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Abstract Bayesian inference often poses difficult com-

putational problems. Even when off-the-shelf Markov

chain Monte Carlo (MCMC) methods are available to

the problem at hand, mixing issues might compromise

the quality of the results. We introduce a framework for

situations where the model space can be naturally di-

vided into two components: i. a baseline black-box prob-

ability distribution for the observed variables; ii. con-

straints enforced on functionals of this probability dis-

tribution. Inference is performed by sampling from the

posterior implied by the first component, and finding

projections on the space defined by the second compo-

nent. We discuss the implications of this separation in

terms of priors, model selection, and MCMC mixing in

latent variable models. Case studies include probabilis-

tic principal component analysis, models of marginal
independence, and a interpretable class of structured

ordinal probit models.
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1 Contribution

Bayesian inference raises the computational problems

of calculating posterior distributions and expectations

of functionals. Markov chain Monte Carlo (MCMC) is a

common tool in this case. In many classes of problems,

however, the likelihood function is difficult to compute.

Using an off-the-shelf method, poor mixing may fol-

low, particularly if latent variables are sampled explic-

itly [16]. Alternatives include estimating the likelihood

function within a MCMC step [1]; using only summary

statistics implied by draws from the model [4]; using

surrogate likelihood functions [6,25]. While much of the

motivation for the latter is to avoid a complete specifi-

cation of a model, which calls for explicit assumptions

on nuisance parameters, computational considerations

are also invoked.

This paper presents a complement to the approaches

above. Consider the following setup: modeling multi-

variate ordinal data with a structured multivariate pro-

bit model,

Y? ∼ N (0, Σ)

Yi =
∑Ki
k=1 k · I(τ ik−1 ≤ Y ?i /σ

1/2
ii < τ ik)

(1)

for i = 1, 2, . . . , p, where N (µ,Σ) is the multivariate

Gaussian distribution with mean µ and covariance Σ;

I(·) is the indicator function; σij is the corresponding

entry ofΣ; observable ordinal variable Yi ∈ {1, 2, . . . ,Ki}
is the result of thresholding Y ?i according to a set of

thresholds τ i, such that τ i0 ≡ −∞, τ iKi ≡ ∞.

In this setup, and all scenarios thereafter, we as-

sume that the covariance matrix Σ is structured. The

assumption is that latent variables Z, representing hid-

den factors in the world, provide an explanation for the

multivariate dependence structure of Y?. The mapping

from Z to Y? will impose constraints on Σ, which can
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then be represented as a function Σ(θ) of some parame-

ter vector θ. Vector θ is composed of continuous and/or

discrete random variables. MCMC on {θ, {τi},Z, Y?}
can have considerably worse mixing than MCMC on the

space of unconstrained matrices. This is due to the hard

constraints mapping θ to Σ, which might involve the

implicit definition of discrete variables that control the

activation of constraints supported by the data. Also,

even if mixing is fast, MCMC does not easily allow for

the parallel generation of different structures.

Motivated by such computational problems, we con-

sider an approach where inference is first performed on

unconstrained covariance matrices. Randomly sampled

matrices from the saturated posterior are then mapped

via an optimization method to some θ lying on a con-

strained space. The end result is a posterior distribu-

tion over the target parameter space. We will illustrate

attractive features of this principle with case studies.

In Section 2 we formally describe the general frame-

work of Bayesian Projections. Section 3 provides a sim-

ple illustration in Bayesian principal component anal-

ysis. In Section 4, we apply Bayesian projections to

model selection for marginal independence models. Sec-

tion 5 demonstrates our main application in model-

ing questionnaire data with structured latent probit

models. Finally, we conclude in Section 6 and discuss

some connections to approximate Bayesian computa-

tion (ABC) and indirect inference (IL).

2 Inference via Bayesian projections

Let a model be defined by a tuple (π,Θ,A, πU ), where π

is the black-box probability model for observable vari-

ables Y. Θ is the space of possible reparameterizations

of (functionals of) π.A is a function mapping π and ran-

dom samples from πU onto Θ. More generally, we define

A as an algorithm that returns a stationary point (e.g.,

a local minimum) of some function d(·), which depends

on the random initialization variables U sampled from

πU .

Using our example from (1), let π be a probit model

for ordinal variables Y1, Y2, . . . Yp; R(π), the correlation

matrix parameter of the probit model; and Θ, the prod-

uct space of p×v matrices L and v×v diagonal matrices

D. Given π, we can define θ?(π) as

θ?(π) = arg min
{L,D}∈Θ

Frob(R(π), LDLT ) (2)

where Frob(A,B) is the Frobenious distance,

Frob(A,B) ≡

√√√√ p∑
i=1

p∑
j=1

(aij − bij)2,

mij being the (i, j) entry of matrix M . Algorithm A
solves the optimization problem above. The sign of the

entries of L may be underdetermined, and may depend

on the random choice U that initializes A. That is,

θ?(π, U) = A(π, U). (3)

Algorithm A is meant to be general and cover the cases

where the function to be optimized is non-convex, com-

binatorial, or unidentifiable, with the solution found

depending on the random initialization mechanism. In

what follows, we will use the notation θ? instead of

θ?(π, U) when context is clear.

In the context of Bayesian inference, our problem

statement is as follows: having observed data D, find

the posterior distribution given by the following:

P(θ? | D) =

∫
PA(θ? | π, u)PD(π | D)πU (u) dπdu (4)

where PA(θ? | π, u) is the point-mass distribution con-

centrated at the projection (3). The posterior distribu-

tion

PD(π | D) ∝ L(π;D)P0(π) (5)

is defined given an appropriate likelihood function L(·;D)

and prior P0(·). The result is a posterior distribution

over parameters of interest in Θ, starting from a black-

box probability model π. Because A is defined here in

terms of optimizing a (distance) function between func-

tionals of π and a parameter space Θ, we call this in-

ference procedure a Bayesian projection.

2.1 Properties

Algorithm 1 shows a high-level description of the Bayesian

projections procedure. It can be interpreted as a model

decomposition, comprised of a black-box stochastic com-

ponent π (Step 1), and of a constrained optimization

problem defined by A and Θ (Steps 2-5). Bayesian pro-

jections are motivated mainly by scenarios where the

sampling procedure in Step 1 mixes well with a rela-

tively simple MCMC algorithm, while a direct MCMC

application to the constrained space implied by Θ shows

bad mixing behaviour. If A in Step 4 is reasonably fast

and easy to implement, this decomposition would be

preferable to the time invested either in designing com-

plicated proposals or using very expensive MCMC pro-

cedures in the constrained space.

Interpreting A as an optimization algorithm that

might converge to different local optima depending on

random factors U , it is clear that posterior (4) will

not converge to a single point even as the size of D
goes to infinite with the model being identifiable. This
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input : Data matrix D; prior P0(π); likelihood
function L(π;D); projection algorithm A(·);
distribution πU (·)

output: Samples θ?(1), . . . , θ?(M)

1 Use a sampling method to generate M (nearly)
independent samples from P(π | D) ∝ L(π;D)P0(π)

2 for m in 1, 2, . . . ,M do
3 Generate U ∼ πU (u)

4 θ?(m) ← A(π(m), U)

5 end

6 return θ?(1), . . . , θ?(M)

Algorithm 1: Outline of the Bayesian Projection

procedure.

just reflects the difficulty of the problem at hand. With

MCMC, this is manifested in the difficulty on exploring

multiple modes. Although MCMC can asymptotically

sample according to the desired target distribution, this

may also require an infinite amount of time. In real-

ity, one might want to restart the chain from multiple

points, and accept that the resulting distribution given

by any rule that merges the different outcomes is an al-

gorithm that marginalizes over random starting points.

