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Definition

The main task in causal inference is the prediction of the outcome of an in-
tervention. For example, a treatment assigned by a doctor that will change
the patient’s heart condition is an intervention. Predicting the change in
patient condition is a causal inference task. In general, an intervention is
an action taken by an external agent that changes the original values, or
the probability distributions, of some of the variables in the system. Besides
predicting outcomes of actions, causal inference is also concerned with expla-
nation: identifying which were the causes of a particular event that happened
in the past.

Motivation and Background

Many problems in machine learning are prediction problems. Given a feature
vector X, the task is to provide an estimate of some output vector Y, or its
conditional probability distribution P (Y|X). This typically assumes that
the distribution of Y given X during learning is the same distribution at
prediction time. There are many scenarios where this is not the case.

Epidemiology and several medical sciences provide counterexamples. Con-
sider two seemingly straightforward learning problems. In the first example,
one is given epidemiological data where smokers are clearly more inclined
than non-smokers to develop lung cancer. Can I use this data to learn that
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smoking causes cancer? In the second example, consider a group of patients
suffering from a type of artery disease. In this group, those that receive a by-
pass surgery are likely to survive longer than those that receive a particular
set of drugs with no surgery.

There is no fundamental problem on using such datasets to predict the
probability of a smoker developing lung cancer, or the life expectancy of
someone who went through surgery. Yet, the data does not necessarily tell
you if smoking is a cause of lung cancer, or that nationwide the government
should promote surgery as the treatment of choice for that particular heart
disease. What is going on?

There are reasons to be initially suspicious of such claims. This is well-
known in statistics as the expression “association is not causation” (Wasser-
man, 2004, p. 253). The data generating mechanism for our outcome Y

(“developing lung cancer,” “getting cured from artery disease”) given the
relevant inputs X (“smoking habit,” “having a surgery”) might change un-
der an intervention for reasons such as follows.

In the smoking example, the reality might be that there are several hidden
common causes that are responsible for the observed association. A genetic
factor, for instance: the possibility that there is a class of genotypes on
which people are more likely to pick up smoking and develop lung cancer,
without any direct causal connection between these two variables. In the
artery disease example, surgery might not be the best choice to be made by
a doctor. It might have been the case that so far patients in better shape
were more daring in choosing, by themselves, the surgery treatment. This
selection bias will favor surgery over drug treatment, since from the outset
the patients that are most likely to improve take that treatment.

When treatment is enforced by an external agent (the doctor), such se-
lection bias disappears, and the resulting P (Y|X) will not be the same. One
way of learning this relationship is through randomized trials (Rosenbaum,
2002). The simplest case consists on flipping a coin for each patient on the
training set. Each face of the coin corresponds to a possible treatment, and
assignment is done accordingly. Since assignment does not depend on any
hidden common cause or selection bias, this provides a basis for learning
causal effects. Machine learning and statistical techniques can be applied
directly in this case (e.g., logistic regression). Data analysis performed with
a randomized trial is sometimes called an interventional study.

The smoking case is more complicated: a direct intervention is not pos-
sible, since it is not acceptable to force someone to smoke or not to smoke.
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The inquiry asks only for a hypothetical intervention, i.e., if someone is forced
to smoke, will his or her chances of developing lung cancer increase? Such
an intervention will not take place, but this still has obvious implications in
public policy. This is the heart of the matter in issues such as deciding on
raising tobacco taxes, or forbidding smoking in public places. However, data
that measures this interventional data generation mechanism will never be
available for ethical reasons. The question has to be addressed through an
observational study, i.e., a study for causal predictions without interventional
data.

Observational studies arise not only under the impossibility of perform-
ing interventions, but also in the case where performing interventions is too
expensive or time consuming. In this case, observational studies, or a com-
bination of observational and interventional studies, can provide extra infor-
mation to guide an experimental analysis (Hyttinen et al., 2013; Sachs et al.,
2005; Cooper and Yoo, 1999; Eaton and Murphy, 2007). The use of obser-
vational data, or the combination of several interventional datasets, is where
the greatest contributions of machine learning to causal inference rest.

Structure of the Learning System

Background
Knowledge

Observational
Data

Interventional
Data

Causal Query

Prediction

Causal Model

Structure of Causal Inference

In order to use observational data, a causal inference system needs a way
of linking the state of the world under an intervention to the natural state
of the world. The natural state is defined as the one to which no external
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intervention is applied. In the most general formulation, this link between
the natural state and the manipulated world is defined for interventions in
any subset of variables in the system.

