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ABSTRACT
In several organizations, it has become increasingly popu-
lar to document and log the steps that makeup a typical
business process. In some situations, a normative workflow
model of such processes is developed, and it becomes im-
portant to know if such a model is actually being followed
by analyzing the available activity logs. In other scenarios,
no model is available and, with the purpose of evaluating
cases or creating new production policies, one is interested
in learning a workflow representation of such activities. In
either case, machine learning tools that can mine workflow
models are of great interest and still relatively unexplored.
We present here a probabilistic workflow model and a corre-
sponding learning algorithm that runs in polynomial time.
We illustrate the algorithm on example data derived from a
real world workflow.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: PROBABILITY AND
STATISTICS

General Terms
Algorithms

Keywords
Workflow mining, graphical models, causal models

1. MOTIVATION
Most large social organizations are complex systems. Every

day they perform various types of processes, such as assem-
bling a car, designing and implementing software, organizing
a conference, and so on. A process is a set of tasks to be
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accomplished, where every task might have pre-requisites
within the process that have to be fulfilled before execution.

For instance, implementing a database query system should
not be performed before the necessary data structures are
designed. One should not add the doors to a car before the
seats are in place. That is, some tasks are essentially se-
quential. But it is fair to say that building the speakers of a
car bears no implication on the manufacturing of the tires,
and vice-versa, i.e., some tasks can be executed in parallel.
Moreover, there are tasks that are mutually exclusive: for
instance, one has to decide if a given share of coffee harvest
is to be exported, or sent to the internal market. Some tasks
might also be executed in cycles.

To analyze productivity, identify outliers, cut unneces-
sary expenses, and design other production policies, models
of work are important, i.e., abstract representations of typ-
ical process instances modeling the causal and probabilistic
dependencies among tasks. Such models are based on the
concepts of sequential, parallel, iterative (cyclic) and mutu-
ally exclusive tasks and are used to evaluate costs, monitor
processes, and predict the effect of new policies [7]. For these
reasons, empirically building process models from data is of
great interest. Such a problem has been called process min-
ing, or simply workflow mining [8, 3, 4], because the usual
representation of work processes is workflow graphs.

In this paper, we describe a probabilistic model for work-
flow graphs, and algorithms for learning such graphs from
data. The setup is similar to other graphical models. In Sec-
tion 2, we introduce a formal description of workflow graphs
and the associated generative models. Section 3 describes a
data mining algorithm for learning the structure of workflow
graphs from data. An empirical study is given in Section 4.
Related work is discussed in Section 5.

2. APPROACH
In this section, we first give a description of the family of

graphs that are allowed in our framework. This is followed
by a probabilistic parameterization of such graphs. We then
describe the role of temporal information in our approach,
followed by our treatment of hidden variables and noise.
We conclude this section with a concept (called faithfulness)
that links empirically observable constraints to graphs.

2.1 WORKFLOW GRAPHS
For simplicity, in this paper we will work with acyclic

graphs only. A future extension of this work will cover the
cyclic case.



In a typical process, each task T has pre-requisites, a set of
other tasks whose execution will determine the probability of
T being executed. A workflow graph G is a directed acyclic
graph (DAG) where each task is a node, and the parents of
a node are its direct pre-requisites. That is, the decision to
execute T does not depend on any (other) task in G given
its parents.

Motivated by other workflow representations (see [8] for a
review) which are used to model a large variety of real-world
processes, we adopt a constrained DAG representation. Let
a AND/OR workflow graph (AO graph) be a constrained
type of DAG, with any node being in one of the following
classes:

• split node, a node with multiple children;

• join node, a node with multiple parents;

• simple node, a node with no more than one parent and
no more than one child;

We require that an AO graph must have exactly one node
that has no parents (a start node) and exactly one node that
has no children (an end node). Informally, split nodes are
meant to represent the points where choices are made (i.e.,
where one among mutually exclusive tasks will be chosen) or
where multiple parallel threads of tasks will be spawned. As
a counterpart, join nodes are meant to represent points of
synchronization. That is, a join node is a task J that, before
allowing the execution of any of its children, waits for the
completion of all active threads that have J as an endpoint.
This particular property is very specific to workflow graphs,
which we call synchronization property.

However, not any split-join pattern is permitted. Every
split node T has also to obey the following constraints in an
AO graph:

• there must be a node that is a descendant of all chil-
dren of T . The end node obviously is one such node.
Among all such nodes, we assume there is a unique
minimal one that is not a descendant of any other such
node. There may also be a node that is a descendant
of more than one, but not all children of T . We call
such a node a partial join for T ;

• Let S1 and S2 be any two directed chains from T to a
node V that only intersect at T and V . Then all nodes
in G that are descendants of nodes in S1 ∪S2\{T} are
either ancestors of V , or descendants of V .

This property is desirable in order to give join nodes the
semantics of real synchronization tasks, i.e., join nodes as
tasks that finalize threads started by the most recent split
node. It essentially enforces nesting of threads. A case where
this assumption is not respected is illustrated by Figure 1.

These constraints are the most characteristic constraints
of workflow graphs adopted in the literature, and provide
distinctive features to be explored by workflow mining algo-
rithms.

2.2 A PARAMETRIC MODEL OF WORK-
FLOW GRAPHS

Each task T is an event. It either happens or it does not
happen. By an abuse of notation, we will use the same sym-
bols to represent binary random variables and task events,

...
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T

Figure 1: This construction is not allowed because
T1 creates another thread that is not nested between
the split point that generated {T1, T2} and its syn-
chronization point T3.

where T = 1 represents the event “T happened”. We define a
parametric model for a DAG by the conditional probability
of each node given its parents, i.e. by assuming the Markov
condition (Spirtes et al., 2000). There is, however, a special
logical constraint in workflow graphs.

Let an OR-split be a split node that forces a unique choice
of task to be executed among its children, i.e., all of its
children are mutually exclusive. Any other type of split node
is called an AND-split1. Children of OR-splits will have a
special parameterization.

