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Abstract

Inferring key unobservable features of individuals is apamtant task in the ap-
plied sciences. In particular, an important source of datfelds such as mar-
keting, social sciences and medicine is questionnairesvens in such question-
naires are noisy measures of target unobserved featurede ¥étmprehensive
surveys help to better estimate the latent variables ofésteaiming at a high
number of questions comes at a price: refusal to participagarveys can go up,
as well as the rate of missing data; quality of answers calingecosts associ-
ated with applying such questionnaires can also increas#his paper, we cast
the problem of refining existing models for questionnaireadss follows: solve
a constrained optimization problem of preserving the maxmamount of infor-
mation found in a latent variable model using only a subseiidting questions.
The goal is to find an optimal subset of a given size. For thatfitgt define an
information theoretical measure for quantifying the qtyadif a reduced question-
naire. Three different approximate inference methodsrdreduced to solve this
problem. Comparisons against a simple but powerful heciasé presented.

1 Contribution

A common goal in the applied sciences is to measure concépitecest that are not directly ob-
servable (Bartholomew et al., 2008). Such is the case indbialssciences, medicine, economics
and other fields, where quantifying key attributes such aasamer satisfaction,” “anxiety” and “re-
cession” requires the developmenimdicators observable variables that are postulated to measure
the target latent variables up to some measurement errtde(B@989; Carroll et al., 1995).

In a probabilistic framework, this often boils down to a lstteariable model (Bishop, 1998). One
common setup is to assume each observed indidatas being generated independently given the
set of latent variableX. Conditioning on any given observed data pdihgives information about
the distribution of the latent vect®, which can then be used for ranking, clustering, visudbrat
or smoothing, among other tasks. Figure 1 provides anidtisn.

Questionnaire$rom large surveys are sometimes used to provide such imds;aacty; recording

an answer that typically corresponds to a Bernoulli or aatlirariable. For instance, experts can
be given questions concerning whether there is freedomesfspin a particular nation, as a way
of measuring its democratization level (Bollen, 1989; Radoet al., 2007). Nations can then be
clustering or ranked within an interpretable latent spateng questionnaires have nevertheless
drawbacks, as summarized by Stanton et al. (2002) in thexbof psychometric studies:

Longer surveys take more time to complete, tend to have m@simg data,
and have higher refusal rates than short surveys. Arguidely, techniques to re-
ducing the length of scales while maintaining psychomejtiality are wortwhile.
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Figure 1: (a) A graphical representation of a latent vadabbdel. Notice that in general latent vari-
ables will be dependent. Here, the question is how to quasiimocratization and industrialization
levels of nations given observed indicatdfssuch as freedom of press and gross national product,
among others (Bollen, 1989; Palomo et al., 2007). (b) An edarof a result implied by the model
(adapted from Palomo et al. (2007)): barplots of the coodéi distribution of democratization lev-
els given the observed indicators at two time points, oibsethe posterior mean industrialization
level. The distribution of the latent variables given thes@tvations is the basis of the analysis.

Our contribution is a methodology for choosing which indica to preserve (e.g., which items to
keep in a questionnaire) given: i.) a latent variable mogdek#ication of the domain of interest;
ii.) a target number of indicators that should be preserviedaccomplish this, we provide: i.) a
target objective function that quantifies the amount ofiinfation preserved by a choice of a subset
of indicators, with respect to the full set; ii.) algorithrfte optimizing this choice of subset with
respect to the objective function. The general idea is i stith a target posterior distribution of
latent variables, defined by some latent variable measuremedel M (i.e., Pp((X | Y)). We
want to choose a subsadt, C Y so that the resulting conditional distributid?(X | Y,) is
as close as possible to the original one according to someécmtodel M is provided either by
expertise or by numerous standard approaches that can liecitpgearn it from data (e.g., methods
in Bishop, 2009). We call this taskeasurement model thinning

Notice that the size dY , is a domain-dependent choice. Assuminis a good model for the data,
choosing a subset of indicators will incur some informatmss. It is up to the analyst to choose a
trade-off between loss of information and the design of #mgheaper ways of measuring latent
variables. Even if a shorter questionnaire is not to be degglpthe outcome of measurement model
thinning provides a formal sensitivity analysis of the &trtatent distribution with respect to the
available indicators. The result is useful to generatedtffit insights into the domain.

