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Part I: 

Did you have breakfast today? 



Researchers reviewed 47 nutrition studies and 

concluded that children and adolescents who 

ate breakfast had better mental function and 

better school attendance records than those 

who did not.  

They suggested several possible reasons. 

For example, eating breakfast may modulate 

short-term metabolic responses to fasting, 

cause changes in neurotransmitter 

concentrations or simply eliminate the 

distracting physiological effects of hunger. 

 
http://www.nytimes.com/2005/05/17/health/17nutr.html?_r=0 



Spurious causality 

 Eating makes you faithful 
 Will he cheat? How to tell. Ladies, you probably think that 

it's just in his nature. He can't help it - he HAS to cheat. But 
here's the sad truth: you're not feeding him enough. If 
you're worried your guy might cheat, try checking out his 
waistline. A new study says the size of his belly may reveal 
whether he'll stray. 

 Relaxing makes you die 
 In a prospective cohort study of thousands of employees 

who worked at Shell Oil, the investigators found that 
embarking on the Golden Years at age 55 doubled the 
risk for death before reaching age 65, compared with 
those who toiled beyond age 60. 

(?) 

http://www.medpagetoday.com/PrimaryCare/PreventiveCare/1980 

www.match.com/magazine/article/4273/Will-He-Cheat?-How-To-Tell 



What is a cause, after all? 

 A causes B: 

 

 

 Next the concept of an external agent 

 Examples of manipulations: 
 Medical interventions (treatments) 

 Public policies (tax cuts for the rich) 

 Private policies (50% off! Everything must go!) 

 A manipulation (intervention, policy, treatment, etc.) 
changes the data generation mechanism. It sets a 
new regime 

P(B | A is manipulated to a1) ≠ P(B | A is manipulated to a2) 



But what exactly is a manipulation? 

 Some intervention T on A can only be 

“effective” if T is a cause of A 

 ??!?? 

 Don’t be afraid of circularities 

 Or come up with something better, if you can 

Bart: What is "the mind"? Is it just a system of impulses or is it...something tangible?  

Homer: Relax. What is mind? No matter. What is matter? Never mind.  

 

Simpsons, The (1987) 



An axiomatic system 

 When you can’t define something, axiomatize 

it: 

 From points to lines and beyond 

 We will describe languages that have causal 

concepts as primitives 

 The goal: use such languages to  

 Express causal assumptions 

 Compute answers to causal queries that are 

entailed by such assumptions 



Causal queries: hypothetical causation vs.  

counterfactual causation 

 I have a headache. If I take an aspirin now, 

will it go away? 

 

 I had a headache, but it passed. Was it 

because I took an aspirin two hours ago? 

Had I not taken such an aspirin, would I still 

have a headache? 

 



Prediction vs. explanation 

 The first case is a typical “predictive” question 
 You are calculating the effect of a hypothetical intervention 

 Pretty much within decision theory 

 Think well before offering the 50% discount! 

 The second case is a typical “explanatory” question 
 You are calculating the effect of a counterfactual 

intervention 

 Have things been different… 

 Ex.: law 

 What about scientific/medical explanation? 
  



Prediction vs. explanation 

 This talk will focus solely on prediction 

 Explanation is fascinating, but too messy, 

and not particularly useful (at least as far as 

Science goes)… 



Preparing axioms: Seeing vs. doing 

 Observe again the notation 

 

 

 Why not…  

P(B | A is manipulated to a1) 

P(B | A = a1) 

…? 



Seeing vs. doing: an example 

 The reading in a barometer is useful to 

predict rain 

 

 

 But hacking a barometer won’t cause rain 

 

 
 (Sometimes this is called intervening vs. conditioning. You 

should see this as a way of indexing regimes.) 

 

P(rain | barometer reading = high) >  

P(rain | barometer reading = low) 

P(rain | barometer hacked to high) = 

P(rain | barometer hacked to low) 



Why is seeing different from doing? 

 Issue #1: directionality 

Drinking 

Car accidents 



Why is seeing different from doing? 