Let PaT represent the parents of task T in an AO graph
G. By another abuse of notation, let PaT also be a random
variable representing the joint state of the parents of a task
T , i.e., PaT = j is a particular combination of binary as-
signments to the elements of PaT . In particular, PaT = 0
represents the event where all parents of T are assigned the
value 0. The basic parametetrization is as follows:

• if T is not a child of an OR-split, P (T = 1|PaT = j) =
Θtj < 1 for j > 0, and P (T = 1|PaT = 0) = 0.

• if T is a child of an OR-split, then by assumption PaT

has an unique element V . Let Choice(V ) be an aux-
iliary multinomial random variable in {1, ..., c}, where
c is the number of children of V . Each Choice(•)
random variable has its own multinomial distribution,
where the domain of this function is the set of OR-
splits of G. Finally, define T as being the ith child of
PaT . Then P (T = 1|PaT = 1, Choice(PaT ) = i) =
Θt < 1, and 0, otherwise;

The requirement that P (T = 1|PaT = 0) = 0 encodes
the modeling assumption that a necessary condition for a
task to be executed is that at least one of its parents is
executed. We call this property backward determinism, typ-
ically present in real-world processes [7]2. Also important,
backward determinism will allow us to design an algorithm
to learn workflow graphs in polynomial time.

2.3 TEMPORAL INFORMATION
We assume that the data available for our learning algo-

rithm is a workflow log [1]. A workflow log consists of records

1This is an unfortunate choice of names, since OR-splits
actually behave as XOR operators, while an AND-split is
technically an OR choice. We adopt this denomination since
it is already widespread in this field.
2The assumption Θtj < 1 is not an essential assumption
and was introduced here for the purposes of simplifying the
presentation. It does capture the common phenomenon that
any process can be aborted non-deterministically.



of which tasks were performed for which process instances
at which starting time. For example, the following log

WorkflowLog = {(Car1, BuildChassis, 09:10am),
(Car2, BuildDoors, 10:17am), (Car2, AddSeats, 10:20am),
(Car1, Build Doors, 10:47am)}

contains information concerning two instances (Car1 and
Car2) going through a series of tasks (BuildChassis, Build
Doors, AddSeats) starting at differente times.

Workflow logs are by-products of workflow management
systems [7]. We assume that our data are workflow logs.

2.4 HIDDEN VARIABLES AND NOISE
We allow the possibility that non-simple nodes can be hid-

den variables (i.e., split or join nodes might not be recorded
at all in the log). However, for identification purposes, we
make the following assumptions:

1. no hidden AND-split is a child of a hidden AND-split,
and no hidden OR-split is a child of a hidden OR-split;

2. no hidden task is both a split and join node;

3. no hidden join is followed by a simple task and no
hidden OR-split follows a simple task, where there are
no hidden partial joins;

These assumptions do not restrict the ability of the AO
graphs to represent any combination of sequential, parallel
or exclusive patterns that appear in practice. Mathemati-
cally, however, they assure that any AO graph can be dis-
tinguished from any other AO graph given enough data, as
it will be explained in Section 3. Furthermore, we allow
the possibility of measurement error. For each task T that
is measurable, we account for the possibility that T is not
recorded in a particular instance even though T happened.
That is, let TM be a binary variable such that TM = 1 if
task T is recorded to happen. Then we have the following
measurement model:

• P (TM = 1|T = 1) = ηTM > 0

• P (TM = 1|T = 0) = 0

Note that we assume measurement error happens only in
one direction. Although that might not be the case in every
application, this greatly simplifies our problem, and will al-
low us to learn the structure of workflow graphs without
fitting latent variable models.

In this sense, every task is hidden. However, in this paper,
the name “hidden task” will be applied only to tasks that
cannot be measured at all. The description of a workflow
model as a specialized hidden Markov model will be treated
in Section 5. Notice also that for every OR-split T in G,
Choice(T ) is a hidden variable, and will not be explicitly
represented in AO graphs, unlike hidden splits and joins.

To identify hidden AND-splits, we need to assume that
the immediate observable descendants of a hidden AND-
split T (i.e., those that do not have an observable proper
ancestor that is a descendant of T ) should not be tied by
any temporal constraint, i.e., given observable descendants
T1 and T2, the probability that T1 is executed (starts) before
T2 is positive.

We assume that there is also a fixed measurement noise
for the temporal ordering information. For each pair of tasks
T1, T2, there is some probability ǫ that T1 is recorded before
T2 even though in the true workflow graph T2 is an ancestor
of T1. We will assume that the noise level is the same for
each pair.

2.5 STRUCTURAL INDEPENDENCE
The Markov condition gives us a way of parameterizing

a probabilistic model as a AO graph. If one is interested
in calculating the effect of a new policy that changes the
probability distribution of some specific set of tasks, then
the Causal Markov condition needs to be assumed [6].

If one is interested in a learning algorithm that will recover
the right structure, at least asymptotically, we have to have
some extra assumptions linking the probabilistic distribu-
tion of the tasks to the corresponding graphical structure.
For the general case of learning the structure of DAGs, a
sufficient condition for consistent learning is the faithfulness
condition. This condition states that a conditional indepen-
dence statement holds in the probability distribution if and
only if it is entailed in the respective DAG by d-separation
[6].

We want a similar assumption, because observed condi-
tional independencies can provide information about the
workflow graph underlying the data, but only if conditional
independencies are a result of the workflow structure (i.e.,
if they are entailed by the workflow graph). We cannot just
assume faithfulness to d-separation: due to backward de-
terminism, a chain such as T1 → T2 → T3 encodes that T2

is independent of T1 given T3 = 1 (because if T3 happened,
then by assumption T2 happened, which means that T1 does
not add any information concerning the distribution of T2),
but T2 is not d-separated from T1 given T3.

