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Abstract

Absolute diffusion rates in minerals of the Earth’s lower mantle are cal-

culated from first principles using density functional theory. The agreement

with the available experimental data is excellent and provides confidence in

predicting diffusivities in regions of the lower mantle inaccessible to current

experimental techniques. I have calculated the diffusivity of all constituting

species in ferro-periclase ((Fe,Mg)O), (Fe,Mg)SiO3 perovskite and MgSiO3

post-perovskite. This enables me to put tight constraints on the viscosity of

the Earth’s lower mantle, and, in particular, on the viscosity of post-perovskite

for which no experimental data are available. I find that perovskite deform-

ing in diffusion creep can readily reproduce the Earth’s lower mantle viscosity

profile that has been inferred from inversion modelling. I also show that post-

perovskite is either much stiffer (if also deforming in diffusion creep) or up to

four orders of magnitude weaker than perovskite (if deforming in dislocation

creep). This leads to a new interpretation of the sharp seismic reflector in

the lowermost lower mantle, known as D′′, as the onset of a sudden rheolog-

ical transition and the generation of a mineral texture therewith. Finally, I

also find that the pressure induced high-to-low-spin transition of iron in ferro-

periclase and perovskite has a negligible effect on the rheology of the lower

mantle.
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Outline

Let me first briefly outline the structure of this thesis. I will start with

an introduction on why diffusion in minerals is one of the most important

processes in geophysics, what we (believe to) know about the Earth’s interior

and why I applied first principles methods instead of carrying out experiments.

This will be followed by an overview of the basic theory behind the used

method, namely density functional theory. I will then introduce the reader

to the theory of solid-state diffusion and how it can be calculated from first-

principles - this will close the theoretical part of this thesis.

The next part is my actual work, where I present the results of my calcula-

tions, showing that it is indeed possible to calculated absolute diffusion rates

from first principles that are in excellent agreement with the available experi-

mental data. Each investigated phase (periclase, MgSiO3-perovskite, MgSiO3-

post-perovskite and ferrous iron diffusion in periclase and MgSiO3-perovskite)

will have its own section including a discussion about the implications of my

results for the lower mantle.

The thesis will be concluded in a discussion about assumptions that had

to be made in order to explain the experiments and to draw my conclusions.

I will try to point out the (hidden) unknowns in my results and give an

outlook on what might be done next - be it continuing calculations on diffusion

or improving the understanding of the unknowns and better constrain my

assumptions.

Tables of the calculated diffusion-parameters and figures of migration path-

ways are collected in the appendix, where one also finds the acknowledge-

ments, all references, a list of abbreviations and my four peer reviewed publi-

cations (Physics and Chemistry of Minerals 36 (2009), Reviews in Mineralogy

and Geochemistry 71 (2010), Nature 465 (2010) and Earth and Planetary

Science Letters (in press, 2011)).
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Part I.

Introduction

Solid-State Diffusion in Geophysics

Diffusion is a fundamental physical process in which atoms migrate through matter

by following the gradients of chemical potentials (often concentration gradients). It

occurs in any material, be it gaseous, liquid or solid, and cannot be prevented, only

slowed down. Diffusion rates thus are a direct measure of the mobility of atoms,

which is why diffusion in solids is slowest. The slowness of solid-state diffusion

limits its industrial applications to surface reactions such as semiconductor doping,

carbonitration of steal surfaces or sintering. Hence, solid-state diffusion is limited

to the microscopic regime, rarely observable on the macroscopic level. In our day

to day life, the slowness of solid-state diffusion renders it, fortunately, generally

irrelevant — which keeps everything stable.

Over large, geological time-scales, however, diffusion processes can readily reach

the macroscopic level which makes it one of the most important processes in geo-

physics: solid-state diffusion allows crystals to chemically react or interact with each

other as well as with gases and liquids and thus controls the degree of compositional

zoning in minerals, the rate of transformation into new phases, the rate of crys-

tal growth, its ability to couple with electromagnetic fields via ionic conduction,

the attenuation of seismic waves via anelasticity and to yield plastically to stresses

and thence deform. Thus, inside the Earth, solid-state diffusion enables minerals

to change their chemical compositions and crystal-structures and, in particular, it

controls the viscosity of the mineral aggregate. In diffusion creep, stress is accom-

modated through ions migrating from regions of high stress to regions of low stress.

This is achieved either through bulk diffusion or grain boundary diffusion. In dis-

location creep, the rate-limiting step is generally dislocation climb — the process

where a dislocation has to migrate out of the dislocation plane to avoid an obstacle

— and this requires ionic diffusion.

Viscosity, is arguably the most important parameter for understanding the ther-

mochemical evolution of the Earth (see also below). The viscosity of the mineral-

aggregate of the Earth’s mantle controls the vigour of the convection which trans-

ports heat out of the core to the Earth’s surface. The ratio of the viscosities of

13



Solid-State Diffusion in Geophysics

the upper and lower mantle determines the speed of the plates and whether slabs

can penetrate into the lower mantle and reach the core-mantle boundary. In short,

the viscosity of the minerals inside the Earth control plate tectonics — and plate-

tectonics is what makes our planet inhabitable. Mantle-viscosity also determines

the topology of the core-mantle boundary and its physical coupling with the core.

At the same time, diffusion limits the chemical interaction between the mantle and

the core. Moreover, the formation and stability of plumes can be directly linked to

the relative viscosities of the minerals in the plume, at the bottom of the plume and

in its surrounding.

The multitude of geophysical phenomena controlled by viscosity and changes

thereof demand for a better understanding of this quantity. However, our current

knowledge of the Earth’s mantle’s viscosity is very limited as it is impossible to mea-

sure it directly. Indirect measurements (inversion modelling), in contrast, allow one

to derive at least radial viscosity profiles from convection observables, post-glacial

rebound and the geoid. However, the various viscosity models derived from different

datasets, inversion techniques and observables vary over several orders of magnitude

as shown in figure 1. Nevertheless, the models show a common trend starting with a

stiff uppermost mantle, followed by a narrow low viscosity region near the transition

zone and a viscosity peak in the second half of the lower mantle.

Viscosity depends on composition, crystal structure, mineral distribution within

the aggregate and the physical conditions (pressure and temperature). Localised

temperature anomalies can affect the viscosity as well as compositional (chemical)

or crystal-structural and therewith viscous inhomogeneities, which all give rise to

complex mantle dynamics, especially near the core-mantle boundary. At the same

time, changes in viscosity do not need to reflect changes in composition or crystal

structure but may result from changes of the aggregate structure itself, e.g. by phase

separation or generation of lattice preferred orientation (LPO). Thus, understanding

the rheology of lower mantle minerals will also allow a better interpretation of seismic

signals with which one observes the complex structures at the core-mantle boundary.

Studying the movements of atoms in crystals is thus not only key to understand

the movement of our continents but ultimately allows us to better understand the

thermochemical evolution of the entire planet Earth. I will focus my work on dif-

fusion in minerals in the Earth’s lower mantle which is currently the least well

understood part, mainly due to experimental difficulties.

14
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(5)6 (6)7 (7)8 : While the models vary over several orders of magnitude,
a common trend can be seen with a stiff uppermost mantle, followed by a
narrow low viscosity region near the transition zone and a viscosity peak
in the second half of the lower mantle

The Earth’s Lower Mantle

Most of what we know about the Earth internal structure was observed with seis-

mic waves that are generated in earthquakes. These waves travel through the Earth

reflecting and deflecting at structures with varying wave-speeds. While the interpre-

tation of what exactly is seen is complicated, they readily reveal the layered structure

of the Earth (now called transition zone, lower mantle, D′′, outer and inner core).

The interpretation of what causes these structures and their geophysical significance

need to be clarified by investigating the physical properties of the minerals forming

the Earth. I will work on the rheological properties of the minerals in the lower

mantle.

The Earth’s lower mantle reaches from the lower end of the transition zone at 660

km down to the core-mantle boundary at 2900 km (see figure 2). Simply by its shear

size, comprising more than 50 % of Earth by volume, it takes a up fundamentally

important role in the thermochemical evolution of the Earth. The physical condi-

tions in this region of the Earth are extreme: pressure increases from 25 GPa to 135

GPa, temperature rises from 1600 K up to 3000 - 4000 K.
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The Earth’s Lower Mantle
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The Earth’s interior consists of solid rocks that over geological time-scales behave

like a viscous fluid. The exact chemical composition and crystallographic structure of

the minerals of the Earth’s mantle are unknown and several models exist9. A widely

used and accepted model is the pyrolite composition12,13. The volume fractions of

the various phases along a Brown-Shankland geotherm10 of this model are shown

in figure 2(modified after9). The pyrolite model reproduces seismic features of the

upper mantle and transition zone fairly well. The major seismic discontinuities at

410 km and 660 km are explained as phase transitions of (Fe,Mg)2SiO4 olivine to

β-spinel and of γ-spinel to (Fe,Mg)SiO3 perovskite plus (Fe,Mg)O ferro-periclase

respectively. Luckily, the phase fractions of the lower mantle are fairly independent

of the used compositional model. It is believed that the lower mantle is composed

of about 70 % (Fe,Mg)SiO3 perovskite, 20 % (Fe,Mg)O ferro-periclase and 10 %

CaSiO3 perovskite with an iron content up to 20 %, and all phases incorporate

traces of other chemical species of which aluminum is the most abundant.

Within the Earth’s mantle, heat is generated from radioactive decay, gravitation

and as a leftover from accretion. It is transported from the core to the surface

via convection (see figure 3): hot material rises up while cold material sinks down.

