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Introduction: The Strain-Adaptive Response
of Bone

Bones are able to withstand functional loads without
either breaking or sustaining extensive damage because
they have evolved the capacity to adapt their architecture
in relation to changes in their habitual loading
environment [1–3]. Reduced loading due to long-term
bed rest, cast immobilization, or microgravity conditions
induces significant bone loss and mineral changes [4–6],
which only begin to be recovered following the
reintroduction of normal activity. It is assumed, there-
fore, that the functional input required to stimulate and
maintain normal bone architecture is the loading
environment encountered during normal activity.
Although most fractures occur as a result of the loads
engendered during accidents such as falls or collisions,
these loads (since they are encountered only at the time
of fracture) cannot be used as a controlling input for
bone cells to adapt bone strength. It is most likely
therefore that bone cells respond directly or indirectly to
the local strains engendered in their vicinity by the loads
of normal functional activity. These strains are the
product of the bones’ external loads and their structural
properties and so contain all the information necessary to
be the controlling input for adaptive bone modeling and
remodeling.
Frost [7] likened strain-adaptive remodeling to a

domestic thermostat (or ‘mechanostat’) that is ‘off’
under circumstances of normal physiologic strain and
‘on’ in response to strain magnitudes outside normal
physiologic thresholds. This is an attractive analogy but
inevitably limited in its applicability. Just as the precise

input and mechanism by which loading is transduced
into cellular control of bone remodeling is unknown, so
are bone’s objectives (the on/off points) in terms of
strain. A number of studies have shown that bone’s
adaptive (re)modeling behavior is more complex than
on/off formation/resorption responses to strain magni-
tude. For instance, static strains do not engender adaptive
responses [8,9] whereas dynamic strains which change at
high physiologic rates (as in impact loading) engender
greater adaptive responses than those which change
more slowly [10–13]. The on/off points therefore relate
to a strain-related stimulus rather than a particular strain
value [9].

The inference, derived from animal experiments, that
bone cells respond preferentially to a subset of their
mechanical environment dominated by high strains
changing at fast rates and presented in unusual
distributions, has been substantiated by exercise studies
in humans. Thus high impact activities such as squash,
tennis, and badminton, for example, are more osteo-
genic, than running, cycling, swimming, or ice hockey
[14]. These human exercise studies also support the data
from animal studies that local loading induces local site
specific changes in bone architecture [15–17]. In tennis
players and baseball pitchers, for example, humeral
hypertropy occurs only in the playing arm in which the
stimulatory loading is actually experienced [16,18].
Conversely, protection from strain-related stimuli
causes a localized reduction in bone mass. External
fixation, for example, causes an increase in the diameter
of the medullary cavity and reduced bone mineral
content [4,19,20]. Even with generalized decreases in
skeletal loading, as occurs during space flight, bone loss
occurs in a non-uniform manner, with the distal leg
bones experiencing the highest bone loss [21,22]. This
has been hypothesized to occur because of the absence
of normal high frequency heel strike activity under
microgravity conditions [23]. It seems, therefore, that
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although bone cells must use their functional strain
environment to ‘assess’ the structures’ suitability to
withstand fracture from aberrant loading conditions, they
compensate for the inevitable inappropriateness of this
measure by responding preferentially to the ‘error rich’
components of their functional strain environment. It is
for this reason that activities such as squash, tennis,
triple jumping etc. engender large osteogenic responses
whereas ‘error poor’ activities such as swimming and
cycling do not [14,15,17,24].

Experimental Measures of Functional Strain
and Adaptation in Bone

The observation that bone responds to its mechanical
environment is ancient, but its origin in modern times is
generally attributed to Wolff [25]. The concept has
received qualitative support from many sources, but was
not subjected to systematic experimentation until Hert
and co-workers developed a methodology for the
controlled experimental loading of individual bones in
vivo [8,26–30]. In a classic set of experiments Hert et al.
applied loads through Bowden cables to the diaphysis of
the rabbit tibiae via trancutaneous pins [31]. Regardless
of whether tensile or compressive forces were applied,
the bone responded to intermittent, but not static loading.
Unfortunately, although Hert and his colleagues could
estimate the size of the loads necessary to engender
adaptive change they had no means of knowing either
the normal locomotor strains in that region or the strains
which the loading engendered. This deficiency was
remedied ten years later when it became possible to
attach strain gauges directly to bone surfaces in vivo
[10]. This development allowed the measurement of
normal (usually locomotor) strain magnitude, rate of
change of strain, and strain distribution. These values
could then be used as reference points for the strains
engendered under experimental loading. The first study
to combine these approaches was that of O’Connor et al.
[10] who used a pneumatic actuator to apply bending
loads to sheep radii through metaphyseal pins. This
study demonstrated a significant correlation between
maximum strain rate and the degree of bone hyper-
trophy. This inference has been confirmed by a number
of subsequent studies [11,19,32].