 Issue #2: confounding (i.e., common causes) 

 

 

 

 

 

 

 

Pressure 

Rain Barometer 



Why is seeing different from doing? 

 Most important lesson: unmeasured 

confounding (i.e., hidden common causes) is 

perhaps the most complicating factor of all 

 

 

 

 

 
 (but see also: measurement error and sampling selection bias) 

Genotype 

Smoking Lung cancer 



The do operator (Pearl’s notation) 

 A shorter notation 

 P(A | B = b): the probability of A being true 
given an observation of B = b 

 That is, no external intervention 

 This is sometimes called the distribution under the 
natural state of A 

 P(A | do(B = b)): the probability of A given an 
intervention that sets B to b 

 P(A | do(B)): some shorter notation for  
do(B) = true 



Different do’s 

 P(A | do(B), C) 

 Intervening on B, seeing C 

 P(A | do(B), do(C)) 

 Multiple interventions 

 P(A | do(P(B) = P’)) 

 A change on the distribution of B (not only a point 

mass distribution) 



Causal models 

 A causal model is defined by a set of  

P(A1, A2, …, AN | do(B1), do(B2), …, do(BM), 

BM+1, BM+2, …, BO) 

 How to estimate this? Which data can I use? 

 The Radical Empiricist says: 

 Every do is a change of regime. Anything can happen. In 

general, there is no logical connection between states! 

Every different set of do’s specify a brave new World. 

(or does it?) 



Learning causal models 

 The gold standard*: randomized experiments 

Treatment Patient ID Age Heart 

Condition 

Medicine 1 32 + 

Medicine 2 41 + 

Placebo 3 40 0 

Placebo 4 37 0 

Medicine 5 36 0 

… … … … 

*and a recipe for knighthood 



The role of randomization 

 Breaking the hidden common causes 

 Example: gender may cause both self-

selection of treatment, and heart condition 

 
Gender 

Medicine Heart condition 



The role of randomization 

 The randomized assignment overrides the original 

causal mechanisms 

 

 

 

 

 

 Notice: placebo is a surrogate for no-treatment 

 With blind/double-blind assignments, its role is to 

avoid psychological effects 

Gender 

Medicine Heart condition 

X 



Causal models 

 A causal model is defined by a set of  

P(A1, A2, …, AN | do(B1), do(B2), …, do(BM), 

BM+1, BM+2, …, BO) 

 

 Do I always have to perform an experiment? 



Observational studies 

 The art and science of inferring causation 

without experiments 

 This can only be accomplished if extras 

assumptions are added 

 Most notable case: inferring the link between 

smoking and lung cancer 

 This tutorial will focus on observational 

studies   



Observational studies 

 If you can do a randomized experiment, you 

should do it 

 Observational studies have important roles, 

though: 

 When experiments are impossible for 

unethical/practical reasons 

 The case for smoking/lung cancer link 

 When there are many experiments to perform 

 A type of exploratory data analysis/active learning tool 

 E.g., biological systems 



Observational studies 

 It is certainly true that correlation is not 

causation 

 And as statisticians know, it may well be the case 

correlation-hat is not even correlation 

 But it is also lazy to stop there 



Observational studies 



John Snow’ Soho 

All image sources:  

Wikipedia 



Observational studies 

 But in the end, don’t we always have a 

testable condition? 

Nasty pictures in 

cigarette packages  
Lung cancer Smoke 



Observational studies 

 Appropriate interventions are much more 

subtle than you might think… 

Nasty pictures in 

cigarette packages  
Smoke Lung cancer 

“Gullibility trait”  

expression level 

Smoke      Lung cancer | do(Smoke) 



(Sort of) Observational studies 

Anna “likes” it Bob “likes” it 

 But I’m Facebook and I have 1 googol-

pounds of money for experiments. I’m 

covered, right? 

 

 

 



(Sort of) Observational studies 

Facebook  

shows ad to Anna 
Anna “likes” it Bob “likes” it 



(Sort of) Observational studies 

Facebook  

shows ad to Anna 
Anna “likes” it Bob “likes” it 

Facebook  

shows ad to Anna 
Anna “likes” it Bob “likes” it 

Radio show advert 



(Sort of) Observational studies 

Drug/placebo  

assignment 
Patient complies Health 



(Sort of) Observational studies 

Drug/placebo  

assignment 
Patient complies Health 

Here be  

dragons 



Observational studies:  

starting from natural state models 

 How are full joint/conditional distributions 

specified? 