Instead, we assume a variation of faithfulness. First, two
definitions: an augmented AO graph is a modification of a
AO graph G such that, for each OR-split T we introduce
a new node, Choice(T ), as a child of T , and make every
original child of T a child of Choice(T ) only. We denote
the augmented version of G by Augmented(G). Also, given
Augmented(G), we say that task A is a sure-ancestor of task
B if for every ancestor C of B, C is an ancestor of A and
A d-separates C and B, or A is an ancestor of C. We then
assume that Ti is independent of Tj given a set of tasks T
if and only if either of the following situations hold in the
workflow graph G associating such tasks:

• Ti and Tj are d-separated given T in Augmented(G);

• Ti and Tj are d-separated given a sure-ancestor of some
Tk ∈ T such that Tk = 1;

• Ti (or Tj) is a sure-ancestor of some Tk ∈ T such that
Tk = 1;

The idea embedded in faithfulness is that conditional in-
dependences should be given by the graphical structure, not
by the particular choice of parameters defining the proba-
bility of a task being accomplished. Sure-ancestry entails
independencies because in an AO graph G, if A is a sure-
ancestor of B, then P (A = 1|B = 1) = 1 in any probability
model parameterized by G.



3. LEARNING AO GRAPHS
Assume for now we have an ordering oracle O for a work-

flow graph G such that O(T1, T2) returns true, false or
exclusive as follows:

• if T1 and T2 are immediate observable descendants of
an AND-split, then O(T1, T2) = O(T2, T1) = true;

• if T1 is an ancestor of T2, then O(T1, T2) = true;

• if O(T1, T2) = true, then T2 is not an ancestor of T1;

• O(T1, T2) = exclusive if and only if T1 and T2 are
mutually exclusive;

Notice that according to this oracle it is possible to have
O(T1, T2) = true even though T1 is not an ancestor of T2,
as long as T2 is not an ancestor of T1.

Analogously, assume for now we have an independence
oracle I for a workflow graph G such that I(Ti, Tj , Tk) is true
if and only if Ti and Tj are independent given Tk = 1. The
motivation for defining such oracles is given by the following
theorem:

Theorem 1. Let G1 and G2 be two AO graphs with re-
spective ordering and independence oracles {O1, I1} and {O2,
I2} over a same set of observable tasks T. If O1 and O2,
and I1 and I2 agree on all queries concerning members of
T, then G1 = G2 up to a renaming of the hidden tasks.

The proof of this theorem is given in Appendix A. In sim-
ple terms, given certain partial information of ordering and
conditional independences among the observable tasks, one
is able to uniquely recover the proper AO graph.

3.1 MAIN ALGORITHM
With these oracles, we claim that the algorithm Learn-

OrderedWorkflow, given in Figure 2, will return the correct
workflow structure.

This algorithm makes references to other sub-algorithms
given in Section 3.2. We will first provide a higher-level
description of its steps. The algorithm works by iteratively
adding child nodes to a partially built graph in a specific
order. Initially, the ordering oracle will tell us which nodes
are “root causes” of all other measurable tasks, i.e., which
nodes do not have any measurable ancestor. Such nodes
are identified in Step 3 of Figure 2. If we have more than
one measurable node as a “root cause”, and because an AO
graph requires a single starting point and explicit control
nodes (i.e., AND-splits and OR-splits), it is the case that
unobserved splits have to be added to the graph. This is
done by HiddenSplits.

At each main iteration (Steps 7 - 12), we have a set of
nodes called CurrentBlanket, which contains all and only
the “leaves” of the current workflow graph H , i.e., all the
task nodes that do not have any children in H . The initial
choice of nodes for CurrentBlanket are exactly the root
causes. The next step is to find which measurable tasks
should be added to H . We are interested in building the
graph by selecting only a set of tasks NextBlanket such
that:

• there is no pair (T1, T2) in NextBlanket where T1 is
an ancestor of T2 in G;

Algorithm LearnOrderedWorkflow

Input O, an ordering oracle for a set T of tasks;
I , an independence oracle for T;

Output H , an AO graph

1. Let H and GO be two empty graphs, where H has
no nodes and T are the nodes of G0

2. For every pair of tasks Ti and Tj such that O(T1, T2)
if true but not O(T2, T1), add the edge T1 → T2 to G0

3. Let CurrentBlanket be the subset of T whose
elements do not have a parent in GO

4. Add nodes in CurrentBlanket to H
5. H ← HiddenSplits(H,CurrentBlanket, O)
6. GO ← GO −CurrentBlanket

7. While GO has nodes
8. NextBlanket← GextNextBlanket(

CurrentBlanket, GO, O, I)
9. Add nodes in NextBlanket to H

10. Ancestors← Dependencies(CurrentBlanket,
NextBlanket, O, I)

11. H ← InsertLatents(H, CurrentBlanket,
NextBlanket, Ancestors,O)

12. GO ← GO −NextBlanket

13. Let CurrentBlanket be the subse of T whose
elements do not have a child in H

14. H ← HiddenJoins(H,CurrentBlanket, O)
15. Return H

Figure 2: An algorithm for learning AO graphs.

• no element in NextBlanket has an ancestor in G that
is not in H ;

• every element in NextBlanket has an ancestor in G
that is in H ;

We claim that GetNextBlanket, as described later, re-
turns a set corresponding to these properties. We still need
to identify which elements in NextBlanket should be de-
scendants of which elements in CurrentBlanket, and this
is accomplished by Dependencies.

It is quite possible that between nodes in CurrentBlanket
and nodes in NextBlanket there are several hidden join/split
tasks. Such tasks are detected and added to H by InsertLatents.

This procedure is iterated till all observable tasks are
placed in H . To complete the graph, we just have to make
sure that all tasks are synchronized in a finalization task,
as required by all AO graphs. If the end task is not visi-
ble, several threads will remain open if we do not add latent
joins. This is accomplished by the final HiddenJoins call.
A sample execution of this algorithm is given in Appendix
B.

3.2 ALGORITHM DETAILS
While mutually exclusive tasks are directly identifiable

from the ordering oracle, this is not true concerning parallel
tasks. If two tasks are potentially parallel, they still might
be executed always in the same order. The only way we can
identify parallelism is by identifying a previous task that
make these two tasks independent. This is the purpose of
algorithm GetNextBlanket, as described in Figure 3.