The animals used in O’Connor’s experiments were
allowed to ambulate normally between experimental
loading episodes. This superimposition of experimental
loading onto normal activity made it difficult to establish
a unique mechanistic correlation between the experi-
mental mechanical loading regimen and the adaptive
response. It was also uncertain whether the opposite limb
was, indeed, ‘normal’ for use as a control, since
increased load was likely transferred to this limb
following intervention in the experimental limb.

The development of the functionally isolated avian
ulna model [33] afforded the means to document the
adaptive response to strain engendered by artificial
loading in the absence of the confounding strains

superimposed by normal daily activity (though it was
also potentially confounded by the withdrawal of these
strains). By using the ulna of the wing of a flightless bird,
rather than a weight-bearing bone of a quadruped, the
animals’ lifestyle was not incommoded and the opposite
wing could be used as a control without concerns
regarding possible load transfer. In these experiments,
the ulnar diaphysis was functionally isolated by proximal
and distal transverse metaphyseal osteotomies, and
transfixing pins were used to either mechanically load
the ulna or protect it from mechanical loading by external
fixators. Functional load-bearing producing physiologi-
cal strain magnitudes, but an altered strain distribution,
prevented remodeling which would otherwise have led to
disuse osteoporosis. Consistent with the findings of Hert,
this strain-adaptive response required dynamic, rather
than static loading [12,33] and showed that strains within
the normal physiologic range could engender substantial
adaptive modeling when presented in a novel distribu-
tion. Experiments using this model also led to the
important finding that the maximal adaptive response to
an osteogenic stimulus could be achieved with as few as
36 cycles of loading per day [33–36]. This finding
prompted the idea that bone cells adaptively remodel
bone architecture in response to a subset of their total
mechanical experience, and that this subset is dominated
by the strains encountered during ‘error loading’ rather
than controlled coordinated activity [19].

The search to define the active subset of bone’s loading
environment has continued with non-invasive rodent
loading models of which data have been published from
two studies in cortical long bones and one in trabecular
bone of the spine. In the long bone models, loads have
been applied to the rat tibia by four-point bending [37], or
to the ulna by axial compression [38]. Both these models
avoid the potentially confounding reactions that may be
associated with the use of implants, but the four-point
bending model introduces the problem of reaction at the
points of pressure on the periosteum [39,40]. In the
trabecular bone model, pins inserted into the seventh and
ninth caudal vertebrae are used to load the eighth caudal
vertebra [41], allowing study of the response to
compression. These rodent models reintroduce the
feature of a short period of artificial loading embedded
in a longer period of normal activity. They confirm the
inference from the avian experiments that loading periods
need only be very short to stimulate adaptive responses
[11,42–45]. Both long bone models have consistently
demonstrated that bone formation is threshold-driven and
influenced by strain rate, frequency, amplitude, duration
of loading, and interpolation of rest periods
[11,40,43,44,46–48]. The introduction of transgenic
mice overexpressing or underexpressing various genes
means that this in vivo approach may be used to dissect
out the mechanisms involved in strain-related adaptation.
The axial ulna loading model has been successfully
adapted for mice [49] but no data are currently available
from its use in transgenics.

Both the waveform and distribution of strain influence
bone’s adaptive response [50–54]. In the turkey ulna, for
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example, the remodeling response to strain varies
depending on whether it has been loaded in an axial or
torsional manner [53]. Osteogenic exercises probably
derive their osteogenic character from engendering a
strain environment that deviates from that habitually
encountered, and to which bone architecture has
previously adapted [52,55–57]. Porcine ulnar ostectomy,
for example, increases strain levels in the radius, causing
an adaptive hypertrophy. After 3 months, the increase in
radius cross-sectional area serves to reduce surface bone
strains to normal physiologic levels [58]. Similarly, both
the avian ulna and rat four-point bending models have
demonstrated that prolonged loading regimens stimulate
modeling with slowly forming circumferential lamellae
despite their initially potent osteogenic effect producing
woven bone [59,60]. Cessation of new bone formation
presumably equates to a new equilibrium where the
stimulus for adaptive change has reduced to zero. Once
the loading regimen that engendered the adaptive change
ceases the bone will remodel back towards the customary
status quo ante for strain. The precise nature of the target
strain environment for each location is unknown.