This paper is organized as follows: Section 2 defines a focnitakion to quantify how appropriate a
subsetY, is. Section 3 describes different approaches in which tiitisron can be optimized. Re-
lated work is briefly discussed in Section 4. Experiment$ witnthetic and real data are discussed
in Section 5, followed by the conclusion.

2 AnInformation-Theoretical Criterion

Our focus is on domains where latent variables are not a bgitmt of a dimensionality reduction
technique, but the target of the analysis as in the exampiégofre 1. That is, measurement error
problems where the variables to be recordeddmsignedspecifically to obtain information con-
cerning such unknowns (Carroll et al., 1995; Bartholomeale2008). As such, we postulate that
the outcome of any analysis should be a functionaPef(X | Y), the conditional distribution of
unobservableX given observable¥ within a modelM. It is assumed that specifies the joint
Pm(X,Y). We further assume that observed variables are condilyonalependent giveiX, i.e.
Pm(X,Y) = Pum(X) [TE, Prm(Y; | X), with p being the number of observed indicators.



If z = (21, 29,..., %) is abinary vector of the same dimensionality¥sandY, is the subset of
Y corresponding the non-zero entrieszofve can assessby the KL divergence

PuX|Y)
This is well-defined, since both distributions lie in the sagample space despite the difference

of dimensionality betweelY andY,. Moreover, sinceY is itself a random vector, our criterion
becomes the expected KL divergence

(KL(PmX | Y) [ Pm(X | Y2)))p, (v
where(-) denotes expectation. Our goal is to minimize this functidthwespect tez. Rearranging

this expression to drop all constants that do not depend, and multiplying it by—1 to get a
maximization problem, we obtain the problem of findizigsuch that

KLPMX |Y) || Pr(X | Y,)) = / Pu(X | Y) log ix

¢ = argmagz, {(log(PM (Y2 | X)) ppxxs) — 108(Pat(Y2) py, (YZ)}
P
= argmaz, {Z zi (log(Pm(Yi [ X)) p o x.vi) + HM(YZ)}
i=1
= argmaz,Fam(z)

subject tod *_, z; = K for a choice ofK, andz; € {0,1}. Ha(-) denotes here the entropy of

a distribution parameterized by1. Notice we used the assumption that indicators are mutually
independent giveiX. There is an intuitive appeal of having a joint entropy teomeward not only
marginal relationships between indicators and latentaldes, but also selections that are jointly
diverse. Notice that optimizing this objective functionms out to be equivalent to minimizing
the conditional entropy of latent variables giv&T. Motivating conditional entropy from a more
fundamental principle illustrates that other functions ba obtained by changing the divergence.

3 Approachesfor Approximate Optimization

The problem of optimizingFa«(z) subject to the constrainfs)?_, z; = K, z; € {0,1}, is hard
not only for its combinatorial nature, but due to the entrégayn. This needs to be approximated,
and the nature of the approximation should depend on the fakem by M. We will assume that
it is possible to efficiently compute any marginalsf(Y) of modest dimensionality (say, 10
dimensions). This is the case, for instance, inghabit model for binary data:

X ~N(0,Y),  YF~NATX+ Ao, 1),
Y, = 1L1,if Y* >0, and O otherwise
where\ (m, S) is the multivariate Gaussian distribution with mearand covariance matri®. The
probit model is one of the most common latent variable mddelguestionnaire data (Bartholomew
et al., 2008), with a straigthforward extension to ordinafad In this model, marginals for a few

dozen variables can be obtained efficiently since this spords to calculating multivariate Gaus-
sian probabilities (Genz, 1992). Parameters can be fit byiatyaf methods (Hahn et al., 2010).

