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Abstract
We describe anytime search procedures that (1) find disjointsubsets of recorded variables for which
the members of each subset are d-separated by a single commonunrecorded cause, if such exists;
(2) return information about the causal relations among thelatent factors so identified. We prove
the procedure is point-wise consistent assuming (a) the causal relations can be represented by a
directed acyclic graph (DAG) satisfying the Markov Assumption and the Faithfulness Assumption;
(b) unrecorded variables are not caused by recorded variables; and (c) dependencies are linear. We
compare the procedure with standard approaches over a variety of simulated structures and sample
sizes, and illustrate its practical value with brief studies of social science data sets. Finally, we
consider generalizations for non-linear systems.
Keywords: latent variable models, causality, graphical models

1. What We Will Show

In many empirical studies that estimate causal relationships, influential variables are unrecorded, or
“latent.” When unrecorded variables are believed to influence only one recorded variable directly,
they are commonly modeled as noise. When, however, they influence two or more measured vari-
ables directly, the intent of such studies is to identify them and their influences. In many cases, for
example in sociology, social psychology, neuropsychology, epidemiology, climate research, signal
source studies, and elsewhere, the chief aim of inquiry is in fact to identifythe causal relations of
(often unknown) unrecorded variables that influence multiple recordedvariables. It is often assumed
on good grounds that recorded variables do not influence unrecorded variables, although in some
cases recorded variables may influence one another.

When there is uncertainty about the number of latent variables, which measured variables they
influence, or which measured variables influence other measured variables, the investigator who
aims at a causal explanation is faced with a difficult discovery problem forwhich currently avail-
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able methods are at best heuristic. Loehlin (2004) argues that while thereare several approaches
to automatically learn causal structure, none can be seem as competitors of exploratory factor anal-
ysis: the usual focus of automated search procedures for causal Bayes nets is on relations among
observed variables. Loehlin’s comment overlooks Bayes net search procedures robust to latent vari-
ables (Spirtes et al., 2000) and heuristic approaches for learning networks with hidden nodes (Elidan
et al., 2000), but the general sense of his comment is correct. For a kindof model widely used in
applied sciences− “multiple indicator models” in which multiple observed measures are assumed
to be effects of unrecorded variables and possibly of each other− machine learning has provided
no principled alternative to factor analysis, principal components, and regression analysis of proxy
scores formed from averages or weighted averages of measured variables, the techniques most com-
monly used to estimate the existence and influences of variables that are unrecorded. The statistical
properties of models produced by these methods are well understood, but there are no proofs, under
any general assumptions, of convergence to features of the true causal structure. The few simulation
studies of the accuracy of these methods on finite samples with diverse causal structures are not re-
assuring (Glymour, 1997). The use of proxy scores with regression isdemonstrably not consistent,
and systematically overestimates dependencies. Better methods are needed.

Yet the common view is that solving this problem is actually impossible, as illustrated by the
closing words of a popular textbook on latent variable modeling (Bartholomewand Knott, 1999):

When we come to models for relationships between latent variables we have reached
a point where so much has to be assumed that one might justly conclude that thelimits
of scientific usefulness have been reached if not exceeded.

This view results from a commitment to factor analysis asthemethod to identify and measure
unrecorded common causes of recorded variables. One aim of the following work is to demonstrate
that such a commitment is unjustified, and to show that the pessimistic claim that follows from it is
false.

We describe a two part method for this problem. The method (1) finds clustersof measured
variables that are d-separated by a single unrecorded common cause, ifsuch exists; and (2) finds
features of the Markov Equivalence class of causal models for the latent variables. Assuming only
multiple indicator structure and principles standard in Bayes net search algorithms, principles as-
sumed satisfied in many domains, especially in the social sciences, the two procedures converge,
probability 1 in the large sample limit, to correct information. The completeness of the information
obtained about latent structure depends on how thoroughly confounded the measured variables are,
but when, for each unknown latent variable, there in fact exists at least a small number of measured
variables that are influenced only by that latent variable, the method returns the complete Markov
Equivalence class of the latent structure. To complement the theoretical results, we show by simu-
lation studies for several latent structures and for a range of sample sizes that the method identifies
the unknown structure more accurately than does factor analysis and a published greedy search al-
gorithm. We also illustrate and compare the procedures with applications to social science cases,
where expert opinions about measurement are reasonably firm, but are less so about causal relations
among the latent variables.

The focus is on linear models of continuous variables. Although most of ourresults do not
make special assumptions about the choice of a probability family, for practical purposes we further
assume in the experiments that variables are multivariate Gaussian. In the very end of the paper, we
consider possible generalizations of this approach for non-linear, non-Gaussian and discrete models.
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The outline of this paper is as follows:

• Section 2: Illustrative principles describes a few examples of the techniques we use to learn
causal structure in the presence of latent variables;

• Section 3: Related workis a brief exposition of other methods used in latent variable learn-
ing. We note how the causal discovery problem cannot be reliably solvedby methods created
for probabilistic modeling only;

• Section 4: Notation, assumptions and definitionscontains all relevant definitions and as-
sumptions used throughout this paper for the convenience of the reader;

• Section 5: Procedures for finding pure measurement modelsdescribes the method we
use to solve the first half of the problem, discovering which latents exist andwhich observed
variables measure them;

• Section 6: Learning the structure of the unobserveddescribes the method we use to solve
the second half of the problem, discovering the Markov equivalence class that contains the
causal graph connecting the latent variables;

• Section 7: Simulation studiesand Section 8: Real data applicationscontain empirical
results with simulated and real data;

• Section 9: Generalizationsis a brief exposition of related work describing how the methods
here introduced could be used to discover partial information in certain other classes models;

• Section 10: Conclusionsummarizes the contribution of this paper and suggests several av-
enues of research;

Proofs of theorems and implementation details are given in the Appendix.

2. Illustrative Principles

One widely cited and applied approach to learning causal graphs rely on comparing models that
entail different conditional independence constraints in the observed marginal (Spirtes et al., 2000).
When latent variables are common causes of all observed variables, as inthe domains described
in the introduction, no such constraints are expected to exist. Still, when suchcommon causes are
direct causes of just a few variables, there is much structure that can be discovered, although not
by observable independencies. One needs instead a framework that distinguishes among different
causal graphs from other forms of constraints in the marginal distribution of the observed variables.
This section introduces the type of constraints we use through a few illustrative examples.

Consider Figure 1, whereX variables are recorded andL variables (in ovals) are unrecorded
and unknown to the investigator. The latent structure, the dependencies of measured variables on
individual latent variables, and the linear dependency of the measured variables on their parents
and (unrepresented) independent noises in Figure 1 imply a pattern of constraints on the covariance
matrix among theX variables. For example,X1,X2,X3 have zero covariances withX7,X8,X9. Less
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Figure 1: A latent variable model which entails several constraints on the observed covariance ma-
trix. Latent variables are inside ovals.

obviously, forX1,X2,X3 and any one ofX4,X5,X6, three quadratic constraints (tetradconstraints) on
the covariance matrix are implied: e.g., forX4

ρ12ρ34 = ρ14ρ23 = ρ13ρ24 (1)

whereρ12 is the Pearson product moment correlation betweenX1,X2, etc. (Note that any two of the
three vanishing tetrad differences above entails the third.) The same is true for X7,X8,X9 and any
one ofX4,X5,X6; for X4,X5,X6, and any one ofX1,X2,X3 or any one ofX7,X8,X9. Further, for any
two of X1,X2,X3 or of X7,X8,X9 and any two ofX4,X5,X6, exactly one such quadratic constraint is
implied, e.g., forX1,X2 andX4,X5, the single constraint

ρ14ρ25 = ρ15ρ24 (2)

The constraints hold as well if covariances are substituted for correlations.
Statistical tests for vanishing tetrad differences are available for a wide family of distributions

(Wishart, 1928; Bollen, 1990). Linear and non-linear models can imply other constraints on the
correlation matrix, but general, feasible computational procedures to determine arbitrary constraints
are not available (Geiger and Meek, 1999) nor are there any available statistical tests of good power
for higher order constraints. Tetrad constraints therefore provide a practical way of distinguishing
among possible candidate models, with a history of use in heuristic search dating from the early
20th century (see, e.g., references within Glymour et al., 1987). This paper describes a principled
way of using tetrad constraints in search.

In particular, we will focus on a class of “pure” latent variable models where latents can be
arbitrarily connected in a acyclic causal graph, but where observed variables have at most one latent
parent.

Given a “pure” set of measured indicators of latent variables, as in Figure 1− informally, a
measurement model specifying, for each latent variable, a set of measured variables influenced only
by that latent variable and individual, independent noises− the causal structure among the latent
variables can be estimated by any of a variety of methods. Standard score functions of latent variable
models (such as the chi-square test) can be used to compare models with and without a specified
edge, providing indirect tests of conditional independence among latent variables. The conditional
independence facts can then be input to a constraint based Bayes net search algorithm, such as PC
or FCI (Spirtes et al., 2000), or used to guide a greedy search algorithmsuch as GES (Chickering,
2002).

This is not to say that we need to assume that the true underlying graph contains only pure
measures of the latent variables. In Figure 1, the measured variables neatly cluster into disjoint sets
of variables and the variables in any one set are influenced only by a single common cause and there
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Figure 2: A latent variable model which entails several constraints on the observed covariance ma-
trix. These constraints can be used to discover a submodel of the model given above.

are no influences of the measured variables on one another. In many real cases the influences on the
measured variables do not separate so simply. Some of the measured variables may influence others
(as in signal leakage between channels in spectral measurements), and some or many measured
variables may be influenced by two or more latent variables. For example, thelatent structure of a
linear, Gaussian system shown in Figure 2 can be recovered by the procedures we propose by finding
asubsetof the given measures that are pure measures in the true graph. Our aim inwhat follows is to
prove and use new results about implied constraints on the covariance matrixof measured variables
to form measurement models that enable estimation of features of the Markov Equivalence class
of the latent structure in a wide range of cases. We will develop the theory first for linear models
(mostly for problems with a joint Gaussian distribution on all variables, includinglatent variables),
and then consider possibilities for generalization.

3. Related Work

The traditional framework for discovering latent variables is factor analysis and its variants (see,
e.g., Bartholomew et al., 2002). A number of factors is chosen based on some criterion such as
the minimum number of factors that fit the data at a given significance level orthe number that
maximizes a score such as BIC. After fitting the data, usually assuming a Gaussian distribution,
different transformations (rotations) to the latent covariance matrix are applied in order to satisfy
some criteria of simplicity. The meaning of a latent variable is determined informally based on the
magnitude of the coefficients relating each observed variable to each latent.This is, by far, the most
common method used in several applied sciences (Glymour, 2002). Social science methodology
also contains various beam searches that begin with an initial latent variablemodel and iteratively
add or delete dependencies in a greedy search guided by significance tests of nested models. In
simulation experiments (Glymour et al., 1987; Spirtes et al., 2000) these procedures have performed
little better than chance from data generated by true models in which some measured variables are
influenced by multiple latent varibles and by other measured variables.

In non-Gaussian cases, the usual methods are variations of independent component analysis,
such as independent factor analysis (Attias, 1999) and tree-based component analysis (Bach and
Jordan, 2003). These methods severely constrain the dependency structure among the latent vari-
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ables. That facilitates joint density estimation or blind source separation, butit is of little use in
learning causal structure.

In a similar vein, Zhang (2004) represents latent variable models for discrete variables (both
observed and latent) with a multinomial probabilistic model. The model is constrainedto be a
tree and every observed variable has one and only one (latent) parentand no child. Zhang does
not provide a search method to find variables satisfying the assumption, butassumes a priori the
variables measured satisfy it.

Elidan et al. (2000) introduces latent variables as common causes of densely connected regions
of a DAG learned through Bayesian algorithms for learning Bayesian network structures. Once one
latent is introduced as the parent of a set of nodes originally strongly connected, the same search
algorithm is applied using this modified graph as the initial graph. The process can be iterated
to introduce multiple latents. Examples are given for which this procedure, called FINDHIDDEN,
increases the fit over a latent-free graphical model, but for causal modeling the algorithm is not
known to be correct in the large sample limit. In a relevant sense, the algorithmcannot be correct,
because its output yields particular models from among an indistinguishable class of models that is
not characterized.

For instance, consider Figure 3(a), a model of two latents and four observed variables. Two
typical outputs produced by FINDHIDDEN given data generated by this model are shown in Figures
3(b) and 3(c). The choice of model is affected by the strength of the connections in the true model
and the sample size. These outputs suggest correctly that there is a single latent condition on which
all but one pair of observed variables are independent, although the suggestion of some direct causal
connection among a pair of indicators is false. The main problem of FINDHIDDEN here is that each
of these two models represents a different actual latent variable1 which is not clear from the output.
Graphs given Figures 3(b) and 3(c) are also generated by FINDHIDDEN when the true model has
the graphical structure seen in Figure 3(d). In this case, one might be ledto infer that there is a
latent condition on which three of the indicators are independent, which is not true.

To report all possible structures indistinguishable by the data instead of anarbitrary one is
the fundamental difference between purely probabilistically oriented applications (as the ones that
motivate the FINDHIDDEN algorithm) and causally oriented applications, as those that motivate
this paper. Algorithms such as the ones by Elidan et al. (2000) and Zhang (2004) are designed
to effectively perform density estimation, which is a very different problem, even if good density
estimators provide one possible causal model compatible with the data.

To tackle issues of sound identifiability of causal structures, we previously developed an ap-
proach to learning measurement models (Silva et al., 2003). That procedure requires that the true
underlying graph has a “pure” submodel with three measures for each latent variable, which is a
strong and generally untestable assumption. That assumption is not neededin the procedures de-
scribed here, but the output is still a pure model.

One of the reasons why we focus on pure models instead of general latent variable models
should be clear from the example in Figure 3: the equivalence class of all latent variable models
that cannot be distinguished given the likelihood function might be very large. While, for instance,
a Markov equivalence class for models with no latent variables can be neatly represented by a single
graphical object known as “pattern” (Pearl, 2000; Spirtes et al., 2000), the same is not true for latent

1. AssumingT1 in this Figure is the true latent that entails the same conditional independencies. In Figure 3(b),T1
should correspond toL2. In Figure 3(c), toL1. In the first case, however, the causal direction ofT1 into bothX1 and
X2 is wrong and cannot be correctly represented without the introduction ofanother latent.
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Figure 3: All four models above are undistinguishable in multivariate Gaussian families according
to standard algorithms, but such algorithms do not report this fact.

variable models. The models in Figure 3 differ not only in the direction of the edges, but also in
the adjacencies themselves ({X1,X2} adjacent in one case, but not{X3,X4}; {X3,X4} adjacent in
another case, but not{X1,X2}) and the role of the latent variables (ambiguity about which latent
d-separates which observed variables, how they are connected, etc.). A representation of such an
equivalence class, as illustrated by this very small example, can be cumbersome and uninformative.

4. Notation, Assumptions and Definitions

Our work is in the framework of causal graphical models. Concepts usedhere without explicit defi-
nition, such as d-separation and I-map, can be found in standard sources (Pearl, 1988; Spirtes et al.,
2000; Pearl, 2000). We use “variable” and “vertex/node” interchangeably, and standard kinship
terminology (“parent,” “child,” “descendant,” “ancestor”) for directed graph relationships. Sets of
variables are represented in bold, individual variables and symbols forgraphs in italics. The Pearson
partial correlation ofX, Y controlling forZ is denoted byρXY.Z. We assume i.i.d. data sampled from
a subsetO of the variables of a joint distributionD on variablesV = O∪L , subject to the following
assumptions:

A1 D factors according to the local Markov assumption for a DAGG with vertex setV. That
is, any variable is independent of its non-descendants inG conditional on any values of its
parents inG.

A2 No vertex inO is an ancestor of any vertex inL . We call this property themeasurement
assumption;

A3 Each variable inV is a linear function of its parents plus an additive error term of positive
finite variance;

A4 The Faithfulness Assumption: for all{X,Y,Z} ⊆ V, X is independent ofY conditional on
each assignment of values to variables inZ if and only if the Markov Assumption forG
entails such conditional independencies. For models satisfying A1-A3 with Gaussian dis-
tributions, Faithfulness is equivalent to assuming that no correlations or partial correlations
vanish because of multiple pathways whose influences perfectly cancel one another.

Definition 1 (Linear latent variable model) A model satisfying A1−A4 is a linear latent variable
model, or for brevity, where the context makes the linearity assumption clear, a latent variable
model.
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A single symbol, such asG, will be used to denote both a linear latent variable model and the
corresponding latent variable graph. Linear latent variable models are ubiquitous in econometric,
psychometric, and social scientific studies (Bollen, 1989), where they are usually known as struc-
tural equation models.

Definition 2 (Measurement model) Given a linear latent variable model G, with vertex setV, the
subgraph containing all vertices inV, and all and only those edges directed into vertices inO, is
called the measurement model of G.