In Vivo Measurements of Bone Strain

Quantification of the ‘habitual’ bone strain milieu has
been an important part of the continuing investigation of
the mechanism by which bone adapts to loading. Using
strain gauges, peak bone strain and strain rates have been
measured during various activities in numerous species,
including humans. These studies have been comprehen-
sively reviewed by Fritton and Rubin [61]. For most
animals, peak functional strains range from less than
71000 microstrain during walking to between 72000
and 73200 for more vigorous activities, and can almost
reach 75000 microstrain in galloping racehorses [61].
These values reflect the deformation that bone normally
experiences and have been helpful in defining the
parameters within which in vitro experiments should
be designed in order to more fully characterize the
cellular mechanisms that initiate an appropriate loading-
related adaptive response. However, while these are the
normal strain parameters, the ‘active subset’ of the strain
environment to which bone cells are actually responsive
remains undefined and may be very different from the
overall strain data determined from in vivo measure-
ment. Using the isolated avian ulna model, for example,
it has been shown that a mechanical load of 500
microstrain has little consequence if applied at 1 Hz, but
is highly osteogenic if the frequency is increased to
between 10 and 60 Hz [62,63]. Furthermore, the
minimum strain magnitude that is osteogenic decreases
with increases in frequency. For instance Rubin et al.
[64] report that strains as low as two orders of magnitude
below physiological levels can stimulate large increases
in bone mass if presented at 30Hz. Extremely low-
magnitude (<10 microstrain), high frequency biomecha-
nical intervention may also prevent bone loss associated

with disuse [65] and improve both the quantity and
quality of trabecular bone [66].

In Vitro Strain Experiments

One particularly valuable experiment in vivo demon-
strated that normally quiescent, adult periosteum can be
directly transformed to active bone formation in
response to the bone being exposed to only a single
short period of osteogenic loading [67]. Within a few
minutes of loading, the osteocytes within the loaded
bone show an increase in uptake of tritiated uridine and
increased levels of glucose 6-phosphate deyhydrogenase
(G6PD) that are in proportion to local strain magnitude
[68,69]. Thus the full cascade of cellular events between
quiescence and active bone formation can be followed
under any circumstances in which a bone, or bone-
derived cells, can be kept alive. Long bone explants can
thus be studied for approximately 24 hours ex vivo,
whereas cultured bone cells may be examined practically
indefinitely. Thus while remodeling per se can still only
be studied in vivo, the earliest stages of bones’ adaptive
response can be studied in explants [70,71]. Such studies
have demonstrated that if cores of cancellous bone are
loaded in organ culture there is increased release of
prostacyclin (PGI2) and prostaglandin E2 (PGE2) [72].
The exogenous administration of PGI2, but not PGE2,
caused early increases in G6PD activity and RNA
synthesis in bone cells that were similar to those caused
by in vivo mechanical loading [70].

The Cellular Response to Mechanical Stimuli

Explants cannot be used for experiments of longer than
24 hours duration and so many investigators have used
bone cells either in primary cultures or cell lines. Early
attempts to generate mechanical strain in bone cells in
vitro were highly inventive, but their interpretation is
somewhat limited because of uncontrolled variables.
Glucksmann [73] pioneered studies on mechanotrans-
duction in the 1930s using biologic materials, such as
intercostal muscle, to apply load to bone cell cultures.
Subsequently, several other systems have been devel-
oped in an effort to provide distinct mechanical stimuli
for experimental study. More recently, hydrostatic
compression [74–76], longitudinal and axisymmetric
substrate distension [77–83], substrate bending [82,84–
86], fluid shear [87,88], and combinations of these
models [83,89] have been developed to mimic the
physiologic components of the mechanical stimuli
presumed to occur in vivo. These methodologies have
been reviewed by Brown [90]. The response of bone
cells to the varied mechanical stimuli provided by these
diverse devices has provided some insight into the
relative importance of each type of stimulus to the
ultimate generation of an adaptive response.

Early studies which used tensile stretching of a
deformable substrate to strain cells often generated
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very large, heterogeneous [79], or static strain stimuli
[77] which are difficult to relate to the situation in
vivo [78]. Subsequent longitudinal substrate distension
models were able to take advantage of advances in
culture substrates to achieve greater strain homogeneity
[81]. One of the more popular systems used to strain
cells has been marketed under the name ‘Flexercell’, and
has undergone several modifications to meet criticisms
regarding the lack of uniformity and high magnitude of
the strains applied [91,92]. Relatively simple substrate
bending devices have been developed which allow
homogeneous, physiologic strains to be applied using
four-point bending [82,85]. Some more sophisticated
substrate bending systems allow waveform, peak strain,
and frequency to be altered while input strains are
characterized using laser displacement and strain gauge
monitoring [86]. Hydrostatic compression models can
also readily apply a distinct waveform of a given
magnitude to cells in culture, but this type of cellular
deformation may not mirror that experienced in vivo,
and the high oxygen and CO2 pressures require
alterations in the nutrient medium.