This algorithm select tasks, but does not indicate which
elements are descendants of which previous tasks. This is
the role of Dependencies (Figure 4). The fact that the inde-
pendence oracle condition only positive values of T2M (Step
3 of Dependencies) is a necessary and sufficient condition.



Algorithm GetNextBlanket

Input CurrentBlanket, a set of tasks;
GO , a DAG encoding ancestral relationships;
O, an ordering oracle;
I , an independence oracle;

Output NextBlanket, a subset of the tasks in GO

1. For every pair of adjacent tasks (T1, T2) in GO

2. Remove the edge between T1 and T2 if and only if
I(T1M , T2M , TiM ), where TiM is the measure
of some task Ti ∈ CurrentBlanket and
O(Ti, T1) 6= exclusive, O(Ti, T2) 6= exclusive

3. Return all nodes from GO that do not have parents

Figure 3: Identifying the next set of elements to be
added.

It is necessary because by our assumptions there might be
measurement error when we observe value 0. It is sufficient
because by backward determinism (if a task happens, all ele-
ments in a chain before it also happened), we do not need to
condition on multiple tasks. Figure 5 illustrates an example
of this case.

Algorithm Dependencies

Input CurrentBlanket, a set of tasks;
NextBlanket, another set of tasks;
O, an ordering oracle;
I , an independence oracle;

Output AncestralGraph, a DAG

1. Let AncestralGraph be a graph with nodes in
CurrentBlanket∪NextBlanket

2. For every task T0 in NextBlanket
3. For every task T1 in CurrentBlanket, add

edge T1 → T0 to AncestralGraph if and only if:
i. O(T0, T1) 6= exclusive
ii. There is no task T2 ∈ CurrentBlanket s.t.

O(T1, T2) 6= exclusive, O(T0, T2) 6= exclusive,
and I(T0M , T1M , T2M ), where TiM is the
measure of task Ti;

4. Return AncestralGraph

Figure 4: Determining ancestors for a set of new
tasks.

This algorithm runs in O(N3), N being the number of
measurable tasks. It also requires simpler statistical tests
of conditional independence than general DAG search algo-
rithms, since we condition only on singletons.

Finally, there are several points in LearnOrderedWorkflow
where we need to introduce hidden tasks. The algorithm
HiddenJoins is shown in Figure 6. Notice that here we tag
nodes according to their role (“AND-join” and “OR-join”).
We do not show an explicit description of HiddenSplits: this
algorithm is analogous, with the exception that edges are
added in the opposite direction. It is very similar in principle
to an algorithm given by [4]. The algorithm InsertLatents
builds upon HiddenJoins and HiddenSplits. It is given
in Figure 7. The final steps of this algorithm just verify
if a measurable task that has measurable children actually
d-separates them. If not, a hidden task is introduced.

3.3 PRACTICAL IMPLEMENTATION
The independence oracle can be implemented by statis-

tical tests of independence, such as the χ2 test. Given the
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Figure 5: An example of why conditioning on a sin-
gle element is enough. Here, T3M and T5M are in-
dependent measures given T2M = 1. If T2M is 1, by
assumption we know that T2 = 1, because measure-
ment error is one-sided. T0 is 1 by backward deter-
minism, which means that we are effectively asking
if T3M and T5M are independent given T0 = 1, which
is entailed by the graphical structure.

parameter ǫ for the noise level, binomial tests can be used
to create an ordering oracle by testing if the probability of
task Ti antecedes task Tj given the instances where both are
recorded is larger than ǫ.

To learn a good level of ordering noise, one can do a grid
search for ǫ over the interval [0, 0.5] and heuristically choose
the one that maximizes some measure of fitness, such as a
posterior probability for the output model (using a Dirichlet
prior for the parameters, for instance), or some other mea-
sure that relies on independence constraints only, which is
the basis of our model. For instance, by adjusting ǫ one
could try to bring the set of independence constraints that
are entailed by the output graph as close as possible to the
ones judged to hold in the data. This does not require fit-
ting a latent variable model and is not subject to constraints
other than independence constraints. Learning ǫ will be
treated in detail in a future work.

An important practical issue is how to avoid outputing
invalid AO graphs, which can be due to deviations from the
assumptions or statistical mistakes. Due to lack of space,
we omit a discussion of the necessary conditions that the
ordering and independence oracles should satisfy to generate
a valid AO graph.

4. EXPERIMENT
Workflow data is not as easy to obtain as other data

sources. In this paper, we perform a simulated study based
on a theoretical workflow that models the annual process
of writing final reports at Clairvoyance Corporation. The
process basically consists of parallel threads of preparing
documents, preparing summaries, booking flights and hotel
rooms for an annual workshop hosted by the parent company
of Clairvoyance in Japan. The graph was constructed by
manually analysing e-mail logs exchanged among the com-
pany’s employees over the course of four projects. The de-
tails are given [5].

There are 15 observable and 2 hidden tasks, with no mu-
tually exclusive tasks and no measurement noise (the al-
gorithm still assumes the possibility of noise). One task
(Printing materials) naturally happens much later than the
actions of booking flights and hotels, even though there is
no temporal constraint that dictates that printing should be
performed only after travel is arranged. Many other work-



Algorithm HiddenJoins

Input H , a DAG;
S, a set of nodes;
O, an ordering oracle;

Output H , a DAG

1. (H, NewJoin)← JoinStep(H, S, O)
2. Return H

Algorithm JoinStep

1. If S has only one element S0

Return (H, S0)
2. Let M be a graph having elements of S as nodes,

and with an undirected edge between a pair of
nodes {S1, S2} if and only O(S1, S2) 6= exclusive

3. Let NewLatent be a new latent node, and
add it to H

4. If M is disconnected
5. M ′ ← M
6. Tag NewLatent as “OR-join”
7. Else
8. M ′ ← the complement of M
9. Tag NewLatent as “AND-join”

10. For each component C of M ′

11. If C has only one node C0

12. Add edge C0 → NewLatent to H
13. Else
14. (H, NextLatent)← JoinStep(H, C, O)
15. Add edge NextLatent→ NewLatent to H
16. Return (H, NewLatent)

Figure 6: An algorithm for inserting required join
nodes.

flow approaches [8] would be deceived by this temporal in-
formation, i.e., they would regard the two tasks as strictly
sequential when in fact they are not.