Definition 3 (Structural model) Given a linear latent variable model G, the subgraph containing
all and only its latent nodes and respective edges is the structural model of G.

Definition 4 (Linear entailment) We say that a DAG G linearly entails a constraint if and only
if the constraint holds in every distribution satisfying A1 - A4 for G with covariance matrix pa-
rameterized byΘ, the set of linear coefficients and error variances that defines the conditional
expectation and variance of a vertex given its parents. We will assume without loss of generality
that all variables have zero mean.

Definition 5 (Tetrad equivalence class)Given a setC of vanishing partial correlations and van-
ishing tetrad differences, a tetrad equivalence classT (C) is the set of all latent variable graphs
each member of which entails all and only the tetrad constraints and vanishing partial correlations
among the measured variables entailed byC.

Definition 6 (Measurement equivalence class)An equivalence class of measurement modelsM (C)
for C is the union of the measurement models graphs inT (C). We introduce a graphical represen-
tation of common features of all elements ofM (C), analogous to the familiar notion of a pattern
representing the Markov Equivalence class of a Bayes net.

Definition 7 (Measurement pattern) A measurement pattern, denotedM P (C), is a graph repre-
senting features of the equivalence classM (C) satisfying the following:

• there are latent and observed vertices;

• the only edges allowed in an MP are directed edges from latent variables to observed vari-
ables, and undirected edges between observed vertices;

• every observed variable in a MP has at least one latent parent;

• if two observed variables X and Y in aM P (C) do not share a common latent parent, then X
and Y do not share a common latent parent in any member ofM (C);

• if observed variables X and Y are not linked by an undirected edge inM P (C), then X is not
an ancestor of Y in any member ofM (C).

Definition 8 (Pure measurement model)A pure measurement model is a measurement model in
which each observed variable has only one latent parent, and no observed parent. That is, it is a
tree beneath the latents.
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Figure 4: A linear latent variable model with any of the graphical structuresabove entails all possi-
ble tetrad constraints in the marginal covariance matrix ofX1−X4.

5. Procedures for Finding Pure Measurement Models

Our goal is to find pure measurement models whenever possible, and use them to estimate the struc-
tural model. To do so, we first use properties relating graphical structure and covariance constraints
to identify a measurement pattern, and then turn the measurement pattern into a pure measurement
model.

The key to solving this problem is a graphical characterization of tetrad constraints. Consider
Figure 4(a). A single latent d-separates four observed variables. When this graphical model is
linearly parameterized as

X1 = λ1L+ ε1

X2 = λ2L+ ε2

X3 = λ3L+ ε3

X4 = λ4L+ ε4

it entails all three tetrad constraints among the observed variables. That is,any choice of values for
coefficients{λ1,λ2,λ3,λ4} and error variances implies

σX1X2σX3X4 = (λ1λ2σ2
L)(λ3λ4σ2

L) = (λ1λ3σ2
L)(λ2λ4σ2

L) = σX1X3σX2X4

= (λ1λ2σ2
L)(λ3λ4σ2

L) = (λ1λ4σ2
L)(λ2λ3σ2

L) = σX1X4σX2X3

whereσ2
L is the variance of latent variableL.

While this result is straightforward, the relevant result for a structure learning algorithm is the
converse, i.e., establishing equivalence classes from observable tetrad constraints. For instance,
Figure 4(b) and (c) are different structures with the same entailed tetrad constraints that should
be accounted for. The main contribution of this paper is to provide severalof such identification
results, and sound algorithms for learning causal structure based on them. Such results require
elaborate proofs that are left to the Appendix. What follows are descriptions of the most significant
lemmas and theorems, and illustrative examples. This is the core section of the paper. Section 6
complements the approach by describing an algorithm for learning structural models.
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5.1 Identification Rules for Finding Substructures of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for later results. It is basi-
cally the converse of the observation above. LetG be a linear latent variable model with observed
variablesO:

Lemma 9 Let{X1,X2,X3,X4} ⊂O be such thatσX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3. If ρAB 6= 0
for all {A,B}⊂ {X1,X2,X3,X4}, then there is a node P that d-separates all elements{X1,X2,X3,X4}
in G.

It follows that, if no observed node d-separates{X1,X2,X3,X4}, then nodeP must be a latent
node.

In order to learn a pure measurement model, we basically need two pieces ofinformation: i.
which sets of nodes are d-separated by a latent; ii. which sets of nodes donot share any common
hidden parent. The first piece of information can provide possible indicators (children/descendants)
of a specific latent. However, this is not enough information, since a setSof observed variables can
be d-separated by a latentL, and yetS might contain non-descendants ofL (one of the nodes might
have a common ancestor withL and not be a descendant ofL, for instance). This is the reason why
we need toclusterobserved variables into different sets when it is possible to show they cannot
share a common hidden parent. We will show this clustering allows us to eliminate most possible
non-descendants.

There are several possible combinations of observable tetrad constraintsthat allow one to iden-
tify such a clustering. Consider, for instance, the following case, in whichit is determined that
certain variables do not share a common latent. Suppose we have a set of six observable variables,
X1,X2,X3,Y1,Y2 andY3 such that:

1. there is some latent node that d-separates all pairs in{X1,X2,X3,Y1} (Figure 5(a));

2. there is some latent node that d-separates all pairs in{X1,Y1,Y2,Y3} (Figure 5(b));

3. there is no tetrad constraintσX1X2σY1Y2−σX1Y2σX2Y1 = 0;

4. no pairs in{X1, . . . ,Y3}×{X1, . . . ,Y3} have zero correlation;

Notice that is possible to empirically verify the first two conditions by using Lemma 9. Now
suppose, for the sake of contradiction, thatX1 andY1 have a common hidden parentL. One can show
thatL should d-separate all elements in{X1,X2,X3,Y1}, and also in{X1,Y1,Y2,Y3}. With some extra
work (one has to consider the possibility of nodes in{X1,X2,Y1,Y2} having common parents withL,
for instance), one can show that this implies thatL d-separates{X1,Y1} from {X2,Y2}. For instance,
Figure 5(c) illustrates a case whereL d-separates all of the given observed variables.

However, this contradicts the third item in the hypothesis (such a d-separation will imply the
forbidden tetrad constraint, as we show in the formal proof) and, as a consequence, no suchL
should exist. Therefore, the items above correspond to anidentification rulefor discovering some d-
separations concerning observed and hidden variables (in this case, we show thatX1 is independent
of all latent parents ofY1 given some latent ancestor ofX1). This rule only uses constraints that can
be tested from the data.

Given such identification rules, what is needed is a principled way of combining the partial
information they provide to build classes of latent variable models of interest. The following section
explains the main rules and an algorithm for building an equivalence class ofmeasurement models.
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Figure 5: If sets{X1,X2,X3,Y1} and{X1,Y1,Y2,Y3} are each d-separated by some node (e.g., as in
Figures (a) and (b) above), the existence of a common parentL for X1 andY1 implies a
common node d-separating{X1,Y1} from {X2,Y2}, for instance (as exemplified in Figure
(c)).

5.2 Algorithms for Finding Equivalence Classes of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for later results. We dis-
cover a measurement pattern as an intermediate step before learning a puremeasurement model.
FINDPATTERN, given in Table 1, is an algorithm to learn a measurement pattern from an oracle for
vanishing partial correlations and vanishing tetrad differences. The algorithm uses three rules, CS1,
CS2, CS3, based on Lemmas that follow, for determining graphical structurefrom constraints on
the correlation matrix of observed variables.

Let C be a set of linearly entailed constraints satisfied in the observed covariance matrix. The
first stage of FINDPATTERN searches for subsets ofC that will guarantee that two observed variables
do not have any latent parent in common. LetG be the latent variable graph for a linear latent
variable model with a set of observed variablesO. Let O′ = {X1,X2,X3,Y1,Y2,Y3} ⊂O such that for
all triplets{A,B,C}, {A,B} ⊂ O′ andC ∈ O, we haveρAB 6= 0,ρAB.C 6= 0. Let τIJKL represent the
tetrad constraintσIJσKL−σIK σJL = 0 and¬τIJKL represent the complementary constraintσIJσKL−
σIK σJL 6= 0. The following Lemma is a formal description of the example given earlier:

Lemma 10 (CS1 Test)If constraints{τX1Y1X2X3,τX1Y1X3X2, τY1X1Y2Y3, τY1X1Y3Y2, ¬τX1X2Y2Y1} all hold,
then X1 and Y1 do not have a common parent in G.

“CS” here stands for “constraint set,” the premises of a rule that can beused to test if two nodes
do not share a common parent. Figure 6(a) illustrates one situation whereX1 andY1 can be iden-
tified to not measure a same latent. In that Figure, some variables are specified with unexplained
correlations represented as bidirected edges between the variables (such edges could be due to in-
dependent hidden common causes, for instance). This illustrates that connections between elements
of {X2,X3,Y2,Y3} can occur.

Other sets of observable constraints can be used to reach the same conclusion. We call them
CS2 and CS3. To see one of the limitations of CS1, consider Figure 6(b). There is no single latent
that d-separatesX1,Y1 and two other variables, as in CS1 cases. In Figure 6(c), there are no tetrad
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Algorithm FINDPATTERN

Input: a covariance matrixΣ

1. Start with a complete undirected graphG over the observed variables.

2. Remove edges for pairs that are marginally uncorrelated or uncorrelated conditioned on a
third observed variable.

3. For every pair of nodes linked by an edge inG, test if some rule CS1, CS2 or CS3 applies.
Remove an edge between every pair corresponding to a rule that applies.

4. LetH be a graph with no edges and with nodes corresponding to the observed variables.

5. For each maximal clique inG, add a new latent toH and make it a parent to all corresponding
nodes in the clique.

6. For each pair(A,B), if there is no other pair(C,D) such thatσACσBD = σADσBC = σABσCD,
add an undirected edgeA−B to H.

7. ReturnH.

Table 1: Returns a measurement pattern corresponding to the tetrad and first order vanishing partial
correlations ofΣ.

constraints simultaneously involvingX1,Y1 and other observed variables that are children of the
same latent parent ofX1. These extra rules are not as intuitive as CS1. To fully understand how
these cases still generate useful constraints, some knowledge of the graphical implications of tetrad
constraints is necessary. To avoid interrupting the flow of the paper, we describe these properties
only in the Appendix along with formal proofs of correctness. In the nextparagraphs, we just
describe rules CS2 and CS3.

Let the predicateFactor(X,Y,G) be true if and only if there exist two nodesW andZ in la-
tent variable graphG such thatτWXYZ and τWXZY are both linearly entailed byG, all variables
in {W,X,Y,Z} are correlated, and there is no observedC in G such thatρAB.C = 0 for {A,B} ⊂
{W,X,Y,Z}:

Lemma 11 (CS2 Test)If constraints{τX1Y1Y2X2,τX2Y1Y3Y2, τX1X2Y2X3,¬τX1X2Y2Y1} all hold such that
Factor(X1,X2,G) = true, Factor(Y1,Y2,G) = true, X1 is not an ancestor of X3 and Y1 is not an
ancestor of Y3, then X1 and Y1 do not have a common parent in G.

Lemma 12 (CS3 Test)If constraints{τX1Y1Y2Y3,τX1Y1Y3Y2, τX1Y2X2X3, τX1Y2X3X2,τX1Y3X2X3,
τX1Y3X3X2, ¬τX1X2Y2Y3} all hold, then X1 and Y1 do not have a common parent in G.

The rules are not redundant: only one can be applied on each situation. For instance, in Figure
6(a) the latent on the left d-separates{X1,X2,X3,Y1}, which implies{τX1Y1Y2Y3,τX1Y1Y3Y2}. The latent
on the right d-separates{X1,Y1,Y2,Y3}, which implies{τY1X1Y2Y3,τY1X1Y3Y2}. The constraintτX1X2Y2Y1

can be shown not to hold given the assumptions. Therefore, this rule tells us information about the
unobserved structure:X1 andY1 do not have any common hidden parent.
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Figure 6: Three examples with two main latents and several independent latent common causes of
two indicators (represented by bidirected edges). In (a), CS1 applies,but not CS2 nor
CS3 (even when exchanging labels of the variables); In (b), CS2 applies (assuming the
conditions forX1,X2 andY1,Y2), but not CS1 nor CS3. In (c), CS3 applies, but not CS1
nor CS2.

For CS2 (Figure 6(b)), nodesX andY are depicted as auxiliary nodes that can be used to verify
predicatesFactor. For instance,Factor(X1,X2,G) is true because all three tetrads in the covariance
matrix of{X1,X2,X3,X} hold.

Sometime it is possible to guarantee that a node is not an ancestor of another,as required, e.g.,
to apply CS2:

Lemma 13 If for some setO′ = {X1,X2,X3,X4} ⊆ O, σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3 and
for all triplets {A,B,C}, {A,B} ⊂O′,C∈O, we haveρAB.C 6= 0 andρAB 6= 0, then A∈O′ is not a
descendant in G of any element ofO′\{A}.

This follows immediately from Lemma 9 and the assumption that observed variablesare not
ancestors of latent variables. For instance, in Figure 6(b) the existenceof the observed nodeX
(linked by a dashed edge to the parent ofX1) allows the inference thatX1 is not an ancestor ofX3,
since all three tetrad constraints hold in the covariance matrix of{X,X1,X2,X3}.

We know have theoretical results that provide information concerning lackof common parents
and lack of direct connections of nodes, given a set of tetrad and vanishing partial correlationC.
The algorithm FINDPATTERN from Table 1 essentially uses the given lemmas to construct a mea-
surement pattern, as defined in Section 4.

Theorem 14 The output ofFINDPATTERN is a measurement patternM P(C) with respect to the
tetrad and zero/first order vanishing partial correlation constraintsC of Σ.

The presence of an undirected edge does not mean that adjacent vertices in the pattern are
actually adjacent in the true graph. Figure 7 illustrates this:X3 andX8 share a common parent in the
true graph, but are not adjacent. Observed variables adjacent in the output pattern always share at
least one parent in the pattern, but do not always share a common parent in the true DAG. Vertices
sharing a common parent in the pattern might not share a parent in the true graph (e.g.,X1 andX8 in
Figure 7).
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Figure 7: In (a), a model that generates a covariance matrixΣ. In (b), the output of FINDPATTERN

givenΣ. Pairs in{X1,X2}×{X4, . . . ,X7} are separated by CS2.

What is not obvious in the output of FINDPATTERN is how much more information it leaves
implicit and how to extract a (pure) model out of an equivalence class. These issues are treated in
the next section.

5.3 Completeness and Purification

The FINDPATTERN algorithm is sound, but not necessarily complete. That is, there might be graph-
ical features shared by all members of the measurement model equivalenceclass that are not dis-
covered by FINDPATTERN. For instance, there might be a CS4 rule that is not known to us. FIND-
PATTERN might be complete, but we conjecture it is not: we did not try to construct rulesusing
more than 6 variables (unlike CS1, CS2, CS3), since the more variables a rule has, the more com-
putational expensive and the less statistically reliable it is.2 Learning a pure measurement model is
a different matter. We can find a pure measurement model with the largest number of latents in the
true graph, for instance.

A pure measurement model implies aclusteringof observed variables: each cluster is a set of
observed variables that share a common (latent) parent, and the set of latents defines a partition over
the observed variables. The output of FINDPATTERN cannot, however, reliably be turned into a pure
measurement pattern in the obvious way, by removing fromH all nodes that have more than one
latent parent and one of every pair of adjacent nodes, as attemped by the following algorithm:

• Algorithm TRIVIAL PURIFICATION: remove all nodes that have more than one latent parent,
and for every pair of adjacent observed nodes, remove an arbitrarynode of the pair.

TRIVIAL PURIFICATION is not correct. To see this, consider Figure 8(a), where with the excep-
tion of pairs in{X3, . . . ,X7}, every pair of nodes has more than one hidden common cause. Giving
the covariance matrix of such model to FINDPATTERN will result in a pattern with one latent only
(because no pair of nodes can be separated by CS1, CS2 or CS3), and all pairs that are connected by
a double directed edge in Figure 8(a) will be connected by an undirected edge in the output pattern.
One can verify that if we remove one node from each pair connected by an undirected edge in this
pattern, the output with the maximum number of nodes will be given by the graphin Figure 8(b).

2. Under very general conditions, there are also no rules using fewerthan 6 variables, as shown by Silva (2005).
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Figure 8: In (a), a model that generates a covariance matrixΣ. The output of FINDPATTERN given
Σ contains a single latent variable that is a parent of all observed nodes, and several ob-
served nodes that are linked by an undirected edge. In (b), the patternwith the maximum
number of nodes that can be obtained by TRIVIAL PURIFICATION. It is still not a correct
pure measurement model for any latent in the true graph, since there is no latent that
d-separates{X3, . . . ,X7} in the true model.

