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Abstract One approach for constructing copula functions is by multiplication.
Given that products of cumulative distribution functions (CDFs) are also CDFs,
an adjustment to this multiplication will result in a copulamodel, as discussed by
Liebscher (J Mult Analysis, 2008). Parameterizing models via products of CDFs
has some advantages, both from the copula perspective (e.g., it is well-defined for
any dimensionality) and from general multivariate analysis (e.g., it provides mod-
els where small dimensional marginal distributions can be easily read-off from the
parameters). Independently, Huang and Frey (J Mach Learn Res, 2011) showed
the connection between certain sparse graphical models andproducts of CDFs, as
well as message-passing (dynamic programming) schemes forcomputing the like-
lihood function of such models. Such schemes allows models to be estimated with
likelihood-based methods. We discuss and demonstrate MCMCapproaches for esti-
mating such models in a Bayesian context, their applicationin copula modeling, and
how message-passing can be strongly simplified. Importantly, our view of message-
passing opens up possibilities to scaling up such methods, given that even dynamic
programming is not a scalable solution for calculating likelihood functions in many
models.

1 Introduction

Copula functions are cumulative distribution functions (CDFs) in the unit cube
[0,1]p with uniform marginals. Copulas allow for the constructionof multivari-
ate distributions with arbitrary marginals – a result directly related to the fact that
F(X) is uniformly distributed in[0,1], if X is a continuous random variable with
CDF F(·). The space of models includes semiparametric models, whereinfinite-
dimensional objects are used to represent the univariate marginals of the joint distri-
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bution, while a convenient parametric family provides a wayto represent the depen-
dence structure. Copulas also facilitate the study of measures of dependence that are
invariant with respect to large classes of transformationsof the variables, and the de-
sign of joint distributions where the degree of dependence among variables changes
at extreme values of the sample space. For a more detailed overview of copulas and
its uses, please refer to [11, 19, 6].

A multivariate copula can in theory be derived from any jointdistribution with
continuous marginals: ifF(X1, . . . ,Xp) is a joint CDF andFi(·) is the respective
marginal CDF ofXi, then F(F−1

1 (·), . . . ,F−1
p (·)) is a copula. A well-known re-

sult from copula theory, Sklar’s theorem [19], provides thegeneral relationship.
In practice, this requires being able to computeF−1

i (·), which in many cases is not
a tractable problem. Specialized constructions exist, particularly for recipes which
use small dimensional copulas as building blocks. See [2, 12] for examples.

In this paper, we provide algorithms for performing Bayesian inference using the
product of copulas framework of Liebscher [14]. Constructing copulas by multiply-
ing functions of small dimensional copulas is a conceptually simple construction,
and does not require the definition of a hierarchy among observed variables as in
[2] nor restricts the possible structure of the multiplication operation, as done by
[12] for the space of copula densities that must obey the combinatorial structure of
a tree. Our contribution is computational: since a product of copulas is also a CDF,
we need to be able to calculate the likelihood function if Bayesian inference is to
take place1. The structure of our contribution is as follows: i. we simplify the re-
sults of [10], by reducing them to standard message passing algorithms as found
in the literature of graphical models [3] (Section 3); ii. for intractable likelihood
problems, an alternative latent variable representation for the likelihood function is
introduced, following in spirit the approach of [25] for solving doubly-intractable
Bayesian inference problems by auxiliary variable sampling (Section 4).

We start with Section 2, where we discuss with some more detail the product
of copulas representation. Some illustrative experimentsare described in Section 5.
We emphasize that our focus in this short paper is computational, and we will not
provide detailed applications of such models. Some applications can be found in
[9].

2 Cumulative Distribution Fields

Consider a set of random variables{U1, . . . ,Up}, each having a marginal density
in [0,1]. Realizations of this distribution are represented as{u1, . . . ,up}. Consider
the problem of defining a copula function for this set. The product of two or more
CDFs is a CDF, but the product of two or more copulas is in general not a copula
– marginals are not necessarily uniform after multiplication. In [14], different con-

1 Pseudo-marginal appproaches [1], which use estimates of the likelihood function, are discussed
briefly in the last Section.
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structions based on products of copulas are defined so that the final result is also a
copula. In particular, for the rest of this paper we will adopt the construction

C(u1, . . . ,up)≡
K

∏
j=1

C j(u
a1 j
1 , . . . ,u

ap j
p ) (1)

whereai1+ . . .+aiK = 1, ai j ≥ 0 for all 1≤ i ≤ p, 1≤ j ≤ K, with eachC j(·, . . . , ·)
being a copula function.