The Effects of Fluid Flow

Comparative histomorphometric studies have demon-
strated a consistent appearance of the lacuno-canalicular
network, regardless of species, such that osteocytes are
always oriented in a manner which maintains gap
junction connections with the osteoblasts on the bone
surface as well as neighboring osteocytes [93–95]. This
arrangement permits the exchange of mechanical and
metabolic signals [96–98], and provides a network which
may be important for both mechanosensation and
mechanotransduction (as reviewed by Burger and
Klein-Nulend [99]). Mechanical loading of bone not
only deforms the bone tissue, but also engenders
movement of extracellular fluid through the bone’s
lacuno-canalicular system. Such fluid flow may stimulate
bone cells via streaming potentials, wall shear stress, or
chemo-transport related effects [100–102]. Although
there are no definitive studies on the magnitude of
periosteocytic strain-induced fluid flow, Biot’s porous
media theory has been used to relate whole bone stress to
canalicular interstitial fluid flow past osteocytic pro-
cesses [103]. These calculations predict that loading
regimens engendering peak physiologic strains will
induce fluid induced shear stresses of 0.8–3 Pa.
Subsequent experiments have used pulsating fluid flow
to generate fluid shear stress of 0.2–6 Pa, and have found
that bone cells in vitro readily respond, lending
experimental support to the theory that one of the
stimuli to which bone cells are mechanosensitive may
involve strain-driven fluid flow [104,105].

The dominant determinant of the bone cell’s response
to fluid flow is hypothesized to be due to fluid shear
stresses that stimulate cell wall processes
[83,99,103,104], causing cell deformation and subse-
quent metabolic activity via integrins and the cytoske-

leton [106–109]. One experiment that compared the
stimulus of hydrostatic pressure with fluid shear stress
found that a response to hydrostatic pressure required 6
hours, whereas the response to pulsating fluid flow could
be measured after 1 hour [110]. This is perhaps not
surprising since cellular phenomena in many biologic
systems are influenced by fluid shear [111]. Osteoblast
osteopontin expression is also more readily influenced
by fluid forces than mechanical stretch, which tempts
investigators to believe that extracellular fluid flow is
important to the response of bone cells [84]. One
recently developed model demonstrates that the tensile
forces necessary to maintain the cytoskeleton’s attach-
ment to its substrate in the face of fluid forces may be
much greater than the fluid shear force applied [112]. If
drag forces on the pericellular matrix are transmitted to
the intracellular actin cytoskeleton, they would amplify
the strain-related stimulus. This could explain why tissue
level (physiologic) strains are generally smaller than
those typically required to elicit a response in vitro
[113,114]. This model has been used to hypothesize that
drag forces on the pericellular matrix may be the cell’s
chief mechanostimulus [112]. However, in most experi-
ments the acute cellular responses engendered by the
mechanical stimuli employed are rarely if ever causally
related to subsequent adaptive remodeling. It is likely
that the cellular responses to mechanical stimuli in many
experiments are actually unrelated to the control of
adaptive modeling and remodeling.

It is more than probable that bone cells respond to
more than one component of their mechanical environ-
ment. This is suggested strongly by the ability of
mechanical strain as well as fluid flow stimuli to promote
bone cell activity [101,103,115–118]. Since in vivo
loading is always accompanied by fluid flow, bone cells
may respond to changes in their strain environment via
an integrated assessment of changes in multiple
parameters associated with both fluid flow and physical
deformation. Such a response might allow for a more
structurally relevant remodeling response in different
anatomic locations or in bone with different architectural
(cortical vs. cancellous) properties [119,120].

Prostanoids and Nitric Oxide

Since osteocytes are well situated within the bone matrix
to sense strain, convey strain-related information, and
influence appropriate bone remodeling [99,121,122],
osteocytes are likely to be the primary mechanosensors
in bone. These cells have been demonstrated to be
mechanoresponsive and, within the range of strains they
encounter in vivo, to produce significantly higher levels
of the signaling molecules PGE2 and PGI2 than
osteoblasts in response to pulsating fluid flow
[106,123,124]. This in vitro osteocytic response is
significant since in vivo inhibition of prostaglandins
using indomethacin prevents bone adaptation in response
to mechanical strain [43,125,126]. If indomethacin is
administered in vitro or ex vivo strain-related increases
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in G6PD and RNA are eliminated [72,125,127,128].
This suggests that a prostanoid-dependent step precedes
these early signaling events. In vivo inhibition with NS-
398 demonstrates the even more specific role of COX-2
in mediating the bone formation that occurs in response
to loading [129]. Fluid shear stress induction of COX-2
mRNA expression involves the ERK signaling pathway
as well as the C/EBP b, cAMP-response element binding
protein, and AP-1 regions of the COX-2 promotor gene.
[130,131]
In order to understand the cellular mechanism by