The procedure BUILD PURECLUSTERSbuilds a pure measurement model using as input FIND-
PATTERN and an oracle for constraints. Unlike TRIVIAL PURIFICATION, variables are removed
whenever appropriate tetrad constraints are not satisfied. Table 2 presents a simplified version of
the full algorithm. The complete algorithm is given only in Appendix A to avoid interrupting the
flow of the text, since it requires the explanation of extra steps that are notof much relevance in
practice. We also describe the choices made in the algorithm (Steps 2, 4 and 5) only in the imple-
mentation given in Appendix A. The particular strategy for making such choices is not relevant to
the correctness of the algorithm.

The fundamental properties of BUILD PURECLUSTERSare clear from Table 2: it returns a model
where each latent has at least three indicators, and such indicators areknown to be d-separated
by some latent. Nodes that are children of different latents in the output graph are known not to
be children of a common latent in the true graph, as defined by the initial measurement pattern.
However, it is not immediately obvious how latents in the output graph are related to latents in the
true graph.

The informal description is: there is a labeling of latents in the output graph according to the
latents in the true graphG, and in this relabeled output graph any d-separation between a measured
node and some other node will hold inG. This is illustrated by Figure 9. Given the covariance
matrix generated by the true model in Figure 9(a), BUILD PURECLUSTERS generates the model
shown in Figure 9(b).

Since the labeling of the latents is arbitrary, we need a formal description of the fact that latents
in the output should correspond to latents in the true model up to a relabeling. The formal graphical
properties of the output of BUILD PURECLUSTERS (as given in Appendix A) are summarized by
the following theorem:
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Algorithm BUILD PURECLUSTERS-SIMPLIFIED

Input: a covariance matrixΣ

1. G←FINDPATTERN(Σ).

2. Choose a set of latents inG. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent parent inG.

4. For all pairs of nodes linked by an undirected edge, choose one element of each pair to be
removed.

5. If for some set of nodes{A,B,C}, all children of the same latent, there is a fourth nodeD in
G such thatσABσCD = σACσBD = σADσBC is not true, remove one of these four nodes.

6. Remove all latents with less than three children, and their respective measures;

7. if G has at least four observed variables, returnG. Otherwise, return an empty model.

Table 2: A general strategy to find a pure measurement measurement modelof a subset of the latents
in the true graph. As explained in the body of the text, implementation details (suchas the
choices made in Steps 2 and 4) are left to Appendix A.

Theorem 15 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G with observed variablesO and latent variablesL , let Gout be the output ofBUILD PURE-
CLUSTERS(Σ) with observed variablesOout⊆O and latent variablesLout. Then Gout is a measure-
ment pattern, and there is an unique injective mapping M: Lout→ L with the following properties:

1. Let Lout ∈ Lout. Let X be a child of Lout in Gout. Then M(Lout) d-separates X fromOout\X in
G;

2. M(Lout) d-separates X from every latent L in G for which M−1(L) is defined;

3. LetO′ ⊆ Oout be such that each pair inO′ is correlated. At most one element inO′ has the
following property: (i) it is not a descendant of its respective mapped latent parent in G or
(ii) it has a hidden common cause with its respective mapped latent parent inG;

For each group of correlated observed variables, we can guaranteee that at most one edge from
a latent into an observed variable is incorrectly directed. By “incorrectly directed,” we mean the
condition defined in the third item of Theorem 15: although all observed variables are children of
latents in the output graph, one of these edges might be misleading, since in thetrue graph one of the
observed variables might not be a descendant of the respective latent.This is illustrated by Figure
10.

Notice also that we cannot guarantee that an observed nodeX with latent parentLout in Gout

will be d-separated from the latents inG not in Gout, givenM(Lout): if X has a common cause with
M(Lout), thenX will be d-connected to any ancestor ofM(Lout) in G given M(Lout). This is also
illustrated by Figure 10.
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Figure 9: Given as input the covariance matrix of the observable variables X1−X12 connected ac-
cording to the true model shown in Figure (a), the BUILD PURECLUSTERSalgorithm will
generate the graph shown in Figure (b). It is clear there is an injective mapping M(.)
from latents{T1,T2} to latents{L1,L2} such thatM(T1) = L1 andM(T2) = L2 and the
properties described by Theorem 15 hold.
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Figure 10: Given as input the covariance matrix of the observable variables X1−X7 connected
according to the true model shown in Figure (a), one of the possible outputsof BUILD -
PURECLUSTERSalgorithm is the graph shown in Figure (b). It is clear there is an injec-
tive mappingM(.) from latents{T1,T2} to latents{L1,L2,L3,L4} such thatM(T1) = L2

andM(T2) = L3. However, in (b) the edgeT1→ X1 does not express the correct causal
direction of the true model. Notice also thatX1 is not d-separated fromL4 given
M(T1) = L2 in the true graph.

5.4 An Example

To illustrate BUILD PURECLUSTERS, suppose the true graph is the one given in Figure 11(a), with
two unlabeled latents and 12 observed variables. This graph is unknown toBUILD PURECLUSTERS,
which is given only the covariance matrix of variables{X1,X2, ...,X12}. The task is to learn a
measurement pattern, and then a purified measurement model.

In the first stage of BUILD PURECLUSTERS, the FINDPATTERN algorithm, we start with a fully
connected graph among the observed variables (Figure 11(b)), and then proceed to remove edges ac-
cording to rules CS1, CS2 and CS3, giving the graph shown in Figure 11(c). There are two maximal
cliques in this graph:{X1,X2,X3,X7,X8,X11,X12} and{X4,X5,X6,X8,X9,X10,X12}. They are distin-
guished in the figure by different edge representations (dashed and solid - with the edgeX8−X12

present in both cliques). The next stage takes these maximal cliques and creates an intermediate
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Figure 11: A step-by-step demonstration of how a covariance matrix generated by graph in Figure
(a) will induce the pure measurement model in Figure (f).

graphical representation, as depicted in Figure 11(d). In Figure 11(e), we add the undirected edges
X7−X8, X8−X12, X9−X10 andX11−X12, finalizing the measurement pattern returned by FINDPAT-
TERN. Finally, Figure 11(f) represents a possible purified output of BUILD PURECLUSTERSgiven
this pattern. Another purification with as many nodes as in the graph in Figure 11(f) substitutes
nodeX9 for nodeX10.
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There is some superficial similarity between BUIDPURECLUSTERSand the FINDHIDDEN al-
gorithm (Elidan et al., 2000) cited in Section 3. Both algorithms select cliques (or substructures
close to a clique) and introduce a latent as a common cause of the variables in that clique. The algo-
rithms are, however, very different: BUILD PURECLUSTERSknows that each selected clique should
correspond to a latent,3 and creates all of its latents at the same time. FINDHIDDEN creates one
latent a time, and might backtrack if this latent is not supported by the data. More fundamentally,
there is no clear description of what FINDHIDDEN actually learns (as illustrated in Section 3), and
even if asymptotically it can always find a pure measurement submodel.4

5.5 Parameterizing the Output ofBUILD PURECLUSTERS

Recall that so far we described only an algorithm for learning measurement models. Learning the
structure among latents, as described in Section 6, requires exploring constraints in the covariance
matrix of the observed variables. Since BUILD PURECLUSTERSreturns only a marginal of the true
model, it is important to show that this marginalized graph, when parameterized as a linear model,
also represents the marginal probability distribution of the observed variables.

The following result is essential to provide an algorithm that is guaranteed tofind a Markov
equivalence class for the latents inM(Lout) using the output of BUILD PURECLUSTERS, as in Sec-
tion 6. It guarantees that one can fit a linear model using the structure given by BUILD PURECLUS-
TERSand have a consistent estimator of the observed covariance matrix (for theselected variables)
in families such as Gaussian distributions. This is important, since the covariance matrix of the ob-
served variables in the model is used to guide the search for a structure among latents, as discussed
in Section 6.

Theorem 16 Let M(Lout) ⊆ L be the set of latents in G obtained by the mapping function M().
Let ΣOout be the population covariance matrix ofOout. Let the DAG Gaug

out be Gout augmented by
connecting the elements ofLout such that the structural model of Gaug

out is an I-map of the distribution
of M(Lout). Then there exists a linear latent variable model using Gaug

out as the graphical structure
such that the implied covariance matrix ofOout equalsΣOout .

5.6 Computational Issues and Anytime Properties

A further reason why we do not provide details of some steps of BUILD PURECLUSTERS at this
point is because there is no unique way of implementing it, and different purifications might be of
interest. For instance, one might be interested in the pure model that has the largest possible num-
ber of latents. Another one might be interested in the model with the largest number of observed
variables. However, some of these criteria might be computationally intractableto achieve. Con-
sider for instance the following criterion, which we denote asM P

3: given a measurement pattern,
decide if there is some choice of observed nodes to be removed such that the resulting graph is a
pure measurement model of all latents in the pattern and each latent has at least three children. This
problem is intractable:

Theorem 17 ProblemM P
3 is NP-complete.

3. Some latents might be eliminated for not having enough indicators, though.
4. This, of course, bears no fundamental implication on the ability of FINDHIDDEN to generate a model that provides a

good fit to the data, but it is a crucial limitation in causal analysis.
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There is no need to solve a NP-hard problem in order to have the theoretical guarantees of
interpretability of the output given by Theorem 15. For example, there is a stage in FINDPATTERN

where it appears necessary to find all maximal cliques, but, in fact, it is not.Identifying more cliques
increases the chance of having a larger output (which is good) by the end of the algorithm, but it is
not required for the algorithms correctness. Stopping at Step 5 of FINDPATTERN before completion
will not affect Theorems 15 or 16.

Another computational concern is theO(N5) loops in Step 3 of FINDPATTERN, whereN is
the number of observed variables.5 Again, it is not necessary to compute this loop entirely. One
can stop Step 3 at any time at the price of losing information, but not the theoretical guarantees of
BUILD PURECLUSTERS. This anytime property is summarized by the following corollary:

Corollary 18 The output ofBUILD PURECLUSTERS retains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of times inFINDPATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

It is difficult to assess how an early stopping procedure might affect thecompleteness of the
output. In all of our experiments, we were able to enumerate all maximal cliquesin a few seconds
of computation. This is not to say that one should not design better ways of ordering the clique enu-
meration (using prior knowledge of which variables should not be clustered together, for instance),
or using other alternatives to an anytime stop.

In case there are possibly too many maximal cliques to be enumerated in FINDPATTERN, an
alternative to early stopping is to triangulate the graph, i.e., adding edges connecting some non-
adjacent pair of nodes in a chordless cycle. This is repeated until no chordless cycles remain in the
graphG constructed at the end of Step 3 of FINDPATTERN (Table 1). Different heuristics could be
use to choose the next edge to be added, e.g., by linking the pair of nodes that is most strongly corre-
lated. The advantage is that cliques in a triangulated graph can be found in linear time. For the same
reasons that validate Corollary 18, such a triangulation will not affect thecorrectness of the output,
since the purification procedure will remove all nodes that need to be removed. In general, adding
undirected edges to graphG in FINDPATTERN does not compromise correctness. As a side effect,
it might increase the robustness of the algorithm, since some edges ofG are likely to be erroneously
removed in small sample studies, although more elaborated ways of adding edges back would need
to be discussed in detail and are out of the scope of this paper. Such a triangulation procedure,
however, might still cause problems, since in the worst case we will obtain a fully connected (and
uninformative) graph.6

6. Learning the Structure of the Unobserved

The real motivation for finding a pure measurement model is to obtain reliable statistical access to
the relations among the latent variables. Given a pure and correct measurement model, even one
involving a fairly small subset of the original measured variables, a varietyof algorithms exist for
finding a Markov equivalence class of graphs over the set of latents in the given measurement model.

5. This immediately follows from, e.g., the definition of CS1: we have to first find a foursome{X1,X2,Y1,Y2} where
σX1X2σY1Y2−σX1Y1σX2Y2 6= 0, which is aO(N4) loop. Conditioned on this foursome, we have to find two independent
(but distinct)X3 andY3. This requires two (almost) independent loops ofO(N) within theO(N4) loop.

6. We would like to thank an anonymous reviewer for the suggestions in this paragraph.
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6.1 Constraint-Based Search

Constraint-based search algorithms rely on decisions about independence and conditional indepen-
dence among a set of variables to find the Markov equivalence class over these variables. Given a
pure and correct measurement model involving at least 2 measures per latent, we can test for inde-
pendence and conditional independence among the latents, and thus search for equivalence classes
of structural models among the latents, by taking advantage of the following theorem (Spirtes et al.,
2000):

Theorem 19 Let G be a pure linear latent variable model. Let L1,L2 be two latents in G, andQ a
set of latents in G. Let X1 be a measure of L1, X2 be a measure of L2, and XQ be a set of measures
of Q containing at least two measures per latent. Then L1 is d-separated from L2 givenQ in G
if and only if the rank of the correlation matrix of{X1,X2}∪XQ is less than or equal to|Q| with
probability 1 with respect to the Lebesgue measure over the linear coefficients and error variances
of G.

We can then use this constraint to test7 for conditional independencies among the latents. Such
conditional independence tests can then be used as an oracle for constraint-satisfaction techniques
for causality discovery in graphical models, such as the PC algorithm (Spirtes et al., 2000) or the
FCI algorithm (Spirtes et al., 2000).

We define the algorithm PC-MIMBUILD 8 as the algorithm that takes as input a measurement
model satisfying the assumption of purity mentioned above and a covariance matrix, and returns
the Markov equivalence class of the structural model among the latents in themeasurement model
according to the PC algorithm. A FCI-MIMBUILD algorithm is defined analogously. In the limit
of infinite data, it follows from the preceding and from the consistency of PC and FCI algorithms
(Spirtes et al., 2000) that

Theorem 20 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G, and Gout the output ofBUILD PURECLUSTERSgivenΣ, the output ofPC-MIMBUILD or
FCI-MIMB UILD given(Σ,Gout) returns the correct Markov equivalence class of the latents in G
corresponding to latents in Gout according to the mapping implicit inBUILD PURECLUSTERS.

For most common families of probabilities distributions (e.g., multivariate Gaussians) the sam-
ple covariance matrix is a consistent estimator of the population covariance matrix. This fact, com-
bined with Theorem 20, shows we have a point-wise consistent algorithm for learning a latent
variable model with a pure measurement model, up to the measurement equivalence class described
in Theorem 15 and the Markov equivalence class of the structural model.

6.2 Score-Based Search

Score-based approaches for learning the structure of Bayesian networks, such as GES (Meek, 1997;
Chickering, 2002) are usually more accurate than PC or FCI when there are no omitted common
causes, or in other terms, when the set of recorded variables is causallysufficient. We know of

7. One way to test if the rank of a covariance matrix in Gaussian models is atmostq is to fit a factor analysis model
with q latents and assess its significance.

8. MIM stands for “multiple indicator model”, a term in structural equation model literature describing latent variable
models with multiple measures per latent.
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no consistent scoring function for linear latent variable models that can beeasily computed. This
might not be a practical issue, since any structural model with a fixed measurement model generated
by BUILD PURECLUSTERShas an unique maximum likelihood estimator, up to the scale and sign
of the latents. That is, the set of maximum likelihood estimators is a single point, instead of a
complicated surface. This sidesteps most of the problems concerning finding the proper complexity
penalization for a candidate model (Spirtes et al., 2000).

We suggest using the Bayesian Information Criterion (BIC) function as a score function. Using
BIC with STRUCTURAL EM (Friedman, 1998) and GES results in a computationally efficient way
of learning structural models, where the measurement model is fixed and GES is restricted to modify
edges among latents only. Assuming a Gaussian distribution, the first step of our STRUCTURAL EM
implementation uses a fully connected structural model in order to estimate the first expected latent
covariance matrix. That is followed by a GES search. We call this algorithm GES-MIMBUILD

and use it as the structural model search component in all of the studies ofsimulated and empirical
data that follow.

7. Simulation Studies

In the following simulation studies, we draw samples of three different sizes from 9 different latent
variable models. We compare our algorithm against exploratory factor analysis and the DAG hill-
climbing algorithm FINDHIDDEN (Elidan et al., 2000), and measure the success of each on the
following discovery tasks:

DP1. Discover the number of latents inG.

DP2. Discover which observed variables measure each latentG.

DP3. Discover as many features as possible about the causal relationships among the latents inG.

Since factor analysis addresses only tasks DP1 and DP2, we compare it directly to BUILD -
PURECLUSTERSon DP1 and DP2. For DP3, we use our procedure and factor analysis tocompute
measurement models, then discover as much about the features of the structural model among the
latents as possible by applying GES-MIMBUILD to the measurement models output by BPC and
factor analysis.

We hypothesized that three features of the problem would affect the performance of the algo-
rithms compared: sample size; the complexity of the structural model; and, the complexity and
level of impurity in the generating measurement model. We use three differentsample sizes for
each study: 200, 1,000, and 10,000. We constructed nine generating latent variable graphs by using
all combinations of the three structural models and three measurement models inFigure 12. For
structural model SM3, the respective measurement models are augmented accordingly.