We also assume thatt allows for the computation oflog(Pr(Yi | X)))p,, x,v,) at little cost.
Again, in the binary probit model this is simple, since th@guires integrating away a single binary
variableY; and a univariate Gaussiaj X.

3.1 Gaussian Entropy

One approximation toF ,¢(z) is to replace its entropy term by the corresponding entrapynf
some Gaussian distributia®(Y.). The entropy of a Gaussian distribution is proportionah® t
logarithm of the determinant of its covariance matrix, aedde can be computed #(p?) steps.
This Gaussian can be chosen as the one closdt Y ,) in a K L(Py || Py) sense: that is, the
one with the same first and second moment®ggY,). In our case, computing these moments
can be done deterministically (up to numerical error) usitagdard bivariate quadrature methods.
No expectation-propagation (Minka, 2001) is necessarg. ciresponding objective function is

p
Fran(z) = 2z (log(Ppa(Yi | X)) p, x.ysy + 0-5108 [Ty
1=1



whereY, is the covariance matrix 6, — which for binary and ordinal data has a sensible interpre-
tation. This function is also an upper bound on the exacttfancF 4 (z), since the Gaussian is the
distribution with the largest entropy for a given mean veetod covariance matrix. The resulting
function is non-linear ire. In our experiments, we optimize farusing a greedy scheme: for all
possible pairgi, j) such that;; = 1 andz; = 0, we swap its values (so that, z; is alwaysK).

We choose the pair with the highest increas&jn.»-(z) and repeat the process until convergence.

3.2 Entropy with Bounded Neighborhoods

An alternative bound can be derived from a standard fact fiorimation theory: H(Y | S) <
H(Y | ') for S' C S, where(- | -) denotes conditional entropy. This was exploited by Glotwers
and Jaakkola (2007) to define an upper bound in the entropydatidbution as follows: consider
a permutatiore of the set{1,2,...,p}, with e(i) being thei-th element of. Denote bye(1 : 7)
the firsti elements of this permutation (an empty set# 1). Moreover, letN (e, ) be a subset of
e(l:i—1). Foragiven set variable§ = {17,Y>,...,Y,} the following bound holds:

n p
HYV, Yo, Yp) = D H(Yeq) | Yeion) < D H(Vei) | Ynie) (1)
i=1 =1

If each setV (e, i) is no larger than some constant then this bound can be computedtp - 27)
steps for binary probit models. The bound holds for any ahoite, but we want it to be as tight
as possible so that it gets weighted in a reasonable waystgheother terms itF o4 (-). Since the
entropy function is decomposable as a sum of functions ta¢idd ont and N (e, ¢) only, one can
minimize this bound with respect toby using permutation optimization methods such as (Jaakkol
et al., 2010). In our implementation, we use a method sintdaFeyssier and Koller (2005) that
shuffles neighboring entries @f to generate candidates, chooses the optiivigd, ;) for eachi
given the candidate, and picks as the next permutation the candidatéth the greatest decrease
in the bound.

Notice that a permutation choieeand neighborhood choice$(e, i) define a Bayesian network
whereN (e, i) are the parents df. ;). Therefore, if this Bayesian network model provides a good
approximation taP4(Y), the bound will be reasonably tight.

