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Abstract

One of the most fundamental problems in causal inference is the estimation of a
causal effect when variables are confounded. This is difficult in an observational
study because one has no direct evidence that all confounders have been adjusted
for. We introduce a novel approach for estimating causal effects that exploits
observational conditional independencies to suggest “weak” paths in a unknown
causal graph. The widely used faithfulness condition of Spirtes et al. is relaxed
to allow for varying degrees of “path cancellations” that will imply conditional
independencies but do not rule out the existence of confounding causal paths. The
outcome is a posterior distribution over bounds on the average causal effect via
a linear programming approach and Bayesian inference. We claim this approach
should be used in regular practice to complement other default tools in observa-
tional studies.

1 Contribution

We provide a new methodology to bound the average causal effect (ACE) of a variable X on a
variable Y . For binary variables, the ACE is defined as

E[Y | do(X = 1)]− E[Y | do(X = 0)] = P (Y = 1 | do(X = 1))− P (Y = 1 | do(X = 0)), (1)

where do(·) is the operator of Pearl [14], denoting distributions where a set of variables has been
intervened upon by an external agent. In the interest of space, we assume the reader is familiar
with the concept of causal graphs, the basics of the do operator, and the basics of causal discovery
algorithms such as the PC algorithm of Spirtes et al. [22]. We provide a short summary for context
in Section 2

The ACE is in general not identifiable from observational data. We obtain upper and lower bounds
on the ACE by exploiting a set of (binary) covariates, which we also assume are not effects of X or
Y (justified by temporal ordering or other background assumptions). Such covariate sets are often
found in real-world problems, and form the basis of most observational studies done in practice [21].
However, it is not obvious how to obtain the ACE as a function of the covariates. Our contribution
modifies the results of Entner et al. [6], who exploit conditional independence constraints to obtain
point estimates of the ACE, but give point estimates relying on assumptions that might be unstable
in practice. Our modification provides a different interpretation of their search procedure, which we
use to generate candidate instrumental variables [11]. The linear programming approach of Dawid
[5] and Ramsahai [16] is then modified to generate bounds on the ACE by introducing constraints on
some causal paths, motivated as relaxations of [6]. The new setup can be computationally expensive,
so we introduce further relaxations to the linear program to generate novel symbolic bounds, and a
fast algorithm that sidesteps the full linear programming optimization with some simple, message
passing-like, steps.
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Figure 1: (a) A generic causal graph where X and Y are confounded by some U . (b) The same
system in (a) where X is intervened upon by an external agent. (c) A system where W and Y are
independent given X . (d) A system where it is possible to use faithfulness to discover that U is
sufficient to block all back-door paths between X and Y . (e) Here, U itself is not sufficient.

Section 2 introduces the background of the problem and Section 3 our methodology. Section 4
discusses an analytical approximation of the main results, and a way by which this provides scaling-
up possibilities for the approach. Section 5 contains experiments with synthetic and real data.

2 Background: Instrumental Variables, Witnesses and Admissible Sets

AssumingX is a potential cause of Y , but not the opposite, a cartoon of the causal system containing
X and Y is shown in Figure 1(a). U represents the universe of common causes of X and Y . In
control and policy-making problems, we would like to know what happens to the system when the
distribution of X is overridden by some external agent (e.g., a doctor, a robot or an economist).
The resulting modified system is depicted in Figure 1(b), and represents the family of distributions
indexed by do(X = x): the graph in (a) has undergone a “surgery” that wipes out edges, as originally
discussed by [22] in the context of graphical models. Notice that if U is observed in the dataset, then
we can obtain the distribution P (Y = y | do(X = x)) by simply calculating

∑
u P (Y = y |X =

x, U = u)P (U = u) [22]. This was popularized by [14] as the back-door adjustment. In general
P (Y = y | do(X = x)) can be vastly different from P (Y = y |X = x).