That is, if we are solving hard problems, we have to ac-

cept that the best we can achieve is a distribution of so-

lutions that depends on the choice of πU . This optimiza-

tion view takes Bayesian inference to a more abstract

level – one involving a higher-level computational as-

pect – where πU represents our prior knowledge on the

distribution of reasonable random factors usable by A
to construct the projection. The form of the marginal-

ization in (4) encapsulates this fact. To otherwise claim

that a single chain achieves a guaranteed exploration

of all modes of the posterior in a reasonable amount of

time is to claim one is solving intractable problems in

a tractable manner [15].

2.2 Priors and Model Selection

If A provides a one-to-one mapping between π and θ?,

then there is an implicit Jacobian matrix for this map-

ping (with U playing no role in the solution found). In

this case, Algorithm 1 can be seen as a way of avoiding

an explicit form for the Jacobian. One disadvantage is

that the implicit prior on Θ is not obvious, and one has

to resort to simulations to understand how P0(·) trans-

lates into a prior in the Θ space1. We argue that any

serious application of Bayesian inference in non-trivial

problems should always start with simulations from the

1 In fact, this issue is endemic across the literature that
considers Bayesian adaptions of frequentist estimators which
depend on solving constrained optimization methods [13].

prior anyway, as priors on parameters are usually fac-

torized, and their joint effect on testable observable con-

ditions on the marginal distribution are hardly obvious.

In particular, it is desirable to set a prior so that

the data is allowed to distinguish among models of dif-

ferent structure: for instance, models having covariance

matrices represented by decompositions A + B, A be-

ing a low-rank matrix and B being a sparse matrix

[7]. The rank of A and the sparsity level of B are two

hard constraints. In our example used at the opening

of this Section, the number v of columns of L and D

would be such an index of complexity. One way of ap-

proaching this setup is by defining a set of projection

spaces {Θ[1], . . . , Θ[K]} over the different combinations

of rank and sparsity levels. The projection algorithm A
is applied elementwise to this set. Posed in a slightly

different way, the output of A is now a K-dimensional

vector. The question is how to decide on the appropriate

level of complexity by assessing how well each entry of

the output of A optimizes the target function. We call

the model index, MΘ ∈ {1, . . . ,K}, the corresponding

index of Θ[k] one has to choose.

A prior distribution on the model index should be

provided without affecting the decoupling introduced

by the Bayesian projections framework: we want all in-

ference for θ? to depend on D only through π. There-

fore, L(·;D) should not depend directly on MΘ. Loosely

following the spirit of [12], we rely on discrepancy mea-

sures between the predictive distribution P(π | D) and

features of the data generating process we would like

to represent. In our case, such features are the target

functionals defined by A at different model spaces Θ[k].

As an abuse of notation, let dk(θ, π, U) be the value

of the objective function at the point optimized by algo-

rithm A for a fixed (π, U). Let θ?[k] be the correspond-

ing projection onto Θ[k]. Random vector d is defined

as d ≡ (d1, d2, . . . , dK)T . We define a conditional prior

PM (MΘ = k | d, α), calibrated by some hyperparame-

ter vector α so that

θ? = θ?[MΘ] (6)

is our projection of choice. Figure 1 shows a graphical

model of the entire process. The algorithm in shown in

Algorithm 2.

The definition of PM (· |d, α) is problem dependent.

In our case study in Section 4, the model index space

is organized so that Θ[k] is nested within Θ[k+1]. Al-

gorithm A is defined so that the entries of d do not

increase with k. We define PM (· |d, α) in a way to trade-

off model complexity and the magnitude of the dk for

a fixed π.

Bayesian model selection is in general sensitive to

the choice of priors. The Bayesian projections frame-
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input : Data matrix D; prior P0(π); prior
PM (MΘ |d, α); likelihood function L(π;D);
projection algorithm A(·); distribution πU (·)

output: Samples θ?(1), . . . , θ?(M)

1 Use a sampling method to generate T (nearly)
independent samples from P(π | D) ∝ L(π;D)P0(π)
for i in 1, 2, . . . , T do

2 Generate U ∼ πU (u)
3 for k in 1, 2, . . . ,K do
4 θ?[k] ← Ak(π(i), U)
5 Calculate dk
6 end
7 Sample MΘ ∼ P(M | d, α)

8 θ?(i) ← θ?[MΘ]

9 end

10 return θ?(1), . . . , θ?(T )

Algorithm 2: Bayesian Projection procedure with

model selection, where Ak is the k-th entry of the

output vector generated by A.

*

π

D

M
θ

θ
*[k] θ

d

K

Fig. 1 The full directed acyclic graph representation of the
Bayesian projections framework. The box is a plate model
representation of a vector of random variables indexed as
1, 2, . . . ,K.

work copes with this sensitivity by funneling the deci-

sion process through a projection of interest, thus iso-

lating the contribution of the prior over model (hard)
constraints in a more explicit way. Forcing the sepa-

ration between π and Θ is not only a computational

device to alleviate mixing issues and parallelizing some

inferential stages, but also a different way of encoding

priors within a more emphasis on particular functionals

of interest.

3 Case study I: Probabilistic PCA

Our first example will serve as a simple illustration and

sanity check, as the likelihood function is easy to com-

pute, and mixing with off-the-shelf MCMC algorithms

is not a major issue. We consider the following proba-

bilistic modeling view of principal component analysis

(PCA) as a latent variable model [22]:

Z ∼ N (0, Ik×k)

Y | Z ∼ N (ZA, σ2Ip×p)
(7)

where Ik×k is a k dimensional identity matrix. The pa-

rameters of interest are A and σ2. This is a simple gen-

eralization of PCA, in the sense that the non-trivial

stationary points of the likelihood function (for a fixed

k) given by the marginal Y ∼ N (0, AAT + σ2Ip×p) are

A? = Vk(Λk − σ2?Iq)
1/2, σ2? =

1

p− k

p∑
j=k+1

λj ,

where the columns of Vk are given by eigenvectors asso-

ciated with the k largest eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk
of the covariance matrix Σ of Y. Such eigenvalues form

the diagonal matrix Λk.

The maximum likelihood estimator can then be ob-

tained in closed form by substituting Σ with its empir-

ical estimator. Alternatively one can interpret the neg-

ative log-likelihood function as the function minimized

by algorithm A,

dlik(π, {A, σ2}) = log |S(A, σ2)|+ Tr{S(A, σ2)Σ(π)−1},
(8)

with S(A, σ2) ≡ AAT+σ2Ip×p and Σ(π) the covariance

matrix of distribution function π. U plays no explicit

role here.

The standard Gibbs sampling procedure, augment-

ing the observed data with latent data Z, can be used

to infer posteriors over A and σ2. It does not, how-

ever, make any use the nice analytical properties of (8).

Consider instead the application of Algorithm 1 with

π being a zero-mean Gaussian with covariance matrix

Σ and P0(Σ) being the prior over correlation matrices

introduced by [2]. We compare this inference approach

against standard Bayesian inference with independent

standard Gaussian priors on each entry of A, an inverse-

gamma (2, 2) prior for σ2, and posterior samples gen-

erated by Gibbs sampling.

We generate 100 synthetic datasets by generating

a random matrix B of p × p independently standard

Gaussians, setting Σtrue = BBT and sampling 2, 000

data points from a Gaussian with zero mean and co-

variance matrix Σtrue. The data is normalized before

being given as input to the inference algorithms. We

transform each posterior sample from the two meth-

ods to correlation matrices, and compare them to the

ground truth correlation matrix.