Givene, we will further relax this bound with the goal of obtaining imteger programming formu-
lation for the problem of optimizing an upper boundf,(z). For any givere, we define the local
term# ., (z,4) as

MHi(z,i) = Hm(Yey | YaNN(eyd) = ) 112 [T G-z Huen |S)
SeP(N(ei) |jes kEN (e,i)\S
)

whereP(-) denotes the power set of a set. The new approximate objdatietion becomes
p p
Frn(z) =Y 2 (0g(Pr(Yi | X)) p xvey T 2 Ze(i Hi (2, 1) 3)

=1 =1
Notice thatH,(z, ) is still an upper bound o (Ye(i) | Ye(1:i—1)). The intuition is that we
are bounding »((Y) by the entropy of a Bayesian network where a veiitgy, is included if
ze(iy = 1, with corresponding parents given B, N N(e,i). This is a well-defined Bayesian
network for any choice af. The shortcoming is that ideally we would like this Bayesiatwork to
be the actual marginal of the model givendgndN (e, ¢). Itis not: if the network implied by and
N (e, i) was, forinstancey; — Y, — Y3, the choice oz = (1,0, 1) would result on the entropy
of the disconnected graglys, Y3}, while the true marginal would correspond instead to thelgra
Y7 — Ys. However, our simplified marginalization has the advantaigavoiding an intractable
problem. Moreover, it allows us to redefine the problem astager linear program (ILP).

Each product.; [, z; [1,.(1—=x) appearingin (3) resultsin a sum@f2?) terms, each of which
has (up to a sign) the formw, = [],,c 2m for some set\/. Itis still the case thagy, € {0,1}.

Therefore, objective function (3) can be interpreted asdpdinear on a set of binary variables
{{z},{q}}. We need further to enforce the constraints coming from

gy =1=>{Vme M, z, =1}; qu =0= {Im € M s.t.z,, =0}



Itis well-known (Glover and Woolsey, 1974) that this copesds to the linear constraints

qu=1={Yme Mz, =1} & VYme M, qu — 2, <0
gy =0={3Ime Mstz, =0} & ZmeMZm—QMS|M|—1

which combined with the linear constra@:Z 1 zi = K implies that optimizingF;p(z) is an
ILP with O(p - 2P) variables andD(p? - 2P) constraints. In our experiments in Section 5, we
were able to solve essentially all of such ILPs exactly usiimgar programming relaxations with
branch-and-bound.

3.3 Entropy with Tree-Structured Bounds

The previous bound simplifies marginalization, which migatly overestimate entropies where
the correspondind , are uniformly spread out in permutatien We now propose a different type
of bound which treats different marginalizations on an édfm@ting. It comes from the following
observation: since! (Y. ;) | Ye(1:5—1)) i less than or equal to any conditional entrGpiy ;) | Y;)
for j € e(1: i — 1), we have that the tighest bound given by singleton conditipgets is

H(Ye(i) | Yeiimny) < min Hu(Yeq | Y)),
j€e(1:i—1)

resulting in the objective function

fM;tree = ; log PM(Y | X PM(X Y1)+Z Ze(i)* JGYeu " leZ} (Ye(z) | YJ) (4)
Wheremin{yjeye(l:iil)myz}H(Y;(i) | 'Y;) = H(Yew)) if Ye:i-1) NY, = (. The intuition is
that we are bounding the exact entropy using the entropy otated tree rooted at. _(,), the first
element ofY, according tce. That is, all variables are marginally dependent in the exipration
regardless of what is, and for a fixedz the tree is, by construction, the one obtained by the usual
greedy algorithm of adding edges corresponding to the gl Ipair of vertices with maximum
mutual information (following an ordering, in this case).

It turns out we can also write (4) as a linear objective funretof a polynomial number of\1

variables and constraints. Let = 1 — z;. Let HY H® ... H'™ be the values of set
{Ha(Yegiy | Yery)s -+ Haa(Yasy | Yei—1))} sOrted in ascending order, with"), ..., 2" be-
ing the corresponding permutation{of, (1), . . ., ze(;i—1) }. We have

RO IEORC O *(1)1(2) OO 4

1) - H=2) (- 1)H(Z 1)+H (J)HM(Ye )
= Z] 1q1( )HZ(J)"'qzl Hm( 81)