The graph is parameterized by a single parameter α that
gives the probability of a task being executed given its pre-
requisites. In our model, a necessary condition for any
task is that all of its parents have to be performed. We
simulated samples of size of 100, 200 and 500 and with
α = {0.9, 0.95}3. We do not introduce noise in the time
order of the samples, since this will only be explored in full
detail in the future.

The independence oracle is implemented by a χ2 test using
a significance level of 0.05. We ran 10 trials for each config-
uration, and evaluated the true model against the output of
our algorithm, assuming the ordering information is correct,
by the following criteria: number of edges between measur-
able tasks in the true graph that are not in the estimated
graph (edge omission, out of 12 possible edges); number of
edges between measurable tasks in the estimated graph that
are not in the true graph (edge omission); number of mea-
surable pairs that share a common parent in the true graph
but not in the estimated graph (sibling omission). Sibling
comissions did not happen in our experiments. The results
are: for sample size 100 and α = 0.95, the average edge omis-
sion was 5.1 (2.1 of standard deviation); the average edge
comission was 1.7(0.7) and the average sibling omission was
2.6(1.4). For sample size 100, α = 0.9, we had 4.9(2.6),

3The value of α cannot be too small, or otherwise we will
need large sample sizes in order to have a relatively large
number of instances that are completed. Workflows with
large chains will usually have some deterministic steps.

Algorithm InsertLatents

Input H , a DAG H ;
CurrentBlanket, NextBlanket, two sets;
AncestralGraph, a DAG;
O, an ordering oracle;

Output a DAG H

1. For every task T ∈ NextBlanket

2. Let Siblings be the set of elements in
NextBlanket that have a common parent
with T in AncestralGraph

3. Let AncestralSet be the set of parents of
Siblings in AncestralGraph

4. (H, JoinNode)← HiddenJoins(H, AncestralSet, O)
5. (H, SplitNode)← HiddenSplits(H, Siblings,O))
6. Add edge JoinNode→ SplitNode to H
7. NextBlanket← NextBlanket− Siblings

8. For every set C of observable tasks, |C| > 1,
that are children of a single hidden node PaH

that is child of an observable task Pa in H
9. If all pairs in CM are independent conditioned on

PaM = 1, CM being the set of respective measures
of C and PaM the measure of Pa,

10. Add edges Pa→ Ci for every Ci ∈ C
11. Remove latent PaH

12. Return H

Figure 7: An algorithm to introduce required hidden
tasks between two layers of measurable tasks.

0.7(1.1) and 2(1.4). For sample size 200, and α = 0.95,
we got 0.4(0.5), 0.1(0.3), 0.1(0.3). For sample size 200 and
α = 0.9, we got edge omission error of 0.2(0.4) and no other
error. For sample size 500, we got the exact graph in all 10
trials for both values of α. In the experiments, missing edges
usually implied sequential tasks being treated as parallel.

The results are convincing, but it is still of interest to
obtain more robust outcomes with smaller sample sizes. We
plan to pursue Bayesian approaches in an extended version
of this framework.

5. RELATED WORK
Agrawal et al. [1] introduced the first algorithm for mining

workflow logs. Greco et al. [3] approach the problem using
clustering techniques. A broad survey on the current work
in workflow mining, or process mining, is given by van der
Aalst and Wejters [8]. None of the approaches in that survey
are based on a coherent probabilistic model. Instead, they
use a variety of heuristics to deal with noise, while focusing
on deterministic models such as Petri nets.

Herbst and Karagiannis [4] use a representation very sim-
ilar to AO graphs with cycles. While some probability dis-
tribution is informally applied to define the likelihood of
a workflow graph, this likelihood is not used anywhere in
learning the structure of workflow graphs as defined in our
paper.

It is clear that workflow models could be represented by
off-the-shelf methods such as dynamic Bayesian networks
and stochastic Petri nets. In particular, the factorial hidden
Markov model [2] seems to naturally apply to the problem of
modeling parallel threads of tasks. However, workflow mod-
eling has its own particular issues that are not efficiently
explored by generic dynamic Bayesian networks: instances
have a well defined beginning and end; the synchronization
property; backward determinism, which naturally applies to
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Figure 8: A simplified workflow model of the process
of document preparation at Clairvoyance Corpora-
tion. (“Acc.” stands for “accomplishments”, and
JSC refers to Clairvoyance’s parent company.)

many real-world problems; the fact that the “hidden states”
of a workflow model are in general associated with one “vis-
ible symbol” only. Even if a same task might be generated
under different contexts, as explored by [4], this is the excep-
tion, not the rule, and it seems wasteful to arbitrarily allow
hidden states of a workflow-like dynamic system to be able
to generate any symbol. A generic dynamic model would
not be as statistically efficient as a constrained model.

Moreover, one is often interested in understanding the
causal chains of a business process. For instance, a generic
factorial hidden Markov model with a fixed number of chains
would be a very opaque model to provide such understand-
ing, even if the fit is good.

6. CONCLUSION
We have presented an algorithm for learning workflow

graphs that makes use of a coherent probability model. To
the best of our knowledge, this is the first approach with
such a property. Results from a real world workflow are
very encouraging.

Several extensions are planned for a near future: more
extensive experiments, learning with cycles, showing con-
sistency of the learning algorithm and Bayesian variations.
A very interesting problem is to determine identifiability
conditions for learning semantic roles for tasks, i.e., how
tasks can appear in multiple parts of a workflow model de-
pending on context. Ultimately, we also want to extract a
task ontology from text data obtained from groupware and
e-mail software, therefore creating workflow logs from free
text data.
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APPENDIX

A. PROOF OF THE THEOREM 1
Theorem 1. Let G1 and G2 be two AO graphs with respec-

tive ordering and independence oracles {O1, I1} and {O2, I2}
over a same set of observable tasks T. If O1 and O2, and I1

and I2 agree on all queries concerning members of T, then
G1 = G2 up to a renaming of the hidden tasks.