A common language for expressing the relationship between the different
states of the world is a causal graph, as explained in more detail in the next
section. A causal model is composed of the graph and a probability distribu-
tion that factorizes according to the graph, as in a standard graphical model.
The only difference between a standard graphical model and a causal graph-
ical model is that in the latter extra assumptions are made. The graphical
model can be seen as a way of encoding such assumptions.

The combination of assumptions, observational and interventional data
generates such a graphical causal model. In the related problem of rein-
forcement learning, the agent has to maximize a specific utility function and
typically has full control on which interventions (actions) can be performed.
Here we will focus on the unsupervised problem of learning a causal model
for a fixed input of observational and interventional data.

Because only some (or no) interventional data might be available, the
learning system might not be able to answer some causal queries. That is,
the system will not provide an answer for some prediction tasks.

Languages and assumptions for causal inference

Directed acyclic graphs (DAGs) are a popular language in machine learning
to encode qualitative statements about causal relationships. A DAG is com-
posed of a set of vertices and a set of directed edges. The notion of parents,
children, ancestors and descendants are the usual ones found in graphical
modeling literature.

In terms of causal statements, a directed edge A → B states that A

is a direct cause of B: that is, different interventions on A will result on
different distributions for B, even if we intervene on all other variables. The
assumption that A is a cause of B is not used in non-causal graphical models.

A causal DAG G satisfies the causal Markov condition if and only if a
vertex is independent of all of its non-descendants given its direct causes
(parents). In Figure 1(a), A is independent of D, E and F given its parents,
B and C. It may or may not be independent of G given B and C.

The causal Markov condition implies several other conditional indepen-
dence statements. For instance, in Figure 1(a) we have that H is independent
of F given A. Yet, this is not a statement about the parents of any vertex.
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Figure 1: (a) A causal DAG. (b) Structure of the causal graph under some
intervention that sets the value of A to a constant. (c) Structure of the causal
graph under some intervention that changes the distribution of A.

Pearl’s d-separation criterion (Pearl, 2000) is a sound and complete way of
reading off independencies, out of a DAG, which are entailed by the causal
Markov condition. We assume that the joint probability distribution over the
vertice variables is Markov with respect to the graph, that is, any indepen-
dence statement that is encoded by the graph should imply the corresponding
independence in the distribution.

Representing Interventions

The local modularity given by the causal Markov condition leads to a natu-
ral notion of intervention. Random variable V , represented by a particular
vertex in the graph, is following a local mechanism: its direct causes de-
termine the distribution of V before its direct effects are generated. The
role of an intervention is to override the natural local mechanism. An ex-
ternal agent substitutes the natural P (V |Parents(V )) by a new distribution
PMan(V |Parents(V )) while keeping the rest of the model unchanged (“Man”
here stands for a particular manipulation). The notion of intervening by
changing a single local mechanism is sometimes known as an ideal interven-
tion. Other general types of interventions can be defined (Eaton and Murphy,
2007), but the most common frameworks for calculating causal effects rely
on this notion.

A common type of intervention is the point mass intervention, which hap-
pens when V is set to some constant v. This can be represented graphically
by “wiping out” all edges into V . Figure 1(b) represents the resulting graph
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Figure 2: (a) X and Y have a hidden common cause H . (b) Y is dependent
on the intervention node I given X , but conditioning on Z and marginalizing
it out will allow us to eliminate the “back-door” path that links X and Y

through the hidden common cause H .

in (a) under a point manipulation of A. Notice that A is now d-separated
from its direct causes under this regime. It is also probabilistically indepen-
dent, since A is now constant. This allows for a graphical machinery that
can read off independencies out of a manipulated graph (i.e., the one with
removed edges). It is the idea of representing the natural state of the world
with a single causal graph, and allowing for modifications in this graph ac-
cording to the intervention of choice, that links the different regimes obtained
under different interventions.

For the general case where a particular variable V is set to a new distri-
bution, a manipulation node is added as an extra parent of V : this represents
that an external agent is acting over that particular variable (Spirtes et al.,
2000; Pearl, 2000; Dawid, 2003), as illustrated in Figure 1(c). P (V |Parents(V ))
under intervention I is some new distribution PMan(V |Parents(V ), I).

Calculating Distributions under Interventions

The notion of independence is a key aspect of probabilistic graphical mod-
els, where it allows for efficient computation of marginal probabilities. In
causal graphical models, it also fulfils another important role: independen-
cies indicate that the effect of some interventions can be estimated using
observational data.