) = 0 -1 5k

whereg; z; w1 Z; »and also a binar@\1 variable. Plugging this expression into (4) gives
a linear objective function i |n this extended variable spdtes corresponding constraints are

mingy,ev, ., ny.} HYe) | Y;) =

]

49 =1 Fom e 20,200 20) 2 = 1)
@ =05 Fon e 20,200 2Dy stz — 0}
which, as shown in the previous section, can be written &aliiconstraints (substituting eagh

by 1 — 2;). The total number of constraints is howe¥gfp?), which can be expensive, and often a
linear relaxation procedure with branch-and-bound failgrovide guarantees of optimality.

3.4 TheRéeliability Score
Finally, it is important to design cheap, effective critewwhose maxima correlate with the maxima

of Faq(+). Empirically, we have found high quality selections in binarobit models using the
solution to the problem

maximizeF . (z szzl, subject toz; € {0,1}, Zzz =



wherew; = ATYA;. This can be solved by picking the corresponding indicatatis the highest
K weightsw;. Assuming a probit model where the measurement error fdr Bgchas the same
variance of 1, this score is related to the “reliability” af andicator. Simply put, the reliability
R; of an indicator is the proportion of its variance that is dodhte latent variables (Bollen, 1989,
Chapter 6):R; = w;/(w; + 1) for eachY;*. There is no current theory linking this solution to the
problem of maximizingF,(+): since there is no entropy term, we can set an adversarialggto
easily defeat this method. For instance, this happens indehvehere thek indicators of highest
reliability all measure the same latent variablg and nothing else — much information aboXi
would be preserved, but little about other variables. In@ase, we found this criterion to be fairly
competitive even if at times it produces extreme failures.h&dnest account of more sophisticated
selection mechanisms cannot be performed without includjras we do in Section 5.

4 Reated Work

The literature on survey analysis, in the context of latetable models, contains several exam-
ples of guidelines on how to simplify questionnaires (sames$ described as providing “shortened
versions” of scales). Much of the literature, however, ¢stsf describing general guidelines and
rules-of-thumb to accomplish this task (e.g, Richins, 2@3dnton et al., 2002). One possible excep-
tion is Leite et al. (2008), which uses different model fisegteria with respect to a given dataset
to score candidate solutions, along with an expensive coandiial optimization method. This con-
flates model selection and questionnaire thinning, ancttisano theory linking the score functions
to the amount of information preserved. In the machine legrand statistics literature, there is a
large body of research in active learning, which is relateolr task. One of the closest approaches
is the one by Liang et al. (2009), which casts the classiacdllpm of measurement selection within
a Bayesian graphical model perspective. In that work, osetth@hoose which measurements to
add. This is done sequentially, partially motivated by peats where collecting new measurements
can be done relatively fast and cheap (say, by paying gragtadents to annotate text data), and so
the choice of next measurement can make use of fresh datar baee, it not might be realistic to
expect we can perform a large number of iterations of datactidn — and as such the task of reduc-
ing the number of measurements from a large initial coltectnight be more relevant in practice.
Liang et al. also focus on (multivariate) supervised leagrinstead of purely unsupervised learning.
In statistics there is also a considerable body of liteetur sufficient dimension reduction and its
sparse variants (e.g., Chen et al., 2010). Such technigaeateca bottleneck between two sets of
variables in a regression problem (say, the mapping fidrto X) while eliminating some of the
input variables. In principle one might want to adapt sucldaisto take a latent variable model

as the target mapping. Besides some loss of interpretatiiié computational implications might
be problematic, though. Moreover, this framework has agrditee parameter corresponding to the
dimensionality of the bottleneck that has to be set. It isabear how this parameter, along with a
choice of sparsity level, would interact with a fixed chol€eof indicators to be kept.