which strain stimulates prostaglandin production, re-
searchers have used selective blockers of prostaglandin
production in order to inhibit specific aspects of this
pathway [117]. Pulsating fluid flow-induced PGE2

release can be decreased using specific inhibitors of
Ca2+-activated phospholipase C, protein kinase C, and
phospholipase A2. By blocking calcium channels and
intracellular calcium release pulsating fluid flow-induced
PGE2 production is also markedly inhibited. Disruption
of the actin cytoskeleton with cytochalasin B, likewise
has a similar effect. These findings suggest that pulsating
fluid flow transduces mechanical events into cellular
signals by raising intracellular Ca2+ through ion channels
and inositol trisphosphate (the product of phospholipase
C)-induced Ca2+ release from intracellular stores. Ca2+

and protein kinase C could then stimulate phospholipase
A2 activity, arachidonic acid production, and finally
PGE2 release [117]. Furthermore, results from ex vivo
loading of rat ulna explants suggest that loading-related
release of PGI2 and PGE2 utilizes arachidonic acid-
derived from the activity of different phospholipase A2s
[132]. In osteocytes and osteoblasts, arachidonic acid for
PGI2 synthesis is liberated by G-protein-dependent
secretory phospholipase A2 alone. In osteoblasts,
arachidonic acid for PGE2 synthesis is released by G-
protein-dependent, cytosolic phospholipase A2-mediated
activity, which also requires upstream secretory phos-
pholipase A2 and protein kinase C activities. These
findings support those of earlier researchers who used
models of fluid shear [133] and longitudinal substrate
distension [78] to demonstrate the involvement of PGE2

in the remodeling response via activation of G proteins
[133] and phospholipase A2 [134].
The release of PGE2 has important anabolic actions in

bone as demonstrated by its ability to promote
recruitment of osteoblast precursor cells, and increase
subsequent osteoblast proliferation, alkaline phosphatase
(AP) activity, and collagen synthesis [121,135,136]. In
response to pulsating fluid flow and organ culture rat
ulna loading, PGE2 is released from calvarial osteocytes
and surface lining cells [72,137]. In vivo administration
of PGE2 enhances bone formation in response to four-
point bending [138]. Fluid shear stress and mechanical
stretching likewise increases cAMP in a manner that is
PGE2 dependent [101,134]. PGE2 is partly responsible
for fluid flow induced increased levels of inositol
trisphosphate (IP3), which may act to further increase
intracellular calcium and activate protein kinase C [133].

Mechanical stretching of young osteocytes results in
increased influx of extracellular Ca2+ [117,139–141]. In
explants of rat ulna subjected to physiologic levels of
compressive axial loading (73000 microstrain), block-
ing stretch sensitive cation channels with gadolinium
chloride abolished loading-related increases in the
release of PGI2, NO, and osteocyte G6PD. Gadolinium
also reduced the loading-related release of PGE2 and
G6PD in osteoblasts. Blocking of L-type voltage-
dependent calcium channels with nifedipine prevented
loading-related increases in PGE2, NO, and osteoblast
G6PD activity [142]. These studies suggest that calcium
influx precedes the rapid increase in G6PD activity that
has been demonstrated to occur in proportion to peak
strain magnitude [69]. Further study has shown that the
strain-related responses of osteocytes and osteoclasts
involve gadolinium-sensitive cation channels, whereas
the osteoblast response involves both gadolinium-
sensitive and nifedipine-sensitive channels [141–143].

Nitric oxide (NO) has been shown to act as a mediator
of mechanically induced bone formation. Both nitric
oxide (NO) and prostanoid release are increased
following exposure to physiologic levels of mechanical
strain induced by axial loading and fluid flow in organ
and cell cultures of calvarial and long bone osteocytes
and osteoblasts [72,85,137,144–146]. This suggests a
prominent role for both of these endogenous mediators
in the adaptive response. Mechanically induced forma-
tion of NO appears to result from activation of
endothelial NOS (eNOS) in bone cells [147,148],
suggesting that the mechanism for bone cell upregulation
of NO may be similar to the sensitivity of blood vessel
endothelial cells to shear stresses associated with blood
flow. If true, this similarity may provide yet further
support for the involvement of cation channels and
increases in intracellular calcium in bone’s cellular
response to mechanical strain [147,149]. Transients in
fluid flow have been shown to stimulate NO release in
osteoblasts which, like PGE2 release, occurs in a manner
that is dependent on G-proteins and calcium [146]. The
in vivo inhibition of NO or prostaglandin production
hinders mechanically induced bone formation in rats,
providing a tentative link between the strain-related
prostanoid and NO production in osteocytes, and the
mechanotransduction of an osteogenic response
[125,150–152]. The inhibition of NOS activity prevents
release of PGE2 following a fluid flow stimulus,
suggesting that upregulation of NO production precedes
PGE2 upregulation in the cellular response to a strain
stimulus [137]. However, it has also been shown that
indomethacin (the non-selective COX inhibitor) and 15-
hydroperoxyeicosatetraenoic acid (a selective inhibitor
of prostacyclin synthase), can prevent loading-induced
nitric oxide release [85,153,154], suggesting that strain-
related NO production and prostacyclin upregulation
may occur concurrently. Since cytochrome P450 activity
is responsible for the release of PGI2, and P450 reductase
activity is responsible for the release of NO, it has been
suggested that an interaction may occur at this level
[155].
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Growth Factors