 

 

 

 There is a notion of modularity in the natural 

state. Why wouldn’t we have some stable 

modularity across “Worlds”? 

P(A1, A2, …, AN | B1, B2, …, BM, BM+1, BM+2, …, BO) 



Definitions and axioms of  

causal modularity: DAGs 

 = Directed acyclic graphs 

 Start with a “reference system”, a set of 
events/random variables V 

 Each element of V is a vertex in causal graph 
G 

 A causes B is causal graph G only if A is an 
ancestor of B 

 DAGs with such an assumption are causal 
graphs 

 



Definitions and axioms of  

causal modularity 

 A is a direct cause of B wrt V if and only if A 

causes B for some choice of intervention in 

V\{A, B} 

 “A is a direct cause of B” implies the edge 

A B 



The Causal Markov Condition 

 Let G be a DAG representing a causal 

system over V,  and P a distribution over V 

 (G, P) satisfy the Causal Markov Condition if 

and only if: 

 

 

 

    where A’s parents are its direct causes in G 

A     {All of its (non-parental) non-descendants} | A’s parents 

(Spirtes et al, 2000) 



The Causal Markov Condition 

D 

F G H 

A B C 

E 

D     {E, G, H} | {A, B, C} 

G     everybody else | E 



Limitations of the Causal Markov 

condition?  

Sound Picture 

TV switch 

P(Picture | Switch) < P(Picture | Switch, Sound) 

Where did the independence go? 

Sound Picture 

TV switch 

Closed circuit 

“The Interactive Fork” 

(Spirtes et al, 2000) 



Causal models, revisited 

 Instead of an exhaustive “table of 

interventional distributions”: 

 G = (V, E), a causal graph with vertices V and 

edges E 

 P(), a probability over the “natural state” of V, 

parameterized by  

 (G, ) is a causal model if pair 

(G, P) satisfies the Causal Markov condition 

 We will show how to compute the effect of 

interventions 



To summarize: what’s different? 

 As you probably know, DAG models can be  

non-causal 

 What makes 

 

 

    causal? 

A B 

Answer: because I said so!  



To summarize 

 A causal graph is a way of encoding causal 

assumptions 

 Graphical models allow for the evaluation of the 

consequences of said assumptions 

 Typical criticism: 

 “this does not advance the ‘understanding’ of causality” 

 However, it is sufficient for predictions 

 And no useful non-equivalent alternatives are 

offered 

 



Example of axioms in action:  

Simpson’s paradox 

(Pearl, 2000) 

P(E | F, C) < P(E | F, C) 

P(E | F, C) < P(E | F, C) 

P(E | C) > P(E | C) 

The “paradox”: 

Which table to use?  

(i.e., condition on gender or not?) 



To condition or not to condition:  

some possible causal graphs 



Dissolving a “paradox” using the do 

operator 

 Let our population have some subpopulations 

 Say, F and F 

 Let our treatment C not cause changes in the 
distribution of the subpopulations 

 P(F | do(C)) = P(F | do(C)) = P(F) 

 Then for outcome E it is impossible that we 
have, simultaneously, 

 P(E | do(C), F) < P(E | do(C), F) 

 P(E | do(C), F) < P(E | do(C), F) 

 P(E | do(C)) > P(E | do(C)) 

 



Proof 



Part II:  

Predictions with observational data 



Goals and methods 

 Given: a causal graph, observational data 

 Task: estimate P(E | do(C)) 

 Approach: 

 Perform a series of modifications on  

P(E | do(C)), as allowed by the causal 

assumptions, until no do operators appear 

 Estimate quantity using observational data 

 That is, reduce the causal query to a probabilistic 

query 

(Spirtes et al, 2000 – Chapter 7; Pearl, 2000 – Chapter 3) 



The trivial case 

 Graph: 