We will do induction on the number of observable tasks
to prove the proposition. For that purpose, we need a few
lemmas. The first two lemmas show that the start tasks in
the two graphs are identical. Let s1 be the start task in G1,
and s2 the start task in G2.

Lemma 1. Either s1 = s2 ∈ T, or they are both hidden
tasks.

Proof One of the following two cases must obtain.
Case 1: s1 and s2 are both observable. Then s1 is the unique
common predecessor of all observable tasks according to O1,
and s2 is the unique common predecessor of all observable
tasks according to O2. Because O1 and O2 agree, s1 = s2.
Case 2: One of them, say s1 without loss of generality, is
hidden, then by our assumption it must be a split and there
is NO observable task that is a common predecessor of all
observable tasks according to O1 (this follows from our as-
sumption about the immediate observable descendants of an
AND-split). Because O1 and O2 agree, there is no common
observable predecessor according to O2. It follows that s2 is
not observable.
Therefore, either s1 = s2 ∈ T, or they are both hidden. 2

Lemma 2. s1 is an AND-split iff. s2 is an AND-split.
Similarly, s1 is an OR-split iff. s2 is an OR-split.

Proof By Lemma 1, we only need to consider two cases:
Case 1: s1 and s2 are both hidden. It suffices to show that
it cannot be the case that one of them is an OR-split while
the other is an AND-split. For the sake of contradiction,
suppose, without loss of generality, s1 is an OR-split and s2

is an AND-split. Then there exist two immediate observable
descendants of s1, T1, T2 ∈ T, that are mutually exclusive
according to O1. Because O2 agrees with O1, T1 and T2 are
also immediate observable descendants of s2 in G2, which
means they are in the split-join session initiated by s2 in
G2. Furthermore, they are also mutually exclusive accord-
ing to O2, so they cannot belong to different threads in that
split-join session, since s2 is an AND-split. So there must
be another immediate observable descendant of s2, T3 ∈ T,
such that it is in parallel with both T1 and T2 according to
O2. It follows that T3 is in the split-join session initiated
by s1 in G1, and is in parallel with both T1 and T2 accord-
ing to O1. But this is impossible, because T1 and T2 are in



different threads of that OR-split-join session initiated by
s1. Hence either they are both AND-splits, or they are both
OR-splits.
Case 2: s1 = s2 = T ∈ T. By symmetry, we only need to
rule out three scenarios: (i) T is an OR-split in G1 but an
AND-split in G2; (ii) T is an OR-split in G1 but a simple
task in G2; (iii) T is an AND-split in G1 but a simple task
in G2. (i) can be ruled out by rehearsing the arguments in
case 1. In the case of (ii) and (iii), notice that T may not be
followed by an observable task in G2, for otherwise that ob-
servable task will be the unique common predecessor of all
observable tasks but T according to O2 but will not be such
according to O1. Furthermore, by our assumption, T , as a
simple task in G2, may not be followed by a hidden OR-split,
so it can only be followed by a hidden AND-split in G2. (ii)
can thus be ruled out by rehearsing the arguments in case
1, since T is an OR-split in G1. For (iii), notice that some
immediate observable descendants of T will be independent
conditional on T = 1 according to I1, but dependent condi-
tional on T = 1 according to I2. Hence (iii) contradicts the
assumptions, too. 2

Suppose, for the moment, that s1 and s2 are both splits.
Let ji be the (full) join that synchronizes the split initiated
by si in Gi, i = 1, 2. We define a thread of the split-join
session between si and ji to be the subgraph between si

and any parent of ji (over the ancestors of that parent of
ji). A thread, under this definition, can contain any number
of (observable) partial joins of the split initiated by si. It
is easy to see that each thread is either an AO graph or of
the simple form si → T , where si is hidden. Furthermore,
by our enforcement of nesting of splits and joins, it is easy
to see that different threads will only intersect at the start-
ing point si. The next two lemmas concern the observable
tasks that appear in the split-join session, and in particular,
in each thread of the session.

Lemma 3. Suppose s1 and s2 are both splits. For any
T ∈ T, T is in the split-join session initiated by s1 in G1

iff. T is in the split-join session initiated by s2 in G2.

Proof Let IODi be the set of immediate observable de-
scendants of si in Gi, i = 1, 2. Because O1 and O2 agree,
IOD1 = IOD2. Hereafter we will drop the subscripts and
write IOD. By our assumption, any member in IOD must
be in the split-join session initiated by si, otherwise there
exists some observable task that lies in between. So for any
T ∈ T, if T ∈ IOD, then it is in the split-join session in G1

iff. it is in the split-join session in G2. If T /∈ IOD, there
are two cases to consider: (i) s1 and s2 are both AND-splits.
In this case, if T is in the session initiated by s1 in G1 but
not in the session initiated by s2 in G2, then there exist
T1, T2 ∈ IOD such that T is independent of T2 conditional
on T1 according to I1, but T is dependent of T2 conditional
on T1 according to I2. (Specifically, let T1 be an immediate
observable descendant of s1 in the same thread as T is in
G1, and T2 be an immediate observable descendant of s1 in
any other thread.) Hence a contradiction. By symmetry, it
may not be the case either that T is in the session initiated
by s2 in G2 but not in the session initiated by s1 in G1. (ii)
s1 and s2 are both OR-splits. In this case, if T is in the
session initiated by s1 in G1 but not in the session initiated
by s2 in G2, then T will be mutually exclusive with some
member in IOD according to O1, but will not be mutually

exclusive with any member in IOD according to O2. Hence
a contradiction. By symmetry, it may not be the case either
that T is in the session initiated by s2 in G2 but not in the
session initiated by s1 in G1. 2

Lemma 4. Suppose s1 and s2 are both splits. For any
T1, T2 ∈ T that are in the split-join session initiated by the
start task in both graphs, they are in a same thread of that
session in G1 iff. they are in a same thread of that session
in G2.

