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Abstract

Inferring key unobservable features of individuals is an important task in the ap-
plied sciences. In particular, an important source of data in fields such as mar-
keting, social sciences and medicine is questionnaires: answers in such question-
naires are noisy measures of target unobserved features. While comprehensive
surveys help to better estimate the latent variables of interest, aiming at a high
number of questions comes at a price: refusal to participatein surveys can go up,
as well as the rate of missing data; quality of answers can decline; costs associ-
ated with applying such questionnaires can also increase. In this paper, we cast
the problem of refining existing models for questionnaire data as follows: solve
a constrained optimization problem of preserving the maximum amount of infor-
mation found in a latent variable model using only a subset ofexisting questions.
The goal is to find an optimal subset of a given size. For that, we first define an
information theoretical measure for quantifying the quality of a reduced question-
naire. Three different approximate inference methods are introduced to solve this
problem. Comparisons against a simple but powerful heuristic are presented.

1 Contribution

A common goal in the applied sciences is to measure concepts of interest that are not directly ob-
servable (Bartholomew et al., 2008). Such is the case in the social sciences, medicine, economics
and other fields, where quantifying key attributes such as “consumer satisfaction,” “anxiety” and “re-
cession” requires the development ofindicators: observable variables that are postulated to measure
the target latent variables up to some measurement error (Bollen, 1989; Carroll et al., 1995).

In a probabilistic framework, this often boils down to a latent variable model (Bishop, 1998). One
common setup is to assume each observed indicatorYi as being generated independently given the
set of latent variablesX. Conditioning on any given observed data pointY gives information about
the distribution of the latent vectorX, which can then be used for ranking, clustering, visualization
or smoothing, among other tasks. Figure 1 provides an illustration.

Questionnairesfrom large surveys are sometimes used to provide such indicators, eachYi recording
an answer that typically corresponds to a Bernoulli or ordinal variable. For instance, experts can
be given questions concerning whether there is freedom of press in a particular nation, as a way
of measuring its democratization level (Bollen, 1989; Palomo et al., 2007). Nations can then be
clustering or ranked within an interpretable latent space.Long questionnaires have nevertheless
drawbacks, as summarized by Stanton et al. (2002) in the context of psychometric studies:

Longer surveys take more time to complete, tend to have more missing data,
and have higher refusal rates than short surveys. Arguably,then, techniques to re-
ducing the length of scales while maintaining psychometricquality are wortwhile.
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Figure 1: (a) A graphical representation of a latent variable model. Notice that in general latent vari-
ables will be dependent. Here, the question is how to quantify democratization and industrialization
levels of nations given observed indicatorsY such as freedom of press and gross national product,
among others (Bollen, 1989; Palomo et al., 2007). (b) An example of a result implied by the model
(adapted from Palomo et al. (2007)): barplots of the conditional distribution of democratization lev-
els given the observed indicators at two time points, ordered by the posterior mean industrialization
level. The distribution of the latent variables given the observations is the basis of the analysis.

Our contribution is a methodology for choosing which indicators to preserve (e.g., which items to
keep in a questionnaire) given: i.) a latent variable model specification of the domain of interest;
ii.) a target number of indicators that should be preserved.To accomplish this, we provide: i.) a
target objective function that quantifies the amount of information preserved by a choice of a subset
of indicators, with respect to the full set; ii.) algorithmsfor optimizing this choice of subset with
respect to the objective function. The general idea is to start with a target posterior distribution of
latent variables, defined by some latent variable measurement modelM (i.e., PM(X | Y)). We
want to choose a subsetYz ⊂ Y so that the resulting conditional distributionPM(X | Yz) is
as close as possible to the original one according to some metric. ModelM is provided either by
expertise or by numerous standard approaches that can be applied to learn it from data (e.g., methods
in Bishop, 2009). We call this taskmeasurement model thinning.

Notice that the size ofYz is a domain-dependent choice. AssumingM is a good model for the data,
choosing a subset of indicators will incur some informationloss. It is up to the analyst to choose a
trade-off between loss of information and the design of simpler, cheaper ways of measuring latent
variables. Even if a shorter questionnaire is not to be deployed, the outcome of measurement model
thinning provides a formal sensitivity analysis of the target latent distribution with respect to the
available indicators. The result is useful to generate different insights into the domain.