 

 

 A representation of a do(A) intervention 

A B 

A B T 



The trivial case 

 B is independent of T given A 

 P(B | do(A)) = P(B | A, T) = P(B | A) 

 Term on the right is identifiable from 

observational data 

 do-free 

 That is, P(B | do(A)) can be estimated as 

P(B | A) 



A less trivial case 

 Knowledge: 

 

 

 

 

 Query: P(B | do(A)) 

A B 

F 



A less trivial case 

 With intervention 

 

 

 

 

 

 B and T are not independent given A 

anymore… 

A B 

F 

T 



A less trivial case 

 Solution: conditioning 

 

 

 

 

 

 Now, B is independent of T given A and F 

A B 

F 

T 



A less trivial case 

 P(B | do(A)) =  
 P(B | do(A), F)P(F | do(A)) +  
 P(B | do(A), F)P(F | do(A)) = 
 
 P(B | A, F, T)P(F) + P(B | A, F, T)P(F) = 
 P(B | A, F)P(F) + P(B | A, F)P(F) 

 

A B 

F 

T 

“F-independent” intervention 



Simplified operation for  

independent point interventions 

A B 

F 

T 

X 

A B 

F 

P(A, B, F) = P(B | A, F)P(A | F)P(F) 

Before intervention: 

After intervention: 

P(A, B, F | do(A)) = P(B | A, F)P(A | F)P(F) X 
= P(B | A, F)(A = true)P(F) 

A “mechanism substitution” system 



Those “back-doors”… 

 Any common ancestor of A and B in the 

graph is a confounder  

 

 Confounders originate “back-door” paths that 

need to be blocked by conditioning 



Example 

 In general, one should condition on and marginalize 

minimal sets, since this reduces statistical variability 

Xi X6 Xj 

X3 

X1 

X4 X5 

X2 

T 



Unobserved confounding 

 If some variables are hidden, then there is no data 
for conditioning 

 

 

 

 

 Ultimately, some questions cannot be answered 
 without extra assumptions 

 But there are other methods beside back-door 
adjustment 

A B 

U 



The front-door criterion 

 Interestingly enough, P(Y | do(X)) is 

identifiable in this case 

 Even though we will be conditioning on a variable 

Z that is in the causal path! 

X Z 

U 

Y 



P(Y | do(X)) =   P(Z | X)   P(Y | Z, U)P(U) 

 

∑ 
Z 

∑ 
u 

The front-door criterion 

P(X, Y, Z, U) = P(U)P(X | U)P(Z | X)P(Y | Z, U) 

 

X Z 

U 

Y 

P(Y, Z, U | do(X)) = P(Y | Z, U) P(Z | X)P(U) 

X 



The front-door criterion 

X Z 

U 

Y 

P(U | X) = P(U | Z, X) 

P(Y | Z, U) = P(Y |  X, Z, U) 

P(Y | Z, U)P(U) =        P(Y |X, Z, U)P(U | X)P(X) 

 

∑ 
u 

∑ 
x 

∑ 
u 

=        P(Y |X, Z, U)P(U | X, Z)P(X) 

 

∑ 
x 

∑ 
u 

=        P(Y |X, Z)P(X) 

 

∑ 
x 

U free! 



A calculus of interventions 

 Back-door and front-door criteria combined 

result in a set of reduction rules 

 Notation: 

GX 

X 

X X 

GX 

X 

X X 



Examples of do-calculus inference rules 

 Insertion/deletion of observations: 

 

 

 

 Action/observation exchange: 

 

 

 

 Sound and complete algorithms that use these rules 
exist (Huang and Valtorta, 2006) 

(Pearl, 2000) 

P(Y | do(X), Z, W) = P(Y | do(X), W), if (Y    Z | X, W) in GX 

P(Y | do(X), do(Z), W) = P(Y | do(X), Z, W), if (Y    Z | X, W) in GXZ 



A more complex example… 

P(Y | do(X), do(Z2)) = 

  P(Y | Z1, do(X), do(Z2)) x 

 P(Z1 | do(X), do(Z2)) 

Y 

Z1 Z2 

X 

∑ 
z1 

=    P(Y | Z1, X, Z2)P(Z1 | X) ∑ 
z1 

(Now, Rule 2, for interchanging 

 observation/intervention) 

Notice: P(Y | do(X)) is NOT identifiable! 



