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Abstract. The mining of association rules can provide relevant and
novel information to the data analyst. However, current techniques do
not take into account that the observed associations may arise from
variables that are unrecorded in the database. For instance, the pattern
of answers in a large marketing survey might be better explained by a few
latent traits of the population than by direct association among measured
items. Techniques for mining association rules with hidden variables are
still largely unexplored. This paper provides a sound methodology for
finding association rules of the type H ⇒ A1, . . . , Ak, where H is a
hidden variable inferred to exist by making suitable assumptions and
A1, . . . , Ak are discrete binary or ordinal variables in the database.

1 Contribution

Consider the problem of discovering association rules of the type

H ⇒ A1, A2, . . . , Ak (1)

where H is a variable that is not present in the database (a hidden, or latent

variable) but that explains the association among recorded discrete variables
{A1, . . . , Ak} ⊆ {X1, X2, . . . , XN}. This paper provides a novel algorithm for
mining such rules.

The motivation is two-fold: first, the outcome of such an analysis can aid the
discovery of plausible and novel hidden variables that may be used to characterize
the population of interest. Second, it might provide a more concise set of rules.

For instance, suppose that our data was generated by the graphical model
shown in Figure 1, where H is hidden and X1, . . . , X4 are observable. A typical
association rule algorithm might find all sorts of rules such as X1 ⇒ X2, X3,
X2 ⇒ X1, X3, X4, etc. A hidden variable approach could in principle output a
single rule subsumming all of such rules.

This paper is organized as follows: in Section 2, we introduce the particular
class of hidden variable association rules we use, making the link to related work
in latent variable graphical models. Section 3 is the main section of the paper,
describing the detailed approach. Experiments are discussed in Section 4.
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Fig. 1. Assume the data was generated according to the latent variable model in (a),
where H is not recorded in the database and not known to exist. A potential set of
association rules that ignore hidden variables is given in (b).

2 Probabilistic formulation

Following the framework of [7], we assume that our data was generated by a
causal directed acyclic graph, where an edge A → B has the meaning that “A is a
direct cause of B”. There are several advantages on trying to extract subgraphs of
the original graph as a type of association rule, instead of discovering a full graph
[7], as further discussed in Section 2.1. Assuming there is a true graph G that
generates our data, the semantics of a latent association rule H ⇒ A1, . . . , Ak,
as given in this paper, are:

– H is a hidden node and a common ancestor of A1, . . . , Ak in G, i.e., H is a
hidden common cause of all elements in A1, . . . , Ak

– all variables A1, . . . , Ak are probabilistically dependent, but become inde-
pendent when conditioning on H1;

The problem of discovering hidden variables is ill-defined without making
extra assumptions. That is, if H is allowed to assume any distribution, then any
distribution over observed variables can be generated by a hidden variable. This
can be accomplished, for instance, by making H be a discrete variable with as
many states as the entries of the contingency table of A1 × . . .×Ak. Such a rule
can never be falsified. Instead, we will assume that our data was generated by
some model from the family of latent trait models [1].

A model of this class is more easily understood through a graphical repre-
sentation, as illustrated in Figure 2(a): each directed edge H → Xi from hidden
node H to observed node Xi can be interpreted by having some intermediate
hidden variable X∗

i on the path, as in H → X∗

i → Xi. The underlying X∗

i with
latent parents {HXi

1
, . . . , HXi

k } is given by

X∗

i =
∑k

j=1
λijH

Xi

j + ǫi; ǫi ∼ N(0, σ2

i );

and each λij corresponds to the linear effect of parent HXi

j on X∗

i . Latent vari-
ables are assumed to follow a multivariate Gaussian distribution, centered at

1 That is, unlike traditional association rules, the right-hand side of the rule is not
meant to assume any particular value (e.g., A1 = true). Instead, the interpretation
is that A1, . . . , Ak are associated, but independent conditioned on H .
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Fig. 2. (a) A graphical representation of a latent trait model with 5 ordinal observed
variables. (b) Two ordinal variables X1 and X2 can be seen as discretizations of two
continuous variables X∗

1 and X∗

2 . The lines in the graph above represent thresholds
that define the discretization. The ellipse represents a contourplot of the joint Gaussian
distribution of the two underlying continuous variables X∗

1 , X∗

2 .

zero. The observed variables Xi are then just discretizations of the respective
X∗

i , as illustrated in Figure 2(b). More details on this model are given by [1] and
[5].