We will illustrate this concept with a simple example. One of the key dif-
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ficulties in calculating a causal effect is unmeasured confounding, i.e., hidden
common causes. Consider Figure 2(a), where X is a direct cause of Y , and
H is a hidden common cause of both. I is an intervention vertex. Without
extra assumptions, there is no way of estimating the effect of X on Y using
a training set that is sampled from the observed marginal P (X, Y ). This is
more easily seen in the case where the model is multivariate Gaussian with
zero mean. In this case, each variable is a linear combination of its parents
with standard Gaussian additive noise

X = aH + ǫX
Y = bX + cH + ǫY

where H is also a standard normal random variable. The manipulated dis-
tribution PMan(Y |X, I), where I is a point intervention setting X = x, is a
Gaussian distribution with mean b · x. Value x is given by construction, but
one needs to learn the unknown value b.

One can verify that the covariance of X and Y in the natural state is
given by a+ bc. Observational data, i.e., data sampled from P (X, Y ), can be
used to estimate the covariance of X and Y in the natural state, but from
that it is not possible to infer the value of b: there are too many degrees of
freedom.

However, there are several cases where the probability of Y given some
intervention on X can be estimated with observational data and a given
causal graph. Consider the graph in Figure 2(b). The problem again is to
learn the distribution of Y given X under regime I, i.e., P (Y |X, I). It can
be read off from the graph that I and Y are not independent given X , which
means P (Y |X, I) 6= P (Y |X). How can someone then estimate P (Y |X, I)
if no data for this process has been collected? The answer lies on reducing
the “causal query” to a “probabilistic query” where the dependence on I

disappears (and, hence, the necessity of having data measured under the I

intervention). This is done by relying on the assumptions encoded by the
graph:

P (Y |X, I) =
∑

z
P (Y |X, I, z)P (Z = z|X, I) (Z is discrete in this example)

=
∑

z
P (Y |X, z)P (Z = z|X, I) (Y and I are independent given Z)

∝
∑

z
P (Y |X, z)P (X|z, I)P (Z = z|I) (By Bayes’ rule)

=
∑

z
P (Y |X, z)P (X|z, I)P (Z = z) (Z and I are marginally independent)

In the last line, we have P (Y |X,Z) and P (Z), which can be estimated
with observational data, since no intervention variable I appears on the ex-
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pression. P (X|Z, I) is set by the external agent: its value is known by con-
struction. This means that the causal distribution P (Y |X, I) can be learned
even in this case where X and Y share a hidden common cause H .

There are several notations for denoting an interventional distribution
such as P (Y |X, I). One of the earliest was due to Spirtes et al. (2000),
which used the notation P (Y |set X = x) to represent the distribution under
an intervention I that fixed the value of X to some constant x. Pearl (2000)
defines the operator do with an analogous purpose:

P (Y |do(X = x)) (1)

Pearl’s do-calculus is essentially a set of operations for reducing a prob-
ability distribution that is a function of some intervention to a probability
distribution that does not refer to any intervention. All reductions are con-
ditioned on the independencies encoded in a given causal graph. This is in
the same spirit of the example presented above.

The advantage of such notations is that, for point interventions, they lead
to simple yet effective transformations (or to a report that no transformation
is possible). Spirtes et al. (2000) and Pearl (2000) provide a detailed account
of such prediction tools. By making a clear distinction between P (Y |X) (X
under the natural state) and P (Y |do(X)) (X under some intervention), much
of the confusion that conflates causal and non-causal predictions disappears.

It is important to stress that methods such as the do-calculus are nonpara-
metric, in the sense that they rely on conditional independence constraints
only. More informative reductions are possible if one is willing to provide ex-
tra information, such as assuming linearity of causal effects. For such cases,
other parametric constraints can be exploited (Spirtes et al., 2000; Pearl,
2000).

Learning Causal Structure

In all of the previous section, we assumed that a causal graph was available.
Since background knowledge is often limited, learning such graph structures
becomes an important task. However, this cannot be accomplished without
extra assumptions. To see why, consider again the example in Figure 2(a): if
a+ bc = 0, it follows that the X and Y are independent in the natural state.
However, Y is not causally independent of X (if b 6= 0): P (Y |do(X = x1))
and P (Y |do(X = x2)) will be two different Gaussians with means b · x1 and
b · x2, respectively.
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This example demonstrates that an independence constraint that is testable
by observational data does not warrant causal independence, at least based
on the causal Markov condition only. However, an independence constraint
that arises from particular identities such as a + bc = 0 is not stable, in the
sense that it does not follow from the qualitative causal relations entailed by
the Markov condition: a change in any of the parameter values will destroy
such a constraint.