… and even more complex examples 

Z1 

X Z2 

Z3 

Y 

P(Y | do(X)) is identifiable 

(I’ll leave it as an exercise) 



Planning 

 Sequential decision problems: 

 More than one intervention, at different times 

 Intervention at one time depends on previous 

interventions and outcomes 

 Example: sequential AIDS treatment (Robins, 

1999) 

 
PCP dose Pneumonia HIV  load 

AZT dose 

T 
Will typically depend on 

other parents 



Total and direct effects 

 A definition of causal effect: ACE 

 ACE(x, x’, Y) = E(Y | do(X = x’)) – E(Y | do(X = x)) 

 

 

 

 Controlled direct effects in terms of do(.): 

 DEa(pcp1, pcp2, HIV) =  

 E(HIV | do(AZT) = a, do(PCP = pcp1)) 

– E(HIV | do(AZT) = a, do(PCP = pcp2)) 

PCP dose Pneumonia HIV  load 
AZT dose 



Standardized and natural direct effects 

 Controlling intermediate variables can also be 

done in a randomized way 

 E.g., controlled according to the age of the patient 

 This notion is known as standardized effect 

 Natural direct effects: 

 Intermediate variables arise from natural state 

 E.g., adjusting for intermediate psychological 

effects by using placebos 

(Didelez, Dawid and Geneletti, 2006) 



Dealing with unidentifiability 

 We saw techniques that identify causal 

effects, if possible 

 What if it is not possible? 

 The dreaded “bow-pattern”: 

X Y 



Instrumental variables 

 One solution: explore parametric 

assumptions and other variables 

 Classical case: the linear instrumental 

variable 

X Y Z 

X = aZ + X 

Y = bX + Y 

X Y 

a b 



Instrumental variables 

 

 

 

 Let Z be a standard Gaussian: 

 YZ = ab, xz = a 

 That is, b = YZ / XZ 

 

 Bounds can be generated for non-linear systems 

 Advertising: see my incoming NIPS paper for an example 

and references 

X Y Z 

a b 



Bayesian analysis of confounding 

 Priors over confounding factors 

 Buyer Beware: priors have to have a 

convincing empirical basis 

 not a small issue 

 Example: epidemiological studies of 

occupational hazards 

 Are industrial sand workers more likely to suffer 

from lung cancer? 

 Since if so, they should receive compensations 

 

(Steenland and Greenland, 2004) 



Bayesian analysis of confounding 

 Evidence for: 

 Observational evidence of higher proportion of 

cancer incidence in said population 

 Exposure to silica is likely to damage lungs 

 Evidence against: 

 Blue-collar workers tend to smoke more than 

general population 

(Steenland and Greenland, 2004) 



Quantitative study 

 Sample of 4,626 U.S. workers, 1950s-1996 

 Smoking not recorded: becomes unmeasured 

confounder 

 Prior: empirical priors pulled from population in 

general 

 Assumes relations between subpopulations are 

analogous 

(Steenland and Greenland, 2004) 

Occupation Lung cancer 

Smoking 



Quantitative study 

(Steenland and Greenland, 2004) 



Part III:  

Learning causal structure 



From association to causation 

 We require a causal model to compute 

predictions 

 Where do you get the model? 

 Standard answer: prior knowledge 

 Yet one of the goals is to use observational 

data 

 Can observational data be used to infer a 

causal model? 

 or at least parts of it? 



From association to causation 

 This will require going beyond the Causal 

Markov condition… 

 independence in the causal graph  

independence in probability 

 …into the Faithfulness Condition 

 independence in the causal graph  

independence in probability 

 Notice: semiparametric constraints also 

relevant, but not discussed here 

(Spirtes et al., 2000; Pearl, 2000) 



Why do we need the  

Faithfulness Condition? 