The ACE is simple to estimate in a randomized trial: this follows from estimating the conditional
distribution of Y given X under data generated as in Figure 1(b). In contrast, in an observational
study [21] we obtain data generated by the system in Figure 1(a). If one believes all relevant con-
founders U have been recorded in the data then back-door adjustment can be used, though such
completeness is uncommon. By postulating knowledge of the causal graph relating components
of U , one can infer whether a measured subset of the causes of X and Y is enough [14, 23, 15].
Without knowledge of the causal graph, assumptions such as faithfulness [22] are used to infer it.

The faithfulness assumption states that a conditional independence constraint in the observed distri-
bution exists if and only if a corresponding structural independence exists in the underlying causal
graph. For instance, observing the independence W ⊥⊥ Y |X , and assuming faithfulness and the
causal order, we can infer the causal graph Figure 1(c); in all the other graphs this conditional in-
dependence in not implied. We deduce that no unmeasured confounders between X and Y exist.
This simple procedure for identifying chains W → X → Y is useful in exploratory data analysis
[4], where a large number of possible causal relations X → Y are unquantified but can be screened
using observational data before experiments are performed. The idea of using faithfulness is to be
able to sometimes identify such quantities.

Entner et al. [6] generalize the discovery of chain models to situations where a non-empty set of
covariates is necessary to block all back-doors. SupposeW is a set of covariates which are known
not to be effects of either X or Y , and we want to find an admissible set contained in W: a set
of observed variables which we can use for back-door adjustment to get P (Y = y | do(X = x)).
Entner’s “Rule 1” states the following:

Rule 1: If there exists a variable W ∈ W and a set Z ⊆ W\{W} such that:

(i) W \⊥⊥ Y |Z (ii) W ⊥⊥ Y |Z ∪ {X}.

then infer that Z is an admissible set.
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A point estimate of the ACE can then be found using Z. Given that (W,Z) satisfies1 Rule 1, we
call W a witness for the admissible set Z. The model in Figure 1(c) can be identified with Rule
1, where W is the witness and Z = ∅. In this case, a so-called Naı̈ve Estimator2 P (Y = 1 |X =
1)− P (Y = 1 |X = 0) will provide the correct ACE. If U is observable in Figure 1(d), then it can
be identified as an admissible set for witness W . Notice that in Figure 1(a), taking U as a scalar, it
is not possible to find a witness since there are no remaining variables. Also, if in Figure 1(e) our
covariate setW is {W,U}, then no witness can be found since U ′ cannot be blocked. Hence, it is
possible for a procedure based on Rule 1 to answer “I don’t know whether an admissible set exists”
even when a back-door adjustment would be possible if one knew the causal graph. However, using
the faithfulness assumption alone one cannot do better: Rule 1 is complete for non-zero effects
without more information [6].

Despite its appeal, the faithfulness assumption is not without difficulties. Even if unfaithful distri-
butions can be ruled out as pathological under seemingly reasonable conditions [13], distributions
which lie close to (but not on) a simpler model may in practice be indistinguishable from distribu-
tions within that simpler model at finite sample sizes. To appreciate these complications, consider
the structure in Figure 1(d) with U unobservable. HereW is randomized butX is not, and we would
like to know the ACE of X on Y 3. W is sometimes known as an instrumental variable (IV), and we
call Figure 1(d) the standard IV structure; if this structure is known, optimal bounds LIV ≤ ACE
≤ UIV can be obtained without further assumptions, using only observational data over the binary
variables W , X and Y [1]. There exist distributions faithful to the IV structure but which at finite
sample sizes may appear to satisfy the Markov property for the structure W → X → Y ; in practice
this can occur at any finite sample size [20]. The true average causal effect may lie anywhere in the
interval [LIV ,UIV ] (which can be rather wide), and may differ considerably from the naı̈ve estimate
appropriate for the simpler structure. While we emphasize that this is a ‘worst-case scenario’ anal-
ysis and by itself should not rule out faithfulness as a useful assumption, it is desirable to provide a
method that gives greater control over violations of faithfulness.