Proof Let IOD be the set of immediate observable descen-
dants of s1 (and s2) according to O1 (and O2). By Lemma
2, we only need to consider two cases:
Case 1: s1 and s2 are both AND-splits. We first show that
if T1, T2 ∈ IOD, then it is not the case that they are in
the same thread in one of the graphs but not in the other
graph. Suppose otherwise and, without loss of generality,
that T1 and T2 are in the same thread in G1 but not in the
same thread in G2. It follows that O1(T1, T2) and O1(T2, T1)
are both true. Because O1 agrees with O2, we also have
O2(T1, T2) and O2(T2, T1). Since T1 and T2 belong to the
same thread initiated by s1 in G1 and are both in IOD, there
must be an OR-split that lies between s1 and T1, T2, as an
AND-split cannot immediately follow another AND-split.
This implies that there exists T3 ∈ IOD that is mutually
exclusive with both T1 and T2 according to O1. However,
because T1 and T2 belong to different threads initiated by
s2, an AND-split, in G2, it is impossible that a task can
be mutually exclusive with both of them according to O2.
Hence a contradiction. Thus, if T1, T2 ∈ IOD, then they
are in a same thread in G1 iff. they are in a same thread in
G2.
Now suppose at least one of them, say T1 without loss of
generality, is not in IOD. If T1 and T2 belong to different
threads in G1, then there exists T3 ∈ IOD such that T1 and
T3 are in parallel and T1 is independent of T2 conditional on
T3 according to I1. On the other hand, if T1 and T2 belong
to the same thread in G2, the only way that T3 could render
them independent is that T3 and T2 are two children of an
OR-split, but in that case they will be mutually exclusive.
So T1 and T2 must belong to the same thread in G2, too.
By symmetry, the converse also holds.
Case 2: s1 and s2 are both OR-splits. If T1 and T2 belong to
different threads in G1, then they are mutually exclusive ac-
cording to O1, which means they are also mutually exclusive
according to O2. So, if on the other hand T1 and T2 belong
to the same thread in G2, then there must be an AND-split
in between s2 and the (yet another) OR-split that splits T1

and T2 because an OR-split cannot immediately follow an-
other OR-split. This implies that there exists T3 such that
it is not mutually exclusive with either T1 or T2 according to
O2. However, because T1 and T2 belong to different threads
in G1, it is impossible that T3 is not mutually exclusive with
either T1 or T2 according to O1. Hence a contradiction. 2

Finally, we need a lemma about ji’s that complete the split-
join sessions initiated by si’s.

Lemma 5. Suppose s1 and s2 are both splits. Let j1 be the
(full) join that synchronize the splits initiated by s1 in G1,
and j2 be the (full) join that synchronize the splits initiated
by s2 in G2. Then either j1 and j2 are the same observable
task or they are both hidden.



Proof Two cases to consider:
Case 1: Suppose j1 and j2 are both observable. So ji is the
descendant of all observable tasks within the split-join ses-
sion initiated by si and the ancestor of all other observable
tasks, i = 1, 2. By Lemma 3, the set of observable tasks
within the split-join session initiated by s1 is the same as
the set of observable tasks within the split-join session ini-
tiated by s2. It follows that j1 = j2, otherwise O1 does not
totally agree with O2.
Case 2: Suppose one of them, say j1 without loss of general-
ity, is hidden. In this case, if j2 is observable, then j2 must
immediately follow j1 in G1, otherwise O1 and O2 do not
agree. By our assumption, j2 may not be a simple task. If it
is an OR-split, then in G2 a hidden-OR must immediately
follow j2 (by arguments very similar to those in previous
lemmas), which, however, is ruled out by our assumption.
If j2 is an AND-split in G1, then some tasks after j2 will
be independent conditional on j2 according to I1, but de-
pendent conditional on j2 according to I2. A contradiction.
Therefore, j2 must be hidden, too. 2

We now prove the main proposition by induction on the
number of observable tasks n. It is easy to see that n ≥ 2
by our assumptions.
Base case: n = 2. Let T1 and T2 be the two observable
tasks. Only four AO graphs are compatible with our as-
sumptions (up to a renaming of latent tasks): (1) T1 → T2;
(2) T2 → T1; (3) T1 and T2 are two threads of an AND
split-join session with a hidden split (start task) and a hid-
den join (end task); (4) T1 and T2 are two threads of an OR
split-join session with a hidden split (start task) and a hid-
den join (end task). Obviously each graph entails a different
ordering relationship between T1 and T2. So, if O1 and O2

agree, then G1=G2 up to a renaming of the hidden tasks.
Inductive Step: Suppose the proposition holds for n ≤ m.
Let n = m + 1 ≥ 3. There are three cases:
Case 1: s1 is a simple task in G1. By Lemmas 1 and 2,
s1 = s2 = T and T is also a simple task in G2. It is easy to
see that the subgraph of G1 over T\{T} and the subgraph
of G2 over T\{T} are also AO graphs (since n ≥ 3). By the
inductive hypothesis, they are identical up to a renaming of
hidden tasks. It follows that G1 = G2 up to a renaming of
hidden tasks.

Case 2: s1 is a split, and the split is joined before reach-
ing the end task in G1. By Lemmas 1, 2 and 5, s2 is also a
split, and the split is joined before reaching the end task in
G2. Let Ti be the set of observable tasks that belong to the
split-join session initiated by si in Gi (including the initial
split and the final join), i = 1, 2. It follows from Lemmas
1, 2, 3 and 5 that T1 = T2. By the inductive hypothesis,
the subgraph of G1 over T1 is the same as the subgraph
of G2 over T2 up to a renaming, and the subgraph of G1

over T\T1 is the same as the subgraph of G2 over T\T2

up to a renaming. (Note that there is a special case where
the subgraphs over T\Ti only contain one observable task,
and hence the inductive hypothesis is not applicable. But
in that case, the two subgraphs are trivially identical.) It
follows that G1 = G2 up to a renaming of hidden tasks.