This paper is organized as follows: Section 2 defines a formalcriterion to quantify how appropriate a
subsetYz is. Section 3 describes different approaches in which this criterion can be optimized. Re-
lated work is briefly discussed in Section 4. Experiments with synthetic and real data are discussed
in Section 5, followed by the conclusion.

2 An Information-Theoretical Criterion

Our focus is on domains where latent variables are not a by-product of a dimensionality reduction
technique, but the target of the analysis as in the example ofFigure 1. That is, measurement error
problems where the variables to be recorded aredesignedspecifically to obtain information con-
cerning such unknowns (Carroll et al., 1995; Bartholomew etal., 2008). As such, we postulate that
the outcome of any analysis should be a functional ofPM(X | Y), the conditional distribution of
unobservablesX given observablesY within a modelM. It is assumed thatM specifies the joint
PM(X,Y). We further assume that observed variables are conditionally independent givenX, i.e.
PM(X,Y) = PM(X)

∏p

i=1 PM(Yi | X), with p being the number of observed indicators.
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If z ≡ (z1, z2, . . . , zp) is a binary vector of the same dimensionality asY, andYz is the subset of
Y corresponding the non-zero entries ofz, we can assessz by the KL divergence

KL(PM(X |Y) || PM(X | Yz)) ≡

∫

PM(X | Y) log
PM(X | Y)

PM(X | Yz)
dX

This is well-defined, since both distributions lie in the same sample space despite the difference
of dimensionality betweenY andYz. Moreover, sinceY is itself a random vector, our criterion
becomes the expected KL divergence

〈KL(PM(X | Y) || PM(X |Yz))〉PM(Y)

where〈·〉 denotes expectation. Our goal is to minimize this function with respect toz. Rearranging
this expression to drop all constants that do not depend onz, and multiplying it by−1 to get a
maximization problem, we obtain the problem of findingz⋆ such that

z⋆ = argmaxz

{

〈log(PM(Yz |X))〉PM(X,Yz)
− 〈log(PM(Yz))〉PM(Yz)

}

= argmaxz

{

p
∑

i=1

zi 〈log(PM(Yi | X))〉PM(X,Yi)
+HM(Yz)

}

≡ argmaxzFM(z)

subject to
∑p

i=1 zi = K for a choice ofK, andzi ∈ {0, 1}. HM(·) denotes here the entropy of
a distribution parameterized byM. Notice we used the assumption that indicators are mutually
independent givenX. There is an intuitive appeal of having a joint entropy term to reward not only
marginal relationships between indicators and latent variables, but also selections that are jointly
diverse. Notice that optimizing this objective function turns out to be equivalent to minimizing
the conditional entropy of latent variables givenYz. Motivating conditional entropy from a more
fundamental principle illustrates that other functions can be obtained by changing the divergence.

3 Approaches for Approximate Optimization

The problem of optimizingFM(z) subject to the constraints
∑p

i=1 zi = K, zi ∈ {0, 1}, is hard
not only for its combinatorial nature, but due to the entropyterm. This needs to be approximated,
and the nature of the approximation should depend on the formtaken byM. We will assume that
it is possible to efficiently compute any marginals ofPM(Y) of modest dimensionality (say, 10
dimensions). This is the case, for instance, in theprobit model for binary data:

X ∼ N (0,Σ), Y ⋆
i ∼ N (ΛT

i X+ λi;0, 1),

Yi = 1, if Y ⋆
i > 0, and 0 otherwise

whereN (m,S) is the multivariate Gaussian distribution with meanm and covariance matrixS. The
probit model is one of the most common latent variable modelsfor questionnaire data (Bartholomew
et al., 2008), with a straigthforward extension to ordinal data. In this model, marginals for a few
dozen variables can be obtained efficiently since this corresponds to calculating multivariate Gaus-
sian probabilities (Genz, 1992). Parameters can be fit by a variety of methods (Hahn et al., 2010).

We also assume thatM allows for the computation of〈log(PM(Yi | X))〉PM(X,Yi)
at little cost.