X Y 

Z 

X Y 

Z 

ab 

–a b 

X    Y 

X    Y | Z 

X    Y 

X    Y | Z 

X    Y 

X    Y | Z 

X    Y 

X    Y | Z 

Graph Distribution Graph Distribution 



Why would we accept the  

Faithfulness Condition? 

 Many statisticians don’t 

 Putting the Radical Empiricist hat: “anything goes” 

 Yet many of these don’t see much of a problem 

with the Causal Markov condition 

 

 But then unfaithful distributions are equivalent 

to accidental cancellations between paths 

 How likely is that? 



Arguments for Faithfulness 

 The measure-theoretical argument : 

 probability one in multinomial and Gaussian 

families (Spirtes et al., 2000) 

 The experimental analysis argument: 

 Not spared of faithfulness issues (in a less 

dramatic sense) 

 How often do you see zero-effect strong causes? 

Coffee-Cola 
Heart Attack 

Exercise 
+ - 

+ 



Arguments against Faithfulness  

(serious and non-serious ones) 

 In practice, one only needs a distribution “close” to unfaithful for 
things to fail 

 Honest concern: this is possible on any sample size 

 The anti-model argument: 

 “there is no such a thing as independence” 

 but accepting an independence from data is also a matter of 
prior. There is no such a thing called “prior-free” learning 

 What exactly does “failing to reject a null hypothesis” mean? 

 All models are null hypotheses. Mankind’s knowledge (i.e. model) of 
the Universe is one big null hypothesis.  

 The Luddite argument: 

 “Never trust a machine to do a man’s job” 

 This is no excuse: competing models are out there and you ought 
to know of their existence 



In practice 

 There is plenty of justification for deriving 
what data + faithfulness entail 

 Other models can explain the data. Never trust 
blindly an “expert” model  
 Fear of competition for pet-theory can be a hidden 

reason against “automatic” causality discovery 

 No reason why use a single model: e.g. sample 
graphs from posterior 

 No reason to throw skepticism away 

 No reason to forget the GIGO principle 

 Prior knowledge can (and should) always be 
added 

 



X     Z | Y 

Algorithms: principles 

 Markov equivalence classes: 

 Limitations on what can be identifiable with 

conditional independence constraints 

X Y Z 

X Y Z 

X Y Z 



Algorithms: principles 

 The goal: 

 Learn a Markov equivalence class 

 Some predictions still identifiable (Spirtes et al., 

2000) 

 A few pieces of prior knowledge (e.g., time order) 

can greatly improve identifiability results 

 Provides a roadmap for experimental analysis 

 Side note: Markov equivalence class is not the 

only one 



Initial case: no hidden common causes 

 Little motivation for that, but easier to explain 

 “Pattern”: a graphical representation of 

equivalence classes 

X Y K 

Z 



More on equivalence classes 

 Adjacencies are always the same in all 

members of a Markov equivalence class 

X 

Y X 

Y 

Never equivalent, since on the left we have 

X    Y | some set S  

… … … … 

 



More on equivalence classes 

 Unshielded colliders: always identifiable 

X Y 

Z 

Unshielded collider Not a unshielded collider 

T 
U 

V 

X Y 

Z 

T 
U 

V 



More on equivalence classes 

 “Propagating” unshielded colliders 

X Y 

Z 

W 

X Y 

Z 

W 

 

Why? Different unshielded colliders 

Markov 



Algorithms: two main families 

 Piecewise (constraint-satisfaction) algorithms 

 Evaluate each conditional independence 

statement individually, put pieces together 

 Global (score-based) algorithms 

 Evaluate “all” models that entail different 

conditional independencies, pick the “best” 

 “Best” in a statistical sense 

 “All” in a computationally convenient sense 

 Two endpoints of a same continuum 

 



A constraint-satisfaction algorithm:  

the PC algorithm 

 Start by testing marginal independencies 

 Is X1 independent of X2? 

 Is X1 independent of X3? 

 … 

 Is XN – 1 independent of XN? 

 Such tests are usually frequentist hypothesis 

tests of independence  

 Not essential: could be Bayes factors too 



The PC algorithm 

 Next step: conditional independencies tests 
of “size” 1 

 Is X1 independent of X2 given X3? 