We define the Frobenius error of a method as the

Frobenius distance between the true correlation matrix

and the posterior expected correlation matrix of the

method. The average Frobenius errors over the 100 tri-

als were 1.75 and 1.80 (standard deviations: 0.73, 0.08)

for Bayesian projections and the standard Bayesian method,

respectively. The KL divergence error is defined simi-

larly, as the KL divergence of a zero-mean Gaussian
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Fig. 2 Bayesian PCA: a run of the Bayesian projection algo-
rithm with likelihood distance against the standard Bayesian
inference procedure with Gibbs sampling. The parameter be-
ing plotted is σ2. Discrepancy between methods is small but
noticeable, due to the fact that implied priors are different.

model with the true correlation matrix with respect

to one with the estimated correlation matrix. In this

case, the errors were 9.71 and 9.93 (standard devia-

tions of 1.49, 1.48). The average computing time on

a Xeon E5-1650 at 3.20 Ghz was 0.26 and 1.50, re-

spectively, for Bayesian projections and the standard

Bayesian approach. For the projections, this include the

(non-trivial) overhead of sampling from the posterior

of π. It may be surprising that a Bayesian projection

can run faster than a standard Bayesian approach, but

in this case we thinned the samples from π from 1000

samples to 450 based on skipping samples to achieve an

average absolute one-step autocorrelation of less than

0.05. However, due to the linear cost in time complexity,

even if we ran the projection function over all samples

we would still achieve a non-trivial reduction in com-

puting time. As a matter of fact, we are being conser-

vative, as the average one-step autocorrelation over the

entries of each posterior correlation matrix was around

0.01 for the Bayesian projection output without any

thinning, and 0.20 for the standard Gibbs sampler, Fig-

ure 2 showing a visual example. On top of this, the loop

at the core of Algorithm 1 is amenable to embarrass-

ingly parallel implementations.

4 Case study II: Gaussian marginal

independence models

The work in [10] describes the statistical problem of

estimating sparse covariance matrices, where some en-

tries σij of a matrix Σ are not free parameters, but

structurally zero. In Gaussian distributions, this cor-

responds to a model of marginal independence, where

two variables {Yi, Yj} are independent if and only if

σij = 0. A graphical model to represent such a fam-

ily of constraints is described by [19], with the lack of

an edge between corresponding vertices {Yi, Yj} imply-

ing σij = 0, and a bi-directed edge Yi ↔ Yj indicating

that σij is unconstrained. A modification of the inverse

Wishart distribution is introduced by [21], and used

as a prior over p-dimensional sparse covariance matri-

ces that obey the constraints encoded by a bi-directed

graph G:

pGIW (Σ; δ,U,G) =
1

IG(δ,U)
|Σ|−(δ+2p)/2 exp

{
−1

2
tr({Σ}−1U)

}
,

Σ ∈M+(G),

(9)

with {δ,U} playing a role analogous to the hyperpa-

rameters of a inverse Wishart. M+(G) is the cone of

positive definite sparse matrices such that σij = 0 if

there is no corresponding bi-directed edge in G. There is

no analytical form for the normalizing constant IG(δ,U).

In [20], we introduce a Gibbs sampler for the graph-

ical structure G in the Gaussian case. [23] introduces a

new variation of the idea, where the graphical struc-

ture does not encode hard constraints: instead each

edge represents a mixture indicator, with the lack of

an edge representing a prior for σij strongly concen-

trated around zero, and the presence of an edge as in-

dicating a high variance prior. Although this prior puts

zero probability on σij = 0, it allows the mixture in-

dicators to be sampled independently within a Gibbs

sampling step, increasing its computational efficiency.

In our experiments, we used a modified version of our

Gibbs sampler [20], which allows for positive mass on

sparsity patterns2.

2 Please notice that [23] correctly indicates that the G-
inverse Wishart prior with a δ independent of G may concen-
trate mass around a diagonal matrix, as the dimensionality
p of the problem increases. However, the empirical problems
reported by [23], where the algorithm in [20] basically returns
empty graphs in problems of 150 variables and small sample
sizes, were unfortunately caused by a bug in our code: once
this was corrected, the standard G-inverse Wishart prior had
no issues in such problems. The point raised by [23] is still
valid, and our procedure from [20] uses a hyperparameter δ
that depends on G – given a baseline hyperparameter δ, we
change δ according to G by subtracting from it the minimum
number of non-adjacent nodes among all nodes in G. How-
ever, in the experiments described in this paper, this made
little difference. Moreover, we further add a small modifica-
tion to the Gibbs sampler of [20] that is more scalable than
the original version: unlike [20], which marginalizes a whole
row/column of Σ every time each edge Yi ↔ Yj is sampled,
we only marginalize σij .
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4.1 A Bayesian projection approach

More dramatic computational savings can be achieved

by a Bayesian projection approach. We start with a

prior P0 over positive definite matrices. For simplicity,

here we assume all matrices are correlation matrices

and given the prior described by [2]. Given a sample Σ

from a posterior over general correlation matrices, our

projection algorithm is simple: if k is the maximum al-

lowed number of edges in the bi-directed graph G, we

set to zero all off-diagonal entries of Σ that do not cor-

respond to the top-k covariance entries, measured in

terms of their absolute value. Notice this is equivalent

to finding the matrix minimizing the Frobenius distance

to Σ in the space of correlation matrices that have en-

tries either equal to zero or equal to (Σ)ij , with no

more than k non-zero entries above the diagonal. Since

the corresponding matrix may not be positive definite,

we apply yet another projection that finds the closest

positive semidefinite matrix to the sparsified matrix in

terms of the Frobenius distance. This amounts to set-

ting negative eigenvalues of its spectral decomposition

to zero.

This idea is similar to several frequentist estima-

tors for sparse covariance matrices which threshold the

empirical covariance matrix [5], the thresholding level

here being implied by the choice of k. Bayesian infer-

ence plays a role through the implicit prior on the sparse

matrices, as a function of P0. What is left is a method

to choose k, which has to be done in a non-standard

way.

Let θ?[k] be the resulting correlation matrix obtained

by sparsification at level k (followed by a projection

into the positive semidefinite matrix space, where neces-

sary), as a function of a givenΣ. Let dk ≡ Frob(θ?[k], Σ)

be the k-entry of the K dimensional score vector d,

where K is chosen a priori as the maximum number of

edges that G can have3. We define the “gradient” and

“curvature” vectors g and h as follows:

gk ≡ dk − dk+1, 1 ≤ k < K

hk ≡ gk − gk+1, 1 ≤ k < K − 1
(10)

Our model index MΘ is deterministically chosen as

MΘ = mink∈1,2,...,K k,

subject to |hk| ≤ α×
∑Q
q=1 |hK−q−1|/Q

(11)

where α ≥ 0 and Q ≥ 1 are hyperparameters. Notice

this rule cannot select k = K − 1 nor k = K. Since

K influences the thresholding of the model, it is also a

hyperparameter for model selection.

3 Because of the positive definite projection, d is not nec-
essarily monotonically decreasing in its entries, although in
practice it will be approximately so.

The interpretation of this procedure is as follows,

considering first the ideal situation where Σ is the pop-

ulation correlation matrix: as constraints on Θ[k] are

relaxed as k increases, the greedy nature of the projec-

tion will make gk approach zero for increasing levels of

k. The point where gk = 0 for the first time will be the

point where the least complex model fits Σ perfectly.

