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Learning Latent Structure

� Difficulty on computing scores or tests

� Identifiability: theoretical issues and implications to 
optimization
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Leveraging Domain Structure

� Exploiting “main” factors
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The “Structured Canonical Correlation” 

Structural Space

� Set of pre-specified latent variables X, observations Y

� Each Y in Y has a pre-specified single parent in X

� Set of unknown latent variables X∞∞∞∞ X

� Each Y in Y can have potentially infinite parents in X∞∞∞∞

� “Canonical correlation” in the sense of modeling
dependencies within a partition of observed variables
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The “Structured Canonical Correlation”: 

Learning Task

� Assume a partition structure of Y according to X is known

� Define the mixed graph projection of a graph over (X, Y) by 
a bi-directed edge Yi ↔ Yj if they share a common 
ancestor in X∞∞∞∞

� Practical assumption: bi-directed substructure is sparse

� Goal: learn bi-directed structure (and parameters) so that 
one can estimate functionals of P(X | Y)
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Parametric Formulation

� X ~ N(0, Σ), Σ positive definite

� Ignore possibility of causal/sparse structure in X for simplicity

� For a fixed graph G, parametrize the conditional cumulative 
distribution function (CDF) of Y given X according to bi-
directed structure:

� F(y | x) ≡ P(Y ≤ y | X = x) ≡ ∏ Pi(Yi ≤ yi | X[i] = x[i])

� Each set Yi forms a bi-directed clique in G, X[i] being the 
corresponding parents in X of the set Yi

� In this paper we assume each Y is binary for simplicity

(Further details: Silva et al. 2011, Huang and Frey, 2011)



Parametric Formulation

� In order to calculate the likelihood function, one should 
convert from the (conditional) CDF to the probability 
mass function (PMF)

� P(y, x) = {∆F(y | x)} P(x)
� Where ∆F(y | x) represents a difference operator.  For 

p-dimensional binary (unconditional) F(y) this boils down to

� Message passing formulation – Example:
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Learning with Marginal Likelihoods

� For Xj parent of Yi in X:

� Let

� Marginal likelihood:

� Pick graph Gm that maximizes the marginal likelihood 
(maximizing also with respect to Σ and β), where θ
parameterizes local conditional CDFs Fi(yi | x[i])



Computational Considerations

� Intractable, of course

� Including possible large tree-width of bi-directed component

� First option: marginal bivariate composite likelihood

Gm
+/- is the space of graphs that differ 

from Gm by at most one bi-directed edge
Integrates θij and X1:N with a crude quadrature 
method



Beyond Pairwise Models

� Wanted: to include terms that account for more than 
pairwise interactions

� Gets expensive really fast

� An indirect compromise:

� Still only pairwise terms just like PCL

� However, integrate θij not over the prior, but over some 
posterior that depends on more than on Yi

1:N, Yj
1:N:

� Key idea: collect evidence from p(θij | YS
1:N), {i, j} ⊂ S, plug it into the 

expected log of marginal likelihood                                     . This 
corresponds to bounding each term of the log-composite likelihood 
score with different distributions for θij:



Beyond Pairwise Models

� New score function

� Sk: observed children of Xk in X

� Notice: multiple copies of likelihood for θij when Yi and Yj have 
the same latent parent

� Use this function to optimize parameters {β, Σ} 
� (but not necessarily structure)



Algorithm 2

� qmn comes from 
conditioning on all 
variables that share a 
parent with Yi and Yj
� Laplace approximation 

� In practice, we use PCL 
when optimizing structure

� EM issues with discrete 
optimization: model 
without edge has an 
advantage, sometimes
bad saddlepoint



Experiments: Synthetic Data

� 20 networks of 4 latent variables with 4 children per 
latent variable

� Average number of bi-directed edges: ~18

� Evaluation criteria:

� Mean-squared error of estimate of slope β for each observed 
variable

� Edge omission error (false negatives)

� Edge commission error (false positives)

� Comparison against “single-shot” learning

� Fit model without bi-directed edges, add edge Yi ↔ Yj if implied 
pairwise distribution P(Yi, Yj) doesn’t fit the data

� Essentially a single iteration of Algorithm 1



Experiments: Synthetic Data

� Quantify results by taking the difference between number 
of times Algorithm 2 does better than Algorithm 1 and 0 
(“single-shot” learning)

� The number of times where the difference is positive with the 
corresponding p-values for a Wilcoxon signed rank test (stars indicate 
numbers less than 0.05)



Experiments: NHS Data

� Fit model with 9 factors and 50 variables on the NHS 
data, using questionnaire as the partition structure

� 100,000 points in training set, about 40 edges discovered

� Evaluation:

� Test contribution of bi-directed edge dependencies to P(X | 
Y): compare against model without bi-directed edges

� Comparison by predictive ability: find embedding for each X(d)

given Y(d) by maximizing 

� Test on independent 50,000 points by evaluating how well we 
can predict other 11 answers based on latent representation 
using logistic regression



Experiments: NHS Data

� MCCA: mixed graph structured canonical correlation 
model

� SCCA: null model (without bi-directed edges)

� Table contains AUC scores for each of the 11 binary 
prediction problems using estimated X as covariates:



Conclusion

� Marginal composite likelihood and mixed graph models 
are a good match

� Still requires some choices of approximations for posteriors 
over parameters, and numerical methods for integration

� Future work: 

� Theoretical properties of the alternative marginal composite 
likelihood estimator

� Identifiability issues

� Reduction on the number of evaluations of qmn

� Non-binary data

� Which families could avoid multiple passes over data?