3 Methodology: the Witness Protection Program

The core of our idea is (i) to invert the usage of Entner’s Rule 1, so that pairs (W,Z) should provide
an instrumental variable bounding method instead of a back-door adjustment; (ii) express violations
of faithfulness as bounded violations of local independence; (iii) find bounds on the ACE using a
linear programming formulation.

Let (W,Z) be any pair found by a search procedure that decides when Rule 1 holds. W will play the
role of an instrumental variable, instead of being discarded. A standard IV bounding procedure such
as [1] can be used conditional on each individual value z of Z, then averaged over P (Z). The lack of
an edgeW → Y given Z can be justified by faithfulness (asW ⊥⊥ Y | {X,Z}). For the same reason,
there might be no (conditional) dependence between W and a possible unmeasured common parent
of X and Y . However, assuming faithfulness itself is not interesting, as a back-door adjustment
could be directly obtained. Allowing unconstrained dependencies induced by edges W → Y and
(W,U) (any direction) is also a non-starter, as all bounds will be vacuous [16].

Consider instead the (partial) parameterization in Table 1 of the joint distribution of {W,X, Y, U},
where U is latent and not necessarily a scalar. For simplicity of presentation, assume we are condi-
tioning everywhere on a particular value z of Z, but which we supress from our notation as this will
not be crucial to developments in this Section. Under this notation, the ACE is given by

η11P (W = 1) + η10P (W = 0)− η01P (W = 1)− η00P (W = 0). (2)

1The work in [6] aims also at identifying zero effects with a “Rule 2”. For simplicity we assume that the
effect of interest was already identified as non-zero.

2Sometimes we use the word “estimator” to mean a functional of the probability distribution instead of a
statistical estimator that is a function of samples of this distribution. Context should make it clear when we
refer to an actual statistic or a functional.

3A classical example is in non-compliance: suppose W is the assignment of a patient to either drug or
placebo, X is whether the patient actually took the medicine or not, and Y is a measure of health status. The
doctor controls W but not X . This problem is discussed by [14] and [5].
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ζ?yx.w ≡ P (Y = y,X = x |W = w,U)
ζyx.w ≡

∑
U P (Y = y,X = x |W = w,U)P (U |W = w)

= P (Y = y,X = x |W = w)

η?xw ≡ P (Y = 1 |X = x,W = w,U)
ηxw ≡

∑
U P (Y = 1 |X = x,W = w,U)P (U |W = w)

= P (Y = 1 | do(X = x),W = w)

δ?w ≡ P (X = 1 |W = w,U)
δw ≡

∑
U P (X = x |W = w,U)P (U |W = w)

= P (X = 1 |W = w).

Table 1: A partial parameterization of a causal DAG model over some {U,W,X, Y }. Notice that
such parameters cannot be functionally independent, and this is precisely what we will exploit.

We now introduce the following assumptions,

|η?x1 − η?x0| ≤ εw (3)
|η?xw − P (Y = 1 |X = x,W = w)| ≤ εy (4)

|δ?w − P (X = 1 |W = w)| ≤ εx (5)

βP (U) ≤ P (U |W = w) ≤ β̄P (U). (6)

Setting εw = 0, β = β̄ = 1 recovers the standard IV structure. Further assuming εy = εx = 0
recovers the chain structure W → X → Y . Deviation from these values corresponds to a violation
of faithfulness, as the premises of Rule 1 can only be satisfied by enforcing functional relationships
among the conditional probability tables of each vertex. Using this parameterization in the case
εy = εx = 1, β = β̄ = 1, Ramsahai [16], extending [5], used the following linear programming to
obtain bounds on the ACE (for now, assume that ζyx.w and P (W = w) are known constants):

1. There is a 4-dimensional polytope where parameters {η?xw} can take values: for εw = εy =
1, this is the unit hypercube [0, 1]4. Find the extreme points of this polytope (up to 12 points
for the case where εw > 0). Do the same for {δ?w}.