This model imposes constraints on the observed joint distribution of the
ordinal variables. Different graphical structures imply different correlations, and
this can be used to test plausible association rules, as discussed in Section 3.

Even though this family of models rely on strong parametric assumptions, it
has been successfully used to model binary and ordinal data, particularly survey

data such as marketing questionnaires, social sciences and public opinion polls.
It is also the basis of several psychological and educational testing studies [1].

2.1 Related work

What do we gain by extracting association rules from a graphical model instead
of trying to learn the graphical structure directly? One major reason is scalabil-

ity, as motivated by [7]: the data might have been generated by a directed graph
that is too large to be efficiently learned from data. This is even more problem-
atic in latent trait models, which requires the computation of high-dimensional
Gaussian integrals. This scalability problem is also connected to the statistical

problem of trying to learn large structures: different substructures of the graph
might be more strongly supported by the data, and it would be of interest to
report only on those substructures (i.e., association rules) of high confidence.
Another major motivation is identifiability. As discussed at length by [6], there
might be many different graphical structures that equally explain the data, but
that agree on particular substructures. Rule mining focuses directly on those
substructures that are uniquely identifiable from the assumptions.

Although there are other approaches for discovering latent variable models for
discrete data (e.g., [3]), they do not address the issues raised above. The goal is
usually density estimation, not knowledge discovery. Morever, they often assume
that latent variables are marginally independent, an unnecessary assumption
made mostly for the sake of simplicity.
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Fig. 3. If the data is generated by the structure in (a), Lemma 1 alone could be used
to generate the rules in (b), with some incorrect information concerning the right-hand
sides. However, the rules shown in (c) can be obtained by application of Lemma 2.

3 Methodology

We now describe an algorithm that generates rules corresponding to subgraphs
of the (unknown) true graph G, which is assumed to have generated the data.
Traditionally, conditional independency constraints are used to discover graphi-
cal structures. However, in a latent trait model, few, if any, of such constraints
are observable [6]. Other types of constraints should be used. Consider a set of
four variables, {W, X, Y, Z} such that σWXσY Z = σWY σXZ = σWZσXY , where
σXY is the covariance of random variables X and Y . Under assumptions common
in structure learning algorithms, the following holds in linear models [6]:

Lemma 1. Let G be a linear latent variable model, and let {X1, X2, X3, X4}
be such that σX1X2

σX3X4
= σX1X3

σX2X4
= σX1X4

σX2X3
. If σAB 6= 0 for all

{A, B} ⊂ {X1, X2, X3, X4}, then there is a node P conditioned on which all

elements in {X1, X2, X3, X4} are independent.

This holds even if P is not observed, which means we can detect the exis-
tence of latent variables by using the covariance matrix of the given observed
variables2. Lemma 1, however, does not provide enough information, since it
does not indicate if such variables are descendants of P or not. To solve this
issue, we rely on the following result (also in [6]):

Lemma 2. If constraints σX1Y1
σX2X3

= σX1X2
σX3Y1

= σX1X3
σX2Y1

, σX1Y1
σY2Y3

= σX1Y2
σY1Y3

= σX1Y3
σY1Y2

, σX1X2
σY1Y2

6= σX1Y1
σX2Y2

all hold, then X1 and

Y1 do not have a common parent in G.

Notice that this result could be used to correct the rules in the example of
Figure 3: one can verify that the above result holds for the pairs {X1, X2, X3}×
{Y1, Y2, Y3}, {Y1, Y2, Y3} × {Z1, Z2, Z3} and {X1, X2, X3} × {Z1, Z2, Z3}.

What follows is an adaption of the algorithm in [6] to generate association
rules. The main algorithm, BuildLatentRules (Table 1), starts by generating
sets of variables (cliques) that could not be judged to measure different latents

2 In our case variables are ordinal or binary, not continuous. However, there is an
equivalent notion of covariance matrix for ordinal and binary variables, and tests of
statistical significance for such constraints [5]. If there is enough memory to cache
all second moments of the data, then this requires a single pass through the data.
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Algorithm BuildLatentRules

Input: dataset D with observed variables X

1. Let C be a fully connected undirected graph with nodes in X

2. Remove edge Xi−Xj from C if Xi and Xj are statistically marginally independent
3. Remove Xi −Xj if Xi and Xj can be statistically separated as in Lemma 2
4. Let M be the set of maximal cliques in C.
5. RC ← PurifyIndividualSets(D,M).
6. Return FilterRedundant(RC).