In practice, Σ is a sample from a distribution over

correlation matrices, and gk will never plateau at zero

before reaching maximum complexity. However, when

we reach the stage where gk remains approximately the

same as k increases to K, we reach a regime where

the order by which edges becomes unimportant. We

assume that, by this point in the algorithm, the pos-

terior distribution over these entries is approximately

exchangeable and reflects the structurally zero entries.

This regime can be detected by h, the second-order dif-

ferences of the distance vector. The average of the final

Q entries of the curvature vector provides a scale for

the flat regime4.

If the black-box distribution is given by P0, we gen-

erate samples of G from the prior. If this distribution

is P(Σ | D), we generate samples from the posterior.

In principle, hyperpriors for α,Q and K could also be

adopted, although we will not explore this idea here.

In our experiments in the next section, we illustrate

the behaviour of this model selection procedure in prac-

tice. To emphasize again, our goal is not to improve on

the Gibbs procedure regarding its statistical properties,

but to show we are competitive using less computation.

4.2 Results

We generate 30 × 30 synthetic bi-directed graphs with

corresponding sparse correlation matrices5. Three sam-

4 Other straightforward criteria can be added to this
scheme, such as requiring that dk falls below a minimum ac-
ceptable error level. Although this selection rule is loosely
inspired by the posterior predictive checks of [12], notice that
here we apply this check to each sample of the distribution
of Σ instead of samples from the data space.
5 First, a synthetic graph G is generated by adding each

edge independently with probability 0.05. Observed variables
Y are generated according to the model Y = BX+ e, where
X is a set of independent standard Gaussian variables. Latent
variables X are introduced such that for each pair {Yi, Yj}
linked by a bi-directed edge, we create a latent variable Xk,
sampling the sign of (B)ik uniformly, and the magnitude of
(B)ik from a truncated Gaussian in the positive axis with
location parameter 0.25 and variance parameter 1. The same
applies to (B)jk. The entries of B not corresponding to this
process are set to zero. Error vector e is jointly Gaussian
with zero mean, and the off-diagonal entries of its covariance
given by BBT /10 (elements in the diagonal are set to 1).
The corresponding covariance matrix is then rescaled into a
correlation matrix
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ple sizes are chosen: 100 data points, 1000 and 10000.

For each sample size configuration, 100 synthetic data

sets are generated. We apply Algorithm 2 to generate

posteriors over sparse matrices, with details given in

the previous section. For each run, data are standard-

ized according to the empirical covariance matrix and

mean. Prior P0 over full correlation matrices is the one

discussed by [2]. For the Gibbs sampling procedure, we

used a G-inverse Wishart prior over covariance matrices

with parameters δ = 3,U = 3Ip×p and a prior proba-

bility 1/30 of an edge being independently added.

Our evaluation metrics, besides wallclock time, are:

false positive rate (FPR) (number of edges included by

a procedure that is not in the true synthetic graph, di-

vided by the total number of pairs which are not linked

in the true graph); false negative rate (FNR) (number

of true edges not detected by the procedure, divided

by the total number of true edges); absolute false nega-

tives (AFN) (number of true edges not detected by the

procedure); and Frobenius distance (FROB) between

the implied correlation matrix given by a model and

the known synthetic correlation matrix. As baselines,

we calculate the FROB measure for the identity ma-

trix Ip×p and for the full correlation matrix models be-

fore any projection. Each metric is computed for each

sample generated, where we then average over the sam-

ples. We sampled 5000 samples from the posterior of

the full model and 5000 samples with the Gibbs sam-

pling based sparse modeling approach, with a burn-in

of 1000 steps. We set a maximum of K = 3 × 30 = 90

edges for the Bayesian projections method. A inflating

factor α = 1 and a tail smoothing factor Q = 1 are

adopted for model selection.

In the case of synthetic datasets with a sample size

of 100, the average run-time for the Gibbs procedure

was 117 seconds (standard deviation of 3), with 3.6 sec-

onds for Algorithm 2 (s.d. 0.14), out of which about 60%

was due to the initial sampling procedure. The FROB

error was 0.89(0.20) for Gibbs and 1.87(0.12) for Al-

gorithm 2. In comparison, the identity matrix model

has a FROB metric of 3.19, while the full correlation

matrix does worse than that, at 4.27. FPR is 0.01 for

Gibbs and 0.03 for Bayesian projections, with a FNR

of 0.26(0.12) for Gibbs and 0.47(0.12) for Bayesian pro-

jections. The absolute metrics, AFN, are 6.1(3.6) and

10.9(4.6), respectively.

At a sample size of 1000, the Gibbs procedure effec-

tively gets zero FPR, with a FNR of 0.05(0.04), while

Bayesian projections gets 0.03 FPR, but with a FNR of

0.13(0.06). The FROB errors are 0.22(0.05) and 0.62(0.05)

for Gibbs and Bayesian projections. For comparison,

the full correlation matrix models achieves 1.31(0.03),

now substantially better than the fully independent model.

AFN for Bayesian projections was 3.4 edges, as opposed

to 1.07 of the standard Gibbs. The runtime for both

methods remain comparable to the previous case. Fi-

nally, at a sample of of 10000 both methods achieve

near-zero FNR, with Bayesian projections still getting

0.03 FPR. In the FROB metric, results are 0.06(0.01)

and 0.19(0.02) for Gibbs and Bayesian projections, re-

spectively. The full correlation model obtains an aver-

age FROB of 0.41.

Figures 3 and 4 provide some illustration of the be-

havior of Bayesian projections. In Figures 3, our implied

prior over model structures provides more diffuse pos-

teriors than the one adopted by the more traditional

Bayesian approach introduced by [20]. Both posteriors

still centered close to the right model for data sets of

size 10000, but Bayesian projections does still have a

somewhat broad posterior, which in some sense reflects

the greater insensitivity of the Frobenius norm com-

pared to the likelihood function of the Gibbs proce-

dure. In Figure 4, our curvature-based model selection

criterion can be visualized by posterior simulations: es-

sentially, it slices the curve at the leftmost point where

“most” of its mass is around the final entries of the

curvature vector. Although we do not provide any for-

mal proofs of consistency, it is clear that as sample size

increases, the curvature vector will become flat with

high posterior probability at the point where adding

more complexity to the model does not decrease the

projection error. In the case where the projection al-

gorithm is guaranteed to generate the correct popu-

lation sparse covariance matrix given the population

matrix, the curvature vector will remain at zero start-

ing from the correct model complexity until the end.

Consistency still requires the assumption that the rate

by which the projection error improves, before reach-

ing the right complexity, will have enough variability so

that the model selection criterion will not prematurely

stop at a different plateau of the curvature vector – but

notice that such a plateau cannot exist in the greedy

procedure adopted here. Also, the choice of α for guar-

anteeing a particular rate of convergence will depend

on assumptions on the minimum error decrease before

reaching the right complexity, which we also leave for

future work. For instance, if the true matrix is very

dense, this will lead to situations where rate of change

of the gradient vector is overall very small. The choice

of α should reflect this knowledge.

5 Case study III: Partition-and-Patch models

In social sciences, latent variable models are commonly

used to represent hidden traits of a population [3]. Sim-

ple models that explain observed data such as the pat-
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Fig. 3 Synthetic studies with Gaussian marginal independence models: the posterior distribution on the number of edges
of the corresponding graphical model for a synthetic study based on a sample size of 100 data points. The left figure is the
one obtained by traditional Bayesian modeling with Gibbs sampling, the right one the result of applying model selection by
Bayesian projections.
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Fig. 4 Posterior distributions over the 90-dimensional curvature vector h from our synthetic case study. The left figure is an
example from a synthetic study with a sample size of 100; in the right figure, the observed data has 10000 data points. The
red dotted vertical bar indicates the true number of edges in the synthetic model; the black dashed vertical bar, the mode of
the model selection posterior distribution, as defined by Equation (11). The two bars overlap in the rightmost figure.

tern of responses in questionnaires are particularly of

interest.