2. Find the extreme points of the joint space ζ?yx.w by mapping them from the points in {δ?w}×
{η?xw}, since ζ?yx.w = (δ?w)x(1− δ?w)(1−x)η?xw.

3. Using the extreme points of the 12-dimensional joint space {ζ?yx.w}× {η?xw}, find the dual
polytope of this space in terms of linear inequalities. Points in this polytope are convex
combinations of {ζ?yx.w} × {η?xw}, shown by [5] to correspond to the marginalization over
some arbitrary P (U). This results in contraints over {ζyx.w} × {ηxw}.

4. Maximize/minimize (2) with respect to {ηxw} subject to the constraints found in Step 3 to
obtain upper/lower bounds on the ACE.

Allowing for the case where εx < 1 or εy < 1 is just a matter changing the first step, where
box constraints are set on each individual parameter as a function of the known P (Y = y,X =
x |W = w), prior to the mapping in Step 2. The resulting constraints are now implicitly non-linear
in P (Y = y,X = x |W = w), but at this stage this does not matter as they are treated as constants.
To allow for the case β < 1 < β̄, use exactly the same procedure, but substitute every occurrence of
ζyx.w in the constraints by κyx.w ≡

∑
U ζ

?
yx.wP (U); notice the difference between κyx.w and ζyx.w.

Likewise, substitute every occurrence of ηxw in the constraints by ωxw ≡
∑

U η
?
xwP (U). Instead

of plugging in constants for the values of κyx.w and turning the crank of a linear programming
solver, we first treat {κyx.w} (and {ωxw}) as unknowns, linking them to observables and ηxw by the
constraints ζyx.w/β̄ ≤ κyx.w ≤ ζyx.w/β,

∑
yx κyx.w = 1 and ηxw/β̄ ≤ ωxw ≤ ηxw/β. Finally, the

method can be easily implemented using a package such as Polymake (http://www.poymake.org) or
SCDD for R. More details are given in the Supplemental Material.

In this paper, we will not discuss in detail how to choose the free parameters of the relaxation. Any
choice of εw ≥ 0, εy ≥ 0, εx ≥ 0, 0 ≤ β ≤ 1 ≤ β̄ is guaranteed to provide bounds that are at
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input : Binary data matrix D; set of relaxation parameters θ; covariate index setW;
cause-effect indices X and Y

output: A list of pairs (witness, admissible set) contained inW
L ← ∅;
for each W ∈ W do

for every admissible set Z ⊆ W\{W} identified by W and θ given D do
B ← posterior over upper/lowed bounds on the ACE as given by (W,Z, X, Y,D, θ);
if there is no evidence in B to falsify the (W,Z, θ) model then
L ← L ∪ {B};

end
end

end
return L

Algorithm 1: The outline of the Witness Protection Program algorithm.

least as conservative as the back-door adjusted point estimator of [6], which is always covered by
the bounds. Background knowledge, after a user is suggested a witness and admissible set, can be
used here. In Section 5 we experiment with a few choices of default parameters. To keep focus,
in what follows we will discuss only computational aspects. We develop a framework for choosing
relaxation parameters in the Supplemental, and expect to extend it in follow-up publications.

As the approach provides the witness a degree of protection against faithfulness violations, using a
linear program, we call this framework the Witness Protection Program (WPP).

3.1 Bayesian Learning

The previous section treated ζyx.w and P (W = w) as known. A common practice is to replace
them by plug-in estimators (and in the case of a non-empty admissible set Z, an estimate of P (Z)
is also necessary). Such models can also be falsified, as the constraints generated are typically only
supported by a strict subset of the probability simplex. In principle, one could fit parameters without
constraints, and test the model by a direct check of satisfiability of the inequalities using the plug-in
values. However, this does not take into account the uncertainty in the estimation. For the standard
IV model, [17] discuss a proper way of testing such models in a frequentist sense.