This gives rise to plate-tectonics, volcanism and earthquakes. The exact mode of

16



convection is not yet fully understood, partly because the viscosities of the mantle

minerals are not well constrained. In either case, the base of the lower mantle,

the core-mantle boundary, plays a key role as it transfers the heat from the core

into the convection cycles. Part of the heat is transferred to the surface via plumes

that are formed in this region and manifest themselves in hot-spot volcanism such

as Hawaii. These plumes originate in the edges of the large, low-shear velocity

provinces (LLSVPs) underneath Africa and the Pacific. These regions are thought

to be hot, chemical piles. On the other hand, down-welling slabs may accumulate

in this region as they cannot penetrate into the much denser, liquid iron outer core.

Moreover, chemical exchange between the mantle and the core will be controlled by

this region.

D''

660 km

Outer Core

Plumes

ULVZ

Slab

CMB-Reactions

Mid-Ocean Ridge

PPV-lens
LLSVP

Figure 3: Sketch of processes in the Earth’s lower mantle modified after14,15

(not to scale). Plumes are rising from the core-mantle boundary (CMB),
one being responsible for hot-spot volcanims, the other being stuck at
the bottom of the transition zone. A slab accumulates at the CMB. Its
minerals transform into a post-perovskite lens (PPV) in the cooler region.
Chemical piles form from CMB-reactions and a ultra-low velocity zone
(ULVZ) is present at the edge of the plume-base, a large, low-shear-velocity
province (LLSVP)

The other, upper end of the lower mantle, the lower end of the transition zone, is

the region of the deepest earthquakes. Here, the viscosity contrast between the slab,

transition zone and lower mantle minerals controls whether slabs can penetrate into

the lower mantle (and reach the CMB) or become stagnant, i.e. lying on top of the

lower mantle. This will directly affect the velocity of the plates attached to the slabs

and determine the chemical mixing between the upper and the lower mantle. It is

also where plumes can be truncated and branch out.
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The Earth’s Lower Mantle

Surprisingly, the lower mantle is seismically very homogeneous and structureless

except in the lowermost 300 km’s, the so-called D′′. On one hand, the seismic ho-

mogeneity can be attributed the absence of rapid changes of physical properties as

a result of sharp phase transitions or large chemical heterogeneities. On the other

hand, its constituent minerals are strongly elastically anisotropic. The seismic ho-

mogeneity, therefore, also indicates the absence of any texture, be it lattice preferred

orientation (LPO) or phase separation.

However, the absence of seismic anisotropy does not preclude a phase change.

High pressure experiments on iron-bearing periclase revealed that ferrous iron (Fe2+)

changes from a high spin state to a low spin state if pressure exceeds 60 GPa (1000

km)16–18. While physical properties change across the transition, it has been found

that the transition is very smooth (population numbers change gradually) due to

temperature effects19,20 which renders the transition essentially invisible to seismic

waves. The geophysical significance of this phase transition thus, so far, remains

small.

Successive experiments then found the same transition of the spin state of iron

in perovskite21–23, at pressures expected near D′′. However, the exact nature of the

transition is controversial as it is not smooth and composition-dependent. Further

controversy was added by later experiments reporting the observation of an inter-

mediate spin-state throughout the lower mantle conditions24,25. The spin state of

iron in perovskite at high pressures thus is still not well understood and again, it’s

geophysical relevance still needs to be clarified.

In D′′, in contrast to the rest of the lower mantle, rapid changes in seismic veloc-

ity, anisotropy and complex structures14,15,26–30 are observed. Some features have

been suggested to be chemical piles (e.g. from interaction with the core) or thermal

anomalies, others as the bases of plumes or the accumulation of subducted slabs,

some as partially molten regions (being responsible for ultra-low (seismic) velocity

zones (ULVZ)) and again others as the generation of LPO due to large stresses.

However, all these explanations do not explain the full spectrum of complex struc-

tures seen in seismic images. In 2004, the discovery of a new phase, MgSiO3 post-

perovskite31–33, allowed us to explain some seismic observations as a simple, sharp

phase-transformations. The picture of D′′ appeared to be clear and consistent and

is explained in figure 3.

Then, in 2009, new experiments34 revealed that impurities such as iron and alu-

mina cause the phase-transformation from perovskite to post-perovskite to be too

wide to be responsible for the seismic observations. A new explanation for D′′ is thus

18



required and some results on post-perovskite in this thesis allow me to conclude that

D′′ might be rather a rheological instead of a phase transition. I suggest that the

D′′ reflector is a result of soft post-perovskite suddenly forming an interconnected

network, softening the aggregate and generating texture. This reconciles seismic

observations with geophysical data.

To conclude, the issue in the seismically homogeneous lower mantle (above D′′) is

that we know there are phase transitions occurring in this region but, up to now, we

do not see them seismically nor can we assign any geophysical phenomenon to them.

In D′′, we encounter the opposite problem of observing a wide spectrum of seismic

structures which are hard to explain consistently with our current mineralphysical

and geophysical knowledge. Thus, in one case we know something happens but we

don’t see it, while in the other, we see that something happens but we do not know

what.

The Problem from the Mineralphysicist’s View

From the discussion above it should be clear that the investigation of diffusion

processes in minerals of the lower mantle is crucial for our understanding of the

thermochemical evolution of the Earth. Ideally, the physical properties of these

minerals would be studied in experiments at the relevant temperature, pressure

and composition. However, current experimental techniques to investigate diffusion

are incapable of reaching the extreme physical conditions of the lower mantle. Only

recently it has become possible to experimentally probe diffusion at conditions of the

shallow lower mantle11,35–41 (down to 700 km). This is well below the known phase

transitions (high- to low-spin and perovskite to post-perovskite) and leaves about

70 % of the Earth’s volume inaccessible to experiments (see figure 2). Therefore,

diffusion coefficients of the minerals in the lower mantle are unknown, in particular

of post-perovskite for which no experimental data exist.

Theoretical methods, in contrast, allow one to investigate the properties of min-

erals at all pressures and temperatures reached in the lower mantle. The method

used in this work is density functional theory (DFT) which enables one to perform

atomistic first-principles calculations (ab initio; no approximation or simplification

of the investigated system) of any mineral (although some approximations have to

be made: one for our lack of understanding quantum mechanics, others for com-

putational efficiency). However, the increased availability of computational power

allows one today to perform first principles calculations to an accuracy never seen
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The Problem from the Mineralphysicist’s View

before.

This thesis strives to extend the present understanding of diffusion in the minerals

of the Earth’s lower and lowermost mantle at relevant pressures and temperatures

by applying first principle methods. Ideally, one would perform molecular dynam-

ics simulations in order to avoid any possible biasing by making certain choices

for the investigated system (e.g. diffusion mechanism, vacancy concentrations) be-

cause nature often does the unexpected. This is the advantage of experiments over

theoretical simulations: experimental results are real and unbiased (except by the

experimental set-up). Unfortunately, the slowness of solid-state diffusion — or the

lack of computer power — currently make it impossible to simulate diffusion using

first principles molecular dynamics. Luckily, the theory of diffusion provides an ex-

pression that relates atomistic quantities to the diffusion coefficient. I can calculate

all these quantities with DFT, at least in the harmonic approximation.

It will be shown in this thesis that these first principles calculations can be as

accurate as the results of experiments by comparison with the latter. Moreover, this

comparison will, to some extent, limit the biasing of choosing a certain diffusion

mechanism and provide confidence of being close to reality. This will ultimately

allow me to predict diffusion rates across the iron-spin transitions and in post-

perovskite which will further clarify their geophysical significance.
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Part II.

Density Functional Theory

The investigation of atomistic systems requires quantum mechanics. In quantum me-

chanics, a physical system is described by the solutions of its according Schrödinger

equation. These solutions are quantum mechanical states of the system and each

state has its specific energy. As long as the system is time independent (in the sense

that no energy is added or removed), the system is most likely in its ground state

which is the state of lowest energy at all times. As most systems are in the ground

state, this is the very state one would like to investigate first. Moreover, the ground

state energy allows one to calculate equilibrium structures, elastic, dielectric and

vibrational properties of crystals and, most importantly for this project, formation

and migration energies of crystal defects.

While it is straight forward to set up Schrödinger’s equation and its solution for-

mally for N interacting particles, unfortunately, analytical solutions of Schrödinger’s

equation only exist for systems of one and two particles. Any system of more than

two particles can only be solved by making approximations. The problem lies in

the complexity of the N -particle wave-function. Particularly in solid state physics

where one easily has systems of the order 1023 atoms, good approximations are essen-

tial. In solid-state and molecular systems the basic concepts are the inhomogeneous

electron-gas and the Born-Oppenheimer approximation (static atomic nuclei).

A very effective and successful method to investigate the quantum mechanical

many body problem is density functional theory (DFT). In theory, DFT does not

make any approximation - while in practice some approximations have to be made

yielding, nevertheless, very accurate results. This section will first review DFT

precursors like the ideal Fermi-gas and the Thomas-Fermi theory for molecules.

These two sections will provide a conceptual idea of DFT. Afterwards, the DFT

formalism is derived basing on the Hohenberg-Kohn theorems. Two approaches will

be taken giving the same result. First, the classical approach taken by Kohn and

Sham is followed. Second, Lieb’s approach will be briefly outlined revealing other

aspects of and new insights into DFT. Once the concepts of DFT are explained, I

will focus on more technical aspects which allow efficient computations.

This section shall only provide a brief summary of DFT as there is a wide range

of literature available providing more thorough reviews and discussions of recent
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1. Why Density Functional Theory?

developments and problems. The reader is therefore referred to references such

as42–44 just as examples.

1. Why Density Functional Theory?

Let me start with a brief digression to discuss why I have used the computationally

expensive DFT method and not empirical methods.

The system is described as set of interacting atoms or ions, and it is these interac-

tions that govern its behaviour. The interactions can either be described from first

principles (i.e., quantum mechanically) or empirically. The first principles method

treats the system as a set of interacting nuclei and electrons, and uses (approximate)

solutions to Schrödinger’s equations to obtain energies and forces. Currently, almost

all work involving first principles methods, such as the one that will be discussed in

this thesis, make use of density functional theory (DFT,45,46). Other first principles

methods such as quantum Monte-Carlo are more accurate but also computation-

ally much more expensive, or simply not accurate enough such as the Hartree-Fock

method which ignores electron-correlation.