Again, in the binary probit model this is simple, since this requires integrating away a single binary
variableYi and a univariate GaussianΛT

i X.

3.1 Gaussian Entropy

One approximation toFM(z) is to replace its entropy term by the corresponding entropy from
some Gaussian distributionPN (Yz). The entropy of a Gaussian distribution is proportional to the
logarithm of the determinant of its covariance matrix, and hence can be computed inO(p3) steps.
This Gaussian can be chosen as the one closest toPM(Yz) in aKL(PM || PN ) sense: that is, the
one with the same first and second moments asPM(Yz). In our case, computing these moments
can be done deterministically (up to numerical error) usingstandard bivariate quadrature methods.
No expectation-propagation (Minka, 2001) is necessary. The corresponding objective function is

FM;N (z) ≡

p
∑

i=1

zi 〈log(PM(Yi |X))〉PM(X,Yi)
+ 0.5 log |Σz|

3



whereΣz is the covariance matrix ofYz – which for binary and ordinal data has a sensible interpre-
tation. This function is also an upper bound on the exact function,FM(z), since the Gaussian is the
distribution with the largest entropy for a given mean vector and covariance matrix. The resulting
function is non-linear inz. In our experiments, we optimize forz using a greedy scheme: for all
possible pairs(i, j) such thatzi = 1 andzj = 0, we swap its values (so that

∑

i zi is alwaysK).
We choose the pair with the highest increase inFM;N (z) and repeat the process until convergence.

3.2 Entropy with Bounded Neighborhoods

An alternative bound can be derived from a standard fact in information theory:H(Y | S) ≤
H(Y | S ′) for S′ ⊆ S, whereH(· | ·) denotes conditional entropy. This was exploited by Globerson
and Jaakkola (2007) to define an upper bound in the entropy of adistribution as follows: consider
a permutatione of the set{1, 2, . . . , p}, with e(i) being thei-th element ofe. Denote bye(1 : i)
the firsti elements of this permutation (an empty set ifi < 1). Moreover, letN(e, i) be a subset of
e(1 : i− 1). For a given set variablesY = {Y1, Y2, . . . , Yp} the following bound holds:

H(Y1, Y2, . . . Yp) =

n
∑

i=1

H(Ye(i) | Ye(1:i−1)) ≤

p
∑

i=1

H(Ye(i) | YN(e,i)) (1)

If each setN(e, i) is no larger than some constantD, then this bound can be computed inO(p · 2D)
steps for binary probit models. The bound holds for any choice of e, but we want it to be as tight
as possible so that it gets weighted in a reasonable way against the other terms inFM(·). Since the
entropy function is decomposable as a sum of functions that depend oni andN(e, i) only, one can
minimize this bound with respect toe by using permutation optimization methods such as (Jaakkola
et al., 2010). In our implementation, we use a method similarto Teyssier and Koller (2005) that
shuffles neighboring entries ofe to generate candidates, chooses the optimalN(e, i) for eachi
given the candidatee, and picks as the next permutation the candidatee with the greatest decrease
in the bound.

Notice that a permutation choicee and neighborhood choicesN(e, i) define a Bayesian network
whereN(e, i) are the parents ofYe(i). Therefore, if this Bayesian network model provides a good
approximation toPM(Y), the bound will be reasonably tight.

Givene, we will further relax this bound with the goal of obtaining an integer programming formu-
lation for the problem of optimizing an upper bound toFM(z). For any givenz, we define the local
termHL(z, i) as

HL(z, i) ≡ HM(Ye(i) |Yz∩N(e, i)) =
∑

S∈P (N(e,i))





∏

j∈S

zj









∏

k∈N(e,i)\S

(1− zk)



HM(Ye(i) | S)

(2)
whereP (·) denotes the power set of a set. The new approximate objectivefunction becomes

FM;D(z) ≡

p
∑

i=1

zi 〈log(PM(Yi |X))〉PM(X,Yi)
+

p
∑

i=1

ze(i)HL(z, i) (3)