The artificiality of unstable independencies motivates an extra assump-
tion: the faithfulness condition (Spirtes et al., 2000), also known as the sta-
bility condition (Pearl, 2000). We say that a distribution P is faithful to a
causal graph G if P is Markov with respect to G, and if each conditional
independence in P corresponds to some d-separation in G. That is, on top
of the causal Markov condition we assume that all independencies in P are
entailed by the causal graph G.

The faithfulness condition allows us to reconstruct classes of causal graphs
from observational data. In the simplest case, observing that X and Y are
independent entails that there is no causal connection between X and Y .
Consequently, P (Y |do(X)) = P (Y |X) = P (Y ). No interventional data was
necessary to arrive at this conclusion, given the faithfulness condition.

In general, the solution is undetermined: more than one causal graph
will be compatible with a set of observable independence constraints. Con-
sider a simple example, where data is generated by a causal model with a
causal graph given as in Figure 3(a). This graph entails some independen-
cies. For instance, that X and Z are independent given W , or that X and
Y are not independent given any subset of {W,Z}. However, several other
graphs entail the same conditional independences. The graph in Figure 3(b)
is one example. The learning task is then discovering an equivalence class
of graphs, not necessarily a particular graph. This is in contrast with the
problem of learning the structure of non-causal graphical models: the fact
that there are other structures compatible with the data is not important in
this case, since we will not use such graphical models to predict the effect of
some hypothetical intervention. An equivalence class might not be enough
information to reduce a desired causal query to a probabilistic query, but it
might require much less prior knowledge than specifying a full causal graph.

Assume for now that no hidden common causes exist in this domain.
In particular, the graphical object in Figure 3(c) is a representation of the
equivalence class of graphs that are compatible with the independencies en-
coded in Figure 3(a) (Pearl, 2000; Spirtes et al., 2000). All members of the
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Figure 3: (a) A particular causal graph which entails a few independence
constraints, such as X and Z being independent given W . (b) A different
causal graph that entails exactly the same independence constraints as in
(a). (c) A representation for all graphs that entail the same conditional
independencies as (a) and (b).
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Figure 4: (a) A particular causal graph with no other member on its equiva-
lence class (assuming there are no hidden common causes). (b) Graph under
the presence of two hidden common causes H1 and H2. (c) A representation
for all graphs that entail the same conditional independencies as (a), without
assuming the non-existence of hidden common causes.

equivalence class will have the same skeleton of this representation, i.e., the
same adjacencies. An undirected edge indicates that there are two members
in the equivalence class where directionality of this particular edge goes in
opposite directions. Some different directions are illustrated in Figure 3(b).
One can verify from the properties of d-separation that, if an expert or an
experiment indicates that X −W should be directed as X → W , then the
edge W − Z is compelled to be directed as W → Z: the direction W ← Z is
incompatible with the simultaneous findings that X and Z are independent
given W , and that X causes W .

More can be discovered if more independence constraints exist. In Figure
4(a), X is not a cause of Y . If we assume no hidden common causes exist in
this domain, then no other causal graph is compatible with the independence
constraints of Figure 4(a): the equivalence class is this graph only. However,
the assumption of no hidden common causes is strong and undesirable. For
instance, the graph in Figure 4(b), whereH1 andH2 are hidden, is in the same
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equivalence class of (a). Yet, the graph in (a) indicates that P (W |do(X)) =
P (W |X), which can be arbitrarily different from the real P (W |do(X)) if
Figure 4(b) is the real graph. Some equivalence class representations, such as
the Partial Ancestral Graph representation (Spirtes et al., 2000), are robust
to hidden common causes: in Figure 4(c), and edge that has a circle as
endpoint indicates that is not known if there is a causal path into both, e.g.,
X and W (which would be the case for a hidden common cause of X and
W ). The arrow into W does indicate that W cannot be a cause of X . A
fully directed edge such as W → Z indicates total information: W is a cause
of Z, Z is not a cause of W , and W and Z have no hidden common causes.