The empirical approach uses a predefined inter-atomic (or inter-molecular) po-

tential, which is fit to some experimental property or to a first-principles result.

There are also the so-called semi-empirical methods, which are based on quantum

mechanics but contain many approximations and include experimentally derived

parameters. The different methods have their pluses and minuses. The empirical

approach allows one to look at far larger systems than the first principles (or ab ini-

tio) methods. The downside is that the empirically-derived potentials may not work

accurately in systems and atomic environments for which they were not originally

designed. This is a particular worry for diffusion studies since atoms migrate from

their normal configuration through a very different coordination environment than

their equilibrium position. Moreover, some empirical potentials have bond-angle de-

pendent parameters and it is not clear what to do with those as atoms migrate. For

instance, potential models for Si-O interaction often have a three-body bond angle

term in order to maintain the correct coordination with oxygen. For tetrahedrally

coordinated silicon, this would be 109.47◦. But as the silicon ion moves out of the

tetrahedron, it changes coordination, and the bond-angle term may impose inap-

propriate forces. The ab initio techniques do not suffer from this in the same way,

although they do have other approximations which add uncertainty to the results.
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2. DFT: Hohenberg-Kohn-Sham

2.1. Ideal Fermi-Gas

Sommerfeld’s theory47 of the ideal gas of fermions (i.e. ideal Fermi-gas) is of major

importance for solid state physics as it provides readily access to the qualitative

behaviour of weakly bound electrons in condensed matter. Moreover, it forms the

foundation of the Thomas-Fermi theory discussed in the next section 2.2 and is

a key ingredient for the success of DFT (as it is used within the local density

approximation). It is also the first attempt to relate the energy of an electronic

system to its particle-density.

Sommerfeld’s theory idealizes condensed matter as a cubic box of volume L3

containing a uniform (i.e. non-interacting, also called jellium) electron-gas of density

n = N
L3 (N is the number of electrons) exposed to a constant potential V (x) = V0

(i.e. not periodically varying as it would result from the periodically arranged atomic

cores within the crystal). In fact, setting the constant potential equal to 0 would not

change the result as it is only an additive constant to the electron energies. Hence,

the ideal electron gas is often also called the free electron gas. In order to simulate

an ideal (i.e. infinitely large, to avoid surface effects) crystal, periodic boundary

conditions are applied. In order to find the ground state energy of the electron-gas

within this approximation one needs first to solve Schrödinger’s equation for a single

electron [
− ~2

2m
∆ + V0

]
ψ(x) = Eψ(x). (2.1)

The solutions of this equation with periodic boundary conditions are the well known

wave-functions in the form of plane waves

ψ(x) ∝ eik·x

with the wavevector

k =
2π

L
n (2.2)

with n ∈ N3. Furthermore, the electron’s wave-vector is related to its momentum

p by the de Broglie relation p = ~k and therewith to its energy E = p2

2m
. These

relations completely determine all the available states within the cubic box as each
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2. DFT: Hohenberg-Kohn-Sham

state is uniquely characterized by its energy. Apparently, the electrons behave like

free electrons.

The energy of the highest occupied state in a system of fermions is the Fermi-

energy EF . This state is also associated with the Fermi-wavevector kF. At zero

temperature, i.e. T = 0◦K, all states with energies lower than the Fermi-energy are

occupied while all higher lying states are unoccupied. Thus, being interested in the

ground state energy of a uniform electron gas of density n = N
L3 , one needs to find

the relation between the electron density n and the Fermi-energy EF .

It can be readily seen from equation (2.2) for the wave-vectors that each state

occupies a volume of
(

2π
L

)3
. In the reciprocal space, the occupied states lie within a

sphere, the so-called Fermi-sphere, with radius of the Fermi-wave-vector kF . Thus,

the total number of states within the Fermi-sphere is given by

N = 2 · 4

3
πk3

F ·
(
L

2π

)3

=
k3
FL

3

3π2
. (2.3)

The factor 2 comes from the fact that each state can be occupied twice if one

considers the electron-spin. This equation directly relates the electron density n =
N
L3 to the length of the Fermi-vector kF and therewith to the Fermi-energy EF :

EF =
~2k2

F

2m
=

~2

2m

(
3π2n

) 2
3 . (2.4)

The ground state energy is then being found by performing a transition from the

sum over the energies of the occupied states to an integral over an averaged energy

density of all occupied states. The ground state energy is then given by

E0 = 2 ·
(
L

2π

)3

·
∫
k<kF

d3k
~2k2

2m
=

L3~2

10π2m
k5
F . (2.5)

Obviously, the average energy per electron (the kinetic energy) is ε = 3
5
EF .

2.2. Thomas-Fermi Theory

The Thomas48-Fermi49 theory (TFT) of many-electron systems gives a first simple

impression of how the density-functional theory is working and can be regarded as

the conceptual origin of DFT. TFT calculates the ground-state energy and ground-

state electron distribution of non-uniform electron systems, i.e. it considers the

variation of the potential. The difference between Thomas-Fermi and DFT is that
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2.2. Thomas-Fermi Theory

the former does explicit approximations while DFT, at least in theory, is exact. In

fact, Thomas-Fermi theory is DFT of a non-interacting electron gas. TFT really

maps the properties of an N-particle wave-function (in form of a Slater-determinant)

of degree 3N onto a function called electron density of degree 3 and assumes a

uniform electron distribution in phase space. Furthermore, it assumes that there is

neither interaction nor correlation between the single electrons. While TFT allows

one to make qualitatively correct predictions for neutral atoms (atom sizes, existence

of bound states), it fails to describe molecular bonding.

Assume an electron density n(x) around an atomic core of charge Z � 1 fixed at

the origin 0. Charge neutrality then requires that the number of electrons

N =

∫
d3xn(x) = Z. (2.6)

In theory, it is exactly known what the electron-density looks like:

n(x) = N
∑
sj=↑,↓
j=1,...,N

∫ N∏
i=2

d3xi|Ψ(x1, s1,x2, s2, ...xN , sN)|2. (2.7)

A single electron feels the following, averaged potential

V (x) = e2

∫
d3y

n(y)

4π|x− y|
− Ze2

4π|x|
. (2.8)

The first term on the right hand side of equation (2.8) describes the interaction

of a single electron with the surrounding electron cloud of all other electrons of

the atom, the second term originates from the electron interaction with the core.

Unfortunately, it is not possible to find the electron-density n(x) from equation (2.7)

for large electron-numbers N .

Thomas and Fermi then made the following approximation which holds if the

average energy of the electrons is much larger than the potential energy: The entire

space is filled with cubes of size L3 where the potential inside the cubes is constant

V = constant. TFT assumes that in each of these cubes an ideal electron gas as

discussed in section 2.1 predominates. Using equation (2.4), the electron-density

within such a cube can thus be written as

n(x) =
N(x)

L3
≈ kF (x)3

3π2
=

[2m(εF − V (x)]
3
2

3π2~3
(2.9)
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2. DFT: Hohenberg-Kohn-Sham

Using now the relations for the ideal electron gas of section 2.1, one finally finds

the Thomas-Fermi energy functional

E(n) =

∫
d3x

[
C
~2

m
n(x)

5
3 − Ze2 n(x)

4π|x|
+
e2

2

∫
d3x

∫
d3y

n(x)n(y)

4π|x− y|

]
(2.10)

where the first term of the right hand side is the kinetic energy of the ideal electron

gas from equation (2.4) (where C = 3
10

(3π2)2/3)), the second term is the Coulomb-

attraction between the atomic core and the electron density and the third term

describes Coulomb repulsion between the electrons. The ground state of the sys-

tem is then found at the minimum of the Thomas-Fermi energy functional (2.10).

This is a variational problem (analogous to the Euler-Lagrange equation in classical

mechanics) with constraint (2.6) of which the solution is found by variation of the

Functional

F(n) = E(n)− λ
(∫

d3xn(x)−N
)
. (2.11)

The variation of F(n) yields the Thomas-Fermi equation

5

3
C
~2

m
n(x)

2
3 − Ze2

4π|x|
+ e2

∫
d3y

n(y)

4π|x− y|
− λ = 0 (2.12)

with solution

n(x) =
[2m(εF − V (x))]

3
2

3π2~3
(2.13)

and λ = εF . The Thomas-Fermi equation (2.12) can be recast into a differential

equation for the potential

−∆V (x) = −Ze2δ(x) + e2n(x) (2.14)

for which solutions are known. TFT correctly reproduces the leading behaviour

of the ground-state energy for large systems (i.e. Z large) but fails to describe

negatively charged systems as well as molecular bonding (Teller’s theorem50). A

wide range of literature about Thomas-Fermi theory is readily available and for a

more thorough discussion the reader is referred to e.g.51 and references therein.
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2.3. Hohenberg-Kohn Theorems

2.3. Hohenberg-Kohn Theorems

DFT is founded on two basic theorems first stated by Hohenberg and Kohn in

196445. The result of these theorems is the so-called Hohenberg-Kohn functional

for which Kohn and Sham46 developed a method to solve it. The solution yields, at

least in theory, the exact ground state energy of the system. In order to state and

prove the Hohenberg-Kohn theorems, some definitions need to be made first.