Our models can be considerably more complicated. Recall that constraints will depend on the ex-
treme points of the {ζ?yx.w} parameters. As implied by (4) and (5), extreme points will be functions
of ζyx.w. Writing the constraints fully in terms of the observed distribution will reveal non-linear
relationships. We approach the problem in a Bayesian way. We will assume first the dimensionality
of Z is modest (say, 10 or less), as this is the case in most applications of faithfulness to causal
discovery. We parameterize P (Y,X,W |Z) as a full 2× 2× 2 contingency table4.

Given that the dimensionality of the problem is modest, we assign to each three-variate distribution
P (Y,X,W |Z = z) an independent Dirichet prior for every possible assigment of Z, constrained
by the inequalities implied by the corresponding polytopes. The posterior is also a 8-dimensional
constrained Dirichlet distribution, where we use rejection sampling to obtain a posterior sample by
proposing from the unconstrained Dirichlet. A Dirichlet prior can also be assigned to P (Z). Using
a sample from the posterior of P (Z) and a sample (for each possible value z) from the posterior of
P (Y,X,W |Z = z), we obtain a sample upper and lower bound for the ACE.

The full algorithm is shown in Algorithm 1. The search procedure is left unspecified, as different
existing approaches can be plugged in into this step. See [6] for a discussion. In Section 5 we deal
with small dimensional problems only, using the brute-force approach of performing an exhaustive
search for Z. In practice, brute-force can be still valuable by using a method such as discrete PCA
[3] to reduceW\{W} to a small set of binary variables. To decide whether the premises in Rule 1
hold, we merely perform Bayesian model selection with the BDeu score [2] between the full graph
{W → X,W → Y,X → Y } (conditional on Z) and the graph with the edgeW → Y removed. Our

4That is, we allow for dependence between W and Y given {X,Z}, interpreting the decision of indepen-
dence used in Rule 1 as being only an indicator of approximate independence.
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ωxw ≥ κ1x.w + LY U
xw (κ0x′.w + κ1x′.w) (7)

ωxw ≤ 1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXU
xw′ (8)

ωxw − ωxw′UXU
x′w ≤ κ1x.w + εw(κ0x′.w + κ1x′.w) (9)

ωxw + ωx′w − ωx′w′ ≥ κ1x′.w + κ1x.w − κ1x′.w′ + κ1x.w′ − χxw′(Ū + L+ 2εw) + L (10)

Table 2: Some of the algebraic bounds found by symbolic manipulation of linear inequali-
ties. Notation: x,w ∈ {0, 1}, x′ = 1 − x and w′ = 1 − w are the complementary values.
LY U
xw ≡ max(0, P (Y = 1 |X = x,W = w) − εy), UY U

xw ≡ min(1, P (Y = 1 |X = x,W =
w) + εy); LXU

xw ≡ max(0, P (X = x |W = w) − εx), with UXU
xw defined accordingly. Finally,

Ū ≡ max{UY U
xw }, L ≡ min{LY U

xw } and χxw ≡ κ1x.w + κ0x.w. Full set of bounds with proofs can
be found in the Supplementary Material.

“falsification test” in Step 5 is a simple and pragmatical one: our initial trial of rejection sampling
proposes M samples, and if more than 95% of them are rejected, we take this as an indication that
the proposed model provides a bad fit. The final result is a set of posterior distributions over bounds,
possibly contradictory, which should be summarized as appropriate. Section 5 provides an example.

4 Algebraic Bounds and the Back-substitution Algorithm

Posterior sampling is expensive within the context of Bayesian WPP: constructing the dual polytope
for possibly millions of instantiations of the problem is time consuming, even if each problem is
small. Moreover, the numerical procedure described in Section 3 does not provide any insight on
how the different free parameters {εw, εy, εx, β, β̄} interact to produce bounds, unlike the analytical
bounds available in the standard IV case. [16] derives analytical bounds under (3) given a fixed,
numerical value of εw. We know of no previous analytical bounds as an algebraic function of εw.

