1.6). For this, we take ad-
vantage of the connection between VC-causality and the
view side-effect-free problem. Actually, the following re-
sult is obtained from the NP-completeness of view side-
effect-free problem (Buneman et al., 2002) and Proposition
3.3.

Proposition 4.4. For CQs, the view-conditioned causality
decision problem, VCP , is NP-complete. �

Actually, this result also holds for UCQs. The next result is
obtained from the FPNP(log(n))-completeness of comput-
ing the responsibility of the most responsible causes (ob-
tained in (Salimi & Bertossi, 2015)) and Proposition 3.2.

Proposition 4.5. Computing the size of a solution to
the minimum source-side-effect problem (cf. Definition
1.10(a)) is FPNP(log(n))-hard. �

As mentioned in Section 1.1, responsibility computation
(more precisely the RDP problem in Definition 1.3) is
tractable for weakly linear queries. We can take advan-
tage of this result and obtain, via Proposition 3.2, a new
tractability result for the minimum source-side-effect prob-
lem, which has been shown to be NP-hard for general CQs
in (Buneman et al., 2002).

Proposition 4.6. For weakly linear queries, the minimum
source-side-effect decision problem is tractable. �

The class of weakly linear queries generalizes that of linear
queries (cf. Section 1.1). So, Proposition 4.6 also holds for
linear queries.

In (Buneman et al., 2002) it has been shown that the min-
imum source-side-effect decision problem is tractable for
the class of project-join queries with chain joins. Now, a
join on k atoms with different predicates, say R1, ..., Rk, is
a chain join if there are no attributes (variables) shared by

any two atoms Ri and Rj with j > i + 1. That is, only
consecutive relations may share attributes. For example,
∃xvyu(A(x)∧S1(x, v)∧S2(v, y)∧R(y, u)∧S3(y, z)) is
a project-join query with chain joins.

We observe that project-join queries with chain joins cor-
respond linear queries. Actually, the tractability results
for these classes of queries are both obtained via a re-
duction to maximum flow problem (Meliou et al., 2010a;
Buneman et al., 2002). As a consequence, the result in
Proposition 4.6 extends that in (Buneman et al., 2002),
from linear queries to weakly-linear queries. For exam-
ple, ∃xyz(R(x, y)∧S(y, z)∧T (z, x)∧V (x)) is not linear
(then, nor with chain joins), but it is weakly linear (Meliou
et al., 2010a).

5 CONCLUSIONS

We have related query causality to abductive diagnosis and
the view-update problem. Some connections between the
last two have been established before. More precisely, the
view-update problem has been treated from the point of
view of abductive reasoning (Kakas & Mancarella, 1990;
Console et al., 1995). The idea is to “abduce” the pres-
ence of tuples in the base tables that explain the presence
of those tuples in the view extension that one would like,
e.g. to get rid of.

In combination with the results reported in (Salimi &
Bertossi, 2015), we can see that there are deeper and mul-
tiple connections between the areas of query causality, ab-
ductive and consistency-based diagnosis, view updates, and
database repairs. Results for any of these areas can be prof-
itably applied to the others.10

We point out that database repairs are related to the view-
update problem. Actually, answer set programs (ASPs)
(Brewka et al., 2011) for database repairs (Bertossi, 2011)
implicity repair the database by updating conjunctive com-
binations of intentional, annotated predicates. Those logi-
cal combinations -views after all- capture violations of in-
tegrity constraints in the original database or along the (im-
plicitly iterative) repair process (a reason for the use of an-
notations).

Even more, in (Bertossi & Li, 2013), in order to protect
sensitive information, databases are explicitly and virtually
“repaired” through secrecy views that specify the informa-
tion that has to be kept secret. In order to protect infor-
mation, a user is allowed to interact only with the virtually
repaired versions of the original database that result from
making those views empty or contain only null values. Re-
pairs are specified and computed using ASP, and an explicit
connection to prioritized attribute-based repairs (Bertossi,
2011) is made (Bertossi & Li, 2013).

10Connections between consistency-based and abductive diag-
nosis have been established, e.g. in (Console & Torasso, 1991).
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Finally, we should note that abduction has also been ex-
plicitly applied to database repairs (Arieli et al., 2004).
The idea, again, is to “abduce” possible repair updates that
bring the database to a consistent state.
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