The Hamiltonian H of a system of interacting electrons in an electrostatic field

of nuclei can be written as

H = T + U + V = H0 + V (2.15)

where T is the kinetic, U the mutual interaction and V the potential (due to inter-

action with nuclei) energy. The Hamiltonian of the interacting electron system itself

is H0 = T + U (without external field). The potential energy V for an arbitrary

external field is

V =
N∑
i=1

v(ri) (2.16)

with ri the position of electron i. The many-body-wave-function shall be Ψ for any

given external potential v(x). The ground state energy EG is given by

EG = 〈Ψ|H0 + V |Ψ〉 (2.17)

and the electron density n(x) by

n(x) = 〈Ψ|n̂(x)|Ψ〉 (2.18)

where the density operator n̂(x) is defined as

n̂(x) =
N∑
i=1

δ(x− xi). (2.19)

Theorem 1 (Density as Basic Variable: Hohenberg-Kohn45). It is impossible that

two different external potentials give rise to the same ground-state density distribu-

tion n(x).

Proof. Given two Hamiltonians H = H0 + V and H ′ = H0 + V ′ with according
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2. DFT: Hohenberg-Kohn-Sham

ground-state functions Ψ and Ψ′. If the two external potentials v(x) and v′(x)

associated with V and V ′ differ by more than an additive constant, then Ψ 6= Ψ′

because they satisfy different Schrödinger equations. It will now be shown that

under these conditions the resulting two ground-state densities n(x) and n′(x) have

to be different.

The variational principle implies for the ground-state energies E and E ′

E ′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H + V + (V ′ − V )|Ψ〉

Hence:

E ′ < E + 〈Ψ|V ′ − V |Ψ〉 = E +

∫
d3xn(x)(v′(x)− v(x)).

Similarly, by interchanging prime and unprimed quantities:

E <= E ′ +

∫
d3xn′(x)(v(x)− v′(x))

Adding both equations yields

E ′ + E < E ′ + E −
∫
d3x (n′(x)− n(x)) (v′(x)− v(x))

This is a strict inequality and hence n′(x) 6= n(x).

Corollary 1. The electron ground-state density n(x) uniquely specifies the external

potential v(x) and hence the many-body wave-function Ψ.

The first Hohenberg-Kohn theorem (Theorem 1) states that the mapping between

the potential V (x) and the electron-density n(x) is invertible, i.e. for each electron

density there is a unique potential and vice versa. Thus, the ground-state energy

EG is uniquely determined by the electron density n(x) such that it can be written

as a functional

EG[n(x)] = F [n(x)] +

∫
d3xv(x)n(x) (2.20)

where

F [n(x)] = 〈Ψ|H0|Ψ〉 (2.21)

is the ground-state expectation value of H0 as defined in equation (2.15) when the
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2.4. DFT: Legendre-Transform

electron density is n(x). F [n(x)] is the so-called Hohenberg-Kohn functional.

Theorem 2 (Variational Principle: Hohenberg-Kohn45). The ground-state energy

for a given potential v(x) is obtained by minimising EG[n(x)] with respect to the

electron density n(x) for a fixed v(x) under the condition

N =

∫
d3xn(x).

The electron density n(x) yielding the minimum is the density ground-state.

Proof. Let v(x) and v′(x) be two different external potentials with ground-state

energies EG and E ′G and ground-state wave-function Ψ and Ψ′. The Rayleigh-

Ritz52 53 variational principle gives:

EG < 〈Ψ′|H0 + V |Ψ′〉 = F [n′(x)] +

∫
d3xv(x)n′(x). (2.22)

Assuming a non-degenerate ground-state, this proves the theorem.

This second Hohenberg-Kohn theorem (Theorem 2) provides a method to exactly

calculate the ground-state energy and electron density. This task would be straight

forward, if F [n(x)] was a well known and a sufficiently simple functional. This is

not the case: the kinetic energy of an interacting electron gas as well as the electron

energies from mutual interaction between the electrons are unknown and cannot be

calculated exactly. Therefore, it is important to develop simple functionals that are

adequate approximations of these energies. This will be done in section 2.5, after a

brief digression to Lieb’s derivation of the theorems via Legendre-transforms.

2.4. DFT: Legendre-Transform

Lieb54 was the first to point out the connection between DFT and the Legendre-

transforms used in thermodynamics. This approach to DFT is particularly intriguing

as it clarifies the situation of mappings. The direct approach taken by Hohenberg

and Kohn suggests a mapping of the many body wavefunction of degree 3N onto the

electron density n of degree 3 being apparently a magnificent reduction in degrees

of freedom making the problem much simpler. However, it shall be shown in this

section that the actual mapping occurs from the potential V of degree 3 onto the

electron density n of degree 3. As in thermodynamics, the change of variables

reduces the complexity of certain problems.
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2. DFT: Hohenberg-Kohn-Sham

As suggested by S. Baroni during a lecture at UCL in 2007, the problem of solving

the Schrödinger equation for the N-body wave-function is, in fact, also mapped onto

a new problem of finding the correct Hamiltonian. In the end, the advantage of

DFT is that finding a good approximation for the Hamiltonian is apparently much

simpler than finding a good approximation to the many-body wave-function.

This section shall only very briefly depict this connection between DFT and

Legendre-transformations and has not the intention to be mathematically thorough.

2.4.1. Reminder of Thermodynamics

It is well known that thermodynamical potentials can be obtained from each other

by a change of variable by applying Legendre-transformations. The Helmholtz free

energy F (N, T, V ), e.g., can be obtained from a Legendre-transformation of the

grand potential Ω(µ, T, V ):

F (N, T, V ) = min
N

(Ω(µ(N), T, V ) + µ(N)N) . (2.23)

The chemical potential µ(N) transforms from an independent variable into a func-

tion of the particle number N . The new independent variable is now N given by

N(µ, V, T ) = −∂Ω

∂µ
. (2.24)

The same is also true the other way around, i.e., the derivative of F with respect to

N is equal to µ, the free variable of Ω.

2.4.2. Hohenberg-Kohn Theorems from Legendre-Transforms

Legendre-transforms are only well defined if the considered function F (X) is concave

or convex as this ensures that the mapping between its independent variables and

its partial derivatives are invertible: X 7→ ∂F
∂X

.

Definition (Convex, Concave). A function(al) F (x) is called strictly convex (con-

cave) if

F (αx1 + (1− α)x2) > (<)αF (x1) + (1− α)F (x2)
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2.4. DFT: Legendre-Transform

which is equivalent in stating:

d2F (x)

dx2
> (<)0.

Lemma 1 (Lieb54). The ground state energy EG[V ] as a functional of the external

potential V is concave.

Proof. It is possible to prove concavity by showing that the second derivative is

negative (definite) by using perturbation theory. However, for the sake of brevity,

the direct proof is chosen.

Let V α = αV (1)+(1−α)V (0) and Ĥα = αĤ(1)+(1−α)Ĥ(0). The corresponding

ground-state function shall be Ψα. Then, the ground state energy as a function of

the external potential is then given by

EG[V α] = 〈Ψα|Ĥα|Ψα〉

= α〈Ψα|Ĥ(1)|Ψα〉+ (1− α)〈Ψα|Ĥ(0)|Ψα〉

> αEG[V (1)] + (1− α)EG[V (0)].

the inequality comes from the fact that expectation values of the Hamiltonian are

calculated with respect to a ”wrong” wave-function.

Consider now the ground state energy (2.21)

EG[Ψ;V ] =

∫
d3xv(x)n[Ψ](x) + F [Ψ].

The Hellman-Feynman theorem55 implies that the partial derivative is equal to the

total derivative such that

δEG
δv(x)

= n(x),

which is equivalent to equation 2.24.

Apparently, the Legendre-transform of the ground state energy EG[V ] is the

Hohenberg-Kohn Functional F [n]. This finding gives rise to the first Hohenberg-

Kohn theorem (Theorem 1) stating that the mapping V 7→ n is invertible. The
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2. DFT: Hohenberg-Kohn-Sham

inverse Legendre-transform of F [n] is the ground state energy EG[V ], i.e.:

EG[V ] = min
n

(
F [n] +

∫
V (x)n(x)dx

)
(2.25)

= F [n[V ]] +

∫
V (x)n[V ](x)dx (2.26)

where n[V ] solves the variational problem of the first line of the equations above

which is nothing but the second Hohenberg-Kohn theorem (Theorem 2).

2.5. Kohn-Sham: Self-Consistency

The Hohenberg-Kohn theorems discussed in the previous sections 2.3 and 2.4 provide

a simple framework to calculate ground-state energies. The stated theorems are not

surprising but rather trivial. Unfortunately, they do not allow one to analytically

solve any relevant problem as the Hohenberg-Kohn functional F [n(x)] of equation

(2.21) is not exactly known. It is the great achievement of Kohn and Sham46 to

provide an adequate approximation for F [n(x)] and constructing a Schrödinger equa-

tion for the many-particle problem that can be readily solved and allows efficient

implementation in computer codes. Their method which turned the Hohenberg-

Kohn theorems into one of the most successful methods in quantum mechanical

computations shall be briefly reviewed here.

To this end, one first writes the Hohenberg-Kohn functional (2.21) as

F [n] = Tni[n] +G[n] (2.27)

where Tni[n] is the kinetic energy of a system of non-interacting electrons with

density distribution n(x) and G[n] is still an unknown functional containing the

difference in the kinetic energy of interacting electrons as well as all the mutual

interactions among the electrons. So far, the theory is still exact, as everything

that cannot be calculated is hidden in the functional G[n]. Now, apply the second

Hohenberg-Kohn theorem (Theorem 2): Applying the variational principle to the

ground state energy functional

EG[n(x)] =

∫
d3xv(x)n(x) + T [n(x)] +G[n(x)]
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2.5. Kohn-Sham: Self-Consistency

yields

0 = δE =

∫
d3x

[
v(x) +

δT

δn(x)
+

δG

δn(x)

]
δn(x)

which is subject to the constraint∫
d3xδn(x) = 0.