In the Supplementary Material, we provide a series of algebraic bounds as a function of our free
parameters. Due to limited space, we show only some of the bounds in Table 2. They illustrate
qualitative aspects of our free parameters. For instance, if εy = 1 and β = β̄ = 1, then LY U

xw = 0 and
(7) collapses to ηxw ≥ ζ1x.w, one of the original relations found by [1] for the standard IV model.
Decreasing εy will linearly increase LY U

xw , tightening the corresponding lower bound in (7). If also
εw = 0 and εx = 1, from (8) it follows ηxw ≤ 1− ζ0x.w′ . Equation (3) implies ωx′w − ωx′w′ ≤ εw,
and as such by setting εw = 0 we have that (10) implies ηxw ≥ η1x.w + η1x.w′ − η1x′.w′ − η0x.w′ ,
one of the most complex relationships in [1]. Further geometric intuition about the structure of the
binary standard IV model is given by [19].

These bounds are not tight, in the sense that we opted not to fully exploit all possible algebraic
combinations for some results, such as (10): there we use L ≤ η?xw ≤ Ū and 0 ≤ δ?w ≤ 1 instead of
all possible combinations resulting from (4) and (5). The proof idea in the Supplementary Material
can be further refined, at the expense of clarity. Because our derivation is a further relaxation, the
implied bounds are more conservative (i.e., wider).

Besides providing insight on the structure of the problem, this gives a very efficient way of checking
whether a proposed parameter vector {ζ?yx.w} is valid, as well as finding the bounds: use back-
substitution on the symbolic set of constraints to find box constraints Lxw ≤ ωxw ≤ Uxw. The
proposed parameter will be rejected whenever an upper bound is smaller than a lower bound, and (2)
can be trivially optimized conditioning only on the box constraints—this is yet another relaxation,
added on top of the ones used to generate the algebraic inequalities. We initialize by intersecting
all algebraic box constraints (of which (7) and (8) are examples); next we refine these by scanning
relations ±ωxw − aωxw′ ≤ c such as (9) in lexicographical order, and tightening the bounds of
ωxw using the current upper and lower bounds on ωxw′ where possible. We then identify constraints
Lxww′ ≤ ωxw − ωxw′ ≤ Uxww′ starting from −εw ≤ ωxw − ωxw′ ≤ εw and the existing bounds,
and plug into relations ±ωxw + ωx′w − ωx′w′ ≤ c (as exemplified by (10)) to get refined bounds
on ωxw as functions of (Lx′ww′ ,Ux′ww′). We iterate this until convergence, which is guaranteed
since bounds never widen at any iteration. This back-substitution of inequalities follows the spirit
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of message-passing and it is an order of magnitude more efficient than the fully numerical solution,
while not increasing the width of the bounds by too much. In the Supplementary Material we provide
evidence for this claim. In our experiments in Section 5, the back-substitution method was used in
the testing stage of WPP. After collecting posterior samples, we calculated the posterior expected
value of the contingency tables and run the numerical procedure to obtain the final tight bound5.

5 Experiments

We describe a set of synthetic studies, followed by one study with the influenza data discussed by
[9, 18]. In the synthetic study setup, we compare our method against NE1 and NE2, two naı̈ve point
estimators defined by back-door adjustment on the whole ofW and on the empty set, respectively.
The former is widely used in practice, even when there is no causal basis for doing so [15]. The
point estimator of [6], based solely on the faithfulness assumption, is also assessed.