One simple model applicable to this task is the vari-

able clustering method of [17]: each observed variable

is a rescaling of one latent variable with added noise,

Y ?i = λiZ[i] + εi, (12)

with i = 1, 2, . . . , p and Z[i] ∈ {Z1, Z2, Z3, . . . }, a count-

ably infinite set of marginally independent latent stan-

dard Gaussians. Priors over {λ1, . . . , λp} and the vari-

ances of the error terms {εi} are provided, as well as a

nonparametric combinatorial prior for the assignment

indices {[i]}. While this model is simple to interpret, it

will typically underfit the data as the covariance matrix

of the observations is always block-diagonal.

In this section, we introduce a different compromise:

starting with the unstructured ordinal model (1), we

postulate variables Y? are clustered as in (12), each

linked to a single element from a finite pool of latent

variables Z ∼ N (0, ΣZ). Matrix ΣZ is a full correlation

matrix of fixed dimensionality d. We denote as Ci ∈
{1, 2, . . . , d} the assignment of Y ?i to a particular latent

variable, that is, Z[i] = ZCi . The covariance matrix Σε
of the error terms is not diagonal, but a sparse covari-

ance matrix as in Section 4. The inference problem is to

generate posteriors over {{λi}, {Ci}, ΣZ , Σε} given the
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observed ordinal data Y1:n ≡ {Y(1), . . . ,Y(n)}. This

model space can represent any covariance matrix for

Y?, avoiding the main reason for underfitting in [17].

Because the model is defined by partitioning the ob-

served variables and matching residual covariances with

a sparse error term covariance matrix, we call this the

“partition-and-patch” model.

5.1 The Gibbs sampler

One inference procedure is to use independent Gaus-

sian priors on each λi, an uniform prior for each Ci,

the correlation matrix prior [2] for ΣZ , a prior over bi-

directed structures G representing the sparsity pattern

of Σε, and a G-inverse Wishart prior for Σε given G.

Gibbs sampling can then be performed, sampling G and

Σε given latent data Z1:n and remaining parameters by

a direct application of the Gibbs sampling algorithm of

Section 4. Ci and λi can be sampled by first analytically

marginalizing λi, sampling Ci from its conditional dis-

tribution, then sampling λi. Latent data Y? is sampled

using standard truncated Gaussian samplers.

A major difficulty is poor mixing. This is partially

explained by identifiability issues. Even if the true model

is identifiable, sampled candidate models might not be.

Parameter identification conditions for the case where

ΣZ is a diagonal matrix are provided by [14], although

they would need to be adapted for the case where ΣZ is

arbitrary and the structure unknown. Also, restricting

the sampler to generate only identifiable models would

complicate it considerably: for instance, changing one

Ci at a time is problematic if we forbid any cluster from

having a single element only (a unidentifiable struc-

ture).

5.2 A Bayesian projection solution

Bayesian projections provide a much more straightfor-

ward approach that can tap on existing results com-

monly associated with frequentist estimation. The Ro-

bust PCA approach of [7] provides conditions in which

a matrix Σ can be separated into a low rank component

A and a sparse component B so that Σ = A+B. A and

B are found as the solution of a optimization problem

with a free parameter ω

d(Σ,A,B) = ||A||? + ω||B||1 (13)

which is minimized subject to A+B = Σ; here || · ||1 is

the L1 norm and || · ||? is the nuclear norm [24]. Notice

that the definition of the decomposition and the result-

ing optimization problem are independent of any sta-

tistical estimation procedure. Providing the algorithm

with samples from the posterior distribution of Σ as

given by model (1) and data Y1:n will generate poste-

rior distributions of matrices A and B for a fixed ω.

The partition-and-patch model can be written so

that for Y? ∼ N (0, Σ) we have Σ = ΛΣXΛ
T + Σε,

where (Λ)ij ≡ λi if Ci = j, and 0 otherwise. Under

the assumption that penalization ω is set such that

A = ΛΣXΛ
T , we can in principle identify Λ and ΣX .

An extra assumption (besides non-degenerate ΣX) is

that all entries of Σ above the diagonal are different

in magnitude and each non-empty variable cluster has

at least 2 elements. First, since λ2i = (A)ii, we can

cluster Yi and Yj as linear functions of the same Z if

|(A)ij | = |λiλj |, as by assumption this will only be true

if Yi and Yj are indeed in the same cluster. The signs

of the coefficients are then set arbitrarily by fixing one

coefficient per cluster to be positive and setting the re-

maining ones according to the sign of the corresponding

entries of the clusters. Finally, each entry (ΣX)kl can

be identified by finding some pair (i, j) where Ci = k,

Cj = l, since (A)ij = λiλj(ΣX)kl. Latent variables cor-

responding to empty clusters can just be ignored.

In practice, given some estimate of Σ (in our case, a

sample from a saturated posterior), we can extract from

it several candidate low rank matrices Aω by solving for

A via minimization of (13), under a variety of different

levels of ω. Once we have a set {Aω}, we choose ω as

ω? = arg min
ω
{min
Λ,ΣX

Frob(Aω, ΛΣXΛ
T )},

where the inner optimization could be solved by a va-

riety of methods, including variants of a method of
moments procedure. However, in our initial tests, the

method of moments variants were not particularly ro-

bust to either small sample sizes or small deviations

from a proper choice of ω. Instead, we use a iterative

coordinate ascent method with a given initialization,

which is shown as Algorithm 4 in the Appendix.

The “patching” stage of the procedure can be solved

by the method in Section 4, as in synthetic studies we

found the method from [24] unable to reliably provide a

matrix B with a reasonable match to the sparsity pat-

tern of the true matrix. Moreover, if the goal is only

to find a variable clustering, the bi-directed component

can be considered as a nuisance parameter and as such

this step is completely ignored. This itself can be seen

as an advantage over the standard Bayesian procedure,

which is required to sample sparse error covariance ma-

trices even if they are nuisance parameters.

Algorithm 3 describes the mapping procedure A
used by Bayesian projections for Partition-and-Patch

models.
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input : Matrix Σ; maximum number of latent
variables d; initial clustering assignment
C1, . . . , Cp; set Ω of candidate penalization
factors ω; maximum number K of bi-directed
edges

output: A decomposition {{λi}, {Ci}, ΣX , Σε,G} of
input matrix Σ

1 for ω in Ω do
2 Find A and B solving (13) using the proximal

gradient method of [24]
3 Find {{λi}, {Ci}, ΣX} from A using Algorithm 4

4 Let S ← Frob(A,ΛΣXΛT )
5 if S is the smallest error so far then
6 Let {{λ?i }, {C?i }, Σ?X} ← {{λi}, {Ci}, ΣX}
7 end

8 end
9 Let {Σ?ε ,G?} be the K models of marginal

independence for Σ − Λ?Σ?XΛT? obtained by greedy
search

10 return {{λ?i }, {C?i }, Σ?X , Σ?ε ,G?}

Algorithm 3: Given a matrix Σ, generate a de-

composition {{λi}, {Ci}, ΣX Σε,G} corresponding to

a partition of the variables followed by constructing a

sparse correlation matrix of error terms.

5.3 Synthetic experiments

To show the difficulties with the standard Gibbs sam-

pler discussed in Section 5.1, consider the following syn-

thetic study. We generate synthetic models with 10 la-

tent variables and three variables per cluster, and 5

ordinal levels for each observed variable (a total of 30

observed variables)6.