Independently, Huang and Frey [8, 9] derived a product of CDFs model from
the point of view of graphical models, where independence constraints arise due to
the absence of some arguments in the factors (correspondingin (1) to setting some
exponentsai j to zero). Independence constraints from such models include those
arising from models of marginal independence [4, 5].

Example 1 We first adopt the graphical notation of [4] to describe the factor struc-
ture of the cumulative distribution network (CDN) models ofHuang and Frey, where
a bi-directed edgeUm ↔ Un is included ifUm andUn appear together as arguments
to any factor in the joint CDF product representation. For instance, for the model

C(u1,u2,u3)≡C1(u1,u
1/2
2 )C2(u

1/2
2 ,u3) we have the corresponding network

U1 ↔U2 ↔U3

First, we can verify this is a copula function by calculatingthe univariate marginals.
Marginalization is a computationally trivial operation inCDFs: sinceC(u1,u2,u3)
means the probabilityP(U1 ≤ u1,U2,≤ u2,U3 ≤ u3), one can find the marginal
CDF of U1 by evaluatingC(u1,∞,∞). One can then verify thatP(Ui ≤ ui) = ui,
i = {1,2,3}, which is the CDF of an uniform random variable given thatui ∈ [0,1].
One can also verify thatU1 and U3 are marginally independent (by evaluating
C(u1,∞,u3) and checking it factorizes), but that in generalU1 andU3 arenot condi-
tionally independent givenU2. �

See [4, 5, 9] for an in-depth discussion of the independence properties of such
models, and [14] for a discussion of the copula dependence properties. Such copula
models can also be defined conditionally. For a (non-Gaussian) multiple regression
model of outcome vectorY on covariate vectorX, a possible parameterization is to
define the density ofp(yi | x) and the joint copulaC(U1, . . . ,Up) whereUi ≡ P(Yi ≤
yi | x). Copula parameters can also be functions ofX.

Bayesian inference can be performed to jointly infer the posterior distribution of
marginal and copula parameters for a given dataset. For simplicity of exposition,
from now on we will assume our data is continuous and follows univariate marginal
distributions in the unit cube. We then proceed to infer posteriors over copula param-
eters only2. We will also assume that for regression models the copula parameters do

2 In practice, this could be achieved by fitting marginal models F̂i(·) separately, and transforming
the data using plug-in estimates as if they were the true marginals. This framework is not uncom-
mon in frequentist estimation of copulas for continuous data, popularized as “inference function
for margins”, IFM [11].
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not depend on the covariate vectorx. The terms “cumulative distribution network”
(CDN) and “cumulative distribution fields” will be used interchangeably, with the
former emphasizing the independence properties that arisefrom the factorization of
the CDF.

3 A Dynamic Programming Approach for Aiding MCMC

Given the parameter vectorθ of a copula function and dataD ≡ {U(1), . . . ,U(N)},
we will describe Metropolis-Hastings approaches for generating samples from the
posterior distributionp(θ |D). The immediate difficulty here is calculating the like-
lihood function, since (1) is a CDF function. Without further information about the
structure of a CDF, the computation of the corresponding probability density func-
tion (PDF) has a cost that is exponential in the dimensionality p of the problem. The
idea of a CDN is to be able to provide a computationally efficient way of performing
this operation if the factorization of the CDF has a special structure.

Example 2 Consider a “chain-structured” copula function given byC(u1, . . . ,up)≡

C1(u1,u
1/2
2 )C2(u

1/2
2 ,u1/2

3 ) . . .Cp−1(u
1/2
p−1,up). We can obtain the density function

c(u1, . . . ,up) as

c(u1, . . . ,up) =

[

∂ 2C1(u1,u
1/2
2 )

∂u1∂u2

]





∂ p−2C2(u
1/2
2 ,u1/2

3 ) . . .Cp−1(u
1/2
p−1,up)

∂u3 . . .∂up



+

[

∂C1(u1,u
1/2
2 )

∂u1

]





∂ p−1C2(u
1/2
2 ,u1/2

3 ) . . .Cp−1(u
1/2
p−1,up)

∂u2 . . .∂up





≡
∂ 2C1(u1,u

1/2
2 )

∂u1∂u2
×m2→1(u2)+

∂C1(u1,u
1/2
2 )

∂u1
×m2→1(ū2)