MM1 is a pure measurement model with three indicators per latent. MM2 has fiveindicators
per latent, one of which is impure because its error is correlated with anotherindicator, and another
because it measures two latents directly. MM3 involves six indicators per latent, half of which are
impure.

SM1 entails one unconditional independence among the latents:L1 is independentL3. SM2 en-
tails one first order conditional independence:L1⊥L3|L2, and SM3 entails one first order conditional
independence:L2⊥L3|L1, and one second order conditional independence relation:L1⊥L4|{L2,L3}.
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Figure 12: The Structural and Measurement models used in our simulation studies.

Thus the statistical complexity of the structural models increases from SM1 to SM3 and the impurity
of measurement models increases from MM1 to MM3.

For each generating latent variable graph, we used the Tetrad IV program9 with the following
procedure to draw 10 multivariate normal samples of size 200, 10 at size 1,000, and 10 at size
10,000.

1. Pick coefficients for each edge in the model randomly from the interval[−1.5,−0.5]∪[0.5,1.5].

2. Pick variances for the exogenous nodes (i.e., latents without parents and error nodes) from
the interval[1,3].

3. Draw one pseudo-random sample of size N.

This choice of parameter values for simulations implies that, on average, half of the variance
of the indicators of an exogenous latent is due to the error term, making the problem of structure
learning more particularly difficult for at least some clusters.

We used three algorithms in our studies:

1. BPC: BUILD PURECLUSTERS+ GES-MIMBUILD

2. FA: Factor Analysis + GES-MIMBUILD

3. FH: FINDHIDDEN, using the same sort of hill-climbing procedure used by Elidan et al. (2000)

BPC is the implementation of BUILD PURECLUSTERSand GES-MIMBUILD described in Ap-
pendix A. FA involves combining standard factor analysis to find the measurement model with
GES-MIMBUILD to find the structural model. For standard factor analysis, we usedfactanal

9. Available athttp://www.phil.cmu.edu/projects/tetrad.
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from R 1.9 with the oblique rotation promax. FA and variations are still widely used and are per-
haps the most popular approach to latent variable modeling (Bartholomew et al., 2002). We choose
the number of latents by iteratively increasing its number until we get a significant fit above 0.05,
or until we have to stop due to numerical instabilities.

Our implementation of FINDHIDDEN follows closely the implementation suggested by Elidan
et al. (2000): in that implementation, a candidate latent is introduced as a commonparent of the
nodes in a dense subgraph of the current graph (such a subgraph iscalledsemicliqueby Elidan
et al.). We implemented the most computational expensive version of FINDHIDDEN, where all
semicliques are used to create new candidate graphs, and a full hill-climbing procedure with tabu
search is performed to optimize each of them. The score function is BIC. Theinitial graph is a fully
connected DAG among observed variables.10

We also added to FINDHIDDEN the prior knowledge that all edges should be directed from
latents into observed variables, and we split the search into two main stages: first, only edges into
observed variables are modified, while keeping a fully connected structural model. After finding the
measurement model, we proceed to learn the structural model using the same type of hill-climbing
procedure suggested by Elidan et al. Without these two modifications, FINDHIDDEN results are
significantly worse.11

In order to compare the output of BPC, FA, and FH on discovery tasks DP1 (finding the correct
number of underlying latents) and DP2 (measuring these latents appropriately), we must map the
latents discovered by each algorithm to the latents in the generating model. Thatis, we must define
a mapping of the latents in theGout to those in the true graphG.

We do the mapping by first fitting each model by maximum likelihood to obtain estimates for the
parameters. For each latent in the output model, we sum the absolute values of the edge coefficients
of their observed children, grouping the sum according to their true latentparents. The group with
the highest sum will define the label of the output latent. That is, for each latentLout in the output
model, the following procedure is performed:

• for all latentsL1, . . . ,Lk in the true model, letSi = 0, 1≤ i ≤ k

• for every childO that measuresLout in the output model with edge coefficientλLO, such that
O has a single parentLi in the true model, increaseSi by |λLO|

• let M be such thatSM is maximum amongS1, . . . ,Sk. LabelLout asLM.

For example, letLout be a latent node in the output graphGout. SupposeS1 is the sum of the
absolute values of the edge coefficients of the children ofLout that measure the true latentL1, and
S2 is the respective sum for the measures of true latentL2. If S2 > S1, we renameLout asL2. If two
output latents are mapped to the same true latent, we label only one of them as thetrue latent by

10. Which is the true graph among observed variables in most simulations.We chose the initialization point to save
computational costs of growing an almost fully connected DAG without hidden variables first.

11. Another important modification in our implementation was in the STRUCTURAL EM implementation: to escape
out of bad local minima within STRUCTURAL EM, we do the following whenever the algorithm arrives in a local
minimum: we apply the same search operators, but using thetrue BIC scoreevaluation instead of the STRUCTURAL

EM-BIC score, which is a lower bound on the regular BIC score. This was also crucial to get better results with FIND-
HIDDEN, but considerably slowed down the algorithm, since computing the true score is computationally expensive
and requires an evaluation of the whole model.
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choosing the one that corresponds to the highest sum of absolute loadings. The other one remains
unmapped and receives an arbitrary label.

We compute the following scores for the output modelGout from each algorithm,12 where the
true graph is labelledG:

• latent omission, the number of latents inG that do not appear inGout divided by the total
number of true latents inG;

• latent commission, the number of latents inGout that could not be mapped to a latent inG
divided by the total number of true latents inG;

• mismeasurement, the number of observed variables inGout that are measuring at least one
wrong latent divided by the number of observed variables inG;

To be generous to factor analysis, we considered only latents with at leastthree indicators. Even
with this help, we still found several cases in which latent commission errors were more than 100%.
We eliminated from FINDHIDDEN any latent that ended up with no observed children.

Table 3 evaluates all three procedures on the first two discovery tasks:DP1 and DP2. Each
number is the average error across 10 trials with standard deviations in parentheses for sample sizes
of 200, 1000, 10,000. Over all conditions, FA has very low rates of latent omission, but very
high rates of latent commission. In particular, FA is very sensitive to the purityof the generating
measurement model. With MM2, the rate of latent commission for FA was moderate;with MM3
it was abysmal. Because indicators are given too many latent parents in FA,many indicators are
removed during purification, resulting in high indicator omission errors.

BPC does reasonably well on all measures in Tables 3 at all sample sizes and for all generating
models. Our implementation of FINDHIDDEN also does well in most cases, but has issues with
SM1.13

In the final piece of the simulation study, we applied the best causal model search algorithm we
know of, GES, modified for this purpose as GES-MIMBUILD , to the measurement models output
by BPC and FA. We evaluate FH both by 1. using its default structural model,which is obtained
by a standard hill-climbing with tabu search, and by 2. fixing its measurement model and applying
GES to re-learn the corresponding structural model.

If the output measurement model has no errors of latent omission or commission, then scoring
the result of the structural model search is fairly easy. The GES-MIMBUILD search outputs an
equivalence class, with certain adjacencies unoriented and certain adjacencies oriented. If there is
an adjacency of any sort between two latents in the output, but no such adjacency in the true graph,
then we have an error of edge commission. If there is no adjacency of anysort between two latents
in the output, but there is an edge in the true graph, then we have an error of edge omission. For
orientation, if there is an oriented edge in the output that is not oriented in the equivalence class for

12. Other types of errors, such as missing indicators that could have been preserved (in BPC) or adding edges among
indicators when they should not exist (as in FINDHIDDEN) are not directly comparable and not as important with
respect to the task of finding latents and causal relations among latents, and therefore not considered in this simulation
study.

13. One possible explanation for the difficulties with SM1 is the fact that, in the intermediate stages of the algorithm,
there will be paths connecting{X1,X2,X3} and{X7,X8,X9} due to latent variables, but such paths that have to amount
to zero correlation in order to reproduce the marginal covariance matrix. This might be difficult to obtain with single
edge modifications, considering that introducing an edge might cancel some correlations but increase others.
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Evaluation of output measurement models
Latent omission Latent commission Mismeasurements

Sample BPC FA FH BPC FA FH BPC FA FH
SM1 +MM1

200 0.10(.2) 0.00(.0) 0.50(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.01(.0) 0.41(.3) 0.52(.3)
1000 0.17(.2) 0.00(.0) 0.17(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.19(.2) 0.18(.3)

10000 0.07(.1) 0.00(.0) 0.23(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.14(.2) 0.23(.2)
SM1 +MM2

200 0.00(.0) 0.03(.1) 0.27(.3) 0.03(.1) 0.77(.2) 0.00(.0) 0.01(.0) 0.92(.1) 0.47(.3)
1000 0.00(.0) 0.00(.0) 0.17(.2) 0.00(.0) 0.47(.2) 0.07(.1) 0.00(.0) 0.59(.1) 0.27(.3)

10000 0.00(.0) 0.00(.0) 0.27(.3) 0.03(.1) 0.33(.3) 0.07(.1) 0.02(.1) 0.55(.2) 0.33(.3)
SM1 +MM3

200 0.00(.0) 0.00(.0) 0.10(.2) 0.07(.1) 1.13(.3) 0.07(.1) 0.03(.1) 0.90(.1) 0.36(.3)
1000 0.00(.0) 0.00(.0) 0.07(.1) 0.07(.1) 0.87(.3) 0.00(.0) 0.03(.1) 0.72(.1) 0.15(.2)

10000 0.03(.1) 0.00(.0) 0.23(.3) 0.00(.0) 0.70(.3) 0.03(.1) 0.00(.0) 0.60(.2) 0.30(.3)
SM2 +MM1

200 0.10(.2) 0.00(.0) 0.27(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.06(.1) 0.43(.2) 0.28(.3)
1000 0.03(.1) 0.00(.0) 0.17(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.02(.1) 0.23(.2) 0.19(.3)

10000 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.11(.1) 0.00(.0)
SM2 +MM2

200 0.03(.1) 0.00(.0) 0.17(.2) 0.07(.1) 0.80(.3) 0.00(.0) 0.06(.1) 0.85(.1) 0.32(.2)
1000 0.00(.0) 0.00(.0) 0.03(.1) 0.00(.0) 0.53(.3) 0.07(.1) 0.00(.0) 0.68(.1) 0.24(.2)

10000 0.00(.0) 0.00(.0) 0.03(.1) 0.00(.0) 0.27(.3) 0.03(.1) 0.00(.0) 0.53(.2) 0.08(.1)
SM2 +MM3

200 0.00(.0) 0.03(.1) 0.03(.1) 0.00(.0) 1.13(.3) 0.07(.1) 0.01(.0) 0.91(.1) 0.29(.2)
1000 0.00(.0) 0.00(.0) 0.07(.1) 0.00(.0) 0.73(.3) 0.07(.1) 0.00(.0) 0.71(.2) 0.15(.1)

10000 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.97(.3) 0.03(.1) 0.00(.0) 0.78(.2) 0.03(.1)
SM3 +MM1

200 0.12(.2) 0.02(.1) 0.40(.2) 0.00(.0) 0.05(.1) 0.00(.0) 0.05(.1) 0.66(.2) 0.43(.2)
1000 0.10(.2) 0.02(.1) 0.02(.1) 0.00(.0) 0.02(.1) 0.00(.0) 0.01(.0) 0.30(.2) 0.03(.1)

10000 0.05(.1) 0.00(.0) 0.05(.1) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.21(.1) 0.07(.1)
SM3 +MM2

200 0.02(.1) 0.05(.2) 0.10(.1) 0.10(.2) 0.62(.1) 0.02(.1) 0.03(.1) 0.89(.1) 0.31(.2)
1000 0.02(.1) 0.02(.1) 0.02(.1) 0.02(.1) 0.38(.2) 0.05(.1) 0.01(.0) 0.68(.2) 0.15(.1)

10000 0.00(.0) 0.05(.1) 0.05(.2) 0.00(.0) 0.35(.2) 0.02(.1) 0.00(.0) 0.72(.2) 0.15(.2)
SM3 +MM3

200 0.02(.1) 0.02(.1) 0.02(.1) 0.05(.1) 0.98(.3) 0.02(.1) 0.04(.1) 0.91(.1) 0.24(.2)
1000 0.02(.1) 0.08(.2) 0.00(.0) 0.00(.0) 0.72(.3) 0.08(.1) 0.00(.0) 0.77(.1) 0.08(.1)

10000 0.00(.0) 0.08(.1) 0.00(.0) 0.00(.0) 0.60(.3) 0.05(.2) 0.00(.0) 0.70(.2) 0.04(.0)

Table 3: Results obtained with BUILD PURECLUSTERS(BPC), factor analysis (FA) and FindHid-
den (FH) for the problem of learning measurement models. Each number is an average
over 10 trials, with standard deviation in parenthesis.

the true structural model, then we have an error of orientation commission. If there is an unoriented
edge in the output which is oriented in the equivalence class for the true model, we have an error of
orientation omission.
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Evaluation of output structural models
Edge omission Edge commission

Sample BPC FA FH FHG BPC FA FH FHG
SM1 +MM1

200 0.05−09 0.05−09 0.00−10 0.00−10 0.10−09 0.30−07 0.00−10 0.10−09
1000 0.05−09 0.10−08 0.00−10 0.00−10 0.20−08 0.30−07 0.60−04 0.10−09

10000 0.00−10 0.05−09 0.00−10 0.00−10 0.00−10 0.00−10 0.30−07 0.00−10
SM1 +MM2

200 0.00−10 0.15−07 0.00−10 0.00−10 0.00−10 0.40−06 0.40−06 0.10−09
1000 0.00−10 0.00−10 0.00−10 0.00−10 0.10−09 0.40−06 0.40−06 0.00−10

10000 0.00−10 0.05−09 0.00−10 0.00−10 0.20−08 0.50−05 0.50−05 0.10−09
SM1 +MM3

200 0.00−10 0.25−05 0.00−10 0.05−09 0.20−08 0.70−03 0.50−05 0.30−07
1000 0.00−10 0.15−07 0.00−10 0.00−10 0.10−09 0.70−03 0.60−04 0.10−09

10000 0.00−10 0.05−09 0.05−09 0.00−10 0.00−10 0.40−06 0.50−05 0.10−09
SM2 +MM1

200 0.00−10 0.00−10 0.00−10 0.00−10 0.20−08 0.30−07 0.00−10 0.10−09
1000 0.00−10 0.05−09 0.00−10 0.00−10 0.00−10 0.30−07 0.00−10 0.00−10

10000 0.00−10 0.00−10 0.00−10 0.00−10 0.20−08 0.30−07 0.00−10 0.20−08
SM2 +MM2

200 0.00−10 0.15−07 0.00−10 0.00−10 0.40−06 0.30−07 0.00−10 0.00−10
1000 0.00−10 0.10−09 0.05−09 0.05−09 0.10−09 0.60−04 0.10−09 0.20−08

10000 0.00−10 0.05−09 0.05−09 0.00−10 0.10−09 0.70−03 0.10−09 0.20−08
SM2 +MM3

200 0.00−10 0.15−07 0.00−10 0.05−09 0.20−08 0.70−03 0.10−09 0.20−08
1000 0.00−10 0.15−07 0.00−10 0.00−10 0.20−08 0.40−06 0.00−10 0.30−07

10000 0.00−10 0.10−08 0.00−10 0.00−10 0.00−10 0.50−05 0.00−10 0.00−10
SM3 +MM1

200 0.12−05 0.12−06 0.05−08 0.00−10 0.20−06 0.20−06 0.00−10 0.00−10
1000 0.05−08 0.08−08 0.10−06 0.00−10 0.15−08 0.10−08 0.55−03 0.20−07

10000 0.05−08 0.15−04 0.05−08 0.02−09 0.15−08 0.15−08 0.50−03 0.15−08
SM3 +MM2

200 0.02−09 0.28−03 0.15−06 0.02−09 0.55−03 0.55−02 0.20−06 0.10−08
1000 0.00−10 0.12−07 0.08−07 0.00−10 0.25−07 0.75−02 0.60−02 0.15−08

10000 0.00−10 0.00−10 0.02−09 0.02−09 0.10−08 0.80−02 0.65−01 0.20−07
SM3 +MM3

200 0.02−09 0.32−02 0.20−03 0.10−06 0.40−05 0.50−02 0.45−03 0.20−07
1000 0.08−07 0.02−09 0.10−07 0.05−08 0.30−06 0.65−02 0.45−04 0.25−06

10000 0.00−10 0.05−08 0.02−09 0.00−10 0.15−07 0.65−03 0.70−01 0.10−08

Table 4: Results obtained with the application of GES-MIMBUILD to the output of BUILD -
PURECLUSTERS and factor analysis, plus FINDHIDDEN and FINDHIDDEN + GES-
MIMB UILD results, with an indication of the number of perfect solutions over these trials.