Table 1. An algorithm for learning association rules with hidden variables.

Algorithm PurifyIndividualSets

Inputs: dataset D with observed variables X

Sets, a set of subsets of X;

1. Output← ∅
2. Repeat Step 3 below for all Set ∈ Sets

3. If there is some {W, X, Y, Z} ⊂ Set such that constraint σXY σWZ = σXW σY Z =
σXZσWY is not true according to a statistical test, remove the node in Set that par-
ticipates in the largest number of violated constraints. Repeat until all constraints
are satisfied.

4. If Set has at least three variables, add it to Output.
5. Return Output.

Table 2. Identifying association rules from potential clusters of variables.

(using Lemma 2). However, failure to be separated by Lemma 2 does not imply
such nodes indeed have latent parents in common. A second pass through such
sets has to be performed to “purify” each set, resulting in a desirable associa-
tion rule. This is performed by algorithm PurifyIndividualSets (Table 2): it
ensures that Lemma 1 holds for any foursome in a selected set3.

Because there might be several ways of “purifying” each candidate set, there
might be many rules that are a consequence of the same hidden variable. Op-
tionally, we might want to present just one rule for each hidden variable. This
is performed by algorithm FilterRedundant defined as follows: if two rules
overlap in three or more observed variables, then by Lemma 1 the hidden vari-
able responsable for this pattern should be the same. FilterRedundant will
allow only one rule for each hidden variable and also remove any rule whose
right-hand size is contained in the union of other rules. This helps to minimize
the number of spurious rules that are included by statistical mistakes.

3 This algorithm requires a rule to have at least three variables on its right-hand side.
For rules with fewer than three variables, see the complete algorithm in [5]. Moreover,
for technical reasons omitted for lack of space, due to identifiability limitations of
latent trait models it is possible that one (and at most one) of the elements on the
right-hand side might actually not be a child of the latent (see [5, 6]).
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Fig. 4. The graphs used in our simulation studies.

Table 3. Results obtained with BuildLatentRules and Apriori for the problem
of learning latent rules. For BuildLatentRules, each number is an average over 10
trials, with the standard deviation over these trials in parenthesis.

BuildLatentRules statistics

Sample Precision Recall #Rules

G1 1000 1.00(.0) 0.97(.1) 3.2(.4)
5000 0.98(.05) 0.97(.1) 2.9(.3)

G2 1000 0.94(.04) 1.00(.0) 3.2(1.03)
5000 0.94(.05) 1.00(.0) 3.4(0.70)

G3 1000 0.90(.06) 0.90(.16) 4.2(.91)
5000 0.90(.08) 0.90(.22) 3.5(.52)

Apriori statistics

Sample MIN MAX AVG STD

G1 1000 15 159 81 59.4
5000 9 546 116 163.9

G2 1000 243 2134 1070.4 681.2
5000 336 3565 1554.7 1072.2

G3 1000 363 6036 2916.7 1968.7
5000 158 4434 2608.3 1214.6

4 Experiments

In the following sections we evaluate our algorithm in a series of simulated ex-
periments, and exploratory results on a real data set. In the simulated cases, we
report statistics about the number of association rules that the standard algo-
rithm Apriori (using the implementation of [2]) returns on the same data. The
goal is to provide evidence that standard algorithms might produce thousands
of rules, despite the simple underlying latent variable model.

For the simulation study, let G be our true graph, from which we want to
extract association rules. The graph is known to us by simulation, but it is
not known to the algorithm. The goal of experiments with synthetic data is to
objectively measure the performance of BuildLatentRules4 in finding correct
and informative latent rules. Correctness is measured by a Precision statistic:
the average precision of each rule. The precision of a rule is the proportion of
items on the right-hand size that are in fact independent given the latent on the
left. Completeness is measured by a Recall statistic: the proportion of latents
{Hi} in G such that there is at least one corresponding rule in our output. In
our study we use the three graphs depicted in Figure 4, where all latents are
potentially identifiable. Given each graph, we generated 10 parametric models
and a sample of size 1,000 from each. Other 10 models were generated to sample
datasets of 5,000 cases. The sampling scheme is given in [5]. Results are shown

4 We use a slightly different variation of the algorithm to preprocess feasible candidate
rules. Details in [5], Chapter 5.
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Table 4. Examples of rules obtained by BuildLatentRules on Deck 6 of the Freedom
and Tolerance data set (question number and respective textual description).