We generate 100 synthetic examples with 2000 data

points. We assume we know there are 10 latent variables

in the model. We evaluate how well Gibbs sampling per-
form in terms of parent reconstruction and the Frobe-

nius error in the reconstruction of ΛΣXΛ
T . Parent re-

construction is calculated by matching each C
(m)
i to

the ground truth 1, 2, . . . , 10 at each iteration m of the

MCMC method, and counting how many of the assign-

ments are incorrect7. Figure 5 (b) illustrates the behav-

ior of the Gibbs sampler, where columns are aligned ac-

6 Coefficients λi were generated by sampling its sign uni-
formly and its magnitude from a truncated Gaussian in the
positive axis with location parameter 0.25 and variance pa-
rameter 1. Correlation matrix ΣX was sampled by rescaling
an inverse Wishart (10, 10I). Σε and G were sampled using
the same scheme as in 4.2. Vector {λi} and Σε are re-scaled
such that λ2

i + (Σε)ii = 1 for all i. Marginal probabilities for
each Yi are generated by generating 5 uniform (0, 1) variables,
adding 0.01 to each, and renormalizing them. Thresholds {τ ik}
are then set accordingly.
7 Matching is performed by creating a bipartite graph be-

tween latent variables {Z(m)
i } in the candidate sample and

the ground truth {Zi}, where an edge Z
(m)
i − Zj is given as

a weight the number of common observed variables assigned
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Fig. 5 A demonstration of the posterior cluster assignment
for each observed variable. True model is shown in (a). Each
figure represents a probability of cluster assignment of 30 vari-
ables (vertical axis) to 10 clusters (horizontal axis), with black
representing a probability of 0, and white a probability of 1.
after 5000 iterations (burn-in of 1000) for the Gibbs sampling
algorithm (b) and Bayesian projections (c) (approximately
200 samples after thinning 1000 samples from the saturated
model).

cording to the matched clusters. Figure 5 (c) illustrates

a typical output for the Bayesian projections proce-

dure, which starts with 1000 samples from the saturated

model, and thin them to approximately 200-300 sam-

ples by skipping samples until achieving no more than

0.05 units of autocorrelation in the individual entries

of Σ. Space Ω is defined to be {0.1, 0.2, 0.3, . . . , 0.9}.
In principle, a parallel implementation can be used to

select ω in Algorithm 3. However, as the model imposes

strong constraints on A, we observed such a small vari-

ability in ω that we recommend finding it “off-line”:

we estimate it once by running Algorithm 3 with the

posterior expected value of Σ as given by the saturated

model, and fix it when generating projections individ-

ually for each posterior sample of Σ.

The average computing time for the full MCMC pro-

cedure was 540 seconds, with 97 seconds for Bayesian

projections (which includes the initial sampling from

the saturated model and the choice of ω), where we did

not include a bi-directed structured learning step (the

cost of which is negligible compared to the other steps

anyway). The average clustering error for the Gibbs

sampler was 0.47, with only 0.07 for Bayesian projec-

tions. Both methods were initialized by running k-means

with the raw ordinal data transposed, so variables are

clustered based on their responses (correlation distance

and k = 10 were chosen). The average clustering er-

ror for k-means was 0.38, therefore better than 5000

iterations of Gibbs sampling. Also, Gibbs achieved a

Frobenius error of 0.11 between the true A and the es-

timated ΛΣXΛ
X , while Bayesian projections achieved

0.03. It should also be mentioned that if we start the

Gibbs algorithm with the solution for Bayesian projec-

to Z
(m)
i and the number assigned to Zj in the true model.

The resulting matching is given by the Hungarian algorithm.
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tions (which can be done using only the posterior ex-

pected value of the saturated Σ), then Gibbs performed

far better compared to the k-means initialization: it ob-

tains the best clustering error of 0.05 and a Frobenius

error of 0.02. However, the computational cost was of

138 seconds per trial for 1000 highly correlated samples

(with an effective sample size no greater than the one

obtained by Bayesian projections), and without taking

into account the initialization costs. Therefore, even

without exploiting any of the natural parallelization

of Bayesian projections, we obtain comparable perfor-

mance to a well-initialized Gibbs procedure at a lower

computational cost. Also, from the synthetic examples,

it is not clear whether the well-initialized Gibbs pro-

cedure is exploring the posterior in a sensible way. We

will show some evidence to the contrary in the next

sections.

5.4 Green consumer data example

Our first real data example is a survey of 330 university

students in Greece. The study measures factors that

regulate willingness to pay a premium for environmen-

tally friendly (“green”) products [3]. This will illustrate

the behavior of our procedure with a relatively small

sample size and dimensionality.

Each item in the questionnaire asks for an ordinal

level of agreement with a different statement, four of

which are exemplified below:

1. Batteries cause severe soil pollution.

2. I prefer to buy products in recyclable packaging.

3. I try to cut down on electrical consumption in my

household.

4. I am willing to spend an extra 10 euro a week in

order to buy less environmentally harmful products.

Items are a 5-point Likert scale response from weakly

disagreement to strong agreement. The first question

can be interpreted as measuring a level of awareness

linking consumerism and pollution; the second ques-

tion, an item on purchasing alternative products if they

have some “green” properties; the third question, on

consumption reduction aiming at sustainability; finally,

the fourth question more explicitly addresses willing-

ness to spend more in environmentally friendly prod-

ucts. Using the structure of the questionnaire, each of

these four types would theoretically describe four clus-

ters of questions, respectively AWARENESS (7 ques-

tions), PURCHASE (5 questions), CONSUMPTION (4

questions), WILLINGNESS (2 questions)8, 18 variables

in total.

8 We ignore here a non-ordinal count of products student
recycle.

Figure 6 summarizes our findings regarding vari-

able clustering, given as input the existence of 4 la-

tent variables to be explained by dependent shared fac-

tors. Figure 6(a) is a depiction of the grouping of the

variables according the theoretical constructs described

above, although in principle the WILLINGNESS clus-

ter should not be identifiable from data alone as it con-

tains only 2 elements. Three different runs of the Gibbs

sampler are shown in Figures (b)-(d), with some agree-

ments and disagreements with the theoretical cluster-

ings, but with a large variability at 5000 iterations. No-

tice that Figure (b) reflects the fact that the AWARE-

NESS clustering is sometimes split into two for that

run. Figure (e) shows the result for Bayesian projec-

tions, where the main difference with respect to the

theory is that PURCHASE and WILLIGNESS are hard

to separate. This is not too unacceptable as one exam-

ines the corresponding questions in detail. In particular,

the point estimator obtained by associating with each

question its most common cluster gives as the smallest

cluster the following two items:

– I switch products for ecological reasons. (a theoret-

ical PURCHASE variable)

– I would pay 10% more for groceries that are pro-

cessed and packaged in an environmentally friendly

way. (a theoretical WILLINGNESS variable)

Finally, there remains a considerable amount of un-

certainty on the parameters, justifying the generation

of a fully Bayesian posterior, as shown in Figure 7. The

lack of evident autocorrelation in this plot is the re-

sult of these being generated by thinning the posterior

samples of the saturated model, as there is no point in

consuming further computing time to generate projec-

tions on correlated samples. In total, Gibbs sampling

consumed 150 seconds, while the saturated sampling

consumed 50 seconds. Given the saturated samples, the

optimizer consumer another 47 seconds. Effective sam-

ple sizes for the {λi} parameters for the first run of

Gibbs and Bayesian projections are depicted in Figure

8.