 Is X1 independent of X2 given X4? 

 … 

 (In practice only a few of these tests are 
performed, as we will illustrate) 

 Continue then with tests of size 2, 3, … etc. 
until no tests of a given size pass 

 Orient edges according to which tests passed 



The PC algorithm: illustration 

 Assume the model on the 

left is the real model 

 Observable: samples 

from the observational 

distribution 

 Goal: recover the pattern 

(equivalence class 

representation) 
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Z 

W 

T 



PC, Step 1: find adjacencies 
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PC, Step 2: collider orientation 

 X and Y are independent given T 

 Therefore, X  T  Y is not possible 

 At the same time,  
 X  Z  Y 

 X  Z  Y 

 X  Z  Y 

 are not possible, or otherwise X and Y would not 
be independent given T 

 Therefore, it has to be the case that X  Z  Y 

 Check all unshielded triples 

 

X Y 

Z 

W 

T 



PC, Step 3: orientation propagation 

 Since X  Z  W is not a collider, 

only option left is X  Z  W 

 Pattern: 

X Y 

Z 

W 

T 

X Y 

Z 

W 

T 



Advantages and shortcomings 

 Fast 

 Only submodels are compared 

 Prunes search space very effectively 

 Consistent 

 On the limit on infinite data 

 But brittle 

 Only submodels are compared: very prone to statistical 

mistakes 

 Doesn’t enforce global constraint of acyclicity 

 Might generate graphs with cycles 

 (which is actually good and bad) 



Simple application: evolutionary biology 

 Using a variation of PC + bootstrapping in 

biological domain: 

(Shipley, 1999) 
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Simple application: botanic 

 Very small sample size (35): 

(Shipley, 1999) 
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Simple application: botanic 

 Forcing blue edge by background knowledge 

Specific 

leaf mass 

Leaf 

nitrogen 

Stomatal 

conductance 

Internal 

CO2 

Photosynthesis 

(Shipley, 1999) 



Global methods for structure learning 

 Compares whole graphs against whole 
graphs 

 Typical comparison criterion (score function):  
posterior distribution 

 P(G1 | Data) > P(G2 | Data), or the opposite? 

 Classical algorithms: greedy search 

 Compares nested models: one model differs from 
the other by an adjacency 

 Some algorithms search over DAGs, others over 
patterns 



Greedy search over DAGs 

 From the current point, evaluate all edge 

insertions, deletions and reversals 
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Greedy search over patterns 

 Evaluate all patterns that differ by one 

adjacency from the current one 

 Unlike DAG-search, consistent (starting point 

doesn’t matter)  

 But the problem is NP-hard… 

Y 

X1 X2 Xk X … 

Y 

X1 X2 Xk X … 

new 
2k different patterns… 



Combining observational and 

experimental data 

 Model selection scores are usually 

decomposable: 

 Remember DAG factorization: 

 

 

 Score factorization (such as log-posterior): 

i P(Xi | Parents(Xi)) 

Score(G) = ∑i S(Xi, Parents(Xi)) 

(Cooper and Yoo, 1999) 



Combining observational and 

experimental data 

 Experimental data follows from a local 

probability substitution 

 Apply the “mechanism substitution” principle: 

(Cooper and Yoo, 1999) 

X Y Z 

T 

X 



Combining observational and 

experimental data 

 For data point j, natural state: 

 

 

 For data point k, random intervention on Y 

 

Xj Yj Zj 

Score(G; j) = log P(Xj) + log P(Yj | Xj) + log P(Zj | Yj) 

Xk Yk Zk 

Tk 

Score(G; k) = log P(Xk) + log P(Yk | Tk) + log P(Zk | Yk) 

e.g., Score(G; k) = log P(Xk) + log 1/2 + log P(Zk | Yk) 

X 

(Cooper and Yoo, 1999) 