Notice thatHL(z, i) is still an upper bound onHM(Ye(i) | Ye(1:i−1)). The intuition is that we
are boundingHM(Yz) by the entropy of a Bayesian network where a vertexYe(i) is included if
ze(i) = 1, with corresponding parents given byYz ∩ N(e, i). This is a well-defined Bayesian
network for any choice ofz. The shortcoming is that ideally we would like this Bayesiannetwork to
be the actual marginal of the model given bye andN(e, i). It is not: if the network implied bye and
N(e, i) was, for instance,Y1 → Y2 → Y3, the choice ofz = (1, 0, 1) would result on the entropy
of the disconnected graph{Y1, Y3}, while the true marginal would correspond instead to the graph
Y1 → Y3. However, our simplified marginalization has the advantageof avoiding an intractable
problem. Moreover, it allows us to redefine the problem as an integer linear program (ILP).

Each productze(i)
∏

j zj
∏

k(1−zk) appearing in (3) results in a sum ofO(2D) terms, each of which
has (up to a sign) the formqM ≡

∏

m∈M zm for some setM . It is still the case thatqM ∈ {0, 1}.
Therefore, objective function (3) can be interpreted as being linear on a set of binary variables
{{z}, {q}}. We need further to enforce the constraints coming from

qM = 1 ⇒ {∀m ∈ M, zm = 1}; qM = 0 ⇒ {∃m ∈ M s.t.zm = 0}
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It is well-known (Glover and Woolsey, 1974) that this corresponds to the linear constraints

qM = 1 ⇒ {∀m ∈ M, zm = 1} ⇔ ∀m ∈ M, qM − zm ≤ 0
qM = 0 ⇒ {∃m ∈ M s.t.zm = 0} ⇔

∑

m∈M zm − qM ≤ |M | − 1

which combined with the linear constraint
∑p

i=1 zi = K implies that optimizingFM;D(z) is an
ILP with O(p · 2D) variables andO(p2 · 2D) constraints. In our experiments in Section 5, we
were able to solve essentially all of such ILPs exactly usinglinear programming relaxations with
branch-and-bound.

3.3 Entropy with Tree-Structured Bounds

The previous bound simplifies marginalization, which mightbadly overestimate entropies where
the correspondingYz are uniformly spread out in permutatione. We now propose a different type
of bound which treats different marginalizations on an equal footing. It comes from the following
observation: sinceH(Ye(i) |Ye(1:i−1)) is less than or equal to any conditional entropyH(Ye(i) | Yj)
for j ∈ e(1 : i− 1), we have that the tighest bound given by singleton conditioning sets is

H(Ye(i) | Ye(1:i−1)) ≤ min
j∈e(1:i−1)

HM(Ye(i) | Yj),

resulting in the objective function

FM;tree(z) ≡

p
∑

i=1

zi 〈log(PM(Yi | X))〉PM(X,Yi)
+

p
∑

i=1

ze(i) · min
{Yj∈Y

e(1:i−1)∩Yz}
H(Ye(i) | Yj) (4)

wheremin{Yj∈Y
e(1:i−1)∩Yz} H(Ye(i) | Yj) ≡ H(Ye(i)) if Ye(1:i−1) ∩ Yz = ∅. The intuition is

that we are bounding the exact entropy using the entropy of a directed tree rooted atYez(1), the first
element ofYz according toe. That is, all variables are marginally dependent in the approximation
regardless of whatz is, and for a fixedz the tree is, by construction, the one obtained by the usual
greedy algorithm of adding edges corresponding to the next legal pair of vertices with maximum
mutual information (following an ordering, in this case).

It turns out we can also write (4) as a linear objective function of a polynomial number of0\1

variables and constraints. Let̄zi ≡ 1 − zi. Let H(1)
i , H

(2)
i , . . . , H

(i−1)
i be the values of set

{HM(Ye(i) | Ye(1)), . . . ,HM(Ye(i) | Ye(i−1))} sorted in ascending order, withz(1)i , . . . , z
(i−1)
i be-

ing the corresponding permutation of{ze(1), . . . , ze(i−1)}. We have

min{Yj∈Y
e(1:i−1)∩Yz} H(Ye(i) | Yj) = z

(1)
i H

(1)
i + z̄

(1)
i z

(2)
i H

(2)
i + z̄

(1)
i z̄

(2)
i z

(3)
i H

(3)
i + . . .