If the output measurement model has any errors of latent commission, then we simply leave out
the excess latents in the measurement model given to GES-MIMBUILD . This helps FA primarily,
as it was the only procedure of the three that had high errors of latent commission.
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Evaluation of output structural models
Orientation omission Orientation commission

Sample BPC FA FH FHG BPC FA FH FHG
SM1 +MM1

200 0.10−09 0.15−08 0.10−09 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
1000 0.20−08 0.00−10 0.60−04 0.10−09 0.00−10 0.05−09 0.00−10 0.00−10

10000 0.00−10 0.00−10 0.30−07 0.00−10 0.00−10 0.00−10 0.00−10 0.00−10
SM1 +MM2

200 0.00−10 0.20−07 0.40−06 0.10−09 0.00−10 0.05−09 0.00−10 0.00−10
1000 0.10−09 0.20−07 0.40−06 0.00−10 0.00−10 0.00−10 0.00−10 0.00−10

10000 0.20−08 0.25−05 0.50−05 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
SM1 +MM3

200 0.20−08 0.40−04 0.60−04 0.20−08 0.00−10 0.05−09 0.00−10 0.05−09
1000 0.10−09 0.10−09 0.70−03 0.10−09 0.00−10 0.10−08 0.00−10 0.00−10

10000 0.00−10 0.30−06 0.50−05 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
SM2 +MM1

200 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
SM2 +MM2

200 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.10−09 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.10−09 0.05−09 0.00−10
SM2 +MM3

200 −−− −−− −−− −−− 0.00−10 0.10−08 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.05−09 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.05−09 0.00−10 0.00−10
SM3 +MM1

200 0.15−08 0.00−10 0.00−10 0.00−10 0.22−07 0.35−06 0.10−09 0.00−10
1000 0.10−09 0.00−10 0.65−03 0.10−09 0.10−09 0.00−10 0.04−09 0.00−10

10000 0.05−09 0.00−10 0.65−03 0.05−09 0.04−09 0.00−10 0.04−09 0.04−09
SM3 +MM2

200 0.50−05 0.30−06 0.20−07 0.10−09 0.08−09 0.16−07 0.08−09 0.08−09
1000 0.30−07 0.45−04 0.65−03 0.30−07 0.00−10 0.05−09 0.11−08 0.05−09

10000 0.20−08 0.40−06 0.85−01 0.25−07 0.00−10 0.00−10 0.00−10 0.00−10
SM3 +MM3

200 0.50−04 0.15−08 0.85−01 0.35−05 0.19−06 0.14−08 0.20−07 0.48−02
1000 0.20−07 0.35−05 0.50−04 0.05−09 0.15−07 0.02−09 0.04−09 0.11−08

10000 0.00−10 0.35−05 0.85−01 0.10−09 0.00−10 0.00−10 0.04−09 0.00−10

Table 5: Results obtained with the application of GES-MIMBUILD to the output of BUILD -
PURECLUSTERS and factor analysis, plus FINDHIDDEN and FINDHIDDEN + GES-
MIMB UILD results, with an indication of the number of perfect solutions over these trials.

If the output measurement model has errors of latent omission, then we compare the marginal
involving the latents in the output model for the true structural model graph to the output structural
model equivalence class. For each of the structural models we selected,SM1, SM2, and SM3,
all marginals can be represented faithfully as DAGs. Our measure of successful causal discovery,
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therefore, for a measurement model involving a small subset of the latents inthe true graph is very
lenient. For example, if the generating model was SM3, which involves four latents, but the output
measurement model involved only two of these latents, then a perfect search result in this case
would amount to finding that the two latents are associated.

In summary then, our measures for assessing the ability of these algorithms to correctly discover
at least features of the causal relationships among the latents are as follows:

• edge omission (EO), the number of edges in the structural model ofG that do not appear in
Gout divided by the possible number of edge omissions (2 inSM1 andSM2, and 4 inSM3, i.e.,
the number of edges in the respective structural models);

• edge commission (EC), the number of edges in the structural model ofGout that do not exist
in G divided by the possible number of edge commissions (only 1 inSM1 andSM2, and 2 in
SM3);

• orientation omission (OO), the number of arrows in the structural model ofG that do not
appear inGout divided by the possible number of orientation omissions inG (2 in SM1 and
SM3, 0 in SM2);

• orientation commission (OC), the number of arrows in the structural model ofGout that do
not exist inG divided by the number of edges in the structural model ofGout;

Tables 4 and 5 summarize the results. Along with each average we provide thenumber of trials
where no errors of a specific type were made.

Factor analysis is particularly flawed. This is because FA infers so many latents, which leads
to spurious dependence paths among the latents we scored. The default FINDHIDDEN is also sub-
optimal in these small models, due to limitations in the hill-climbing procedure compared toGES:
SM3 has a high proportion of “compelled” edges (Chickering, 2002), i.e.,edges that are oriented in
the pattern corresponding to the Markov equivalence class, which makesit harder for an algorithm
that searches among DAGs instead of equivalence classes. Therefore, we included in Tables 4
and 5 a variation of FINDHIDDEN, labeled FHG, where we fix the measurement model given by
FINDHIDDEN and learn the structural model using GES. Results are not significantly different from
BPC + GES, except at sample size of 200, where FINDHIDDEN has a tendency to miss latents,
inflating its performance in the structural model evaluation (since with fewer latents there is less
chance of committing mistakes).

Figure 13 provides a summary evaluation of all algorithms, BPC, FA and FHG with respect to
the number of perfect structural models obtained for each graphical structure (from 0 to 10). This
includes not only getting the exact number of latents, but also the correct Markov equivalence class
defined in the true model. Factor analysis is competitive when the true model is pure, but is com-
pletely ineffective otherwise. For models based on structural model SM3,FA does not get any fully
correct structure when the measurement model is impure. Moreover, it is clear that while learning
the measurement model can be reasonably performed by BUILD PURECLUSTERS and FINDHID-
DEN with sample sizes of 200, learning the structural model is not an easy task unless more data is
available.

In summary, factor analysis provides little useful information out of the given datasets that were
not generated by pure models. In contrast, the combination of BUILD PURECLUSTERSand GES-
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Figure 13: A comparison of the number of perfect solutions in all synthetic data sets.

MIMB UILD largely succeeds. FINDHIDDEN (with GES, i.e., FHG) has generally good results,
although it behaves erractly with SM1.14

8. Real Data Applications

We now briefly present the results for two real data sets. Data collected from such domains may
pose significant problems for exploratory data analysis since sample sizesare usually small and
noisy, nevertheless they have a very useful property for our empirical evaluation. In particular,
data obtained by questionnaires are designed to target specific latent factors (such as “stress”, “job
satisfaction”, and so on) and a theoretical measurement model is developed by experts in the area to
measure the desired latent variables. Very generally, experts are more confident about their choice
of measures than about the structural model. Such data thus provide a basis for comparison with the
output of our algorithm. The chance that various observed variables are not pure measures of their

14. This can probably be improved by adopting other schema of searchinitialization and extra heuristics for escaping
local minima. However, it can also be a much slower algorithm than BPC, asdiscussed before.
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Figure 14: A theoretical model for the interaction of religious coping, stress and depression. The
signs on the edges depicts the theoretical signs of the corresponding effects.

theoretical latents is high. Measures are usually discrete, but often ordinal with a Likert-scale that
can be treated as normally distributed measures with little loss (Bollen, 1989). Inthe examples, we
compare our procedures with models produced by domain researchers.

8.1 Stress Religious Coping and Depression

Bongjae Lee from the University of Pittsburgh conducted a study of religious/spiritual coping and
stress in graduate students. In December of 2003, 127 students answered a questionnaire intended to
measure three main factors: stress (measured with 21 items), depression (measured with 20 items)
and religious/spiritual coping (measured with 20 items). The full questionnaire is given by Silva
and Scheines (2004). Lee’s model is shown in Figure 14.

This model fails a chi-square test: p = 0. The measurement model producedby BUILD -
PURECLUSTERS is shown in Figure 15(a). Note that the variables selected automatically are
proper subsets of Lee’s substantive clustering. The full model automatically produced with GES-
MIMB UILD with the prior knowledge that STRESS is not an effect of other latent variables is given
in Figure 15(b). This model passes a chi square test, p = 0.28, even though the BPC algorithm itself
does not try to directly maximize the fit of the algorithm.

Our FINDHIDDEN implementation took a couple of days to execture and did not perform pro-
duce a reasonable output if the theoretical model should be taken as the gold standard: five latents
were found to have 20 indicators altogether, but they have no correspondence to the theoretical clus-
tering. This is not unexpected, since the sample size is very small and FINDHIDDEN tries to create a
model that includes all 61 variables. BUILD PURECLUSTERScan be seen as a way of doing feature
selection by focusing on the easier, simpler pure models.

8.2 Test Anxiety

A survey of test anxiety indicators was administered to 335 grade 12 male students in British
Columbia. The survey consisted of 20 measures on symptoms of anxiety under test conditions. The
covariance matrix as well as a description of the variables is given by Bartholomew et al. (2002).15

15. The data are available online at http://multilevel.ioe.ac.uk/team/aimdss.html.
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Figure 15: The output of BPC and GES-MIMBUILD for the coping study.
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Figure 16: A theoretical model for psychological factors of test anxiety.

Using exploratory factor analysis, Bartholomew et al. concluded that two latent common causes
underly the variables in this data set, agreeing with previous studies. The original study identified
items{x2,x8,x9,x10, x15,x16,x18} as indicators of an “emotionality” latent factor (this includes phys-
iological symptoms such as jittery and faster heart beatting), and items{x3,x4,x5,x6,x7,x14,x17,x20}
as indicators of a more psychological type of anxiety labeled “worry” by Bartholomew et al. No
further description is given about the remaining five variables. Bartholomew et al.’s factor analysis
with oblique rotation roughly matches this model. Bartholomew et al.’s exploratory factor analysis
model for a subset of the variables is shown in Figure 16. This model is notintended to be pure.
Instead, the figure represents which of the two latents is more “strongly” connected to each indi-
cator. The measurement model itself is not constrained. Trying to fit this model as a pure model
(i.e., using the graph in Figure 16 instead of a two-factor multivariate Gaussian model with a fully
connected measurement model) gives a p-value of zero according to a chi-square test.

BPC provides the measurement model given in 17(a).16 The labels in the latents were given
to us and should be seen as our particular interpretation. Applying GES-MIMBUILD to the this
measurement model results in the model shown in Figure 17(b). The model passes a chi-square

16. We allowed a latent with less than three indicators. It might correspondto more than one latent in the true model.
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test handily, p = 0.47, even though we used constraint-satisfaction techniques that did not try to
maximize the fitness of the model directly. To summarize, BPC provided a model supported by
the data that is very close to a submodel of the theoretical model (variablesX4,X15,X17,X20 were
removed), except that:

• one of the latents is split in two. To see how this is supported by the data, trying tomerge
latents “Cares about achieving” and ”Self-defeating” will result in a model of p-value of zero;

• variableX11 is used, which is not considered by Bartholomew et al.’s model;

What is remarkable in this case is the ability of reconstructing much of the theoretical model
without using prior knowledge. The model is very simple, i.e., each indicator measures a single
latent, while Bartholomew et al.’s model seems to artificially add edges from all latents into all
indicators to get a model that fits the data. Escaping this artificiality is one of the motivations behind
variable selection in factor analysis methods, such as the one proposed byKano and Harada (2000):
finding a submodel that is a pure model can provide a better understanding of the causal process
being measured than allowing an impure model, whose extra edges might be no more than a patch
to account for residual correlation among indicators, without necessarily existing in the true model.
Kano and Harada’s method, however, requires an initial measurement model to be “purified,” while
BPC works from scratch.

We applied FINDHIDDEN to this data set, obtaining the model shown in Figure 18(a). To sim-
plify presentation, we removed nodes that were not children of any latentin the output model (e.g.,
X3 was not a child of any of the latents, which results on its removal from the picture). Three latents,
labeled by us as “Emotionality 1”, “Emotionality 2” and “Worry” were generated. Both “Emotion-
ality 1” and “Emotionality 2” seem to be a combination of some of the theoretical “Emotionality”
indicators (Figure 16) plus some indicators not included the theoretical model of Figure 16. There
are also lots of edges corresponding to impurities for which no equivalence class is known. As
discussed in Section 3, these edges might correspond to very differentcausal mechanisms than they
might suggest.

Since 5 of the variables are not present in the theoretical model, it is not soeasy to compare
this model against the theoretical model. Therefore, we also provide the result that is obtained from
FINDHIDDEN when the data contains only the 15 indicators used in Figure 16. The result isthe one
shown in Figure 18(b), where we adopted the same latent labels used in BPC’s output. The result
is, surpringly, very different. The model has now a much closer resemblance to BPC’s output,
supporting the plausability of BPC’s output. However, while it seems that BPCis able to find a
pure model among all 20 indicators, FINDHIDDEN in this case was able to find an (almost) pure
modelonlywhen variables were properly pre-selected.

9. Generalizations

In many social science studies, latent structure is represented by so called “non-recursive” structure.
In graphical terms, the dependency graph is cyclic. Richardson (1996) has developed a consis-
tent constraint based search for cyclic graphical models of linear systems, and our procedures for
identifying measurement models can be combined with it to search for such structure.

The procedure we have described here can, however, straightforwardly be generalized to cases
with measured variables taking a small finite range of values by treating the discrete variables as
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Figure 17: The output of BPC and GES-MIMBUILD for the test anxiety study.
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Figure 18: The output of FINDHIDDEN when using all 20 variables (a) and when using only the
variables present in the theoretical model (b).
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Figure 19: A model with no pure submodel with three indicators per latent.

projections from a Gaussian distribution. These are sometimes called latent trait models in the
literature (Bartholomew and Knott, 1999). Much larger sample sizes are required than for linear,
Gaussian measured variables.

In previous works (Silva et al., 2003; Silva and Scheines, 2005), we developed an approach to
learn measurement models even when the functional relationships among latents are non-linear. In
practice, that generality is of limited use because there are at present no consistent search meth-
ods available for structures with continuous, non-linear variables. A modified version of BUILD -
PURECLUSTERS, however, exists for the problem of learning equivalence classes of measurement
models for non-linear structural models. Some of the results here developed cannot be carried on to
the non-linear case (e.g., rule CS3). Others are substantially modified (Lemma9). With extra prior
knowledge, however, much of the measurement model for non-linear structural models can still be
learned from data.

Finally, there are ways of reliably learning some types of impure models using theresults dis-
cussed in this paper. For instance, only two of the three latents in the model in Figure 19 can be
generated by BUILD PURECLUSTERS. A small modification of the algorithm, which would include
an equivalence class accounting for some types of impurities, would be ableto reconstruct all latents
in this example. A more systematic exploration of such extensions will be treated ina future work.

10. Conclusion

This paper introduced a novel algorithm for learning causal structure inlinear models which, to
the best of our knowledge, presents the first published solution for the problem of learning causal
models with latent variables in a principled way where observed conditional independencies are not
expected to exist. It has the following properties:

• it was designed to learn multiple indicator models, i.e., models where observed variables are
not causes of the hidden variables of interest, but which still encompass alarge class of useful
models;

• no assumptions about the number of hidden variables and how they are connected to observed
variables are needed;

• it is a two-stage algorithm, which first learns equivalence classes of measurement models
(i.e., which latents exist and which observed children they have) and, based on a choice of
measurement model, returns an equivalence class of causal models amongthe latents;
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• it is provably correct, in the sense that given the assumptions explicitly described in the pa-
per and in the limit of infinite data, all causal claims made by the output graph holdin the
population;

• it provides a framework which can be partially extended to cover other types of data (discrete,
ordinal) and causal relations (non-linear, non-Gaussian);

Our experiments provide evidence that our procedures can be usefulin practice, but there are
certainly classes of problems where BUILD PURECLUSTERS will not be of practical value. For
instance, learning the causal structure of general blind source separation problems, where measures
are usually indicators of most of the latents (i.e., sources) at the same time.

A number of open problems invite further research, including these:

• completeness of the tetrad equivalence class of measurement models: can we identify all the
common features of measurement models in the same tetrad equivalence class?

• using the more generic rank constraints of covariance matrices to learn measurement models,
possibly identifying the nature of some impure relationships;

• better treatment of discrete variables. Bartholomew and Knott (1999) survey different ways
of integrating factor analysis and discrete variables that can be readily adapted, but the com-
putational cost of this procedure is high;

• finding non-linear causal relationships among latent variables given a fixed linear measure-
ment model, and in other families of multivariate continuous distributions besides the Gaus-
sian;

The fundamental point is that common and appealing heuristics (e.g., factor rotation methods)
fail when the goal is structure learning with a causal interpretation. In manycases it is preferable
to model the relationships of a subset of the given variables than trying to force a bad model over
all of them (Kano and Harada, 2000). Better methods are available now, and further improvements
will surely come from machine learning research.
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Appendix A. BUILD PURECLUSTERS: Full Algorithm and Implementation

We now introduce the complete version of BUILD PURECLUSTERS. This version has additional
steps that deal with exceptional, but arguably less relevant, situations. This requires removing addi-
tional nodes due to vanishing correlations, as well as merging some clusters. The full algorithm is
given in Table 6.
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Algorithm BUILD PURECLUSTERS

Input: a covariance matrixΣ

1. G←FINDPATTERN(Σ).

2. Choose a set of latents inG. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent parent inG.

4. For all pairs of nodes linked by an undirected edge, choose one element of each pair to be
removed.

5. If for some set of nodes{A,B,C}, all children of the same latent, there is a fourth nodeD in
G such thatσABσCD = σACσBD = σADσBC is not true, remove one of these four nodes.