5 Experiments

In this section, we first describe some synthetic experigy@nprovide insights about the different
methods, followed by one brief description of a case studyall of the experiments, the target
modelsM are binary probit. We set the neighborhood paramete#iota/(-) to 9. The ordering
e for the tree-structured method is obtained by the same greeaich of Section 3.2, where now
the score is the average of &ll(Y; | Y;) for all Y; precedingy;. Finally, all ordering optimization
methods were initialized by sorting indicators in a des@egadrder according to their reliability
scores, and the initial solution for all entropy-basedmptation methods was given by the reliability
score solution of Section 3.4. The integer program solver@81 4.02 was used in all experiments.

5.1 Synthetic studies

We start with a batch of synthetic experiments. We gene@etodels with 40 indicators and 10
latent variables We further preprocess such models into two groups: in 4b@it we select a

!Details on the model generation: we generate 40 models bplsanthe latent covariance matrix from
an inverse Wishart distribution with 10 degrees of freedaom scale matrix 10 I being the identity matrix.
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Figure 2: (a) A comparison of the bounded neighborhaug, {ree-basedl() and Gaussian({)
methods with respect to a random soluti®t) and the reliability score9). (b) A similar comparison
for models where indicators are more weakly correlated éddkent variables than in (a). (c) and
(d) Scatterplots of the average absolute deviance for #eetinsed method (horizontal axis) against
the reliability method (vertical axis). The bottom-lefoalds correspond to th& = 32 trials.

target reliabilityr; for each indicatoty;, uniformly at random from the interval [0.4 0.7]. We then
rescale coefficientd; such that the reliability (defined in Section 3.4) of the exdjveY,* becomes
r;. For the remaining 40 models, we sampjeiniformly at random from the interval [0.2 0.4].

We perform two choices of subsets: safs of size 20 and 32 (50% and 80% of the total num-
ber of indicators). Our evaluation is as follows: since tikpexted value is perhaps the most
common functional of the posterior distributidf(X | Y), we calculate the expected value of
the latent variables for a samp{gr"), y(?, ..., y(1090)1 of size 1000 taken from the respective
synthetic models. This is done for the full set of 40 indicat@and for each set chosen by our
four criteria for each data poirtand each objective functiaf, we evaluate the average distance

d(l) Z 115 3 A(ZF|/10 In this caseq:(l) is the expected value df; obtained by conditioning

onall |nd|cators Whllec .7 is the one obtained with the subset selected by optimiZing/e denote

by mr the average o{d (1) d(g) ceey dgooo)}. Finally, we compare the three main methods with

respect to the reliability score method using the improvemetio statisticsr = 1 — mz/mzr,,.z»
the proportion of average error decrease with respect todlability score. In order to provide
a sense of scale on the difficulty of each problem, we compwesame ratios with respect to a
random selection, obtained by choosifig= 20 and K’ = 32 indicators uniformly at random.

Figure 2 provides a summary of the results. In Figure 2(a)h dBoxplot shows the distribution
over the 40 probit models where reliabilities were sampletiveen [0.4 0.7] (the “high signal”
models). The first three boxplots show the score®of the bounded neighborhood, tree-structured
and Gaussian methods, respectively, compared againgimaselections. The last three boxplots
are comparisons against the reliability heuristic. The-sased method easily beats the Gaussian
method, with about 75% of its outcomes being better than #xgiam Gaussian outcome. The Gaus-
sian approach is also less reliable, with results showirang lower tail. Although the reliability
score is on average a good approach, in only a handful of éae@s better than the tree-based
method, and by considerably smaller magnitudes compartmtopper tails in the tree-based out-
come distribution. A separate panel (Figure 2(b)) is shawitfe 40 models with lower reliabilities.
In this case, all methods show stronger improvements oeareiiebility score, although now there
is a less clear difference between the tree method and thes@awone. Finally, in panels (c) and (d)
we present scatterplots for the average deviancesf the tree-based method against the reliability
score. The two clouds correspond to the solutions with 2032niddicators. Notice that in the vast
majority of the cases the tree-based method does better.