Case 3: s1 is a split, and the split is joined at the end task
in G1. By Lemmas 1, 2 and 5, s2 is also a split, and the
split is joined at the end task in G2. By Lemma 3, for each

thread of that split-join session in G1, there is a thread of
the split-join session in G2 such that the two threads involve
the exactly same observable tasks, and vice versa. By the in-
ductive hypothsis, the two threads (subgraphs) are the same
up to a renaming of hidden tasks. (Again, there is a special
case where the inductive hypothesis is not applicable. That
is, the threads are of the form si → T , and si’s are hidden.
In this case the two subgraphs are trivially identical.) So in
total G1 = G2 up to a renaming of hidden tasks. Q.E.D

B. AN ALGORITHMIC EXAMPLE
We will now go through an example of how LearnOrdered

Workflow works. Assume for now that the graph G in
Figure 9 corresponds to the true generative model, from
which we know the ordering oracle O and the independence
oracle I for tasks {1, . . . , 12}. We will demonstrate how
LearnOrderedWorkflow is able to reconstruct G out of O
and I .
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Figure 9: Unlabeled nodes represent hidden tasks.
Each OR-split/join is represented as a rhombus.

Suppose that the directionality graph GO is given in Fig-
ure 10. Notice that even though elements in {8, 10} are con-
current to elements in {9, 11}, there is a total order among
these elements: 8 → 9 → 10 → 11, according to O. 6 and 7
are not connected because by assumption they should hap-
pen in either order a frequent number of times. We consider
this assumption to be reasonable (at the moment of the split,
tasks should be independent, and therefore no fixed time
order implied). However, contrary to a naive workflow min-
ing algorithm, we do not require, for instance, that 6 and
11 are recorded in random orders. This type of assump-
tion seems considerably more artificial, because tasks in one
chain might take much longer than tasks in another chain,
and a specific order may arise naturally.
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Figure 10: An ordering relationship for the graph in
Figure 9. We do not represent explicitly the edges
between elements in {1, 2, 3, 4, 5} and {8, 9, 10, 11} in
order to avoid cluttering the graph (symbolized by
the unconnected edges out of {1, 2, 3, 4, 5}).



In the initial step, the set CurrentBlanket will contain
tasks {1, 2, 3, 4, 5}. The HiddenSplits algorithm will work
as follows: a graph M will be created based on O and tasks
{1, 2, 3, 4, 5}. M and its complemented are shown in Figure
11. Since M is disconnected, it will be the basis for the
recursive call. We are going to insert an hidden OR-split
separating {1, 2, 3} and {4, 5} at the return of the recursion,
as depicted in Figure 12.
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Figure 11: Graphs M and its complement MC in
HiddenSplits for the first CurrentBlanket set.
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Figure 12: The first call of HiddenSplitsStep will sep-
arate set {1, 2, 3, 4, 5} as {1, 2, 3} and {4, 5}.

Consider the new call for HiddenSplitsStep with argu-
ment S = {1, 2, 3}. The corresponding graphs M and MC

are now shown in Figure 13. M is not disconnected, but MC

is. This will lead to an insertion of an AND-split separating
sets {1} and {2, 3} and another recursive call for {2, 3}.
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Figure 13: Graphs M and MC corresponding to S =
{1, 2, 3} in HiddenSplitsStep.

At the end of the first HiddenSplits, H will be given by
the graph show in Figure 14. We now proceed to insert the
remaining nodes into H .

From the ordering graph of Figure 10, we will choose as
the next blanket the set {6, 7, 12}. Since they are not con-
nected by any edge in Figure 11, we did not need to do any
independence test to remove edges between them. When
computing the direct dependencies between {1, . . . , 5} and
{6, 7, 12}, since no conditional independence holds between
elements in {6, 7, 12} conditioned on positive measurements
of any element in {1, 2, 3, 4, 5}, all elements in {1, 2, 3, 4, 5}
will be the direct dependencies of each element in {6, 7, 12}.

We now have to perform the insertion of possible latents
between {1, 2, 3, 4, 5} and {6, 7, 12}. There is only one set
Siblings in InsertLatents, {6, 7, 12}, and one AncestralSet,
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Figure 14: The partially constructed graph H.

{1, 2, 3, 4, 5}. When inserting hidden joins for elements in
AncestralSet, we will perform an operation analogous to
our previous example of HiddenSplits, but with arrows di-
rected in the opposite way. The modification in shown in
Figure 15(a), while Figure 15(b) depicts the modification
of the relation between {6, 7, 12}. The last step of our
InsertLatents iteration simply connects the childless node
of Figure 15(a) to the parentless node of Figure 15(b).
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Figure 15: Inserting latents between two layers of
observable tasks.

Again, we proceed to add more observable tasks in the
next cycle of LearnOrderedWorkflow. The candidates are
{8, 9, 10, 11}.

By Figure 10, all elements in {8, 9, 10, 11} are adjacent.
However, by conditioning on singletons from {6, 7, 12} we
can eliminate edges {8 → 9, 9 → 10, 8 → 11, 10 → 11}. The
parentless nodes in this set are now 8 and 9, instead of 8
only. CurrentBlanket is now {6, 7, 12} and NextBlanket
is {8, 9}.

When determining direct dependencies, we first select {6, 7}
as the possible ancestors of {8, 9}. Since 8 and 7 are in-
dependent conditioned on 6, and 9 and 6 are independent
conditioned on 7, only edges 6 8 and 7 9 are allowed. Analo-
gously, the same will happen to 8 → 10 and 9 → 11. Graph
H , after introducing all observable tasks, is shown in Fig-
ure 16. After introducing the last hidden joins in the final
steps of LearnOrderedWorkflow, we reconstruct exactly
the original graph in Figure 9.
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Figure 16: The graph H after introducing all ob-
servable tasks and just before introducing the last
hidden joins.