5.5 NHS survey data

The NHS, National Health System, is the public health

system of the United Kingdom. The 2009 National NHS

Survey [8] collected questionnaires from 156,951 staff

members nationwide, asking questions on different as-

pects of job satisfaction and professional development.

We selected 100 questions of the questionnaire9. This

9 The criteria were: questions should either be binary or
ordinal, with no “I don’t know” items; questions should be
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Fig. 6 The theoretical clustering of the green consumer data is shown in (a). Figures (b), (c) and (d) are different runs of
the Gibbs sampler with the same initial cluster structure (but different initial parameters) after 5000 iterations. Figure (e) is
the outcome of 1000 iterations of Bayesian projections, using a thinned sample of correlation matrices obtained from a run of
5000 iterations of the saturated model.
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Fig. 7 Evolution of the 18 λi coefficients for Bayesian pro-
jections.
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Fig. 8 Effective sample sizes for the 18 coefficients, red bars
are results for Bayesian projections while blue are the results
for the Gibbs sampler.

lead to a mix of binary and ordinal variables, with ordi-

nal variables framed in a 5-point Likert scale (varying

from “Strongly disagree” to ”Strongly agree”). We se-

lected a subsample of 100,000 respondents drawn ran-

domly from the population as a training set. Questions

are grouped into subsections in the questionnaire, from

which we made the choice of fixing the number of latent

variables to 20.

aimed at all employees and should not lead to follow-up ques-
tions such that only a subset of staff are asked to respond;
questions should not have more than 50% of missing data.

Our implementation takes an average of 13 seconds

to perform a projection using Algorithm 3 (again, se-

lecting first a single value for ω based on the posterior

expected value of Σ in the black-box model and not

including the bi-directed selection at this stage), which

is approximately 4 times the amount of time taken by a

Gibbs step (3.3 seconds) – in both cases, we are not tak-

ing into account the time taken to sample the 1, 000, 000

underlying variables Y? using a truncated Gaussian

sampler, which takes around 4.5 seconds in our näıve

implementation. Unlike the Gibbs sampler, though, we

once again emphasize that Bayesian projections is easily

parallelizable once samples from the black-box model

are provided. Moreover, even though a single Gibbs it-

eration is cheaper, autocorrelation only gets worse as

the dimensionality of the problem increases, and the

4-fold speed-up advantage over a Bayesian projection

step disappears once effective sample sizes are consid-

ered. More importantly, the exploration of the poste-

rior is poor with Gibbs given the combinatorial nature

of the partition-and-patch model. As a matter of fact,

in a single trial of 1000 iterations, we noticed that the

Gibbs sampler, initialized with the output of Bayesian

projections given the posterior mean saturated correla-

tion matrix, does not move at all away from the initial

structure. The resulting clustering structure inferred by

Bayesian projections is shown in Figure 9.

To assess how the bi-directed structure selection

works in this case, we perform model selection using

Step 9 of Algorithm 3. We perform the model selection

procedure for bi-directed structure for K ≤ 300 (three

times the number of observed variables, 100). We set

the tail smoothing factor as Q = 10. To decide on the

prior distribution hyperparameter α, we generate sam-

ples from the implied prior for α = 0.5 and α = 0.1. We

visualize the results in Figure 10 and choose α = 0.1 as

a better choice in our context, as α = 0.5 is too sparse

according to our expectations.
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Fig. 9 (a) Theoretical variable clustering structure, as given
by the structure of the 2009 NHS questionnaire. (b) Posterior
expected clustering assignment given by the Bayesian projec-
tions algorithm.
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Fig. 10 Samples from the prior over bi-directed graphs im-
plied by generating from Algorithm 2 for a 100-dimensional
problem, with tail smoothing factor Q = 10 and K = 300.
The top graph was generated using α = 0.1, and the bottom
one using α = 0.5.

The corresponding curvature plot resulting from our

model selection procedure is show in in Figure 11. Fi-

nally, to test how adequate this bi-directed structure

is, we partially asses its fit by comparing the implied

bivariate marginals of the model against the test set

constructed from the ∼ 50, 000 data points not used to

fit the model. Defining θklij ≡ Pθ(Yi = k, Yj = l) for

some model θ, and p̂klij as the corresponding bivariate

empirical distribution of the test set, we calculate the

χ2 distance,

χ2
ijkl(θ, p̂) =

(p̂klij − θklij )2

p̂klij
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Fig. 11 The curvature plot of the bi-directed model selection
procedure for the NHS dataset, and the corresponding pos-
terior expected bi-directed structure. The posterior expected
number of edges is 79.

The average χ2
ijkl(θ, p̂) for our model, using its poste-

rior expected value as a point estimate, was 0.0386. The

same result (four digits of precision) was obtained us-

ing a fully connected bi-directed graph, implying the

amount of information lost by enforcing sparsity is not

detectable in this pairwise sense. At the other extreme,

using the same estimated clustering and an empty bi-
directed graph gives a χ2 measure of 0.0395. The Gibbs

procedure, fixing the clustering structure to be the the-

oretical clustering while learning the bi-directed struc-

ture, gives a χ2 error of 0.0406.

6 Related Work and Conclusion

Indirect likelihood (IL) [11,9] is an alternative approx-

imate inference framework for cases where the likeli-

hood function is hard to compute but easy to sample

from. Here, the prior of the parameters is explicit and

used in the generative model to sample an intermedi-

ate parameter vector, which can also be in the form

of data simulated from the intractable likelihood. IL

draws a conceptual decomposition reciprocal to that of

Bayesian projections, in the sense that it circumvents

the intractable likelihood by isolating the choice of aux-

iliary likelihood parameters and the mapping from the

original to the auxiliary parameters [18].



14 Ricardo Silva, Alfredo Kalaitzis

In the so called parametric variants of IL, this map-

ping is defined via an optimization problem (e.g. maxi-

mizing an auxiliary likelihood) as an intermediate step

to sampling from the target posterior. ABC can be seen

as the reduction of IL where the intermediate parame-

ter vector consists of simulated data, and the suitabil-

ity of each sample depends on its proximity to the ob-

served data. That said, Bayesian projections and IL are

complementary approaches: in a doubly-intractable sce-

nario where both the likelihood is hard to compute, and

sampling from the constrained posterior is challenging,

Bayesian projections and IL can be used in unison. We

aim to explore this direction in future work.

Bayesian inference via projections is a simple idea

that immediately taps in the work developed on opti-

mization methods for frequentist inference. There are

open questions on the consistency of the correspond-

ing model selection procedure, including for example

potential problems that might affect the method when

the number of data points is substantially smaller than

the dimensionality of the problem.

Bayesian projections are not meant to be a sub-

stitute for other approaches for intractable likelihood

problems, as it is not obvious at this stage how it would

deal with the variety of problems tackled (in principle)

by methods such as ABC. In the same way, strongly

informative priors for more complicated models might

be harder to encode in the Bayesian projections for-

mulation (although the projection algorithm itself can

be defined to incorporate prior information). We only

claim we are offering an alternative that might be eas-

ily suitable in some scenarios: here, we chose to fo-

cus on structured covariance problems within a Gaus-
sian/probit model, but the framework is much more

general than that. Although we chose to base our in-

ferences on saturated models, there is nothing in the

framework against dealing with some constraints within

the MCMC method, leaving the remaining constraints

to be dealt with by the projection step. Also, the func-

tionals used by our projection method were covariance

matrices in the black-box model: in other cases, such

functionals might need to be computed by a Monte

Carlo approach, simulating data from the model. The

link to pseudo-marginal approaches is somewhat closer

in this case, although the analysis of Bayesian pro-

jections might be simpler and there is no subsequent

MCMC step where such simulations will play a role.