We generate problems where conditioning on the whole set W is guaranteed to give incorrect es-
timates6. Here, |W| = 8. We analyze two variations: one where it is guaranteed that at least one
valid witness × admissible set pair exists; in the other, latent variables in the graph are common
parents also of X and Y , so no valid witness exists. We divide each variation into two subcases: in
the first, “hard” subcase, parameters are chosen (by rejection sampling) so that NE1 has a bias of
at least 0.1 in the population; in the second, no such selection exists, and as such our exchangeable
parameter sampling scheme makes the problem relatively easy. We summarize each WPP bound by
the posterior expected value of the lower and upper bounds. In general WPP returns more than one
bound: we select the upper/lower bound corresponding to the (W,Z) pair where the sum of BDeu
scores for W \⊥⊥ Y |Z and W ⊥⊥ Y |Z ∪ {X} is highest.

Our main evaluation metric for an estimate is the Euclidean distance (henceforth, “error”) between
the true ACE and the closed point in the given estimate, whether the estimate is a point or an interval.
For methods that provide point estimates (NE1, NE2, and faithfulness), this means just the absolute
value of the difference between the true ACE and the estimated ACE. For WPP, the error of the
interval [L,U ] is zero if the true ACE lies in this interval. We report error average and error tail
mass at 0.1, the latter meaning the proportion of cases where the error exceeds 0.1. The comparison
is not straightforward, since the trivial interval [−1, 1] will always have zero bias according to this
definition. This is a trade-off, to be set according to an agreed level of information loss, measured
by the width of the resulting intervals. This is discussed in the Supplemental. We run simulations
at two levels of parameters: β = 0.9, β̄ = 1.1, and the same configuration except for β = β̄ = 1.
The former gives somewhat wide intervals. As Manski emphasizes [11], this is the price for making
fewer assumptions. For the cases where no witness exists, Entner’s Rule 1 should theoretically report
no solution. In [6], stringent thresholds for accepting the two conditions of Rule 1 are adopted.
Instead we take a more relaxed approach, using a uniform prior on the hypothesis of independence,
and a BDeu prior with effective sample size of 10. As such, due to the nature of our parameter
randomization, almost always (typically> 90%) the method will propose at least one witness. Given
this theoretical failure, for the problems where no exact solution exists, we assess how sensitive the
methods are given conclusions taken from “approximate independencies” instead of exact ones.

We simulate 100 datasets for each one of the four cases (hard case/easy case, with theoretical solu-
tion/without theoretical solution), 5000 points per dataset, 1000 Monte Carlo samples per decision.
Results are summarized in Table 3 for the case εw = εx = εy = 0.2, β = 0.9, β̄ = 1.1. Notice

5Sometimes, however, the expected contingency table given by the back-substitution method would fall
outside the feasible region of the fully specified linear program – this is expected to happen from time to time,
as the analytical bounds are looser. In such a situation, we report the bounds given by the back-substitution
samples.

6In detail: we generate graphs where W ≡ {Z1, Z2, . . . , Z8}. Four independent latent variables
L1, . . . , L4 are added as parents of each {Z5, . . . , Z8}; L1 is also a parent of X , and L2 a parent of Y .
L3 and L4 are each randomly assigned to be a parent of either X or Y , but not both. {Z5, . . . , Z8} have no
other parents. The graph over Z1, . . . , Z4 is chosen by adding edges uniformly at random according to the lex-
icographic order. In consequence using the full setW for back-door adjustment is always incorrect, as at least
four paths X ← L1 → Zi ← L2 → Y are active for i = 5, 6, 7, 8. The conditional probabilities of a vertex
given its parents are generated by a logistic regression model with pairwise interactions, where parameters are
sampled according to a zero mean Gaussian with standard deviation 10 / number of parents. Parameter values
are truncated so that all conditional probabilities are between 0.025 and 0.975.
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Case (β = 1, β̄ = 1) NE1 NE2 Faith. WPP Width
Hard/Solvable 0.12 1.00 0.02 0.03 0.05 0.05 0.01 0.01 0.24
Easy/Solvable 0.01 0.01 0.07 0.24 0.02 0.01 0.00 0.00 0.24