We then rescale the matrix to make all variances equal to 1.aMé generate 40 models using as the in-
verse Wishart scale matrix the correlation matrix will af-diagonal entries set to 0.5. Coefficients linking
indicators to latent variables were set to zero with praiigit).8, and sampled from a standard Gaussian oth-
erwise. If some latent variable ends up with no child, or atidator ends up with no parent, we uniformly
choose one child/parent to be linked to it. Code to fully iegik the synthetic experiments is available at
HTTP://WWW.HOMEPAGESUCL.AC.UK/~UCGTRBD/.



5.2 Casestudy

The National Health Service (NHS) is the public health systé the United Kingdom. In 2009, a
major survey called thRational Health Service National Staff Surwegs deployed with the goal of
“collect(ing) staff views about working in their local NH&ist” (Care Quality Comission and Aston
University, 2010). A questionnaire of 206 items was filled15%, 951 respondents. We designed a
measurement model based on the structure of the questieraral fit it by the posterior expected
value estimator. Gaussian and inverse Wishart priors wsed,along with Gibbs sampling and a
random subset d30, 000 respondents. See the Supplementary Material for morelsletéveral
items in this survey asked for the NHS staff member to prodiegrees of agreement in a Likert
scale (Bartholomew et al., 2008) to questions such as

... have you ever come to work despite not feeling well endogierform ... ?
Have you felt pressure from your manager to come to work?

Have you felt pressure from colleagues to come to work?

Have you put yourself under pressure to come to work?

as different probes into an unobservable self-assesseldaework pressure.

We preprocessed and binarized the data to first narrow it dow88 questions. We compare selec-
tions of 32 (50%) and 50 (80%) items using the same statigfittse previous section.

SF;D SFitree SF;N SFirandom | MFtree MFr.R

K=32 178% 6.3% 0.01% —16.0% 0.238  0.255
K =50 105% 11.9% 7.6% —0.05% 0.123  0.140

Although gains were relatively small (as measured by thiedihce between reconstruction errors
mr.aree — My, and the good performance of a random selection), we shoved ith we do
improve results over a popular measure of indicator quaility we do provide some guarantees
about the diversity of the selected items via a informatioesretical measure with an entropy term,
with theoretically sound approximations to such a meaduoe more details on the preprocessing,
and more insights into the different selections, pleaser tefthe Supplementary Material.

6 Conclusion

There are problems where one posits that the relevant irsfiiomis encoded in the posterior distri-
bution of a set of latent variables. Questionnaires (andratistruments) can be used as evidence
to generate this posterior, but there is a cost associatidcamplex questionnaires. One problem
is how to simplify such instruments of measurement. To thst bEour knowledge, we provide the
first formal account on how to solve it. Nevertheless, we wdike to stress there is no substitute
for common sense. While the tools we provide here can be ugeal Variety of analyses — from
deploying simpler questionnaires to sensitivity analysthe value and cost of keeping particular
indicators can go much beyond the information containetiénlatent posterior distribution. How
to combine this criterion with other domain-dependentcidtis a matter of future research.

Another problem of importance is how to deal with model sfiegiion and transportability across
studies. A measurement model built for a very specific pdmnaof respondents might transfer
poorly to another group, and therefore taking into accourd@ehuncertainty will be important. The
Bayesian setup discussed by Liang et al. (2009) might peostaine directions on this issue. Also,
there is further structure in real-world questionnairesase not exploiting in the current work.
Namely, it is not uncommon to have questionnaires with bnanmgcquestions and other dynamic
behaviour more commonly associated with Web based survel/srdongitudinal studies. Finally,
hybrid approaches combining the bounded neighborhood lamdrée-structured methods, along
with more sophisticated ordering optimization procedares the use of other divergence measures
and determinant-based criteria (e.g. Kulesza and Tas@ad,)2will also be studied in the future.
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