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In automated causal discovery, the constraint-based ap-
proach seeks to learn an (equivalence) class of causal struc-
tures (with possibly latent variables and/or selection vari-
ables) that are compatible (according to some assumptions,
usually the causal Markov and faithfulness assumptions)
with the conditional dependence and independence rela-
tions found in data. In the paper under discussion, Till-
man and Spirtes (T&S) develop a constraint-based algo-
rithm for learning causal structures from multiple, overlap-
ping datasets. The basic setup of the problem is this: the
variables of interest are not all measured at once in a sin-
gle study. Instead there are several studies, each measur-
ing a subset, which produce multiple datasets with overlap-
ping variables. Assuming there is a common structure over
the variables of interest (with possibly latent confound-
ing variables and selection variables) that generated all the
datasets, T&S’s algorithm is designed to discover features
of that structure by learning the features shared by all the
causal structures that are compatible with all the datasets.

Unlike standard constraint-based methods, which assume
an oracle of conditional independence that can respond to
every query of whether two observed variables are condi-
tionally independent given a set of observed variables, the
algorithm described in T&S’s paper allows the oracle to
be incomplete: some variables may be jointly measured in
none of the available datasets; as a result, the query of con-
ditional independence concerning these variables cannot be
answered. Thus the algorithm provides a solution to the
problem of learning from (a broad class of) incomplete or-
acles. To be sure, the algorithm does not allow the oracle
to be arbitrarily incomplete: with respect to the variable
set of each individual dataset, the oracle is still complete.
But it seems to be general enough to handle the problem
of incomplete oracle in some other contexts. For exam-
ple, one may worry about the power of conditional inde-
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pendence tests used to implement the oracle or about the
computational complexity, and decide to only consult the
oracle when the conditioning set contains no more thann

variables (Spirtes, 2001). T&S’s method seems also appli-
cable in this case, which can be viewed as a situation in
which there are multiple datasets, each containing a sub-
set of the whole variable set with sizen+ 2. (In this case,
though, we can simply use the aggregate dataset to test con-
ditional independence, and do not need Fisher’s method of
meta-analysis.)

T&S assume that every dataset is generated from a com-
mon qualitative structure (though different variables get
recorded in different datasets), but not necessarily with the
same parameter values. In general, therefore, we have one
underlying structure but multiple joint distributions gener-
ated from the structure. Moreover, each joint distribution
is assumed to be faithful to the common structure, so that
every conditional independence relation that holds in the
joint distribution is entailed by the structure, regardless of
the specific parameter values.

The flexibility of allowing different distributions for differ-
ent datasets is obviously commendable. For one thing, it is
simply more realistic to expect different datasets to follow
different distributions, if, as is usually the case, they are
collected in different studies or experiments with different
designs. Moreover, the multiple-distribution setting may
have an advantage with regard to the faithfulness assump-
tion. As Pearl once remarked: “[It] has been suggested
that causal discovery methods based solely on associations
will find their greatest potential in longitudinal studies con-
ducted under slightly varying conditions, where accidental
independencies are destroyed and only structural indepen-
dencies are preserved.” (Pearl, 2009, p.63) The idea is that
even if one distribution happens to be unfaithful and im-
plies an accidental conditional independence, the indepen-
dence will in all likelihood disappear when different dis-
tributions are checked. In the present context, if multiple
datasets contribute to testing whetherX andY are condi-
tionally independent givenZ, there is a good reason to ex-
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pect that even if the conditional independence happens to
hold unfaithfully in one dataset, other datasets, if they are
faithful with respect to this particular conditional indepen-
dence query, will guard against the misleading statistical
decision thatX andY are conditionally independent given
Z. In their paper, T&S propose to use Fisher’s method of
meta-analysis to integrate different datasets in testing con-
ditional independence. Our speculation is that this method
is to some extent robust against occasional violations of
faithfulness in multiple-distribution settings. We are curi-
ous to see some empirical results on this matter.

Let’s now turn to the common-structure assumption. The
idea is that there is a common DAG structure representing
the data-generating process for each dataset. T&S allow the
possibility of selection bias, so this underlying DAG may
contain selection variables. A selection variable is a vari-
able that remains constant in sampling; as a result, what-
ever dependence or independence found in the sample is
conditional upon the variable (taking a certain value). In
the simplest case, a selection variable matters for causal
inference when two variables of interest both causally in-
fluence the selection variable, in which case conditioning
on the selection variable (a collider) induces an associa-
tion between the variables of interest that is not attributable
to either direct causal influence between the variables or a
common cause of the variables. What T&S need to assume
is that all the datasets, despite coming from different stud-
ies or experiments, nonetheless share the exact same selec-
tion variables (perhaps even with the same values, though
this is not necessary if linear Gaussian parameterization is
assumed). This aspect of the assumption seems to us not
very plausible. Considering that researchers, at least in nor-
mal cases, do not intentionally introduce selection bias in
experimental design, it would take quite a coincidence to
have the exact same selection bias in multiple experiments.
Possible relaxation of the assumption of common selection
bias is worth exploring.