The constraint just states a constant particle number. This problem can now be

rewritten by using a Lagrange undetermined multiplier µ (chemical potential) in the

form of the Euler-equation:

v(x) +
δT

δn(x)
+

δG

δn(x)
= µ. (2.28)

The brilliant idea by Kohn and Sham now is to define an effective potential

veff (x) = v(x) +
δG

δn(x)
. (2.29)

As T is the kinetic energy functional of a non-interacting electron system, the new

equation for the system of interacting electrons is the same as the equation of a

system of non-interacting electrons feeling the effective potential:

δT

δn(x)
+ veff (x) = µ. (2.30)

But this equation is equivalent to the Schrödinger equation

− ~2

2m
∆Ψi + veff (x)Ψi = εiΨi (2.31)

with n(x) given by

n(x) = 2
∑
εi<µ

|Ψi|2. (2.32)

This is the so-called Kohn-Sham equation 2.31 and the Kohn-Sham orbitals Ψi.
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2. DFT: Hohenberg-Kohn-Sham

The above equations are now used to solve any problem iteratively: Assume that

one knows G[n] (or at least an adequate approximation).

1. Make an initial guess of n(x).

2. Calculate δG
δn(x)

and therewith veff (x) = v(x) + δG
δn(x)

.

3. Solve the Kohn-Sham equation (2.31) to get the Kohn-Sham orbitals.

4. Calculate the new electron density via equation (2.32).

5. The new density is not equal to the input density hence this procedure is

iterated till convergence (reduce residual).

This iterative procedure is called searching for self-consistency. It is important to

notice that at this point, no approximations have been made as all mathematical

and physical problems are hidden in the functional G[n].
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In the previous sections it has been shown how DFT provides (theoretically) an

exact method to solve the quantum-mechanical many body problem. Unfortunately,

in practice, the exact form of the functional G[n] is unknown and approximations

have to be made. A particular problem is the approximation of the exchange and

correlation energy for many electron systems. Additionally, in order to obtain an

efficient computational algorithm, suitable representations of the ionic potentials

and the electrons in the system are required. With all these approximations shall

be dealt just superficially in this section as a more thorough discussion would be

beyond the scope of this work.

3.1. Exchange-Correlation Energy

As stated in the previous section 2.4, the new problem in DFT is that the many

body Hamiltonian is unknown. The quality of the results using DFT depends on the

ability of the exchange-correlation functional to model the many-body electronic in-

teractions. The most common exchange correlation functionals are the local density

(LDA) and the general gradient approximation (GGA)56–58.

Consider the Hohenberg-Kohn functional (2.21)

F [n(x)] = T [n(x)] + U [n(x)]

where T [n(x)] is the kinetic energy of the system of interacting electrons of den-

sity n(x) and U [n(x)] describes the mutual interaction between all the electrons in

the system. A first approximation can be made by using the kinetic energy of non-

interacting electrons Tni as it was used to develop the self-consistency loop in section

2.5 (there, the difference in kinetic energy was hidden in the functional G[n]). Tni

is not the kinetic energy of a system of interacting electrons, but is a first approx-

imation to it. Next, the so-called Hartree energy, which is the electrostatic energy

of the electronic charge distribution, is separated out:

EH [n(x)] =
e2

2

∫
dxdy

n(x)n(y)

|x− y|
. (3.1)

Such that finally the exchange-correlation energy Exc is defined as

Etot[n] = T [n] + V [n] + EH [n] + Exc[n] (3.2)
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containing all the electron-electron interaction one cannot compute exactly for an

arbitrary system. However, the exchange-correlation energy is only known exactly

for the uniform electron gas (see section 2.1). The exchange-correlation energy

per electron in the uniform electron gas is denoted with εxc. The local density

approximation (LDA) was introduced by Kohn and Sham46 and is given by the

following definition:

Definition (Local Density Approximation, LDA). The exchange-correlation energy

per unit volume at position x is n(x)εxc(x) such that

Exc[n(x)] =

∫
n(x)εxc(x).

While the above expression is exact for the uniform electron gas, in reality it is only

an approximation as n(x) is non-uniform, in fact, it often changes rapidly. Addi-

tionally it is expected to be spin-dependent. Hence, one can introduce the exchange-

correlation enhancement factor Fxc to account for dependence of the exchange-

energy on the density gradient and spin (up: ↑ and down: ↓). This yields the

generalised gradient approximation (GGA) in which the exchange-correlation en-

ergy is described by

EGGA
xc [n↑(x), n↓(x)] =

∫
dxεjelliumxc (n(x))Fxc(n

↑(x), n↓(x), |∇n↑(x)|, |∇n↓(x)|)

(3.3)

where εjelliumxc is the usual exchange-correlation energy of an electron in a uniform

electron gas (jellium). It is then important to develop a suitable form for Fxc. More

thorough discussions of LDA and GGA can be found elsewhere56–58.

3.2. Pseudopotentials

Generally, the many-electron wave-function in solids is complex and difficult to

represent. The wave-function Ψn(x) from the Kohn-Sham equation needs to be

represented in the form of a known basis set φα(x), i.e.

Ψn(x) =
∑
α

cnαφα(x).

This representation is only possible for any arbitrary Ψn(x) if the basis set φα(x)

is complete. A simple idea would be to use atomic orbitals. Unfortunately, it is in
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practice impossible to make these sets complete. Another possibility is to use wave-

functions of free electrons as basis set, i.e. plane waves. But, wave-functions near

the nucleus are by far not similar to free electrons and hence, their representation

would require tremendously many plane-waves.

However, in many materials, valence electrons behave like nearly free electrons

suggesting that interaction between valence electrons and atomic cores is often weak.

As the band structure of any solid is completely determined by the electron scatter-

ing properties of the atoms, it is possible to construct new potentials representing

the atoms in such a way, that the scattering is equal to the original potential. More

precisely, it is assumed that the core orbitals are the same as in free atoms and only

valence orbitals are explicitly calculated. The interaction of valence electrons with

atomic cores (and core orbitals) can then be represented by a so-called pseudopoten-

tial. Pseudopotentials replace the true potential in such a way that the Kohn-Sham

eigenvalues remain unchanged, valence wave-functions are as smooth as possible and

states of lowest energy are valence states, not core states.

3.3. Plane-Wave Basis Sets

For computational convenience, DFT codes use periodic boundary conditions such

that the simulated cell is infinitely many times repeated in all directions. Therefore,

Kohn-Sham eigenfunctions obey Bloch’s theorem59 such that

Ψ(x) = u(x)ei(k·x)

where u(x + R) = u(x) is periodic with respect to the lattice vector R. Each

eigenfunction is associated with a wavevector k which need also to be sampled

sufficiently. Periodic functions can be represented by Fourier series

u(x) =
∑
G

cGe
iG·x

with G a reciprocal vector (periodic cells form a Bravais lattice). In practice, one

has to truncate the Fourier series at a cut-off energy

~G2

2m
< Ecut.
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3.4. K-Point Mesh

Dealing with Bloch waves (see previous section), one only needs to integrate periodic

functions over the first Brillouin-zone (a finite reciprocal space, instead of infinite

real space) of the investigated crystal in order to calculate its properties (e.g. charge

density, density of states, energy). To get the exact result, one would integrate over

the whole Brillouin-zone, i.e. at all k-points. In practice, however, computational

efficiency requires that only a special, finite mesh of k-points is used. This mesh

needs to be sufficiently dense in order to obtain accurate results. One such mesh was

proposed by Monkhorst and Pack60. This mesh is uniformly distributed through-

out the entire Brillouin-zone, with sampled k-points running along (parallel) the

reciprocal lattice vectors. This means, the Brillouin-zone is divided into smaller

cells of the same shape with their corners being the k-points of the sampling mesh.

These k-points then allow efficient integration by making use of the knowledge of

periodicity resulting in only small errors compared with the complete Brillouin-zone

integration. Thus, one has to choose the number of k-points used along all three

reciprocal lattice directions by testing the convergence (comparing energies between

calculations of various dense meshes). While other methods for choosing the k-point

mesh exist, I will only use the one described here as it is used in VASP.

3.5. Computational Details of Calculations Performed within

this Thesis

This section provides a summary of the computational details of the calculations

performed as part of this thesis. The results of these calculations are discussed in

part IV, after further technicalities and involved theory has been presented.

I performed density functional theory45,46 calculations with the ab initio total-

energy calculation package VASP (Vienna ab initio Simulation Package)61,62. I have

used atomic potentials generated with the projector augmented-wave method63,64

within the Local Density (LDA) as well as the Generalised Gradient Approximation

(GGA)56–58. A plane wave basis-set expansion with a cut-off energy of 1000 eV was

used for the representation of the valence electrons. Compared with a cut-off energy

of 1200 eV, migration enthalpies changed by less than 0.1 %. The characteristics of

the super-cells as well as the Monkhorst-Pack k-point mesh60 used in this study are

given in table 1. The comparison with a denser k-point sampling of the reciprocal

space (5×5×5 for periclase, 4×4×4 for perovskite and 5×5×5 for post-perovskite)

revealed a difference in the migration enthalpy of less than 0.1 %. Pressure was
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imposed by a constant volume approach.

All calculations have been performed in a static, fully relaxed crystal. In order

to ensure that there is only one negative frequency at the saddle point (see section

6.1), it is essential to find the saddle-point exactly—i.e., the crystal must be fully

relaxed and all atomic forces are relaxed to within a very small tolerance (< 10−6

eV/Å).

Table 1: Parameters for the DFT calculations of the lower mantle minerals.

Mineral Space Group Supercell # of atoms k-point mesh

Periclase cubic Fm3m 2× 2× 2 64 3× 3× 3
3× 3× 3 216 1× 1× 1

Perovskite orthorhombic Pbnm 2× 2× 1 80 2× 2× 2
2× 2× 2 160 1× 1× 1

Post-Perovskite orthorhombic Cmcm 3× 1× 1 60 2× 5× 5
3× 1× 2 120 2× 5× 2

Defect energetics are tightly linked with the cell-volume (as is evident from the

strong pressure dependence (see below)). It is, thus, important that experimental

and theoretical cell-volumes are equal (or at least similar). I have calculated the

imposed pressure on the supercell within GGA. In order to estimate the uncertainty

inherent to DFT I have compared GGA with LDA calculations performed at the

same cell-volume. In general I find that LDA produces slightly smaller values for the

migration enthalpy, by about 5 to 10%. Similarly, I find that the attempt frequency

is also about 5% lower when calculated with LDA than with GGA.