Here,m2→1 ≡ [m2→1(u2) m2→1(ū2)]
T is a two-dimensional vector corresponding to

the factors in the above derivation, known in the graphical modeling literature as a
message [3]. Due to the chain structure of the factorization, computing this vector
is a recursive procedure. For instance,

m2→1(u2) =

[

∂C2(u
1/2
2 ,u1/2

3 )

∂u3

]





∂ p−3C3(u
1/2
3 ,u1/2

4 ) . . .Cp−1(u
1/2
p−1,up)

∂u4 . . .∂up



+

[

C2(u
1/2
2 ,u1/2

3 )
]





∂ p−2C3(u
1/2
3 ,u1/2

4 ) . . .Cp−1(u
1/2
p−1,up)

∂u3 . . .∂up





≡
∂C2(u

1/2
2 ,u1/2

3 )

∂u3
×m3→2(u3)+C2(u

1/2
2 ,u1/2

3 )×m3→2(ū3)
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implying that computing the two-dimensional vectorm2→1 corresponds to a summa-
tion of two terms, once we have pre-computedm3→2. This recurrence relationship
corresponds to aO(p) dynamic programming algorithm.�

The idea illustrated by the above example generalizes to trees and junction trees.
The generalization is implemented as a message passing algorithm by [8, 10] named
the derivative-sum-product algorithm. Although [8] represents CDNs usingfactor
graphs [13], neither the usual independence model associate with factor graphs
holds in this case (instead the model is equivalent to other already existing notations,
as the bi-directed graphs used in [4]), nor the derivative-sum-product algorithm cor-
responds to the standard sum-product algorithms used to perform marginalization
operations in factor graph models. Hence, as stated, the derivative-sum-product al-
gorithm requires new software, and new ways of understanding approximations
when the graph corresponding to the factorization has a hightreewidth, making
junction tree inference intractable [3]. In particular, inthe latter case Bayesian in-
ference is doubly-intractable (following the terminologyintroduced by [17]) since
the likelihood function cannot be computed.

Neither the task of writing new software nor deriving new approximations are
easy, with the full junction tree algorithm of [10] being considerably complex3. In
the rest of this Section, we show a simple recipe on how to reduce the problem of
calculating the PDF of a CDN to the standard sum-product problem.

Let (1) be our model. Letz be a p-dimensional vector of integers, eachzi ∈
{1,2, ...,K}. Let Z be thepK space of all possible assigments ofz. Finally, letI(·)
be the indicator function, whereI(x) = 1 if x is a true statement, and zero otherwise.

The chain rule states that

∂ pC(u1, . . . ,up)

∂u1 . . .∂up
= ∑

z∈Z

K

∏
j=1

φ j(u,z) (2)

where

φ j(u,z)≡
∂ ∑p

i I(zi= j)C j(u
a1 j
1 , . . . ,u

ap j
p )

∏i s.t. zi= j ∂ui

To clarify, the seti s.t. zi = j are the indices of the set of variablesz which are
assigned the value ofj within the particular term in the summation.

From this, we interpret the function

pc(u,z)≡
K

∏
j=1

φ j(u,z) (3)

as a joint density/mass function over the space[0,1]p ×{1,2, . . . ,K}p for a set of
random variablesU∪Z. This interpretation is warranted by the fact thatpc(·) is

3 Please notice that [10] also presents a way of calculating the gradient of the likelihood function
within the message passing algorithm, and as such has also its own advantages for tasks such as
maximum likelihood estimation or gradient-based sampling. We do not cover gradient computation
in this paper.
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Fig. 1 In (a) and (b), a simple chain and tree models represented both as bi-directed graphs. In (c)
and (d), our corresponding extended factor graph representations with auxiliary variablesZ.

non-negative and integrates to 1. For the structured case, where only a subset of
{U1, . . . ,Up} are arguments to any particular copula factorC j(·), the corresponding
sampling space ofzi is Zi ⊆ {1,2, . . . ,K}, the indices of the factors which are func-
tions ofUi. This follows from the fact that for a variabley unrelated tox we have
∂ f (x)/∂y = 0, and as such forzi = j we haveφ j(u,z) = pc(u,z) = 0 if C j(·) does
not vary withui. From this, we also generalize the definition ofZ to Z1× . . .×Zp.