Finally, in some problems, the computational cost of a

projection step might not be worthwhile if there is al-

ready a powerful MCMC method that is both efficient

per iteration and of low autocorrelation. For problems

with both continuous and discrete random variables,

such as those studied in this paper, this might be a

challenge, and Bayesian projections provide a simple

template that might be immediately applicable to the

problem at hand.

Acknowledgements We thank Irini Moustaki for the green
consumer data.

References

1. Andrieu, C., Roberts, G.: The pseudo-marginal approach
for efficient Monte Carlo computations. The Annals of
Statistics 37, 697–725 (2009)

2. Barnard, J., McCulloch, R., Meng, X.: Modeling covari-
ance matrices in terms of standard deviations and corre-
lations, with application to shrinkage. Statistica Sinica
10, 1281–1311 (2000)

3. Bartholomew, D., Steele, F., Moustaki, I., Galbraith, J.:
Analysis of Multivariate Social Science Data, 2nd edition.
Chapman & Hall (2008)

4. Beaumont, M., Zhang, W., Balding, D.: Approximate
Bayesian computation in population genetics. Genetics
162, 2025–2035 (2002)

5. Bickel, P., Levina, E.: Covariance regularization by
thresholding. Annals of Statistics 36, 2577–2604 (2008)

6. Bissiri, P., Holmes, C., Walker, S.: A general framework
for updating belief distributions. arXiv:1306.6430 (2013)

7. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal
component analysis? Journal of the ACM 58(3) (2011)

8. Commission, C.Q., University, A.: Aston Business
School, National Health Service National Staff Sur-
vey, 2009 [computer file]. Colchester, Essex: UK
Data Archive [distributor], October 2010. Available at
https://www.esds.ac.uk, SN: 6570 (2010)

9. Drovandi, C.C., Pettitt, A.N., Lee, A.: Bayesian indirect
inference using a parametric auxiliary model. Statistical
Science (2014)

10. Drton, M., Richardson, T.: A new algorithm for max-
imum likelihood estimation in Gaussian models for
marginal independence. Proceedings of the 19th Con-
ference on Uncertainty in Artificial Intelligence (2003)

11. Gallant, A.R., McCulloch, R.E.: On the determination of
general scientific models with application to asset pric-
ing. Journal of the American Statistical Association
104(485), 117–131 (2009)

12. Gelman, A., Meng, X., Stern, H.: Posterior predictive as-
sessment of model fitness via realized discrepancies. Sta-
tistica Sinica 6, 733–807 (1996)

13. Gribonval, R., Machart, P.: Reconciling “priors” & “pri-
ors” without prejudice? Advances in Neural Information
Processing Systems 26 pp. 2193–2201 (2013)

14. Grzebyk, M., Wild, P., Chouaniere, D.: On identifica-
tion of multi-factor models with correlated residuals.
Biometrika 91, 141–151 (2004)

15. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo
method: an approach to approximate counting and inte-
gration. In: D.S. Hochbaum (ed.) Approximation Algo-
rithms for NP-hard Problems, pp. 482–520. PWS Pub-
lishing Company (1996)

16. Neal, R.: Probabilistic inference using Markov chain
monte carlo methods. Technical Report CRG-TR-93-1,
Dept. of Computer Science, University of Toronto (1993)

17. Palla, K., Knowles, D.A., Ghahramani, Z.: A nonpara-
metric variable clustering model. Advances in Neural
Information Processing Systems 25, 2987–2995 (2012)



Bayesian inference via projections 15

18. Reeves, R., Pettitt, A.: A theoretical framework for ap-
proximate bayesian computation. 20th International
Workshop on Statistical Modelling pp. 393–396 (2005)

19. Richardson, T., Spirtes, P.: Ancestral graph Markov
models. Annals of Statistics 30, 962–1030 (2002)

20. Silva, R.: A MCMC approach for learning the structure
of Gaussian acyclic directed mixed graphs. In: P. Giudici,
S. Ingrassia, M. Vichi (eds.) Statistical Models for Data
Analysis, pp. 343–352. Springer (2013)

21. Silva, R., Ghahramani, Z.: The hidden life of latent vari-
ables: Bayesian learning with mixed graph models. Jour-
nal of Machine Learning Research 10, 1187–1238 (2009)

22. Tipping, M., Bishop, C.: Probabilistic principal compo-
nent analysis. Journal of the Royal Statistical Society:
Series B 61(3), 611–622 (1999)

23. Wang, H.: Scaling it up: Stochastic search structure
learning in graphical models. Bayesian Analysis (To ap-
pear)

24. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Ro-
bust principal component analysis: Exact recovery of cor-
rupted low-rank matrices via convex optimization. Ad-
vances in Neural Information Processing Systems 22 pp.
2080–2088 (2009)

25. Yin, G.: Bayesian generalized method of moments.
Bayesian Analysis 4, 191–207 (2009)

A Algorithm for clustering variables in a

partition-and-patch model

The algorithm below has three main stages. The first main
stage adjusts the cluster assigment and parameters by chang-
ing one cluster assignment at a time. The second stage merges
clusters with a single element with some other cluster, keep-
ing records of past assignments so that the algorithm does
not get stuck in an infinite loop. The third stage splits large
clusters in two, again keeping track of which splits happened
before.

Line 1 of the algorithm corresponds to setting |λi| =√
(A)ii and setting the signs of each coefficient according to

the identifiability conditions discussed in Section 5.2. Line 6 of
the algorithm can be efficiently solved in closed form by vary-
ing Ci ∈ {1, 2, . . . , p} and taking the derivative with respect
to λi. In this algorithm, each optimization should be inter-
preted as keeping all other arguments fixed, optimizing only
with respect to the variables on the left-hand side. Entries of
ΣX and {λi} are constrained to the [−1, 1] interval, with no
enforcement of a global positive definitiness constraint.

input : Association matrix A; initial {Ci}
output: A decomposition {{λi}, {Ci}, ΣX} of A

1 Initialize each λi according to the moment conditions
of each cluster

2 ΣX ← arg minFrob(A,ΛΣXΛT )
3 while true do
4 while true do
5 for i = 1, 2, . . . , p do
6 (Ci, λi)← arg minFrob(A,ΛΣXΛT )
7 end

8 ΣX ← arg minFrob(A,ΛΣXΛT )

9 end
10 if no Ci has changed then
11 break
12 end
13 for all i such that Ci 6= Cj for all j 6= i do

14 (C
′

i, λ
′

i)← arg minFrob(A,ΛΣXΛT ), among
those clusters never assigned to Ci before

15 end

16 Change the (Ci, λi) to (C
′

i, λ
′

i) for the i that

minimizes the Frob(A,ΛΣXΛT ), if any
17 for all j = 1, 2, . . . , d do
18 if there is no empty cluster then
19 break
20 end
21 Let Cj the variables assigned to cluster j
22 if |Cj | < 5 then
23 break
24 end
25 Find the subset Sj of three elements of Cj

that minimizes Frob(A,ΛΣXΛT ) by assigning
them to a previously empty cluster followed by
the optimization of {{λi}, ΣX}, such that no
element of Sj has been previously split from
any element of Cj\Sj

26 end
27 Update {λi}, {Ci}, ΣX} according to the best

choice of the above loop, if any
28 if no Ci has changed since the beginning of the

main loop then
29 break
30 end

31 end
32 return {{λi}, {Ci}, ΣX}

Algorithm 4: The algorithm for assigning observed

variables to single-latent factor clusters, and the cor-

responding parameters that fit A in a Frobenius sense.
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