A feature of the early proliferative response to
mechanical loading stimuli is the release of insulin-
like growth factors (IGFs). There are two forms, with
IGF-I more predominantly produced in human osteo-
blasts and IGF-II more common in murine osteoblasts
[156]. In human bone cell cultures, there are skeletal
site-dependent differences in the production of IGF
system components (with IGF binding proteins esti-
mated to be produced at a higher magnitude than the
IGFs), and IGF-II levels are higher than IGF-I [157].
Both IGF-I and -II stimulate proliferation and differ-
entiation of bone cells [158]. In sites of bone resorption,
large amounts of stored IGFs are released, suggesting
that IGFs could couple bone formation to bone
resorption [158]. When primary cultures of rat long
bone-derived osteoblast-like cells are subjected to
dynamic four-point bending (3400 me, 600 cycles, 1
Hz), both G6PD activity and the smallest transcript of
IGF-II (IGF-II T3) increase, but IGF-I levels are
unaffected [159]. Prostacyclin, but not PGE2, also
stimulates the early release of IGF-II in organ culture
of adult canine cancellous bone [70]. Similarly, strain-
related proliferation of ROS 17/2.8 cells appears to be
mediated by IGF-II, rather than either IGF-I or the IGF-I
receptor [160]. Exogenous administration of PGE2 can
cause a dramatic increase in IGF-I along with increased
G6PD activity and increases in the largest transcript of
IGF-II (IGF-II T1), but this transcript may not be
actively translated into the IGF-II protein [159]. In
contrast, in vivo mechanical loading of the rat tail
vertebrae (peak microstrain magnitude = 700 micro-
strain) increased osteocytic expression of mRNA for c-
fos and IGF-I that led to subsequent expression of type-I
collagen and osteocalcin on the bone surface [161,162].
Similarly, cells stretched by the Flexercell apparatus
(expected peak microstrain = 4000 microstrain, possible
range = 0–30,000 microstrain) cause newborn rat
calvarial cells to respond with an increase in IGF-1
production when they are in the late osteoblast/early
osteocyte stage of differentiation [163].

Circulating parathyroid hormone (PTH) increases
with weight-bearing exercise [164]. Using a hypotoni-
city-induced stretch-loading model, PTH has been
shown to stimulate an increase in Ca2+ while synergis-
tically elevating IGF-I mRNA levels in rat and chicken
osteocytes [141]. Nucleotide activation of P2Y receptors
may also sensitize cells to the action of PTH, providing a
means for adaptive bone remodeling in response to both
local and systemic signals [165]. The pathway by which
this occurs is integrated with the production of other
factors and likely involves the influx of Ca2+ and
activation of PKA. This, in turn, activates c-fos and
COX-2 transcription resulting in the production of IGF-I
and osteocalcin [140,162]. Dissimilarity in the reported
importance of IGF-I and IGF-II in response to
mechanical loading may result from the diversity of
model systems used to induce mechanical strain, the
differences in calvarial versus long bone responses to

mechanical strain [148,166], or the variable age-related
responsiveness of cell cultures to mechanical and
biochemical stimulation [167].

Physiologic levels of strain have recently been shown
to enhance bone-resorbing activity associated with
TRAP and cathepsin K mRNA expression in osteoclasts
[143]. As with osteocytes and osteoblasts, Ca2+ entry
may be involved in osteoclast mechanosensitivity and
activity regulation. Osteocytes, osteoblasts, and osteo-
clasts attach to their substratum via osteopontin (OPN)
interaction with integrins (particularly avb3-integrin) and
other adhesive receptors, which may also be involved in
the responses to bone strain [168–170]. Integrins interact
with extracellular matrix proteins and intracellular actin
filaments to create a connection which may promote
fluid shear-induced increases in COX-2 and c-fos in
MC3T3-E1 osteoblasts [109]. Cyclical pressure results
in membrane hyperpolarization and PGE2 production via
integrin-mediated release of IL-1b in human bone cells
[171]. Cytoskeletal reorganization associated with
mechanical deformation may be involved in osteocyte
detection of bone strain and enhancement of osteoclast
bone resorbing functions [143,169,172]. Osteocyte OPN
mRNA expression increases in response to mechanical
loading, and in sites of bone formation and resorption,
suggesting that it may have a paracrine effect on the
activity of osteoblasts and osteoclasts [173–176].