The formulation (3) has direct implications to the simplification of the derivative-
sum-product algorithm. We can now cast (2) as the marginalization of (3) with re-
spect toZ, anduse standard message-passing algorithms. The independence struc-
ture now follows the semantics of an undirected Markov network [3] rather than
the bi-directed graphical model of [4, 5]. In Figure 1 we showsome examples using
both representations, where the Markov network independence model is represented
as a factor graph. The likelihood function can then be computed by this formulation
of the problem using black-box message passing software forjunction trees.

Now that we have the tools to compute the likelihood function, Bayesian infer-
ence can be carried. Assume we have for eachφ j(·) a set of parameters{θ j,a j},
of which we want to compute the posterior distribution givensome dataD us-
ing a MCMC method of choice. Notice that, after marginalizing Z and assuming
the corresponding graph is connected, all parameters are mutually dependend in
the posterior since (2) does not factorize in general. This mirrors the behaviour of
MCMC algorithms for the Gaussian model of marginal independence as described
by [24]. Unlike the Gaussian model, there are no hard constraints on the parameters
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across different factors. Unlike the Gaussian model, however, factorizations with
high treewidth cannot be tractably treated.

4 Auxiliary Variable Approaches for Bayesian Inference

For problems with intractable likelihoods, one possibility is to represent it as the
marginal of a latent variable model, and then sample jointlylatent variables and
the parameters of interest. Such auxiliary variables may insome contexts help with
the mixing of MCMC algorithms, although we do not expect thisto happen in our
context, where conditional distributions will prove to be quite complex. In [24], we
showed that even for small dimensional Gaussian models, theintroduction of latent
variables makes mixing much worse. It may nevertheless be anidea that helps to
reduce the complexity of the likelihood calculation up to a practical point.

One straightforward exploration of the auxiliary variableapproach is given by
(3): just include in our procedure the sampling of the discrete latent vectorZ(d) for
each data pointd. The data-augmented likelihood is tractable and, moreover, a Gibbs
sampler that samples eachZi conditioned on the remaining indicators only needs to
recompute the factors where variableUi is present. The idea is straightforward to
implement, but practioners should be warned that Gibbs sampling in discrete graph-
ical models also has mixing issues, sometime severely. A possibility to mitigate this
problem is to “break” only a few of the factors by analytically summing over some,
but not all, of the auxiliaryZ variables in a way that the resulting summation is
equivalent to dynamic programming in a tractable subgraph of the original graph.
Only a subset will be sampled. This can be done in a way analogous to the classic
cutset conditioning approach for inference in Markov random fields [20]. In effect,
any machinery used to sample from discrete Markov random fields can be imported
to the task of samplingZ. Since the method in Section 3 is basically the result of
marginalizingZ analytically, we describe the previous method as a “collapsed” sam-
pler, and the method whereZ is sampled as a “discrete latent variable” formulation
of an auxiliary variable sampler.

This nomenclature also helps to distinguish those two methods for yet another
third approach. This third approach is inspired by an interpretation of the indepen-
dence structure of bi-directed graph models as given via a directed acyclic graph
(DAG) model with latent variables. In particular, considerthe following DAG G ′

constructed from a bi-directed graphG : i. add all variables ofG as observed vari-
ables toG ′; ii. for each cliqueSi in G , add at least on hidden variable toG ′ and make
these variables a parent of all variables inSi. If hidden variables assigned to differ-
ent cliques are independent, it follows that the independence constraints among the
observed variables ofG andG ′ [21] are the same, as defined by standard graphical
separation criteria4. See Figure 2 for examples.

4 Known as Global Markov conditions, as described by e.g. [21].
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Fig. 2 The independence constraints implied by (a) among variablesU1,U2 andU3 are also implied
by (b) and (c) according to standard graphical separation criteria (the Global Markov properties
described in, e.g., [21]).

The same idea can be carried over to CDNs. Assume for now that each CDF
factor has a known representation given by

Pj(U1 ≤ u
a1 j
1 , . . . ,Up ≤ u

ap j
p ) =

∫

{

p

∏
i=1

Pi j(Ui ≤ u
ai j
i | h j)

}

ph j(h j) dh j

and thatPi j is not included in the product ifUi is not in factorj. Assume further that
the joint distribution ofH ≡ ∪ jH j factorizes as

pH(h)≡
K

∏
j=1

ph j (h j)

It follows that the resulting PDF implied by the product of CDFs {C j(·)} will
have a distribution Markov with respect to a (latent) DAG model over{U,H}, since

∂ pP(U ≤ u | h)pH(h)
∂u1 . . .∂up

= pH(h)
p

∏
i=1

∂{∏ j∈Par(i)Pi j(Ui ≤ u
ai j
i | h j)}

∂ui

≡ pH(h)
p

∏
i=1

pi(ui | hPar(i))

(4)

wherePar(i) are the “parents” ofUi: the subset of{1,2, ...,K} corresponding to the
factors whereUi appears. The interpretation ofpi(·) as a density function follows
from the fact that again∏ j∈Par(i) Pi j(Ui ≤ u

ai j
i | h j) is a product of CDFs and, hence,

a CDF itself.
MCMC inference can then be carried out over the joint parameter andH space.