Rule 1

X27 I feel it is more important to be sympathetic and understanding of other people
than to be practical and tough-minded

X3 I like to discuss my experiences and feelings openly with friends instead of
keeping them to myself

X31 People find it easy to come to me for help, sympathy, and warm understanding
X67 When I have to meet a group of strangers, I am more shy than most people
X7 I would like to have warm and close friends with me most of the time

Rule 2

X28 I lose my temper more quickly than most people
X30 I often react so strongly to unexpected news that I say or do things I regret
X41 I often push myself to the point of exhaustion or try to do more than I can
X61 I find it upsetting when other people don’t give me the support that I expect

Rule 3

X9 I usually demand very good practical reasons before I am willing to change my
old ways of doing things

X53 I see no point in continuing to work on something unless there is a good
chance of success

X46 I like to think about things for a long time before I make a decision

Rule 4

X3 I like to discuss my experiences and feelings openly with friends instead of
keeping them to myself

X40 I am slower than most people to get excited about new ideas and activities
X12 My friends find it hard to know my feelings because I seldom tell them

about my private thoughts

in Table 3. We also display the number of rules that are generated. Ideally, in
all cases we should generate exactly 3 rules. Due to statistical mistakes, more
or less than 3 rules can be generated. It is noticeable that there is a tendency
to produce more rules than necessary as the graph increases in complexity. It
is also worthy to point out that without the FilterRedundant algorithm, we
obtain around around 5 to 8 rules in most of the experiments. As a comparison,
we report the distribution of rules generated by Apriori in Table 3. We report
the maximum and minimum number of rules for each model and sample size
across the 10 trials, as well as average and standard deviation. The outcome is
that not only Apriori generates a very large number of rules, but the actual
number per trial varies enormously (see, e.g., G1 at sample size 5000).

We also applied BuildLatentRules to the data collected in a 1987 study5

on freedom and tolerance in the United States [4]. This is a large study com-
prising 381 questions targeting political tolerance and perceptions of personal
freedom in the United States. 1267 respondents completed the interview. Each

5 Available at http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/09454.xml



8

question is an ordinal variable with 2 to 5 levels, often with an extra non-ordinal
value corresponding to a “Don’t know/No answer” reply. However, several ques-
tions are explicitly dependent on answers given to previous questions. To sim-
plify the task, in this empirical evaluation we will focus on a particular section
of this questionnaire, the Deck 6. This deck of questions is composed of a self-
administred questionnaire of 69 items concerning an individual’s attitude with
respect to other people. We obtained 15 rules, where 40 out of the 69 questions
appear on at least on rule. Some of such rules are depicted in Table 4. There is a
clear relation among items within most rules. For instance, items on Rule 1 cor-
respond to measures of a latent trait of empathy and easiness of communication.
Rule 2 has three items (X28, X30, X61) that clearly correspond to measures of
a tendency of impulsive reaction. The fourth item (X41) is not clearly related
to this trait, but the data supports the idea that this latent trait explains the
associations between pushing oneself too much and reacting strongly to other
people. See [5] for a more extensive discussion.

5 Conclusion

Our approach should be seen as a complement, not a substitute, to traditional
association rule mining. There are three clear limitations: scalability; the limita-
tion of a single hidden variable in the antecedent of each rule; and the adherence
to a particular linear parametric family. However, it does provide extra infor-
mation that typical association rule mining methods cannot replicate. As future
work, we want to investigate how dynamic programming can be used to scale
up the method, and how to better pre-process the data (e.g., by finding which
marginally independent variables can be efficiently separated). Moreover, there
are different sets of assumptions one can make in order to identify hidden vari-
ables [5]. To conclude, we hope that the ideas discussed in this paper can spark
a new generation of algorithms for rule mining with hidden variables.
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