6. For every latentL with at least two children,{A,B}, if there is some nodeC in G such that
σAC = 0 andσBC 6= 0, splitL into two latentsL1 andL2, whereL1 becomes the only parent of
all children ofL that are correlated withC, andL2 becomes the only parent of all children of
L that are not correlated withC;

7. Remove any cluster with exactly 3 variables{X1,X2,X3} such that there is noX4 where all
three tetrads in the covariance matrixX = {X1,X2,X3,X4} hold, all variables ofX are cor-
related and no partial correlation of a pair of elements ofX is zero conditioned on some
observed variable;

8. While there is a pair of clusters with latentsLi andL j , such that for all subsets{A,B,C,D} of
the union of the children ofLi , L j we haveσABσCD = σACσBD = σADσBC, and no marginal or
conditional independencies (where the condition set is of size 1) are observed in this cluster,
setLi = L j (i.e., merge the clusters);

9. Again, verify all implied tetrad constraints and remove elements accordingly: iterate Steps
6-7-8 until no changes happen;

10. Remove all latents with less than three children, and their respective measures;

11. if G has at least four observed variables, returnG. Otherwise, return an empty model.

Table 6: The complete version of BUILD PURECLUSTERS.
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Figure 20: The true graph in (a) will generate at some point a purified measurement pattern as in
(b). It is desirable to merge both clusters.

It might be surprising that we merge clusters of variables that we know cannot share a common
latent parent in the true graph. However, we are not guaranteed to finda large enough number
of pure indicators for each of the original latent parents, and as a consequence only a subset of
the true latents will be represented in the measurement pattern. It might be the case that, with re-
spect to the variables present in the output, the observed variables in two different clusters might
be directly measuring some ancestor common to all variables in these two clusters. As an illustra-
tion, consider the graph in Figure 20(a), where double-directed edgesrepresent independent hidden
common causes. Assume any sensible purification procedure will choose toeliminate all elements
in {W2,W3,X2,X3,Y2,Y3,Z2,Z3} because they are directly correlated with a large number of other
observed variables (extra edges and nodes not depicted).

Meanwhile, one can verify that all three tetrad constraints hold in the covariance matrix of
{W1,X1,Y1,Z1}, and therefore there will be no undirected edges connecting pairs of elements in this
set in the corresponding measurement pattern. Rule CS1 is able to separateW1 andX1 into two
different clusters by using{W2,W3,X2,X3} as the support nodes, and analogously the same happens
toY1 andZ1, W1 andY1, X1 andZ1. However, no test can separateW1 andZ1, norX1 andY1. If we do
not merge clusters, we will end up with the graph seen in Figure 20(b) as part of our output pattern.
Although this is a valid measurement pattern, and in some situations we might want tooutput such
a model, it is also true thatW1 andZ1 measure a same latentL0 (as well asX1 andY1). It would be
problematic to learn a structural model with such a measurement model. There isa deterministic
relation between the latent measured byW1 andZ1, and the latent measured byX1 andY1: they
are the same latent! Probability distributions with deterministic relations are not faithful, and that
causes problems for learning algorithms.

Finally, we show examples where Steps 6 and 7 of BUILD PURECLUSTERSare necessary. In
Figure 21(a) we have a partial view of a latent variable graph, where twoof the latents are marginally
independent. Suppose that nodesX4,X5 andX6 are correlated to many other measured nodes not in
this figure, and therefore are removed by our purification procedure.If we ignore Step 6, the result-
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Figure 21: Suppose (a) is our true model. If for some reason we need to remove nodesX4,X5 and
X6 from our final pure graph, the result will be as shown in Figure (b), unless we apply
Step 6 of BUILD PURECLUSTERS. There are several problems with (b), as explained in
the text.

ing pure submodel over{X1,X2,X3,X7,X8,X9} will be the one depicted in Figure 21(b) ({X1,X2}
are clustered apart from{X7,X8,X9} because of marginal zero correlation, andX3 is clustered apart
from {X7,X8,X9} because of CS1 applied to{X3,X4,X5}×{X7,X8,X9}). However, no linear latent
variable model can be parameterized by this graph: if we let the two latents to becorrelated, this
will imply X1 andX7 being correlated. If we make the two latents uncorrelated,X3 andX7 will be
uncorrelated.

Step 7 exists to avoid rare situations where three observed variables are clustered together and
arepairwisepart of some foursome entailing all three tetrad constraints with no vanishing marginal
and partial correlation, but still should be removed because they are notsimultaneouslyin such a
foursome. They might not be detected by Step 4 if, e.g., all three of them areuncorrelated with all
other remaining observed variables.

In the rest of this section, we describe a practical implementation of BUILD PURECLUSTERS.
The algorithm is described for a given covariance matrix to simplify the exposition. Since typi-
cally one has only a sample covariance matrix, we need a statistical decision procedure. Statistical
tests for tetrad constraints are described by Spirtes et al. (2000). Although it is known that in
practice constraint-based approaches for learning graphical model structure are outperformed on
accuracy by score-based algorithms such as GES (Chickering, 2002), we favor a combination of
a constraint-based approach and a score-based approach due mostlyto computational efficiency.
A smart implementation of constraint-satisfaction algorithms can avoid many statistical shortcom-
ings. If the experimental results are any indication of success, we can claim we provide such an
implementation.

We also describe in full detail how particular choices in BUILD PURECLUSTERS(e.g., Step 2,
where one has to choose a set of latents from the measurement pattern) are solved in our implemen-
tation. We stress that the particularities of the implementation bear no implication on thetheoretical
results given in this paper: the algorithms remain point-wise consistent. The informativeness of the
results (i.e., how much of the true structure is discovered) will vary, but in the particular examples
given in this paper, results were quite insensitive to variations of the following implementation.
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A.1 Robust Purification

We do avoid a constraint-satisfaction approach for purification. At leastfor a fixed p-value and using
false discovery rates to control for multiplicity of tests, purification by testing tetrad constraints often
throws away many more nodes than necessary when the number of variables is relative small, and
does not eliminate many impurities when the number of variables is too large. We suggest a robust
purification approach as follows.

Suppose we are given a clustering of variables (not necessarily disjoint clusters) and a undirect
graph indicating which variables might be ancestors of each other, analogous to the undirect edges
generated in FINDPATTERN. We purify this clustering not by testing multiple tetrad constraints,
but through a greedy search that eliminates nodes from a linear measurement model that entails
tetrad constraints. This is iterated till the current model fits the data accordingto a chi-square test
of significance (Bollen, 1989) and a given acceptance level. Details aregiven in Table 7.

This implementation is used as a subroutine for a more robust implementation of BUILD -
PURECLUSTERSdescribed in the next section. However, it can be considerably slow. Analternative
is using the approximation derived by Kano and Harada (2000) to rapidly calculate the fitness of
a factor analysis model when a variable is removed. Another alternative is agreedy search over
the initial measurement model, freeing correlations of pairs of measured variables. Once we found
which variables are directly connected, we eliminate some of them till no pair is impure. Details
of this particular implementation are given by Silva and Scheines (2004). In our experiments with
synthetic data, it did not work as well as the iterative removal of variables described in Table 7.
However, we do apply this variation in the last experiment described in Section 6, because it is com-
putationally cheaper. If the model search in ROBUSTPURIFY does not fit the data after we eliminate
too many variables (i.e., when we cannot statistically test the model) we just return an empty model.

A.2 Finding a Robust Initial Clustering

The main problem of applying FINDPATTERN directly by using statistical tests of tetrad constraints
is the number of false positives: accepting a rule (CS1, CS2, or CS3) as true when it does not hold
in the population. One can see that might happen relatively often when thereare large groups of
observed variables that are pure indicators of some latent: for instance,assume there is a latentL0

with 10 pure indicators. Consider applying CS1 to a group of six pure indicators of L0. The first
two constraints of CS1 hold in the population, and so assume they are correctly identified by the
statistical test. The last constraint,σX1X2σY1Y2 6= σX1Y2σX2Y1, should not hold in the population, but
will not be rejected by the test with some probability. Since there are 10!/(6!4!) = 210 ways of CS1
being wrongly applied due to a statistical mistake, wewill get many false positives in all certainty.

We can highly minimize this problem by separatinggroupsof variables instead of pairs. Con-
sider the test DISJOINTGROUP(Xi ,Xj ,Xk,Ya,Yb,Yc;Σ):

• DISJOINTGROUP(Xi ,Xj ,Xk,Ya,Yb,Yc;Σ) = true if and only if CS1 returns true for all sets
{X1,X2,X3,Y1,Y2,Y3}, where{X1,X2,X3} is a permutation of{Xi ,Xj ,Xk} and{Y1,Y2,Y3} is
a permutation of{Ya,Yb,Yc}. Also, we test an extra redundant constraint: for every pair
{X1,X2} ⊂ {Xi ,Xj ,Xk} and every pair{Y1,Y2} ⊂ {Ya,Yb,Yc} we also require thatσX1Y1σX2Y2 =
σX1Y2σX2Y1.

Notice it is much harder to obtain a false positive with DISJOINTGROUP than, say, with CS1
applied to a single pair. This test can be implemented in steps: for instance, if for no four foursome
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Algorithm ROBUSTPURIFY

Inputs: Clusters, a set of subsets of some setO;
C, an undirect graph overO;
Σ, a sample covariance matrix ofO.

1. Remove all nodes that have appear in more than one set inClusters.

2. For all pairs of nodes that belong to two different sets inClustersand are adjacent inC, remove the
one from the largest cluster or the one from the smallest cluster if this has less than three elements.

3. Let G be a graph. For each setS∈ Clusters, add all nodes inS to G and a new latent as the only
common parent of all nodes inS. Create an arbitrary full DAG among latents.

4. For each variableV in G, fit a graphG′(V) obtained fromG by removingV. UpdateG by choosing
the graphG′(V) with the smallest chi-square score. If some latent ends up with less than two children,
remove it. Iterate till a significance level is achieved.

5. Do mergings if that increases the fitness. Iterate 4 and 5 till no improvement can be done.

6. Eliminate all clusters with less than three variables andreturnG.

Table 7: A score-based purification.

including Xi andYa we have that all tetrad constraints hold, then we do not considerXi andYa in
DISJOINGGROUP.

Based on DISJOINTGROUP, we propose here a modification to increase the robustness of BUILD -
PURECLUSTERS, the ROBUSTBUILD PURECLUSTERSalgorithm, as given in Table 8. It starts with
a first step called FIND INITIAL SELECTION (Table 9). The goal of FIND INITIAL SELECTION is
to find a pure model using only DISJOINTGROUP instead of CS1, CS2 or CS3. This pure model
is then used as an starting point for learning a more complete model in the remaining stages of
ROBUSTBUILD PURECLUSTERS.

In FIND INITIAL SELECTION, if a pair {X,Y} cannot be separated into different clusters, but
also does not participate in any successful application of DISJOINTGROUP, then this pair will be
connected by a GRAY or YELLOW edge: this indicates that these two nodes cannot be in a pure
submodel with three indicators per latent. Otherwise, these nodes are “compatible”, meaning that
theymightbe in such a pure model. This is indicated by a BLUE edge.

In FIND INITIAL SELECTION we then find cliques of compatible nodes (Step 8).17 Each clique
is a candidate for a one-factor model (a latent model with one latent only). We purify every clique
found to create pure one-factor models (Step 9). This avoids using clusters that are large not because
they are all unique children of the same latent, but because there was no way of separating its
elements. This adds considerably more computational cost to the whole procedure.

After we find pure one-factor modelsMi , we search for a combination of compatible groups.
Step 10 first indicates which pairs of one-factor models cannot be part of a pure model with three
indicators each: ifMi andM j are not pairwise a two-factor model with three pure indicators (as
tested by DISJOINTGROUP), they cannot be both part of a valid solution.

CHOOSECLUSTERINGCLIQUE is a heuristic designed to find a large set of one-factor models
(nodes ofH) that can be grouped into a pure model with three indicators per latent (we need a

17. Any algorithm can be used to find maximal cliques. Notice that, by the anytime properties of our approach, one does
not need to find all maximal cliques.
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Algorithm ROBUSTBUILD PURECLUSTERS

Input: Σ, a sample covariance matrix of a set of variablesO

1. (Selection,C,C0)←FIND INITIAL SELECTION(Σ).

2. For every pair of nonadjacent nodes{N1,N2} in C where at least one of them is not inSelectionand
an edgeN1−N2 exists inC0, add a RED edgeN1−N2 to C.

3. For every pair of nodes linked by a RED edge inC, apply successively rules CS1, CS2 and CS3.
Remove an edge between every pair corresponding to a rule that applies.

4. LetH be a complete graph where each node corresponds to a maximal clique inC.

5. FinalClustering← CHOOSECLUSTERINGCLIQUE(H).

6. Return ROBUSTPURIFY(FinalClustering,C,Σ).

Table 8: A modified BUILD PURECLUSTERSalgorithm.

heuristic since finding a maximum clique inH is NP-hard). First, we define thesizeof a clustering
Hcandidate(a set of nodes fromH) as the number of variables that remain according to the following
elimination criteria: 1. eliminate all variables that appear in more than one one-factor model inside
Hcandidate; 2. for each pair of variables{X1,X2} such thatX1 andX2 belong to different one-factor
models inHcandidate, if there is an edgeX1−X2 in C, then we remove one element{X1,X2} from
Hcandidate(i.e., guarantee that no pair of variables from different clusters which were not shown to
have any common latent parent will exist inHcandidate). We eliminate the one that belongs to the
largest cluster, unless the smallest cluster has less than three elements to avoid extra fragmentation;
3. eliminate clusters that have less than three variables.

The heuristic motivation is that we expected that a model with a large size will have a large num-
ber of variables after purification. Our suggested heuristic to be implementedas CHOOSECLUS-
TERINGCLIQUE is trying to find a good model using a very simple hill-climbing algorithm that
starts from an arbitrary node inH and add new clusters to the current candidate according to the
one that will increase its size mostly while still forming a maximal clique inH. We stop when we
cannot increase the size of the candidate. This is calculated using each node inH as a starting point,
and the largest candidate is returned by CHOOSECLUSTERINGCLIQUE.

A.3 Clustering Refinement

The next steps in ROBUSTBUILD PURECLUSTERS are basically the FINDPATTERN algorithm of
Table 1 with a final purification. The main difference is that we do not checkanymore if pairs
of nodes in the initial clustering given bySelectionshould be separated. The intuition explaining
the usefulness of this implementation is as follows: if there is a group of latents forming a pure
subgraph of the true graph with a large number of pure indicators for each latent, then the initial
step should identify such group. The consecutive steps will refine this solution without the risk
of splitting the large clusters of variables, which are exactly the ones most likelyto produce false
positive decisions. ROBUSTBUILD PURECLUSTERShas the power of identifying the latents with
large sets of pure indicators and refining this solution with more flexible rules,covering also cases
where DISJOINTGROUP fails.
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Algorithm FIND INITIAL SELECTION

Input: Σ, a sample covariance matrix of a set of variablesO

1. Start with a complete graphC overO.

2. Remove edges of pairs that are marginally uncorrelated oruncorrelated conditioned on a third variable.

3. C0←C.

4. Color every edge ofC as BLUE.

5. For all edgesN1−N2 in C, if there is no other pair{N3,N4} such that all three tetrads constraints hold
in the covariance matrix of{N1,N2,N3,N4}, change the color of the edgeN1−N2 to GRAY.

6. For all pairs of variables{N1,N2} linked by a BLUE edge inC

If there exists a pair{N3,N4} that forms a BLUE clique withN1 in C, and a pair
{N5,N6} that forms a BLUE clique withN2 in C, all six nodes form a clique inC0 and
DISJOINTGROUP(N1,N3,N4,N2,N5,N6;Σ) = true, then remove all edges linking elements in
{N1,N3,N4} to {N2,N5,N6}.

Otherwise, if there is no nodeN3 that forms a BLUE clique with {N1,N2} in C,
and no BLUE clique in {N4,N5,N6} such that all six nodes form a clique inC0 and
DISJOINTGROUP(N1,N2,N3,N4,N5,N6;Σ) = true, then change the color of the edgeN1 − N2

to YELLOW.