z̄
(1)
i . . . z̄

(i−2)
i z

(i−1)
i H

(i−1)
i +

∏i−1
j=1 z̄

(j)
i HM(Ye(i))

≡
∑i−1

j=1 q
(j)
i H

(j)
i + q

(i)
i HM(Ye(i))

whereq(j)i ≡ z
(j)
i

∏j−1
k=1 z̄

(k)
i , and also a binary0\1 variable. Plugging this expression into (4) gives

a linear objective function in this extended variable space. The corresponding constraints are

q
(j)
i = 1 ⇒ {∀zm ∈ {z̄

(1)
i , . . . , z̄

(j−1)
i , z

(j)
i }, zm = 1}

q
(j)
i = 0 ⇒ {∃zm ∈ {z̄

(1)
i , . . . , z̄

(j−1)
i , z

(j)
i } s.t.zm = 0}

which, as shown in the previous section, can be written as linear constraints (substituting eachz̄i
by 1 − zi). The total number of constraints is howeverO(p3), which can be expensive, and often a
linear relaxation procedure with branch-and-bound fails to provide guarantees of optimality.

3.4 The Reliability Score

Finally, it is important to design cheap, effective criteria whose maxima correlate with the maxima
of FM(·). Empirically, we have found high quality selections in binary probit models using the
solution to the problem

maximizeFM;R(z) =

p
∑

i=1

wizi, subject tozi ∈ {0, 1},

p
∑

i=1

zi = K
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wherewi = ΛT

i ΣΛi. This can be solved by picking the corresponding indicatorswith the highest
K weightswi. Assuming a probit model where the measurement error for each Y ⋆

i has the same
variance of 1, this score is related to the “reliability” of an indicator. Simply put, the reliability
Ri of an indicator is the proportion of its variance that is due to the latent variables (Bollen, 1989,
Chapter 6):Ri = wi/(wi + 1) for eachY ⋆

i . There is no current theory linking this solution to the
problem of maximizingFM(·): since there is no entropy term, we can set an adversarial problem to
easily defeat this method. For instance, this happens in a model where theK indicators of highest
reliability all measure the same latent variableXi and nothing else – much information aboutXi

would be preserved, but little about other variables. In anycase, we found this criterion to be fairly
competitive even if at times it produces extreme failures. An honest account of more sophisticated
selection mechanisms cannot be performed without including it, as we do in Section 5.

4 Related Work

The literature on survey analysis, in the context of latent variable models, contains several exam-
ples of guidelines on how to simplify questionnaires (sometimes described as providing “shortened
versions” of scales). Much of the literature, however, consists of describing general guidelines and
rules-of-thumb to accomplish this task (e.g, Richins, 2004; Stanton et al., 2002). One possible excep-
tion is Leite et al. (2008), which uses different model fitness criteria with respect to a given dataset
to score candidate solutions, along with an expensive combinatorial optimization method. This con-
flates model selection and questionnaire thinning, and there is no theory linking the score functions
to the amount of information preserved. In the machine learning and statistics literature, there is a
large body of research in active learning, which is related to our task. One of the closest approaches
is the one by Liang et al. (2009), which casts the classical problem of measurement selection within
a Bayesian graphical model perspective. In that work, one has to choose which measurements to
add. This is done sequentially, partially motivated by problems where collecting new measurements
can be done relatively fast and cheap (say, by paying graduate students to annotate text data), and so
the choice of next measurement can make use of fresh data. In our case, it not might be realistic to
expect we can perform a large number of iterations of data collection – and as such the task of reduc-
ing the number of measurements from a large initial collection might be more relevant in practice.
Liang et al. also focus on (multivariate) supervised learning instead of purely unsupervised learning.
In statistics there is also a considerable body of literature on sufficient dimension reduction and its
sparse variants (e.g., Chen et al., 2010). Such techniques create a bottleneck between two sets of
variables in a regression problem (say, the mapping fromY to X) while eliminating some of the
input variables. In principle one might want to adapt such models to take a latent variable modelM
as the target mapping. Besides some loss of interpretability, the computational implications might
be problematic, though. Moreover, this framework has another free parameter corresponding to the
dimensionality of the bottleneck that has to be set. It is notclear how this parameter, along with a
choice of sparsity level, would interact with a fixed choiceK of indicators to be kept.