Notice that even if all latent variables are marginally independent, conditioning on
U will create dependencies5, and as such mixing can also be problematic. However,
particularly for dense problems where the number of factorsis considerably smaller

5 As a matter of fact, with one latent variable per factor, the resulting structure is a Markov network
where the edgeH j1 −H j2 appears only if factorsj1 and j2 have at least one common argument.
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than the number of variables, sampling in theH space can potentially sound more
attractive than sampling in the alternativeZ space.

One important special case are products of Archimedean copulas. An Archimedean
copula can be interpreted as the marginal of a latent variable model with a sin-
gle latent variable, and exchangeable over the observations. A detailed account of
Archimedean copulas is given by textbooks such as [11, 19], and their relation to
exchangeable latent variable models in [15, 7]. Here we provide as an example a
latent variable description of the Clayton copula, a popular copula in domains such
as finance for allowing stronger dependencies at the lower quantiles of the sample
space compared to the overall space.

Example 3 A set of random variables{U1, . . . ,Up} follows a Clayton distribu-
tion with a scalar parameterθ when sampled according to the following generative
model [15, 7]:

1. Sample random variableH from a Gamma(1/θ ,1) distribution
2. Samplep iid variables{X1, . . . ,Xp} from an uniform(0,1)
3. SetUi = (1− log(Xi)/H)−1/θ

�

This implies that, by using Clayton factorsC j(·), each associated with respective
parameterθ j and (single) gamma-distributed latent variableH j, we obtain

Pi j(Ui ≤ u
ai j
i | h j) = exp(−h j(u

−θ jai j
i −1))

By multiplying over all parents ofUi and differentiating with respect toui, we get:

pi(ui | hPar(i)) =

[

∏
j∈Par(i)

exp(−h j(u
−θ jai j
i −1))

][

∑
j∈Par(i)

θ jai jh ju
−θ jai j−1
i

]

(5)

A MCMC method can then be used to sample jointly{{ai j},{θ j},{H(1), . . . ,H(d)}}
given observed data with a sample size ofd. We do not consider estimating the shape
of the factorization (i.e., the respective graphical modelstructure learning task) as
done in [23].

5 Illustration

We discuss two examples to show the possibilities and difficulties of performing
MCMC inference in dense and sparse cumulative distributionfields. For simplicity
we treat the exponentiation parametersai j as constants by setting them to be uniform
for each variable (i.e., ifUi appears ink factors,ai j = 1/k for all of the corresponding
factors). Also, we treat marginal parameters as known in this Bayesian inference
exercise by first fitting them separately and using the estimates to generate uniform
(0,1) variables.
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Fig. 3 MCMC traces of the 10 parameters for the 46 log-returns data.Convergence is slow, al-
though each step is relatively cheap.

The first one is a simple example in financial time series, where we have 5 years
of daily data for 46 stocks from the S&P500 index, a total of 1257 data points. We fit
a simple first-order linear autoregression model for each log-returnYit of stocki at
time t, conditioned on all 46 stocks at timet −1. Using the least-squares estimator,
we obtain the residuals and use the marginal empirical CDF totransform the residual
data into approximately uniformUi variables.

The stocks are partitioned into 4 clusters according to the main category of busi-
ness of the respective companies, with cluster sizes varying from 6 to 15. We define
a CDF field using 10 factors: one for each cluster, and one for each pair of clusters
using a Clayton copula for each factor. This is not a sparse model6 in terms of inde-
pendences among the observed{U1, . . . ,U46}. However, in the corresponding latent
DAG model there are only 10 latent variables with each observationUi having only
two parents.