It is important to realize that mechanical loading
results in a number of different physical events, all of
which may direct different responses at different levels.
Not all of these are the natural stimulus for functional
adaptation. For example, osteoblasts subjected to
approximately 70,000 microstrain at 0.05 Hz have
avb3-integrin-dependent enhanced extracellular matrix
mineralization [168]. Conversely, short-term experi-
ments have shown that cyclic strain at physiologic
magnitude (1000 microstrain) causes osteoblast prolif-
eration and collagen synthesis associated with matrix
production while simultaneously decreasing alkaline
phosphatase (AP) activity and osteocalcin release
associated with matrix maturation and mineralization
[177]. Pulsatile fluid flow has similarly been shown to
cause a reduction in AP mRNA expression [178].
Continuous compressive pressure has been shown to
increase PGE2 while decreasing AP activity, with PGE2

administration decreasing AP activity in a dose-
dependent manner [75]. This decrease in AP activity is
followed by mineral deposition in three-dimensional
culture with flow [178]. These studies are consistent with
the concept that a threshold physiologic strain is
necessary to increase matrix production in a manner
necessary for functional adaptation [35,177,179].

Failure of the Adaptive Response to Loading:
Osteoporosis and Estrogen

Although the mechanisms of adaptive bone (re)model-
ing are among the most reliable in the body there are
instances where their failure reminds us of their
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fundamental importance. One of the most widespread
of these is osteoporosis. This condition, which affects
28 million Americans, 80% of whom are women [180],
is characterized by a failure to maintain bone
architecture sufficiently robust to withstand the loading
of everyday life without substantial risk of fracture.
Although the condition has traditionally been ap-
proached as being the result of endocrine disorder,
dietary deficiency, or genetic predisposition, we
consider it may be a primary failure in the mechanically
adaptive mechanism normally responsible for ensuring
a safe relationship between bone loading and bone
structure [120].
Although exercise is important to bone maintenance

throughout life, bone mass changes less in response to
exercise in adults than in growing animals [181–184].
Experimental evidence suggests that this may be due to
changes in cellular response to mechanical stimuli with
ongoing bone formation, age [184–186], estrogen loss
[187,188], and the presence of osteoporosis [189].
Normally, bone cells respond to mechanical loading by
increasing their metabolism, activating genes, producing
growth factors, and synthesizing bone matrix [99].
Reductions in estrogen may impair the capacity of
bone cells to respond to mechanical stress, resulting in
osteoporosis [187,190–193]. Prevailing strain, however,
likely directs the localized remodeling effects that occur
in conjunction with more ubiquitous changes in systemic
hormonal status [13,192].
The normal adaptive response of bone cells which

accurately matches bone structure to prevailing weight-
bearing changes dramatically as a consequence of
estrogen loss at menopause [191,194]. The reason for
this is uncertain, although it has been suggested that the
presence of estrogen facilitates the recognition of a strain
threshold which is necessary for an appropriate adaptive
response [195,196]. Estrogen deficiency leads to pre-
ferential bone loss in anatomical sites of low mechanical
strain [192]. The PGE2-related response to mechanical
strain is enhanced in the presence of estrogen and
reduced in isolated bone cells from osteoporotic patients
[188,189]. Both estrogen and mechanical strain have
been shown to influence the expression of other
paracrine factors, such as TGF-b and IGF-1, in several
in vitro and in vivo models of bone metabolism [197–
200]. In contrast to osteoblasts from normal donors,
osteoblasts isolated from human osteoporotic bone fail to
increase proliferation and TGFb release in response to
1% (supraphysiologic) cyclic strain [201]. Both mechan-
ical loading and estrogen reduce osteocyte apoptosis,
effectively sustaining osteocyte populations [202–204].
Estrogen also promotes osteoclast apoptosis [205,206],
reducing their capacity for resorption. In contrast, both
loading and estrogen increase periosteal cell division and
matrix synthesis in bones of male and female rats [207].
Such compelling associations between estrogen and

mechanical strain have led several authors to suggest
that strain and estrogen likely share a common
mechanistic pathway [187,191,192,201]. Recent studies
suggest that important components of this pathway