5 Experiments

In this section, we first describe some synthetic experiments to provide insights about the different
methods, followed by one brief description of a case study. In all of the experiments, the target
modelsM are binary probit. We set the neighborhood parameter forFM;N (·) to 9. The ordering
e for the tree-structured method is obtained by the same greedy search of Section 3.2, where now
the score is the average of allH(Yi | Yj) for all Yj precedingYi. Finally, all ordering optimization
methods were initialized by sorting indicators in a descending order according to their reliability
scores, and the initial solution for all entropy-based optimization methods was given by the reliability
score solution of Section 3.4. The integer program solver GUROBI 4.02 was used in all experiments.

5.1 Synthetic studies

We start with a batch of synthetic experiments. We generated80 models with 40 indicators and 10
latent variables1. We further preprocess such models into two groups: in 40 of them, we select a

1Details on the model generation: we generate 40 models by sampling the latent covariance matrix from
an inverse Wishart distribution with 10 degrees of freedom and scale matrix 10I, I being the identity matrix.
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Figure 2: (a) A comparison of the bounded neighborhood (N ), tree-based (T ) and Gaussian (G)
methods with respect to a random solution (R) and the reliability score (S). (b) A similar comparison
for models where indicators are more weakly correlated to the latent variables than in (a). (c) and
(d) Scatterplots of the average absolute deviance for the tree-based method (horizontal axis) against
the reliability method (vertical axis). The bottom-left clouds correspond to theK = 32 trials.

target reliabilityri for each indicatorYi, uniformly at random from the interval [0.4 0.7]. We then
rescale coefficientsΛi such that the reliability (defined in Section 3.4) of the respectiveY ⋆

i becomes
ri. For the remaining 40 models, we sampleri uniformly at random from the interval [0.2 0.4].

We perform two choices of subsets: setsYz of size 20 and 32 (50% and 80% of the total num-
ber of indicators). Our evaluation is as follows: since the expected value is perhaps the most
common functional of the posterior distributionPM(X | Y), we calculate the expected value of
the latent variables for a sample{y(1),y(2), . . . ,y(1000)} of size 1000 taken from the respective
synthetic models. This is done for the full set of 40 indicators, and for each set chosen by our
four criteria: for each data pointi and each objective functionF , we evaluate the average distance
d
(i)
F ≡

∑10
j=1 |x̂

(i)
j −x̂

(i)
j;F |/10. In this case,̂x(i)

j is the expected value ofXj obtained by conditioning

on all indicators, whilêx(i)
j;F is the one obtained with the subset selected by optimizingF . We denote

by mF the average of{d(1)F , d
(2)
F , . . . , d

(1000)
F }. Finally, we compare the three main methods with

respect to the reliability score method using the improvement ratio statisticsF = 1−mF/mFM;R,
the proportion of average error decrease with respect to thereliability score. In order to provide
a sense of scale on the difficulty of each problem, we compute the same ratios with respect to a
random selection, obtained by choosingK = 20 andK = 32 indicators uniformly at random.

Figure 2 provides a summary of the results. In Figure 2(a), each boxplot shows the distribution
over the 40 probit models where reliabilities were sampled between [0.4 0.7] (the “high signal”
models). The first three boxplots show the scoressF of the bounded neighborhood, tree-structured
and Gaussian methods, respectively, compared against random selections. The last three boxplots
are comparisons against the reliability heuristic. The tree-based method easily beats the Gaussian
method, with about 75% of its outcomes being better than the median Gaussian outcome. The Gaus-
sian approach is also less reliable, with results showing a long lower tail. Although the reliability
score is on average a good approach, in only a handful of casesit was better than the tree-based
method, and by considerably smaller magnitudes compared tothe upper tails in the tree-based out-
come distribution. A separate panel (Figure 2(b)) is shown for the 40 models with lower reliabilities.
In this case, all methods show stronger improvements over the reliability score, although now there
is a less clear difference between the tree method and the Gaussian one. Finally, in panels (c) and (d)
we present scatterplots for the average deviancesmF of the tree-based method against the reliability
score. The two clouds correspond to the solutions with 20 and32 indicators. Notice that in the vast
majority of the cases the tree-based method does better.