7. Remove all GRAY and YELLOW edges fromC.

8. ListC←FINDMAXIMAL CLIQUES(C).

9. Let H be a graph where each node corresponds to an element ofListC and with no edges. LetMi

denote both a node inH and the respective set of nodes inListC. Let Mi← ROBUSTPURIFY(Mi,C,Σ);

10. Add an edgeM1−M2 to H only if there exists{N1,N2,N3} ⊆ M1 and{N4,N5,N6} ⊆ M2 such that
DISJOINTGROUP(N1,N2,N3,N4,N5,N6;Σ) = true.

11. Hchoice←CHOOSECLUSTERINGCLIQUE(H).

12. LetHclustersbe the corresponding set of clusters, i.e., the set of sets ofobserved variables, where each
set inHclusterscorrespond to someMi in Hchoice.

13. Selection←ROBUSTPURIFY(Hclusters,C,Σ).

14. Return(Selection,C,C0).

Table 9: Selects an initial pure model.

Notice that the order by which tests are applied might influence the outcome of the algorithms,
since if we remove an edgeX−Y in C at some point, then we are excluding the possibility of using
some tests whereX andY are required. Imposing such restriction reduces the overall computational
cost and statistical mistakes. To minimize the ordering effect, an option is to run the algorithm
multiple times and select the output with the highest number of nodes.

Appendix B. Proofs

Before we present the proofs of our results, we need a few more definitions:
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Figure 22: In (a),C is a choke point for sets{A,B}×{D,E}, since it lies on all treks connecting
nodes in{A,B} to nodes in{D,E} and lies also on the{D,E} side of all of such treks.
For instance,C is on the{D,E} side ofA→ C→ D, whereA is the source of such
a trek. Notice also that this choke point d-separates nodes in{A,B} from nodes in
{D,E}. Analogously,D is also a choke point for{A,B}×{D,E} (there is nothing on
the definition of a choke pointI ×J that forbids it of belongingI ∪J). In Figure (b),C is
a choke point for sets{A,B}×{D,E} that does not d-separate such elements. In Figure
(c),CP is a node that lies on all treks connecting{A,C} and{B,D} but it is not a choke
point, since it does not lie on the{A,C} side of trekA←M→CP→ B and neither lies
on the{B,D} side ofD←N→CP→ A. The same node, however, is a{A,D}×{B,C}
choke point.

• a path in a graphG is a sequence of nodes{X1, . . . ,Xn} such thatXi andXi+1 are adjacent in
G, 1≤ i < n. Paths are assumed to besimpleby definition, i.e., no node appears more than
once. Notice there is an unique set of edges associated with each given path. A path isinto
X1 (or Xn) if the arrow of the edge{X1,X2} is intoX1 ({Xn−1,Xn} into Xn);

• a collider on a path{X1, . . . ,Xn} is a nodeXi , 1 < i < n, such thatXi−1 andXi+1 are parents
of Xi ;

• a trek is a path that does not contain any collider;

• thesourceof a trek is the unique node in a trek to which no arrows are directed;

• the I sideof a trek between nodesI andJ with sourceX is the subpath directed fromX to I .
It is possible thatX = I ;

• a choke point CPbetween two sets of nodesI andJ is a node that lies on every trek between
any element ofI and any element ofJ such thatCP is either (i) on theI side of every such
trek 18 or (ii) on theJ side or every such trek.

With the exception of choke points, all other concepts are well known in the literature of graph-
ical models (Spirtes et al., 2000; Pearl, 1988, 2000). What is interesting ina choke point is that,
by definition, such a node is in all treks linking elements in two sets of nodes. Being in all treks
connecting a nodeXi and a nodeXj is a necessary condition for a node to d-separateXi andXj ,
although this is not a sufficient condition.

18. That is, for every{I ,J} ∈ I ×J, CP is on theI side of every trekT = {I , . . . ,X, . . . ,J}, X being the source ofT.
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Consider Figure 22, which illustrates several different choke points. In some cases, the choke
point will d-separate a few nodes. The relevant fact is that even whenthe choke point is a latent
variable, this has an implication on the observed marginal distribution, as statedby theTetrad Rep-
resentation Theorem:

Theorem 21 (The Tetrad Representation Theorem)Let G be a linear latent variable model, and
let I1, I2,J1,J2 be four variables in G. ThenσI1J1σI2J2 = σI1J2σI2J1 if and only if there is a choke point
between{I1, I2} and{J1,J2}.

Proof: The original proof was given by Spirtes et al. (2000). Shafer et al. (1993) provide an alter-
native and simplied proof.�

Shafer et al. (1993) also provide more details on the definitions and several examples.
Therefore, unlike a partial correlation constraint obtained by conditioning on a given set of

variables, where such a set should be observable,some d-separations due to latent variables can be
inferred using tetrad constraints. We will use the Tetrad Representation Theorem to prove most of
our results. The challenge lies on choosing the right combination of tetrad constraints that allows us
to identify latents and d-separations due to latents, since the Tetrad Representation Theorem is far
from providing such results directly.

In the following proofs, we will frequently use the symbolG(O) to represent a linear latent
variable model with a set of observed nodesO. A choke point between setsI andJ will be denoted
asI ×J. We will first introduce a lemma that is going to be useful to prove several other results.

Lemma 9 Let G(O) be a linear latent variable model, and let{X1,X2,X3,X4} ⊂ O be such that
σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3. If ρAB 6= 0 for all {A,B} ⊂ {X1,X2,X3,X4}, then an unique
node P entails all the given tetrad constraints, and P d-separates all elements in{X1,X2,X3,X4}.

Proof: Let P be a choke point for pairs{X1,X2}× {X3,X4}. Let Q be a choke point for pairs
{X1,X3}×{X2,X4}. We will show thatP = Q by contradiction.

AssumeP 6= Q. Because there is a trek that linksX1 andX4 throughP (sinceρX1X4 6= 0), we
have thatQ should also be on that trek. SupposeT is a trek connectingX1 to X4 throughP andQ,
and without loss of generality assume this trek follows an order that definesthree subtreks:T0, from
X1 to P; T1, from P to Q; andT2, from Q to X4, as illustrated by Figure 23(a). In principle,T0 andT2

might be empty, i.e., we are not excluding the possibility thatX1 = P or X4 = Q.
There must be at least one trekTQ2 connectingX2 andQ, sinceQ is on every trek betweenX1

andX2 and there is at least one such trek (sinceρX1X2 6= 0). We have the following cases:

Case 1: TQ2 includes P. TQ2 has to be intoP, andP 6= X1, or otherwise there will be a trek connecting
X2 to X1 through a (possibly empty) trekT0 that does not includeQ, contrary to our hypothesis. For
the same reason,T0 has to be intoP. This will imply thatT1 is a directed path fromP to Q, andT2

is a directed path fromQ to X4 (Figure 23(b)).
Because there is at least one trek connectingX1 andX2 (sinceρX1X2 6= 0), and becauseQ is on

every such trek,Q has to be an ancestor of at least one member of{X1,X2}. Without loss of gen-
erality, assumeQ is an ancestor ofX1. No directed path fromQ to X1 can includeP, sinceP is an
ancestor ofQ and the graph is acyclic. Therefore, there is a trek connectingX1 andX4 with Q as the
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Figure 23: In (a), a depiction of a trekT linking X1 andX4 throughP andQ, creating three subtreks
labeled asT0, T1 andT2. Directions in such treks are left unspecified. In (b), the exis-
tence of a trekTQ2 linking X2 andQ throughP will compel the directions depicted as a
consequence of the given tetrad and correlation constraints (the dotted path represents
any possible continuation ofTQ2 that does not coincide withT). The configuration in
(c) cannot happen ifP is a choke point entailing all three tetrads among marginally de-
pendent nodes{X1,X2,X3,X4}. The configuration in (d) cannot happen ifP is a choke
point for {X1,X3}×{X2,X4}, since there is a trekX1−P−X2 such thatP is not on the
{X1,X3} side of it, and another trekX2−S−P−X3 such thatP is not on the{X2,X4}
side of it.

source that does not includeP, contrary to our hypothesis.

Case 2: TQ2 does not include P. This case is similar to Case 1.TQ2 has to be intoQ, andQ 6= X4, or
otherwise there will be a trek connectingX2 to X4 through a (possible empty) trekT2 that does not
includeP, contrary to our hypothesis. For the same reason,T2 has to be intoQ. This will imply that
T1 is a directed path fromQ to P, andT0 is a directed path fromP to X1. An argument analogous to
Case 1 will follow.

We will now show by thatP d-separates all nodes in{X1,X2,X3,X4}. From theP = Q result,
we know thatP lies on every trek between any pair of elements in{X1,X2,X3,X4}. First consider
the case where at most one element of{X1,X2,X3,X4} is linked toP through a trek that is intoP.
By the Tetrad Representation Theorem, any trek connecting two elements of{X1,X2,X3,X4} goes
throughP. SinceP cannot be a collider on any trek, thenP d-separates these two elements.
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To finish the proof, we only have to show thatP cannot be a collider in a path connecting any
two elements of{X1,X2,X3,X4}. We will prove that by contradiction. That is, assume without loss
of generality that there is a trek connectingX1 andP that is intoP, and a trek connectingX2 and
P that is intoP. We will show this either entails thatρX1X2 = 0 or thatP is not a choke point for
{X1,X3}×{X2,X4}.

Case 3: there is no trek connecting X1 and P that is out of P neither any trek connecting X2 and
P that is out of P. This implies there is no trek connectingX1 andX2, sinceP is on every trek
connecting these two elements according to the Tetrad Representation Theorem. But this implies
ρX1X2 = 0, a contradiction, as illustrated by Figure 23(c).

Case 4(this case will be similar to the example given in Figure 22(c)):assume without loss of gen-
erality that there is also a trek out of P and into X2. Then there is a trek connectingX1 to X2 through
P that is not on the{X1,X3} side of pair{X1,X3}×{X2,X4} to whichP is a choke point. Therefore,
P should be on the{X2,X4} of every trek connecting elements pairs in{X1,X3}×{X2,X4}. Without
loss of generality, assume there is a trek out ofP and intoX3 (because if there is no such trek for
eitherX3 andX4, we fall in the previous case by symmetry). LetSbe the source of a trek intoP and
X2, which should exist sinceX2 is not an ancestor ofP. Then there is a trek of sourceSconnecting
X3 andX2 such thatP is not on the{X2,X4} side of it as shown in Figure 23(d). ThereforeP cannot
be a choke point for{X1,X3}×{X2,X4}. Contradiction.�

Lemma 13Let G(O) be a linear latent variable model. If for some setO′ = {X1,X2,X3,
X4} ⊆ O, σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3 and for all triplets{A,B,C}, {A,B} ⊂ O′,C ∈ O,
we haveρAB.C 6= 0 andρAB 6= 0, then no element A∈O′ is a descendant of an element ofO′\{A} in
G.

Proof: Without loss of generality, assume for the sake of contradiction thatX1 is an ancestor ofX2.
From the given tetrad and correlation constraints and Lemma 9, there is a node P that lies on every
trek betweenX1 andX2 and d-separates these two nodes. SinceP lies on the directed path fromX1

to X2, P is a descendant ofX1, and therefore an observed node. However, this impliesρX1X2.P = 0,
contrary to our hypothesis.�

Lemma 10Let G(O) be a linear latent variable model. AssumeO′ = {X1,X2,X3,Y1,Y2,Y3} ⊆ O.
If constraints{τX1Y1X2X3,τX1Y1X3X2, τY1X1Y2Y3, τY1X1Y3Y2, ¬τX1X2Y2Y1} all hold, and that for all triplets
{A,B,C},{A,B} ⊂ O′, C∈ O, we haveρAB 6= 0,ρAB.C 6= 0, then X1 and Y1 do not have a common
parent in G.

Proof: We will prove this result by contradiction, by assuming thatX1 andY1 have a common parent
L in G and showing this entailsτX1X2Y2Y1, contrary to the hypothesis.

Initially, we will show by contradiction thatL is a choke point for{X1,Y1}×{X2,X3}. Suppose
L is not a choke point for{X1,X2}×{Y1,X3} corresponding to one of the tetrad constraints given
by hypothesis. Because of the trekX1← L→ Y1, then eitherX1 or Y1 is a choke point. Without
loss of generality, assumeX1 is a choke point in this case. By Lemma 9 and the given constraints,
X1 d-separates any two elements in{X2,X3,Y1} contrary to the hypothesis thatρX2X3.X1 6= 0. By
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Figure 24: Figure (a) illustrates necessary treks among elements of{X1,X2,Y1,Y2,L} according to
the assumptions of Lemma 11 if we further assume thatX1 is a choke point for pairs
{X1,X2}×{Y1,Y2} (other treks might exist). Figure (b) rearranges (a) by emphasizing
thatY1 andY2 cannot be d-separated by a single node.

symmetry,Y1 cannot be a choke point. Therefore,L is a choke point for{X1,Y1}×{X2,X3} and by
Lemma 9, it also lies on every trek for any pair inS1 = {X1,X2,X3,Y1}.

Analogously,L is on every trek connecting any pair from the setS2 = {X1,Y1,Y2,Y3}. It fol-
lows thatL is on every trek connecting any pairs in the product{X1,Y1}×{X2,Y2}, and it is on the
{X1,Y1} side of{X1,Y1}×{X2,Y2}, i.e.,L is a choke point that impliesτX1X2Y2Y1. Contradiction.�

Remember that predicateFactor(X,Y,G) is true if and only if there exist two nodesW andZ in
G such thatτWXYZandτWXZY are both entailed, all nodes in{W,X,Y,Z} are correlated, and there is
no observedC in G such thatρAB.C = 0 for {A,B} ⊂ {W,X,Y,Z}.

Lemma 11Let G(O) be a linear latent variable model. AssumeO′ = {X1,X2,X3,Y1,Y2,Y3}
⊆ O, such that Factor(X1,X2,G) and Factor(Y1,Y2,G) hold, Y1 is not an ancestor of Y3 and X1 is
not an ancestor of X3. If constraints{τX1Y1Y2X2,τX2Y1Y3Y2, τX1X2Y2X3,¬τX1X2Y2Y1} all hold, and that for
all triplets {A,B,C},{A,B} ⊂O′,C∈O, we haveρAB 6= 0,ρAB.C 6= 0, then X1 and Y1 do not have a
common parent in G.

Proof: We will prove this result by contradiction. AssumeX1 andY1 have a common parentL.
Because of the tetrad constraints given by hypothesis and the existence of the trekX1← L→ Y1,
one node in{X1,L,Y1} should be a choke point for the pair{X1,X2}×{Y1,Y2}. We will first show
thatL has to be such a choke point, and therefore lies on every trek connectingX1 andY2, as well
asX2 andY1. We then show thatL lies on every trek connectingY1 andY2, as well asX1 andX2.
Finally, we show thatL is a choke point for{X1,Y1}×{X2,Y2}, contrary to our hypothesis.

Step 1: If there is a common parent L to X1 and Y1, then L is a{X1,X2}×{Y1,Y2} choke point.For
the sake of contradiction, assumeX1 is a choke point in this case. By Lemma 13 and assumption
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Figure 25: In (a), a depiction ofTY and TX, where edges represent treks (TX can be seen more
generally as the combination of the solid edge betweenX2 andP concatenated with a
dashed edge betweenP andY1 representing the possibility thatTY andTX might intersect
multiple times inTPY, but in principle do not need to coincide inTPY if P is not a choke
point.) In (b), a possible configurations of edges< X−1,P > and< P,Y+1 > that do
not collide inP, andP is a choke point (andY+1 6= Y). In (c), the edge< Y−1,P >
is compelled to be directed away fromP because of the collider with the other two
neighbors ofP.

Factor(X1,X2,G), we have thatX1 is not an ancestor ofX2, and therefore all treks connectingX1

andX2 should be intoX1. SinceρX2Y2 6= 0 by assumption andX1 is on all treks connectingX2 and
Y2, there must be a directed path out ofX1 and intoY2. SinceρX2Y2.X1 6= 0 by assumption andX1 is
on all treks connectingX2 andY2, there must be a trek intoX1 andY2. BecauseρX2Y1 6= 0, there must
be a trek out ofX1 and intoY1. Figure 24(a) illustrates the configuration.

SinceFactor(Y1,Y2,G) is true, by Lemma 9 there must be a node d-separatingY1 andY2 (nei-
therY1 norY2 can be the choke point inFactor(Y1,Y2,G) because this choke point has to be latent,
according to the partial correlation conditions ofFactor). However, by Figure 24(b), treksT2−T3

andT1−T4 cannot both be blocked by a single node. Contradiction. ThereforeX1 cannot be a choke
point for{X1,X2}×{Y1,Y2} and, by symmetry, neither canY1.

Step 2: L is on every trek connecting Y1 and Y2 and on every trek connecting X1 and X2. Let L be the
choke point for pairs{X1,X2}×{Y1,Y2}. As a consequence, all treks betweenY2 andX1 go through
L. All treks betweenX2 andY1 go throughL. All treks betweenX2 andY2 go throughL. Such treks
exist, since no respective correlation vanishes.