Given equivalence class representations and background knowledge, dif-
ferent types of algorithms explore independence constraints to learn an equiv-
alence class. It is typically assumed that the true graph is acyclic. The basic
structure is to evaluate how well a set of conditional independence hypothe-
ses is supported by the data. Depending on which constraints are judged
to hold in the population, we keep, delete or orient edges accordingly. Some
algorithms, such as the PC algorithm (Spirtes et al., 2000), test a single inde-
pendence hypothesis at a time, and assemble the individual outcomes in the
end into an equivalence class representation. Other algorithms such as the
GES algorithm (Meek, 1997; Chickering, 2002) start from a prior distribution
for graphs and parameters, and proceed to compare the marginal likelihood
of members of different equivalence classes (which can be seen as a Bayesian
joint test of independence hypotheses). In the end, this reduces to a search
for the maximum a posteriori equivalence class estimator. Both PC and GES
have consistency properties: in the limit of infinite data, they return the right
equivalence class under the faithfulness assumption. However, both PC and
GES, and most causal discovery algorithms, assume that there are no hidden
common causes in the domain. The Fast Causal Inference (FCI) algorithm
of Spirtes et al. (2000) is able to generate equivalence class representations
as in Figure 4(c). As in the PC algorithm, this is done by testing a single
independence hypothesis at a time, and therefore is a high variance estimator
given small samples. A GES-like algorithm with the consistency properties
of FCI is not currently known. An algorithm that allows for cyclic networks
is discussed by Richardson (1996).
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Semiparametric models

Our examples relied on conditional independence constraints. In this case,
the equivalence class is known as the Markov equivalence class. Markov
equivalence classes are “nonparametric”, in the sense that they do not refer
to any particular probability family. In practice, this advantage is limited by
our ability to test independence hypotheses within flexible probability fami-
lies. Another shortcoming of Markov equivalence classes is that they might
be poorly informative if few independence constraints exist in the population.
This will happen, for instance, if a single hidden variable is a common cause
of all observed variables. If one is willing to incorporate further assumptions,
such as linearity of causal relationships, semiparametric constraints can be
used to define other types of equivalence classes that are more discriminative
than the Markov equivalence class. Silva et al. (2006) describe how some rank
constraints in the covariance matrix of the observed variables can be used
to learn the structure of linear models, even if no independence constraints
are observable. Shimizu et al. (2006) provide a solution to find the causal
ordering of a linear DAG model without latent variables, by exploiting in-
formation beyond the second moments of a distribution in the non-Gaussian
case. Entner et al. (2012) introduce an approach to estimate causal effects
in non-Gaussian linear systems under some assumptions of directionality but
allowing for unmeasured confounding. Peters et al. (2014) develop a general
method for learning directionality in non-linear models with additive noise.

Confidence intervals

Several causal learning algorithms such as the PC and FCI algorithms (Spirtes
et al., 2000) are consistent, in the sense that they can recover the correct
equivalence class given the faithfulness assumption and an infinite amount
of data. Although point estimates of causal effects are important, it is also
important to provide confidence intervals. From a frequentist perspective, it
has been shown that this is not possible given the faithfulness assumption
only (Robins et al., 2003). An intuitive explanation is as follows: consider
the model such as the one in Figure 2(a). For any given sample size, there is
at least one model such that the association due to the paths X ← H → Y

and X → Y nearly cancel each other (faithfulness is still preserved), making
the covariance of X and Y statistically indistinguishable from zero. In order
to achieve uniform consistency, causal inference algorithms need assumptions
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stronger than faithfulness. Zhang and Spirtes (2003) provide some directions.

Other Languages and Tasks in Causal Learning

A closely related language for representing causal models is the potential
outcomes framework popularized by Donald Rubin (Rubin, 2005). In this
case, random variables for a same variable Y are defined for each possible
state of the intervened variable X . Notice that, by definition, only one of the
possible Y outcomes can be observed for any specific data point. This frame-
work is popular in the statistics literature as a type of missing data model.
The relation between potential outcomes and several other representations
of causality is discussed by Richardson and Robins (2013).

A case where potential outcomes become particularly motivated is in
causal explanation. In this setup, the model is asked for the probability
that a particular event in time was the cause of a particular outcome. This
is often cast as a counterfactual question: had A been false, would B still
have happened? Questions in History and law are of this type: the legal
responsibility of an airplane manufacturer in an accident depends on technical
malfunction being an actual cause of the accident. Ultimately, such issues
of causal explanation, actual causation and other counterfactual answers,
are untestable. Although machine learning can be a useful tool to derive
the consequences of assumptions combined with data about other events of
the same type, in general the answers will not be robust to changes in the
assumptions, and the proper assumptions ultimately cannot be selected with
the available data. Some advances in generating explanations with causal
models are described by Halpern and Pearl (2005).
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