More generally, there may be situations in which the
common-structure assumption is known to be false. It
might be known, for example, that one dataset comes from
a controlled experiment, while others come from observa-
tional studies. Different experiments may also carry out in-
terventions on different variables. How to learn from such
datasets, whose underlying structures are overlapping but
not identical, seems to be a natural follow-up question.

The contribution by T&S also provides a framework that
can go beyond discovering a collection of Markov equiva-
lence classes. Consider the problem of inferring the pres-
ence of latent variables, their relation to the observables,
and the relation among themselves (Silva et al., 2006). For
instance, suppose data for a natural process is generated
according to the following causal structure

L → X1, L → X2, L → X3 . . . , L → XK

but whereL is never observed, or even known to exist a
priori. Under a variety of assumptions, such as faithfulness
and linearity, several causal claims can be inferred from the
marginal distribution of{X1, . . . , XK} without further as-
sumptions about the number of latent variables and their
marginal distribution. Given the existence of many stud-
ies where observed variables are recorded with the intent
of measuring latent concepts of interest (up to some mea-
surement error) (Bartholomew et al., 2008), it is important
to provide tools to unveil such relationships.

For a variety of reasons, such studies have overlapping
variables. In medicine, psychology or social sciences this
is particularly evident: eachXi might record an answer
to a question probing a target latent trait of interest (say,
propensity to anxiety disorder). Such a trait might be mea-
sured in a study that uses some but not all of the questions
from a different study, while including a few more. Cud-
eck (2000) approaches this problem under the assumption
of a given structure and common distributions. In princi-
ple, this could be done with standard missing data models,
but Cudeck’s main goal was to explore the possibility of
combining assumptions and data to identify joint distribu-
tions of variables which were never observed together. The
framework by T&S could be adapted to such a scenario,
where different marginal distributions, augmented with la-
tent variables, contain different independence constraints.
Tests for independence should now be done in an indirect
way by exploring assumptions such as linearity (Silva et al.,
2006) — which again means we have a special type of lim-
ited information about the Markovian structure of the joint
distribution. T&S already equip search algorithms with the
possibility of working under incomplete independence in-
formation. This seems a promising starting point for such
problems.

Concerning other families of constraints that could be ex-
ploited, T&S mention functional constraints with additive
errors such as the one introduced by Hoyer et al. (2009).
Such a framework provides a different approach for iden-
tifying causal structures, one that often results in much
simpler equivalence classes. Since additive error models
are not closed under marginalization, however, other is-
sues will arise: what would that mean when one model
has additive error, if the error might actually come from a
variable observed in another dataset, where the relationship
was non-additive?

Some closing comments on model-based approaches: T&S
correctly point out that score-based methods using standard
methods such as Structural EM (Friedman, 1998) might un-
derperform in their scenario. In theory, however, this is
true only to some extent: if one does not extend such ap-
proaches to deal with different distributions. There is no
conceptual barrier against dropping this assumption, and
the Bayesian framework is particularly suitable if one is
willing to tie the parameters from the different submodels
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via a common prior. It is true that the computational cost
should be much higher than the procedure implemented by
T&S — but if datasets are individually of modest dimen-
sionality, it might be doable in practice.

Moreover, it might not be necessary to fit a single model
including all variables. One could exploit the link to penal-
ized composite likelihood approaches (Varin and Vidoni,
2005) and design a score function that is a sum of different
score functions over different subsets of variables. Even
if the data is not identically distributed, again we see no
fundamental barrier to extend the approach to this general
setup — although coming up with a reasonable penaliza-
tion function might not be trivial. From the point of view of
search algorithms for optimizing structure, much of the ma-
chinery of combinatorial optimization could be exploited to
provide a counterpart to (at least) T&S’s Algorithm 2: one
could optimize the penalized composite likelihood score by
enforcing constraints such that the independence models
over different subsets of variables agree on the overlapping
sets. At least in principle such constraints could be added
to standard constrained optimization solvers, and since we
have a sound and complete calculus to generate such con-
straints (i.e., m-separation), the problem is well-defined.
Recent work (Cussens, 2008, Jaakkola et al., 2010) has ex-
ploited this formulation in the context of learning single
DAG structures. The problem is much harder here since
scoring MAGs cannot be easily done by decomposing the
likelihood function in a simple way. However, the different
subsets of variables in which our problem is naturally split
might end up being small enough in some important prac-
tical cases and a missing data formulation is not necessary.

It is a great pleasure to participate in a discussion paper at
AISTATS, arguably the first machine learning conference
to provide such an opportunity. Following a tradition that
one of us has observed frequently at the meetings of the
Royal Statistical Society, we would like to propose a vote
of thanks on this paper and once again congratulate the au-
thors for their contribution.
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