Computing structure posteriors 

 Notice: greedy algorithms typically return the 

maximum a posteriori (MAP) graph 

 Or some local maxima of the posterior 

 Posterior distributions 

 Practical impossibility for whole graphs 

 MCMC methods should be seeing as stochastic search 

methods, mixing by the end of the universe 

 Still: 2 graphs are more useful than 1 

 Doable for (really) small subgraphs: edges, short 

paths (Friedman and Koller, 2000) 

 



Computing structure posteriors:  

a practical approach 

 Generate a few high probability graphs 

 E.g.: use (stochastic) beam-search instead of 

greedy search 

 Compute and plot marginal edge posteriors 

X 

Y 

Z W 



A word of warning 

 Uniform consistency: impossible with faithfulness 

only (Robins et al., 2003) 

 Considering the case with unmeasured confounding 

 Rigorously speaking, standard Bayesian posteriors 

reflect independence models, not causal models 

 There is an implicit assumption that the distribution 

is not “close” to unfaithfulness 

 A lot of work has yet to be done to formalize this (Zhang 

and Spirtes, 2003) 



Methods robust to hidden common causes 

 What happens to these algorithms when 

there are hidden common causes? 

X Y H 

X Y 



Methods robust to hidden common causes 

 Even if directionality is correct: 

 they don’t tell you correct direct effects  

 which directions are unconfounded 

A 

B 

C 

H 

D 

A 

B 

C 

D 



Partial ancestral graphs (PAGs) 

 New representation of equivalence classes 

(Spirtes et al., 2000) 
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Partial ancestral graphs (PAGs) 

 Type of edge:  

Smoking 

Income 

Parent’s 

smoking habits 

Cilia  

damage 

Heart  

disease 

Lung 

capacity 

Breathing 

dysfunction 



Discovery algorithms 

 Discovers and partially orients inducing paths: 
 Sequences of edges between nodes that can’t be blocked 

 

 

 

 

 

 

 Notice 
 Can’t tell if A is a direct or indirect cause of F 

 Can’t tell if B is a cause of F 

A B C 
D E F 

A B 
F D 



Algorithms 

 The “Fast” Causal Inference algorithm (FCI, 

Spirtes et al., 2000): 

 “Fast” because it has a clever way of avoiding 

exhaustive search (e.g., as in Pearl, 2000) 

 Sound and complete algorithms are fairly 

recent: Zhang, 2005 

 Bayesian algorithms are largely 

underdeveloped 

 Discrete model parameterization still a challenge 

 



Conclusion 



Summary and other practical issues 

 There is no magic: 

 It’s assumptions + data + inference systems 

 Emphasis on assumptions 

 Still not many empirical studies 

 Requires expertise, ultimately requires 

experiments for validation 

 Lots of work in fixed back-door designs 

 Graphical models not that useful (more so in longitudinal 

studies) 



The future 

 Biological systems might be a great domain 

 That’s how it all started after all (Wright, 1921) 

 High-dimensional: make default back-door 

adjustments dull 

 Lots of direct and indirect effects of interest 

 Domains of testable assumptions 

 Observational studies with graphical models can be a 

great aid for experimental design 

 But beware of all sampling issues: measurement 

error, small samples, dynamical systems, etc. 

 



What I haven’t talked about 

 Dynamical systems (“continuous-time” models) 

 Other models for (Bayesian) analysis of confounding 
 Structural equations, mixed graphs et al. 

 Potential outcomes (Rosenbaum, 2002) 

 Detailed discovery algorithms 
 Including latent variable models/non-independence 

constraints 

 Active learning 

 Measurement error, sampling selection bias 

 Lack of overlap under conditioning 

 Formalizing non-ideal interventions 
 Non-compliance, etc. 



Thank you 
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To know more 

 A short article by me: 

 http://www.homepages.ucl.ac.uk/~ucgtrbd/papers/cau

sality.pdf 

 Hernan and Robins’ incoming textbook 

 http://www.hsph.harvard.edu/miguel-hernan/causal-

inference-book/ 

 Pearl’s “Causality” 

 Spirtes/Glymour/Scheine’s “Causation, 

Prediction and Search” 

 Morgan and Winship’s “Counterfactuals and 

Causal Inference” (2nd edition out this weekend) 
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