Hard/Unsolvable 0.16 1.00 0.20 0.88 0.19 0.95 0.07 0.25 0.24
Easy/Unsolvable 0.09 0.32 0.14 0.56 0.12 0.53 0.03 0.08 0.23

Table 3: Summary of the outcome of the synthetic studies. Each entry for particular method is a pair
(bias average, bias tail mass at 0.1) of the respective methods, as explained in the main text. The last
column is the median width of the WPP interval. In a similar experiment with β = 0.9, β̄ = 1.1,
WPP achieves nearly zero error, with interval widths around 0.50. A much more detailed table for
many other cases is provided in the Supplementary Material.

that WPP is quite stable, while the other methods have strengths and weaknesses depending on the
setup. For the unsolvable cases, we average over the approximately 99% of cases where some solu-
tion was reported—in theory, no conditional independences hold and no solution should be reported,
but WPP shows empirical robustness for the true ACE in these cases.

Our empirical study concerns the effect of influenza vaccination on a patient being hospitalized later
on with chest problems. X = 1 means the patient got a flu shot, Y = 1 indicates the patient
was hospitalized. A negative ACE therefore suggests a desirable vaccine. The study was originally
discussed by [12]. Shots were not randomized, but doctors were randomly assigned to receive a
reminder letter to encourage their patients to be inoculated, recorded as GRP. This suggests the
standard IV model in Figure 1(d), withW = GRP and U unobservable. Using the bounds of [1] and
observed frequencies gives an interval of [−0.23, 0.64] for the ACE. WPP could not validate GRP
as a witness, instead returning as the highest-scoring pair the witness DM (patient had history of
diabetes prior to vaccination) with admissible set composed of AGE (dichotomized at 60 years) and
SEX. Here, we excluded GRP as a possible member of an admissible set, under the assumption that
it cannot be a common cause of X and Y . Choosing εw = εy = εx = 0.2 and β = 0.9, β̄ = 1.1, we
obtain the posterior expected interval [−0.10, 0.17]. This does not mean the vaccine is more likely
to be bad (positive ACE) than good: the posterior distribution is over bounds, not over points, being
completely agnostic about the distribution within the bounds. Notice that even though we allow for
full dependence between all of our variables, the bounds are considerably stricter than in the standard
IV model due to the weakening of hidden confounder effects postulated by observing conditional
independences. Posterior plots and sensitivity analysis are included in the Supplementary Material;
for further discussion see [18, 9].

6 Conclusion

Our model provides a novel compromise between point estimators given by the faithfulness assump-
tions and bounds based on instrumental variables. We believe such an approach should become
a standard item in the toolbox of anyone who needs to perform an observational study. R code
is available at http://www.homepages.ucl.ac.uk/∼ucgtrbd/wpp. Unlike risky Bayesian
approaches that put priors directly on the parameters of the unidentifiable latent variable model
P (Y,X,W,U |Z), the constrained Dirichlet prior does not suffer from massive sensitivity to the
choice of hyperparameters, as discussed at length by [18] and the Supplementary Material. By fo-
cusing on bounds, WPP keeps inference more honest, providing a compromise between a method
purely based on faithfulness and purely theory-driven analyses that overlook competing models
suggested by independence constraints. As future work, we will look at a generalization of the
procedure beyond relaxations of chain structures W → X → Y . Much of the machinery here
developed, including Entner’s Rules, can be adapted to the case where causal ordering is unknown:
the search for “Y-structures” [10] generalizes the chain structure search to this case. Also, we will
look into ways on suggesting plausible values for the relaxation parameters, already touched upon in
the Supplementary Material. Finally, the techniques used to derive the symbolic bounds in Section 4
may prove useful in a more general context and complement other methods to find subsets of useful
constraints such as the information theoretical approach of [8] and the graphical approach of [7].
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