We used a Metropolis-Hastings method where eachθi is sampled in turn con-
ditioning on all other parameters using slice sampling [18]. Latent variables are
sampled one by one using a simple random walk proposal. A gamma (2,2) prior
is assigned to each copula parameter independently. Figure3 illustrates the trace
obtained by initializing all parameters to 1. Although eachiteration is relatively
cheap, convergence is substantially slow, suggesting thatlatent variables and pa-
rameters have a strong dependence in the posterior. As is, the approach does not

6 Even though it is still very restricted, since Clayton copulas have single parameters. A plot of the
residuals strongly suggests that a t-copula would be a more appropriate choice, but our goal here
is just to illustrate the algorithm.
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look particularly practical. Better proposals than randomwalks are necessary, with
slice sampling each latent variable being far too expensiveand not really addressing
the posterior dependence between latent variables and parameters.

Our second experiment is a simple illustration of the proposed methods for a
sparse model. Sparse models can be particularly useful to model residual depen-
dence structure, as in the structural equation examples of [23]. Here we use syn-
thetic data on a simple chainU1 ↔ . . .↔U5 using all three approaches: one where
we collapse the latent variables and perform MCMC moves using only the observed
likelihood calculated by dynamic programming; another where we sample the four
continuous latent variables explicitly (the “continuous latent” approach); and the
third, where we simply treat our differential indicators asdiscrete latent variables
(the “discrete latent” approach). Clayton copulas with gamma (2,2) priors were
again used, and exponentsai j were once again fixed uniformly. As before, slice
sampling was used for the parameters, but not for the continuous latent variables.

Figure 4 summarizes the result of a synthetic study with a random choice of
parameter values and a chain of five variables (a total of 4 parameters). For the col-
lapsed and discrete latent methods, we ran the chain for 1000iterations, while we ran
the continuous latent method for 10000 iterations with no sign of convergence. The
continuous latent method had a computational cost of about three to four times less
than the other two methods. Surprisingly, the collapsed anddiscrete latent methods
terminated in roughly the same amount of wallclock time, butin general we expect
the collapsed sampler to be considerably more expensive. The effective sample size
for the collapsed method along the four parameters was(1000,891,1000,903) and
for the discrete latent case we obtained(243,151,201,359).

6 Discussion

Cumulative distribution fields provide another construction for copula functions.
They are particularly suitable for sparse models where manymarginal indepen-
dences are expected, or for conditional models (as in [23]) where residual associa-
tion after accounting for major factors is again sparsely located. We did not, how-
ever, consider the problem of identifying which sparse structures should be used,
and focused instead on computing the posterior distribution of the parameters for a
fixed structure.

The failure of the continuous latent representation as auxiliary variables in a
MCMC sampler was unexpected. We conjecture that more sophisticated proposals
than our plain random walk proposals should make a substantial difference. How-
ever, the main advantage of the continuous latent representation is for problems with
large factors and a small number of factors compared to the number of variables. In
such a situation perhaps the product of CDFs formulation should not be used any-
way, and practitioners should resort to it for sparse problems. In this case, both
the collapsed and the discrete latent representations seemto offer a considerable
advantage over models with explicit latent variable representations (at least compu-
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Fig. 4 Sampling performance for the synthetic case study using thethree different methods.

tationally), a result that was already observed for a similar class of independence
models in the more specific case of Gaussian distributions [24].

An approach not explored here was the pseudo-marginal method [1], were an in
place of the intractable likelihood function we use a positive unbiased estimator. In
principle, the latent variable formulations allow for that. However, in a preliminary
experiment where we used the very naive uniform distribution as an importance
distribution for the discrete variablesZ, in a 10-dimensional chain problem with 100
data points, the method failed spectacularly. That is, the chain hardly ever moved.
Far more sophisticated importance distributions will be necessary here.

Expectation-propagation (EP) [16] approaches can in principle be developed as
alternatives. A particular interesting feature of this problem is that marginal CDFs
can be read off easily, and as such energy functions for generalized EP can be de-
rived in terms of actual marginals of the model.

For problems with discrete variables, the approach can be used almost as is by
introducing another set of latent variables, similarly to what is done in probit models.
In the case where dynamic programming by itself is possible,a modification of (1)
using differences instead of differentiation leads to a similar discrete latent variable
formulation (see the Appendix of [22]) without the need of any further set of latent
variables. However, the corresponding function is not a joint distribution overZ∪U
anymore, since differences can generate negative numbers.
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Some characterization of the representational power of products of copulas was
provided by [14], but more work can be done and we also conjecture that the point
of view provided by the continuous latent variable representation described here
can aid in understanding the constraints entailed by the cumulative distribution field
construction.
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