Migration enthalpies calculated with larger unit cells agree to within 10 % with

those calculated using the smaller cells of table 1. These changes of the energies of

the same states in different cell-sizes are not negligible. This suggests that there is

some self-interaction of the cell due to the periodic boundary conditions. While deal-

ing with a charged system, the additional energy of monopole-monopole interactions

will cancel out as only differences in energies are considered. However, especially

for saddle-point configurations and the activated intermediate states of the six jump

cycles (see also discussion below), it can be expected that multipoles are induced

whose interaction-energies cannot be corrected for as multipoles will vary for each

configuration. Thus, the supercells of table 1 are sufficiently large (as the error of

the energies in the larger supercell is probably less than 10 %), nevertheless, larger

supercells would still be desirable.

The limitation of computational power entailed not only a limitation of the super-
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cell size but also limited the number of required parameters to be calculated. More

precisely, calculating the 3N phonon frequencies for the attempt frequency (see be-

low) requires up to 3N electron density optimisations (depending on the symmetry

of the structure). I therefore only calculated the attempt frequencies in the small

supercells and, in the case of the six jump cycles, assumed that they are equal for the

equivalent jumps of different cycles. The effect of an error in the attempt frequency

on the absolute diffusion rate, however, is small compared to effect of the error made

in the migration enthalpy. I therefore used the migration enthalpies of the larger

supercell where possible and the attempt frequency of the smaller supercell. But

also the calculation of the exact migration enthalpy/localisation of the exact saddle

point is computationally expensive (see below for details).

As a result of the limited computational power, the covered pressure range is only

sampled scarcely. I thus made least square fits of a linear or quadratic polynomial

(as high as possible while still giving a unique solution) to my data to obtain values

of the migration enthalpy, attempt frequency and jump distances at intermediate

pressures. By this approach it is possible to obtain smooth diffusion coefficients at

any P-T-condition.
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Part III.

Simulating Solid State Diffusion

On the macroscopic level, Fick’s laws describe how diffusion is driven by a gradi-

ent in the chemical potential allowing accurate description of observations ignoring

its underlying atomic processes. The entire diffusion process is described by this

driving gradient and the so called diffusion coefficient. Random walk theory, on the

other hand, provides the atomistic description of this process and links this diffu-

sion coefficient to atomistic quantities that can be calculated with DFT. This section

shall review the theory of diffusion on the macro- and microscopic level. Alongside

the theory, I describe how diffusion constants can be obtained from first principle

calculations. Lengthier discussions of diffusion in solids can by found in e.g.65–69.

4. Diffusion through a Solid

Solid state diffusion is a complex process allowing atoms to perambulate a crystal.

This process and its complexity are depicted in figure 4. Diffusion in a solid makes

use of various pathways: diffusion along grain-boundaries can be fast, especially if a

fluid is present, cracks and (micro-)nano-pores and -tubes provide diffusion channels

inside crystal grains and finally, atoms can migrate through the grains themselves

via lattice diffusion. The question then is, which pathway is the most efficient

one and which one is rate limiting. Luckily for my concern, experiments35,38 on

minerals at shallow lower mantle conditions found that grain-boundary diffusion

is negligible compared with lattice diffusion. This reduces the problem to finding

the correct lattice diffusion mechanism and the according vacancy concentrations.

Lattice diffusion requires atoms to jump into nearby, unoccupied lattice or interstitial

sites or, e.g., two atoms swapping places at the same time (cycles), only to name

the simplest variations. Diffusion along dislocations (so-called pipe-diffusion) also

provides efficient pathways through the crystal lattice, but will be ignored as it

is beyond the scope of this work, and as my results will show, appears not to be

relevant.

Let us now consider vacancy diffusion, as it is often the dominating diffusion

mechanism and will allow to explain all experiments. In this process, ions migrate

through a crystal by jumping into nearby vacancies. Thus, consider a crystal with
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micro- and nano- 
pores and tubes, 
cracks

grainboundary 
diffusion

lattice diffusion

bulk diffusion

impurity-interstitial vacancy

self-interstitial
divacancy

dislocation

vacancy
cycles

Figure 4: Bulk diffusion pathways and mechanisms in a mineral aggregate
The aggregate (right) contains various phases (different colours). Diffu-
sion can occur along the grain boundaries, along cracks and (micro-)nano-
pores and -tubes and also through the lattice of the crystal grains (may
be anisotropic). Within the grain, diffusion takes place via various mech-
anisms such as vacancy and interstitial, complex cycles, divacancies and
along extended defects such as dislocations (pipe-diffusion). Moreover,
crystals contain impurities (different colours) that generally control the
defect concentrations

a single vacancy. In its equilibrium configuration, the crystal is fully relaxed and its

energy is at a minimum. If one waits long enough, thermal excitation will eventually

kick a nearby ion towards the vacancy. If the kick was strong enough, the ion

migrates towards the vacancy, surpasses the energy-barrier by passing a saddle-

point (the maximum energy along the migration path) and relaxes again down into

the site of the vacancy (see Figure 7). The migrating ion and the vacancy have

swapped their sites and the crystal is again at its equilibrium configuration. The

diffusion-rate is, hence, controlled by the number of vacancies and from how far and

how often the vacancy jumps.
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5. Theory of Diffusion

5.1. Macroscopic View: Fick’s Laws of Diffusion

On the macroscopic level, diffusion is described by Fick’s laws70,71 which is a contin-

uum description and purely based on phenomenology. One observes that a substance

moves from regions of high concentration to regions of low concentration. There-

fore, the driving force of the diffusion process is a gradient of a concentration, more

precisely of a chemical potential. While the latter is the correct driving force, the

concentration gradient is only a good approximation for the gradient in the chemical

potential in many simple systems. Fick’s first law describes steady state diffusion

and writes

Ji = −Di(T, P )∇ci (5.1)

where Ji is the diffusion flux, the amount of substance i that crosses a unit plane per

second, Di(T, P ) is the diffusion constant (also diffusivity; may depend on cj) and

ci the chemical potential of substance i. In the time dependent case, Fick’s second

law describes mass conservation and writes

∂φ

∂t
= D∆φ (5.2)

where ∆ is the Laplace-operator.

It is obvious that the diffusion constant Di completely characterises diffusion in

a given system (a given chemical potential). Thus, the diffusion coefficient needs to

be quantified in order to describe a system and to compare it with others. This can

either be done by experiments, or, as in this case, from theoretical calculations. To

this end, a better understanding of what the diffusion coefficient is and how one can

describe it on the atomistic level is needed.

5.2. Atomistic View: The Einstein-Smoluchowski Relation

On the microscopic level, diffusion is nothing but atoms moving around randomly

on the crystal lattice by many individual jumps - this is the so-called random-walk

theory. This view directly relates the diffusion coefficient to atomistic properties.

The atomic movement depends on how far the atoms can jump and at what rate.

It was Einstein72 and (independently) Smoluchowski73 who found at the beginning

of the last century that the important quantity is the mean square displacement and
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derived the now so-called Einstein-Smoluchowski relation

D =
〈R2〉
6τ

(5.3)

where 〈R2〉 denotes the mean square displacement and τ the time passed. The

pointy brackets denote the average over a large number of particles. On a crystal

lattice, there are only a few jump vectors such that we can write (with d being the

length projected onto, e.g., the x-axis)

〈R2〉 = 〈n〉d2,

where 〈n〉 is the average number of jumps. Now, the jump rate can be introduced

as

Γ =
〈n〉
Zτ

with the coordination number Z. Finally, the diffusion coefficient is related to the

jump distance and the rate at which these jumps occur:

D =
1

6
d2ZΓ. (5.4)

This is the so-called vacancy diffusion coefficient. While a vacancy will perform

a real random walk, (tracer) atoms will not. Diffusion in a crystal lattice is not

completely random, but correlated. This is because after an atom jumped into a

nearby vacancy, there is a non-vanishing chance reversing this jump, simply because

the vacancy is still there. The atom thus moves slower than expected from a real

random walk. While correlation factors for simple structures (such as SC, FCC,BCC,

diamond) have been calculated analytically, this is not possible in more complex

structures, such as the orthorhombic perovskite and post-perovskite and Monte-

Carlo methods have to be used (e.g. kinetic Monte-Carlo, see section 6.3). Moreover,

these calculations are further complicated by the fact that I found that silicon in

perovskite and magnesium and silicon in post-perovskite diffuse via complex six-

jump cycle mechanisms. Thus, such calculations have not been attempted in this

work because this correlation effect is generally small and reduces the diffusion

coefficient (5.4) by less than a factor of 1
2

(see table 2). Its effect on the absolute

diffusion rate in the orthorhombic structures will, therefore, be ignored in this study

as it is small compared with other unknowns of the investigated systems, namely
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Table 2: Correlation factors f for vacancy diffusion in cubic lattices (simple cubic
(SC) and face-centred cubic (FCC)) relevant for this study as well as in
the diamond and body-centred-cubic (BCC) lattice for comparison. Be
aware that the investigated MgSiO3-perovskite is orthorhombic such that
the values here can only be approximate.

Lattice f Example

SC 0.6531 Mg & Sia diffusion in perovskite
FCC 0.7815 Vacancy diffusion in periclase

O diffusion in perovskite
BCC 0.7272
diamond 0.5

aif it would migrate via direct jumps

vacancy-concentrations, temperature and pressures.