include the estrogen receptor (ER) and ERK [208–212].
Functional ER is required for estrogen’s ability to block
ovariectomy-induced bone loss in rats [213], and it has
been suggested that estrogen responses in bone may
become defective as a result of impaired ERa expression
in men and women [209]. The early responses of
osteoblasts to strain and estrogen have been demon-
strated to share a common pathway of ERK-mediated
phosphorylation of ser122 within the amino terminus of
ERa and to stimulate estrogen response element (ERE)
activity [210,214]. ERK activation in response to strain
and estrogen is dependent on changes in calcium levels
[212,215], and may also be induced via cytoskeletal
components, including FAK and integrins [216,217].
This supports the notion that ERa is involved in the early
cascade of events which occur following mechanical
strain [210]. Furthermore, the osteoblast proliferation
stimulated by mechanical strain and estrogen can be
inhibited by selective estrogen receptor modulators
(SERMs) [160,211,218].

It may be that changes in ERa level provide a
mechanism by which strain-related information and
circulating estrogen can be integrated to engender
appropriate adaptive remodeling. Bone cells have a
relatively low level of ERa [219,220] which may
confine, or create a threshold for, the extent of possible
adaptive activity which can occur in response to estrogen
and strain. By increasing osteoblast ERa number through
stable transfection, for example, the proliferative
responses to strain and estrogen can be enhanced
[210,214]. In vivo osteocyte ERa levels decrease with
estrogen withdrawal and idiopathic osteoporosis [221–
223], suggesting that estrogen levels play an important
feedback role in the control of ERa levels. Mechanical
strain may also be an important determinant of osteocyte
ERa expression, affording a potential means for
localized direction and refinement of estrogen’s influ-
ence on bone remodeling. In vivo studies of adult male
rats have demonstrated that exposure to short daily
periods of artificial loading (superimposed on normal
loading) diminishes the number of osteocytes expressing
ERa by 46% [224,225].

Osteoporotic bone has a reduced mass and a
structurally inadequate architecture and thus probably
experiences relative increases in functional strain during
‘normal’ daily activity. These relative increases in strain
could downregulate ERa levels, compounding the
reduction of ERa expression associated with estrogen
deficiency [221], and further impair the capacity for
appropriate adaptive remodeling in postmenopausal
women. The ability of strain to effect ERa expression
provides a potential means by which estrogen’s influence
on bone can be anatomically targeted to ensure a
mechanically competent skeleton. The combination of
strain and estrogen-related reductions in ERa expression
could explain the reduced ability of bones to adaptively
remodel following the menopause [120]. Alternatively,
the level of ERa expression in bone may alter the ability
of bone cells to respond to mechanical strain.
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Summary

1. The fracture resistance of bones is established and
maintained as the result of an adaptive mechanism in
which bone cells’ modeling and remodeling activity
is directly or indirectly influenced by their strain
environment.

2. The mechano-responsive cells are most likely
osteocytes and osteoblasts. Many studies show acute
mechanically related changes in behavior of these
cells in culture but many of these have not been
related to the long term control of remodeling on
which adaptive control of bone architecture depends.
Not all bone cells’ responses to mechanical stimuli
are part of the cascade of responses involved in
adaptive (re)modeling. The specific mechanical
stimuli to which osteocytes and osteoblasts respond
in vivo probably include changes in strain itself and
strain generated changes in their fluid environment.
Physiologic levels of bone strain have been demon-
strated to be directly and indirectly involved in
increasing the release of signaling molecules and
anabolic growth factors, such as PGE2, PGI2, NO, and
IGF-I and IGF-II, that stimulate bone cell prolifera-
tion and matrix formation.

3. The osteoregulatory nature of a natural strain regimen
appears to be determined primarily by the peak
strains achieved, the rate of strain change, and the
extent to which the strain distribution is different
from the normal strains to which the bone has
adapted. Loading regimens producing high strains,
high strain rates and unusual strain distributions
appear to have a high osteoregulatory potential
stimulating osteogenic responses and maintaining
high bone mass. Static strains, strains which change
slowly, and ‘error-free’ strains may have little or no
osteoregulatory potential and may thus permit (if not
engender) bone loss and low bone mass.

4. The positive osteoregulatory influence of a strain
regimen is most effective during growth. Appropriate
activity at this time can lead to a larger and more
robust skeleton that can maintain its strength despite
loss of bone tissue later in life.

5. The reduced ability to maintain bone strength in
postmenopausal women is a failure of the normally
adaptive response to mechanical strain under the
conditions of the postmenopausal state. Evidence that
early strain-related responses of bone cells involve
the estrogen receptor could explain the decreased
effectiveness of this pathway when estrogen receptor
levels are low postmenopausally. The high strains
assumed to be associated with low bone mass may
downregulate ERa expression thus further diminish-
ing the responsiveness of bones to loading.
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