We then rescale the matrix to make all variances equal to 1. Wealso generate 40 models using as the in-
verse Wishart scale matrix the correlation matrix will all off-diagonal entries set to 0.5. Coefficients linking
indicators to latent variables were set to zero with probability 0.8, and sampled from a standard Gaussian oth-
erwise. If some latent variable ends up with no child, or an indicator ends up with no parent, we uniformly
choose one child/parent to be linked to it. Code to fully replicate the synthetic experiments is available at
HTTP://WWW.HOMEPAGES.UCL.AC.UK/∼UCGTRBD/.
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5.2 Case study

The National Health Service (NHS) is the public health system of the United Kingdom. In 2009, a
major survey called theNational Health Service National Staff Surveywas deployed with the goal of
“collect(ing) staff views about working in their local NHS trust” (Care Quality Comission and Aston
University, 2010). A questionnaire of 206 items was filled by156, 951 respondents. We designed a
measurement model based on the structure of the questionnaire and fit it by the posterior expected
value estimator. Gaussian and inverse Wishart priors were used, along with Gibbs sampling and a
random subset of50, 000 respondents. See the Supplementary Material for more details. Several
items in this survey asked for the NHS staff member to providedegrees of agreement in a Likert
scale (Bartholomew et al., 2008) to questions such as

• . . . have you ever come to work despite not feeling well enoughto perform . . . ?
• Have you felt pressure from your manager to come to work?
• Have you felt pressure from colleagues to come to work?
• Have you put yourself under pressure to come to work?

as different probes into an unobservable self-assessed level of work pressure.

We preprocessed and binarized the data to first narrow it downto 63 questions. We compare selec-
tions of 32 (50%) and 50 (80%) items using the same statisticsof the previous section.

sF ;D sF ;tree sF ;N sF ;random mF ;tree mF ;R

K = 32 7.8% 6.3% 0.01% −16.0% 0.238 0.255
K = 50 10.5% 11.9% 7.6% −0.05% 0.123 0.140

Although gains were relatively small (as measured by the difference between reconstruction errors
mF ;tree − mF ;R and the good performance of a random selection), we showed that: i.) we do
improve results over a popular measure of indicator quality; ii.) we do provide some guarantees
about the diversity of the selected items via a information-theoretical measure with an entropy term,
with theoretically sound approximations to such a measure.For more details on the preprocessing,
and more insights into the different selections, please refer to the Supplementary Material.

6 Conclusion

There are problems where one posits that the relevant information is encoded in the posterior distri-
bution of a set of latent variables. Questionnaires (and other instruments) can be used as evidence
to generate this posterior, but there is a cost associated with complex questionnaires. One problem
is how to simplify such instruments of measurement. To the best of our knowledge, we provide the
first formal account on how to solve it. Nevertheless, we would like to stress there is no substitute
for common sense. While the tools we provide here can be used for a variety of analyses – from
deploying simpler questionnaires to sensitivity analysis– the value and cost of keeping particular
indicators can go much beyond the information contained in the latent posterior distribution. How
to combine this criterion with other domain-dependent criteria is a matter of future research.

Another problem of importance is how to deal with model specification and transportability across
studies. A measurement model built for a very specific population of respondents might transfer
poorly to another group, and therefore taking into account model uncertainty will be important. The
Bayesian setup discussed by Liang et al. (2009) might provide some directions on this issue. Also,
there is further structure in real-world questionnaires weare not exploiting in the current work.
Namely, it is not uncommon to have questionnaires with branching questions and other dynamic
behaviour more commonly associated with Web based surveys and/or longitudinal studies. Finally,
hybrid approaches combining the bounded neighborhood and the tree-structured methods, along
with more sophisticated ordering optimization proceduresand the use of other divergence measures
and determinant-based criteria (e.g. Kulesza and Taskar, 2011), will also be studied in the future.
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