In this work, the main concern is lattice self-diffusion. As most of the time lattice

sites will be occupied such that atoms cannot move, the above expression for the

vacancy diffusion coefficient, describes how a single vacancy would diffuse within

the crystal. The atomic diffusion is thus reduced and controlled by the vacancy

concentration Nv and self-diffusion coefficient is defined as:

D =
Z

6
d2NvΓ. (5.5)

While d is a (known) property of the investigated crystal lattice, there are now two

parameters left that still need to be further characterised. This will be done in the

next two sections, where first the theory behind the jump rate Γ is discussed and

then how vacancies are formed.
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6. Calculating the Vacancy Diffusion Coefficient

The first step in calculating the diffusion coefficient is to determine the jump rate

of the vacancy/atom. Vineyard-theory74 provides a simple expression for evaluating

frequency factors (rates) in solid state rate processes such as diffusion. It is based

upon classical absolute rate theory and its only inherent approximations are the

assumption of harmonicity of the saddle point and equilibrium position, negligence

of quantum effects and the assumption that the initial and saddle point configura-

tion are well defined states. This section shall just briefly reproduce its essential

expressions and show how it is calculated from first principles.

6.1. Vineyard Rate Theory

Ionic jump rates are characterised by the Gibbs free energy of migration ∆G which

is required to carry the ion from its initial equilibrium position to the saddle point,

and the so-called attempt-frequency, ν̃, which is associated with the ionic vibra-

tion towards the saddle point. The jump rate is then given by the Arrhenius-type

expression

Γ = ν̃e
−∆G
kT (6.1)

where ∆G is the Gibbs free energy of migration and ν̃ the attempt frequency. Even

though it is assumed that only one atom jumps at a time, it is a many-body process

as the jumping atom interacts with its surrounding atoms. In order to simplify

the calculations a couple of approximations need to be made. The first is that the

initial (before the jump) and the saddle-point states are well defined. It allows

the derivation of an analytical solution for the problem and is required by any

transition state theory. The second and third are that quantum effects are neglected

throughout and vibrations are assumed to be harmonic (which is why Vineyard

theory is also called harmonic transition state theory).

Let me first introduce some terminology in order to simplify the discussion of the

derivation of the jump rate. Consider a crystal with N atoms such that there are 3N

degrees of freedom, x1, x2, ..., x3N . Each degree is associated with a mass mj and one

introduces new coordinates yj =
√
mjxj. The potential energy of the crystal shall

be given by Φ(y1...y3N). In the 3N -dimensional configuration space of the crystal, Φ

has a minimum at a point A which is a vacancy surrounded by atoms in equilibrium

positions (see figure 5). I will call this configuration the initial ground state. As one

46



6.1. Vineyard Rate Theory

Figure 5: Schematics of Vineyard-theory (taken from74). Configuration space of
3N dimensions showing, schematically, hyper-surfaces of constant potential
energy (solid lines) and imaginary constraining hypersurface (dotted line).

atom swaps the site with the vacancy (makes a diffusing jump), a new minimum

in Φ is reached, located at B and I called it final ground state. It is now assumed

that these two ground states, A and B, are connected with a single minimum energy

pathway (following a valley) that has a single saddle-point P . The region around the

ground states can now be separated along a hyper-surface S which passes through

the saddle-point P and is perpendicular to the contours of constant Φ. On the ’left’

of S, representative points belong to the region of A, to the right to B. It is, thus,

assumed that any representative point moving from region A across S will end up

in region B. In thermal equilibrium there is now a definite number of representative

points QA in region A and a definite number I of them is crossing over S per second

and reach region B.

Let me now derive the expression for the atomic jump rate Γ. From the above

definitions, the atomic jump rate is given by

Γ =
I

QA

=
1

τ
(6.2)

where τ is the average lifetime of representative points in region A. Calculating Γ,

therefore, requires to calculate the number of representative points in region A as

well as how many leave A per second, I. The number of representative points in
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region A is given, in thermal equilibrium, by

QA =

∫
A

ρ0e
−Φ(v)

kT dv (6.3)

where ρ0 is a normalising constant and the integral is over region A. For the number

of representative points on I, one needs also to consider the hyper velocity V =

{ẏ1... ˙y3N}. The density of representative points on S at a certain point Y can be

written as

ρ(Y,V) = ρ1e
−Φ(Y )+V2/2

kT (6.4)

with the normalising constant

ρ1 = ρ0(2πkT )−
3N
2 .

Let an element of S at Y be represented by the vector dS = {dS1...dS3N}. The total

current of velocity crossing dS writes

dI = dS

∫
Vρ(Y,V)dV (6.5)

with dV = dẏ1...d ˙y3N integrated over all V with dS ·V > 0. The axes can now be

rotated such that, say, y1 is parallel to dS at Y such that dS = |dS| = dS1. After

evaluating Gaussian integrals, one finds

dI = ρ0

√
kT/2πe−

Φ(Y )
kT dS (6.6)

and therewith

I = ρ0

√
kT/2π

∫
S

e−
Φ(Y )
kT dS. (6.7)

integrating over the hyper-surface S. Now, equations (6.7) and (6.3) are inserted

into equation (6.2) yielding

Γ =

√
kT

2π

∫
S
e−

Φ
kT dS∫

A
e−

Φ
kT dv

. (6.8)

The atomic jump rate thus is a ratio of two configurational partition functions. In

principle, equation (6.8) accounts for all bodies and all degrees of freedom in the
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many-body space. The next step now is to approximate equation (6.8) by applying

the theory of small vibrations to the potential energy Φ. Near point A, the potential

energy Φ can be expanded in a Taylor series to second order:

Φ ≈ Φ(A) +
3N∑
j=1

1

2
(2πfj)

2q2
j (6.9)

where q1...q3N are the normal coordinates and f1...f3N are the normal frequencies for

vibrations about point A. The second term in equation (6.9) is a sum over energies

of harmonic oscillators with frequencies νj. Analogously, around the saddle point P

within the constraining surface S:

Φ ≈ Φ(A) +
3N−1∑
j=1

1

2
(2πf ′j)

2q′2j (6.10)

where q′1...q
′
3N are the normal coordinates and f ′1...f

′
3N−1 are the normal frequencies

for vibrations about point P with constraint S. There is exactly one normal fre-

quency and coordinate that is perpendicular to the hyper-surface S such that it does

not contribute to the potential energy and, therefore, there are only 3N − 1 terms

in the sum of equation (6.10). This frequency is easy to identify, because the crystal

is in an unstable configuration when the ion is at the saddle point. Displacing the

atom at the saddle point in the direction perpendicular to S gives rise to one nega-

tive frequency in the vibrational spectrum which is the one that is not used. Now,

the expression for Φ, equations (6.9) and (6.10), are inserted in equation (6.8) and

Gaussian integrals are evaluated (sums in the potential energy Φ become products

of exponential functions). This transforms equation (6.8) into

Γ =


3N∏
j=1

fj

3N−1∏
j=1

f ′j

 e
−(Φ(P )−Φ(A))

kT (6.11)
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This can be simply rewritten as

Γ =


3N∏
j=1

fj

3N−1∏
j=1

f ′j

 e
−∆H
kT (6.12)

Thermodynamics states that ∆G = ∆H−T∆S with ∆H and ∆S being the migra-

tion enthalpy and migration entropy respectively. Hence, one can rewrite equation

(6.1) as

Γ = ν̃e
∆S
k e

−∆H
kT (6.13)

such that the following identification in equation (6.12) can be made:
3N∏
j=1

fj

3N−1∏
j=1

f ′j

 = ν̃e
∆S
k . (6.14)

The attempt frequency thus is the product of the 3N normal frequencies of the

ground state over the product of the 3N − 1 normal frequencies of the saddle-point

configuration. If one assumes that all normal frequencies remain unchanged during

migration, then the attempt frequency reduces to the normal frequency of the atom

vibrating towards the saddle point.

How to calculate the migration enthalpy ∆H will be described in the next section.

Thus, it is herewith shown that all quantities of equation (6.12) can be evaluated

from the potential energy surface (at zero temperature) and entropic effects are

included through the harmonic approximation.

Corrections to Vineyard-Theory Vineyard-theory is not an exact theory. It as-

sumes that the energy surfaces at the saddle-point and at the equilibrium position

are perfectly harmonic. This does not have to be strictly true and one has then to

correct for the anharmonicity75. In figure 6, the solid line shows the anharmonicity

an oxygen atom encounters at the saddle point in MgO at 0 GPa in [001]-direction:

The solid line is a 4th-order polynomial in z2 fitted to the calculated energies for dif-

ferent displacements away from the saddle point (diamonds), while the dashed line
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is only its harmonic term. Clearly, the negligence of the higher order terms results

in a much flatter energy surface and hence the Vineyard-theory will overestimate

the attempt frequency. Therefore, the following reduction factor

R =

∫ r0
0
e−

E(r)
kT dr∫∞

0
e−

E′(r)
kT dr

(6.15)

should be applied to the product of the frequencies of saddle-point and equilibrium

configuration. Here, E(r) is the fitted 4th-order polynomial in z2 and E ′(r) is the

harmonic part. The limiting radius r0 of the integral in the numerator has to

be sufficiently large such that a further increase does not significantly increase the

integral and has not to be larger than the largest displacement for which calculations

have been performed. In many systems, departure from harmonicity is significant

only along one direction such that the above integrals become one-dimensional.