Consider the given hypothesisσX2Y1σY2Y3 = σX2Y3σY2Y1, corresponding to a choke point{X2,Y2}×
{Y1,Y3}. From the previous paragraph, we know there is a trek linkingY2 andL. L is a parent ofY1

by construction. That meansY2 andY1 are connected by a trek throughL.

We will show by contradiction thatL is on every trek connectingY1 andY2. Assume there is a
trek TY connectingY2 andY1 that does not containL. Let P be the first point of intersection ofTY

and a trekTX connectingX2 to Y1, starting fromX2. If TY exists, such point should exist, sinceTY

should contain a choke point{X2,Y2}×{Y1,Y3}, and all treks connectingX2 andY1 (includingTX)
contain the same choke point.
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Figure 26: In (a),Y2 andX1 cannot share a parent, and because of the given tetrad constraints,L
should d-separateM andY3. Y3 is not a child ofL either, but there will be a trek linking
L andY3. In (b), an (invalid) configuration forX2 andX3, where they share an ancestor
betweenM andL.

Let TPY be the subtrek ofTY starting onP and ending one node beforeY1. Any choke point
{X2,Y2}×{Y1,Y3} should lie onTPY (Figure 25(a)). (Y1 cannot be such a choke point, since all treks
connectingY1 andY2 are intoY1, and by hypothesis all treks connectingY1 andY3 are intoY1. Since
all treks connectingY2 andY3 would need to go throughY1 by definition, then there would be no
such trek, implyingρY2Y3 = 0, contrary to our hypothesis.)

Assume first thatX2 6= P andY2 6= P. Let X−1 be the node beforeP in TX starting fromX2. Let
Y−1 be the node beforeP in TY starting fromY2. Let Y+1 be the node afterP in TY starting fromY2

(notice that it is possible thatY+1 =Y1). If X−1 andY+1 do not collide onP (i.e., there is no structure
X−1→ P←Y+1), then there will be a trek connectingX2 to Y1 throughTPY afterP. SinceL is not
in TPY, L should be beforeP in TX. But then there will be a trek connectingX2 andY1 that does not
intersectTPY, which is a contradiction (Figure 25(b)). If the collider does exist, we have the edge
P← Y+1. Since no colliderY−1→ P← Y+1 can exist becauseTY is a trek, the edge betweenY−1

andP is out ofP. But that forms a trek connectingX2 andY2 (Figure 25(c)), and sinceL is in every
trek betweenX2 andY2 andTY does not containL, thenTX should containL beforeP, which again
creates a trek betweenX2 andY1 that does not intersectTPY.

If X2 = P, thenTPY has to containL, because every trek betweenX2 andY1 containsL. Therefore,
X2 6= P. If Y2 = P, then because every trek betweenX2 andY2 should containL, we again have that
L lies inTX beforeP, which creates a trek betweenX2 andY1 that does not intersectTPY. Therefore,
we showed by contradiction thatL lies on every trek betweenY2 andY1.

Consider now the given hypothesisσX1X2σX3Y2 = σX1Y2σX3X2, corresponding to a choke point
{X2,Y2}×{X1,X3}. By symmetry with the previous case, all treks betweenX1 andX2 go throughL.

Step 3: If L exists, so does a choke point{X1,Y1}×{X2,Y2}. By the previous steps,L intermedi-
ates all treks between elements of the pair{X1,Y1}×{X2,Y2}. BecauseL is a common parent of
{X1,Y1}, it lies on the{X1,Y1} side of every trek connecting pairs of elements in{X1,Y1}×{X2,Y2}.
L is a choke point for this pair. This impliesτX1X2Y2Y1. Contradiction.�

Lemma 12Let G(O) be a linear latent variable model. LetO′ = {X1,X2,X3,Y1,Y2,Y3}
⊆O. If constraints{τX1Y1Y2Y3,τX1Y1Y3Y2, τX1Y2X2X3, τX1Y2X3X2,τX1Y3X2X3,τX1Y3X3X2,
¬τX1X2Y2Y3} all hold, and that for all triplets{A,B,C},{A,B}⊂O′,C∈O, we haveρAB 6= 0,ρAB.C 6=
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0, then X1 and Y1 do not have a common parent in G.

Proof: We will prove this result by contradiction. SupposeX1 andY1 have a common parentL in G.
Since all three tetrads hold in the covariance matrix of{X1,Y1,Y2,Y3}, by Lemma 9 the choke point
that entails these constraints d-separates the elements of{X1,Y1,Y2,Y3}. The choke point should
be in the trekX1← L→ Y1, and since it cannot be an observed node because by hypothesis no
d-separation conditioned on a single node holds among elements of{X1,Y1,Y2,Y3}, L has to be a
latent choke point for all pairs of pairs in{X1,Y1,Y2,Y3}.

It is also given that{τX1Y2X2X3,τX1Y2X3X2,τX1Y1Y2Y3,τX1Y1Y3Y2} holds. Since it is the case that¬τX1X2Y2Y3,
by Lemma 10X1 andY2 cannot share a parent. LetTML be a trek connecting some parentM of Y2

andL. Such a trek exists becauseρX1Y2 6= 0.
We will show by contradiction that there is no node inTML\L that is connected toY3 by a trek

that does not go throughL. Suppose there is such a node, and call itV. If the trek connectingV and
Y3 is intoV, and sinceV is not a collider inTML, thenV is either an ancestor ofM or an ancestor
of L. If V is an ancestor ofM, then there will be a trek connectingY2 andY3 that is not throughL,
which is a contradiction. IfV is an ancestor ofL but notM, then bothY2 andY3 are d-connected
to a nodeV is a collider at the intersection of such d-connecting treks. However,V is an ancestor
of L, which meansL cannot d-separateY2 andY3, a contradiction. Finally, if the trek connectingV
andY3 is out ofV, thenY2 andY3 will be connected by a trek that does not includeL, which again is
not allowed. We therefore showed there is no node with the properties ofV. This configuration is
illustrated by Figure 26(a).

Since all three tetrads hold among elements of{X1,X2,X3,Y2}, then by Lemma 9, there is a
single choke pointP that entails such tetrads and d-separates elements of this set. SinceTML is a
trek connectingY2 to X1 throughL, then there are three possible locations forP in G:

Case 1: P= M. We have all treks betweenX3 and X2 go throughM but not throughL, and
some trek fromX1 to Y3 goes throughL but not throughM. No choke point can exist for pairs
{X1,X3}×{X2,Y3}, which by the Tetrad Representation Theorem means that the tetradσX1Y3σX2X3 =
σX1X2σY3X3 cannot hold, contrary to our hypothesis.

Case 2: P lies between M and L in TML. This configuration is illustrated by Figure 26(b). As before,
no choke point exists for pairs{X1,X3}×{X2,Y3}, contrary to our hypothesis.

Case 3: P= L. Because all three tetrads hold in{X1,X2,X3,Y3} and L d-separates all pairs in
{X1,X2,X3}, one can verify thatL d-separates all pairs in{X1,X2,X3,Y3}. This will imply a{X1,Y3}×
{X2,Y2} choke point, contrary to our hypothesis.�

Theorem 14The output ofFINDPATTERN is a measurement pattern with respect to the tetrad and
vanishing partial correlation constraints ofΣ

Proof: Two nodes will not share a common latent parent in a measurement pattern if and only if
they are not linked by an edge in graphC constructed by algorithm FINDPATTERN and that happens
if and only if some partial correlation vanishes or if any of rules CS1, CS2 or CS3 applies. But
then by Lemmas 10, 11, 12 and the equivalence of vanishing partial correlations and conditional
independence in linearly faithful distributions (Spirtes et al., 2000) the claimis proved. The claim
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about undirected edges follows from Lemma 13.�

Theorem 15Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G(O) with latent variablesL , let Gout be the output ofBUILD PURECLUSTERS(Σ) with
observed variablesOout ⊆ O and latent variablesLout. Then Gout is a measurement pattern, and
there is an injective mapping M: Lout→ L with the following properties:

1. Let Lout ∈ Lout. LetX be the children of Lout in Gout. Then M(Lout) d-separates any element
X ∈ X fromOout\X in G;

2. M(Lout) d-separates X from every latent in G for which M−1(.) exists;

3. LetO′ ⊆Oout be such that each pair inO′ is correlated. At most one element inO′ with latent
parent Lout in Gout is not a descendant of M(Lout) in G, or has a hidden common cause with
it;

Proof: We will start by showing that for each clusterCli in Gout, there exists an unique latentLi in
G that d-separates all elements ofCli . This shows the existance of an unique function from latents
in Gout to latents inG. We then proceed to prove the three claims given in the theorem, and finish
by proving that the given function is injective.

Let Cli be a cluster in a non-emptyGout. Cli has three elementsX,Y andZ, and there is at least
someW in Gout such that all three tetrad constraints hold in the covariance matrix of{W,X,Y,Z},
where no pair of elements in{X,Y,Z} is marginally d-separated or d-separated by an observable
variable. By Lemma 9, it follows that there is an unique latentLi d-separatingX, Y andZ. If Cli
has more than three elements, it follows that since no node other thanLi can d-separate all three
elements in{X,Y,Z}, and any choke point for{W′,X,Y,Z}, W′ ∈Cli , will d-separate all elements
in {W′,X,Y,Z}, then there is an unique latentLi d-separating all elements inCli . An analogous
argument concerns the d-separation of any element ofCli and observed nodes in other clusters.

Now we will show that eachLi d-separates eachX in Cli from all other mapped latents. As a
byproduct, we will also show the validity of the third claim of the theorem. Consider {Y,Z}, two
other elements ofCli besidesX, and{A,B,C}, three elements ofCl j . SinceLi andL j each d-separate
all pairs in{X,Y}×{A,B}, and no pair in{X,Y}×{A,B} has both of its elements connected to
Li (L j ) through a trek that is intoLi (L j ) (sinceLi , or L j , d-separates then), then bothLi andL j are
choke points for{X,Y}×{A,B}. According to Lemma 2.5 given by Shafer et al. (1993), any trek
connecting an element from{X,Y} to an element in{A,B} passes through both choke points in the
same order. Without loss of generality, assume the order is firstLi , thenL j .

If there is no trek connectingX to Li that is intoLi , thenLi d-separatesX andL j . The same
holds forL j andA with respect toLi . If there is a trekT connectingX andLi that is intoLi , and
since all three tetrad constraints hold in the covariance matrix of{X,Y,Z,A} by construction, then
there is no trek connectingA andLi that is intoLi (Lemma 9). Since there are treks connectingLi

andL j , they should be all out ofLi and intoL j . This means thatLi d-separatesX andL j . But this
also creates a trek connectingX andL j that is intoL j . Since all three tetrad constraints hold in the
covariance matrix of{X,A,B,C} by construction, then there is no trek connectingA andL j that is
into L j (by the d-separation implied by Lemma 9). This means thatL j d-separatesA from Li . This
also means that the existance of such a trekT out of X and intoLi forbids the existance of any trek
connecting a variable correlated toX that is intoLi (since all treks connectingLi and someL j are
out ofLi), which proves the third claim of the theorem.
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We will conclude by showing that given two clustersCli andCl j with respective latentsLi and
L j , where each cluster is of size at least three, if they are not merged, thenLi 6= L j . That is, the
mapping from latents inGout to latents inG, as defined at the beginning of the proof, is injective.

AssumeLi = L j . We will show that these clusters will be merged by the algorithm, proving the
counterpositive argument. LetX andY be elements ofCli andW, Z elements ofCl j . It immediately
follows thatLi is a choke point for all pairs in{W,X,Y,Z}, sinceLi d-separates any pair of elements
of {W,X,Y,Z}, which means all three tetrads will hold in the covariance matrix of any subsetof
size four fromCli ∪Cl j . These two clusters will then be merged by BUILD PURECLUSTERS. �

Theorem 16Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G(O) with latent variablesL , let Gout be the output ofBUILD PURECLUSTERS(Σ) with ob-
served variablesOout ⊆ O and latent variablesLout. Let M(Lout) ⊆ L be the set of latents in G
obtained by the mapping function M(). LetΣOout be the population covariance matrix ofOout, i.e.,
the corresponding marginal ofΣ. Let the DAG Gaug

out be Gout augmented by connecting the elements
of Lout such that the structural model of Gaug

out is an I-map of the distribution of M(Lout). Then there
exists a linear latent variable model using Gaug

out as the graphical structure such that the implied
covariance matrix ofOout equalsΣOout .

Proof: If a linear model is an I-map DAG of the true distribution of its variables, then there is a well-
known natural instantiation of the parameters of this model that will represent the true covariance
matrix (Spirtes et al., 2000). We will assume such parametrization for the structural model, and
denote asΣL(Θ) the parameterized latent covariance matrix. Instead of showing thatGaug

out is an
I-map of the respective set of latents and observed variables and usingthe same argument, we will
show a valid instantion of its parameters directly.

Assume without loss of generality that all variables have zero mean. To each observed nodeX
with latent ancestorLX in G such thatM−1(LX) is a parent ofX in Gout, the linear model represen-
tation is:

X = λXLX + εX

For this equation, we have two associated parameters,λX andσ2
εX

, whereσ2
εX

is the variance
of εX. We instantiate them by the linear regression values, i.e.,λX = σXLX/σ2

LX
, andσ2

εX
is the

respective residual variance. The set{λX}∪ {σ2
εX
} of all λX andσ2

εX
, along with the parameters

used inΣL(Θ), is our full set of parametersΘ.
Our definition of linear latent variable model requiresσεXεY = 0, σεXLX = 0 andσεXLY = 0, for all

X 6= Y. This corresponds to a covariance matrixΣ(Θ) of the observed variables with entries defined
as:

E[X2](Θ) = σ2
X(Θ) = λ2

Xσ2
LX

+σ2
εX

E[XY](Θ) = σXY(Θ) = λXλTσLXLY

To prove the theorem, we have to show thatΣOout = Σ(Θ) by showing that correlations between
different residuals, and residuals and latent variables, are actually zero.

The relationσεXLX = 0 follows directly from the fact thatλX is defined by the regression coef-
ficient of X on LX. Notice that ifX andLX do not have a common ancestor,λX is the direct effect
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of LX in X with respect toGout. As we know, by Theorem 15, at most one variable in any set of
correlated variables will not fulfill this condition.

We have to show also thatσXY = σXY(Θ) for any pairX,Y in Gout. ResidualsεX andεY are
uncorrelated due to the fact thatX andY are independent given their latent ancestors inGout, and
thereforeσεXεY = 0. To verify thatσεXLY = 0 is less straightforward, but one can appeal to the
graphical formulation of the problem. In a linear model, the residualεX is a function only of the
variables that are not independent ofX givenLX. None of this variables can be nodes inGout, since
LX d-separatesX from all such variables. Therefore, givenLX none of the variables that defineεX

can be dependent onLY, implying σεXLY = 0. �

Theorem17ProblemM P
3 is NP-complete.

Proof: Direct reduction from the 3-SAT problem: letSbe a 3-CNF formula from which we want to
decide if there is an assignment for its variables that makes the expression true. DefineG as a latent
variable graph with a latent nodeLi for each clauseCi in M, with an arbitrary fully connected struc-
tural model. For each latent inG, add five pure children. Choose three arbitrary children of each
latentLi , naming them{C1

i ,C
2
i ,C

3
i }. Add a bi-directed edgeCp

i ↔Cq
j for each pairCp

i ,Cq
j , i 6= j, if

and only that they represent literals over the same variable but of oppositevalues. As in the maxi-
mum clique problem, one can verify that there is a pure submodel ofG with at least three indicators
per latent if and only ifS is satisfiable.�

The next corollary suggests that even an invalid measurement pattern could be used in BUILD -
PURECLUSTERSinstead of the output of FINDPATTERN. However, an arbitrary (invalid) measure-
ment pattern is unlikely to be informative at all after being purified. In constrast, FINDPATTERN

can be highly informative.

Corollary 18 The output ofBUILD PURECLUSTERS retains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of times inFINDPATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

Proof: Independently of the choice made on Step 2 of BUILD PURECLUSTERS and which nodes
are not separated into different cliques in FINDPATTERN, the exhaustive verification of tetrad con-
straints by BUILD PURECLUSTERSprovides all the necessary conditions for the proof of Theorem
15. �

Corollary 20 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G, and Gout the output ofBUILD PURECLUSTERSgivenΣ, the output ofPC-MIMBUILD or
FCI-MIMB UILD given(Σ,Gout) returns the correct Markov equivalence class of the latents in G
corresponding to latents in Gout according to the mapping implicit inBUILD PURECLUSTERS

Proof: By Theorem 15, each observed variable is d-separated from all othervariables inGout given
its latent parent. By Theorem 16, one can parameterizeGout as a linear model such that the ob-
served covariance matrix as a function of the parameterizedGout equals its corresponding marginal
of Σ. By Theorem 19, the rank test using the measurement model ofGout is therefore a consistent
independence test of latent variables. The rest follows immediately from theconsistency property
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of PC and FCI given a valid oracle for conditional independencies.�
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