However, in my DFT calculations we find that anharmonicity is negligible (<1%

deviation, see figure 6).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

Relative Distance

E
ne

rg
y 

[e
V

]

Figure 6: Anharmonicity an oxygen atom encounters at the saddle point
in MgO at 0 GPa in 〈001〉-direction The solid line is a 4th-order poly-
nomial in z2 fitted to the calculated energies (in eV) for different displace-
ments (relative to cell-parameter) away from the saddle point (diamonds),
while the broken line is its harmonic term

Another idealization is that Vineyard-theory assumes that each jump is successful

— i.e., each ion jumping towards a vacancy will reach the vacancy once it has crossed

the saddle-point. Again, for real systems this is not the case as the jumping atom can

cross the saddle-point only to immediately return back to its initial state. This can
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6. Calculating the Vacancy Diffusion Coefficient

happen because the jump is a complex, dynamical many-body process (dynamical

correlation). Luckily, unsuccessful jumps are rare and are unlikely to exceed 10%

as has been shown by Flynn and Jacucci76. This is because the time after which

the system loses its memory of previous jumps (onset of randomization) is generally

much shorter than any vibrational period of any particle in the system.

6.1.1. Phonon Calculation

Lattice vibrations of crystals can be described as discrete vibrational modes of well

defined energy, frequency and wave-vector. Thus, these vibrations behave like par-

ticles (are so-called quasi-particles) and are called phonons. A thorough discussion

of phonons and their tremendous importance in solid state physics is beyond the

scope of the work but can be found in any standard solid state textbook (e.g.77,78).

The vibrational modes of a crystal, the phonons, determine many important prop-

erties of the crystal such as specific heat, sound velocity and infrared and Raman

absorption. They also provide information on the stability of a certain configura-

tion, e.g., low frequencies indicate a phase transformation or negative frequencies

originate in unstable configurations. Additionally, the phonon spectrum provides

a good approximation to free energies79. It is therefore, apparently, very useful to

calculate phonons in condensed matter systems. This section shall describe how

phonon spectra can be obtained from first principles.

At low temperatures, where the harmonic approximation is valid, the potential

energy of a crystal can be expanded around the equilibrium positions of the nuclei.

The linear term in this expansion is negligible and the potential energy writes as the

sum of the energy of the crystal when it is at equilibrium plus the quadratic term

from the expansion:

Eharm = Eeq +
1

2

∑
lsα,l′tβ

Φlsα,l′tβulsαul′tβ. (6.16)

Here, ulsα denotes the displacement of atom s in unit cell l along the Cartesian

component α and Φlsα,l′tβ is the force-constant matrix. The force constant matrix

is basically an assemblage of spring constants describing the interaction between all

atoms within the crystal: It describes the force Fl′t the atom l′t feels in direction β

when the atom ls is displaced by u in direction α. Mathematically, the force-constant
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6.1. Vineyard Rate Theory

matrix is therefore given by

Φlsα,l′tβ = −∂Fl
′tβ

∂ulsα
=

∂2Eharm
∂ulsα∂ul′tβ

. (6.17)

The dynamical matrix at wavevector q is then given by the Fourier-transform of

the force-constant matrix:

Dsα,tβ(q) =
1√
MsMt

∑
l

Φlsα,l′tβe
iq·(Rl′+τt−Rl−τs). (6.18)

Rl′ + τt stands for the equilibrium position of atom t in the primitive cell l. In

principle, the sum is over the infinite number of primitive cells in the crystal and

theoretically, the force-constant elements are non-zero for arbitrarily large separa-

tions. In practice, where only supercells and not infinite lattices are used, the cut-off

distance beyond which force-constant elements are neglected is the supercell border.

Additionally, the displacement of an atom in a supercell with periodic boundary

conditions displaces also all images of this atom. This results in the fact, that with

the supercell method, the dynamical matrix can only be calculated exactly at dis-

crete wavevectors q while in between these wavevectors, the values of the dynamical

matrix are only interpolations80. Ultimately, the phonon frequencies ωqs are the

eigenvalues of the dynamical matrix.

The force-constant matrix can be constructed by using equation (6.17) by different

methods. Either by a method called linear response method which uses density func-

tional perturbation theory (DFPT81–84) or the method of small displacements85,86.

In this work, the small displacement method as implemented in the program

PHON86 was used and I will therefore concentrate on technical details of this

method. However, most points are of general concern in any phonon calculation.

In the method of small displacements, the force-constant matrix is constructed by

displacing one atom at a time and calculating the forces acting on all other atoms

due to this displacement. Taking advantage of symmetries, even in defective sys-

tems, greatly decreases the number displacements and hence of DFT calculations

that have to be performed in order to construct the force-constant matrix of the

system. The force-constant matrix is invariant under the point-group symmetries of

the crystal.

The elements of a correct force-constant matrix fulfill three relations among each

other, the so-called sum rules79:
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1. Symmetric: Φlsα,l′tβ = Φl′tβ,lsα (partial differentiation is commutative in equa-

tion (6.17))

2. Newton’s third law: Φlsα,l′tβ = −
∑

l 6=l′,t 6=s Φlsα,l′tβ

3. from the previous two:
∑

l 6=l′,t 6=s Φlsα,l′tβ =
∑

l 6=l′,t6=s Φl′tβ,lsα

Errors in constructing the force-constant matrix arise from errors associated with

the force evaluation and will result in a violation of these sum-rules. Thus, these

rules generally have to be enforced in addition to the ones from the crystal symmetry

by a self consistent, iterative procedure.

There are several sources of errors in phonon-calculations: Firstly, there are the

errors one makes by using computational methods and the unavoidable obstacle of

using physical approximation. Obviously, some errors originate from the problem

that one needs to use a finite basis set for the representation of the electron wave-

functions as well as a finite k-point set. Interestingly, errors made due to the choice

of the exchange-correlation energy and pseudopotentials do not result in a violation

of the sum-rules. In a similar category falls the problem of computational rounding

and interpolation errors as the wavefunctions are only represented on a discrete grid.

Secondly, there are errors which are more specific to the system that is analysed.

They emerge because of the finite convergence (and size) of the structural param-

eters and potential anharmonicities in the crystal. Anharmonicities of the crystal

can disturb the point-group invariance of the force-constant matrix and the sym-

metry of the matrix with respect to the point group operations of the crystal has

to be enforced85. A problem inherent to the method of small displacements is the

choice of the amount of displacement. It is a compromise between generating large

enough forces throughout the supercell and remaining in the harmonic approxima-

tion. Especially if PBCs are used, also the size of the supercell is of concern because

self-interaction due to the displacement has to be avoided. I.e., the force-constant

matrix elements need to be fallen to a negligible value at the supercell boundary.

This can be a problem particularly in ionic materials where the displacement of ions

can introduce dipoles resulting in long-range interactions.

The last problem to be aware of also only arises in the small-displacement method.

This method ignores the non-analytical part of the dynamical matrix, resulting in

an error of the phonon-branches near the centre of the Brillouin-zone: the longitu-

dinal branch of the optical phonons (LO) is described as degenerate with the two

transversal optical (TO) phonon branches, i.e. the so-called LO-TO splitting is de-
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scribed incorrectly. Nevertheless, as thermodynamical properties of any crystal are

described accurately86 it is a valid method for my purposes.

Quasi-Harmonic Approximation With increasing temperature, the harmonic ap-

proximation in the phonon calculation becomes more and more inadequate. An-

harmonicity arises because atoms are not located in exactly harmonic minima and

because of phonon-phonon interaction. A simple way to partially correct the effects

of the former, which basically results in lattice expansion with increasing temper-

ature, is to make the frequencies volume dependent. This is the quasi-harmonic

approximation in which anharmonicity is considered as thermal expansion, while

phonon calculations are still performed in the harmonic approximation. All that

is required is an adequate equation of state V (P, T ) relating the volume V to the

pressure P and temperature T . While an increase in pressure suppresses anhar-

monicity, in contrast, an increase of the temperature will deteriorate the quality of

the approximation because phonon-phonon interactions will increase. It is known

that the quasi-harmonic approximation breaks down above 50-70% of the melting

temperature87,88.

6.2. Migration Enthalpies

The migration enthalpy ∆H is the energy difference between two crystal configura-

tions where in one the crystal is at equilibrium and in the other the migrating ion

is at the saddle-point:

∆Hmigration = Esaddlepoint − Eequilibrium. (6.19)

Figure 7 depicts the energy-variation of a migrating ion along its migration path and

how the maximum energy difference defines the migration enthalpy. This migration

enthalpy is also valid for increased temperatures as it has been found in experiments

that the migration enthalpy is almost temperature independent89 (linearity of plots

of log(D) to T−1), unless there is a change in the migration mechanism.

For systems with high symmetry (i.e., MgO), finding the saddle point is reason-

ably straightforward since it often lies on a line of symmetry. For lower symmetry

materials, such as perovskite, it is not obvious where the saddle point is. It is pos-

sible to use trial and error, or a grid searching method to find the saddle point, but

this is quite inefficient and inaccurate. The importance of this is exemplified by

recent calculations and experiments on MgSiO3 perovskite.
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6. Calculating the Vacancy Diffusion Coefficient

Figure 7: Definition of the migration enthalpy Left hand side: a magnesium ion
migrates in MgSiO3 perovskite from its initial to its final position by over-
coming a saddle-point. Right hand side: The energy barrier encountered
by the migrating ion as calculated with CI-NEB (see below). The saddle
point is at the maximum of the energy barrier and the energy difference
to the initial state defines the migration enthalpy ∆H

Empirical potential calculations90 on silicon diffusion in MgSiO3 perovskite had

estimated the migration enthalpy as being about 9 eV; this was much higher than

for oxygen and magnesium, and agreed with the idea that silicon was the slowest

diffusing species — and therefore rate limiting the rheology — in mantle perovskites.

However, a later experimental study found a significantly lower migration energy of

only 3.5 eV35. An identical value was also obtained by Dobson et al.41 but using

a different procedure. The calculations were repeated by Karki and Khanduja91,

but in this case using DFT to calculate the necessary energies. Their calculated

migration enthalpies for oxygen and magnesium agreed with experimental values,

but they also found a very high value for silicon of 8.33 eV (at room pressure). They

suggested, therefore, that silicon diffusion must occur via some sort of cooperative

mechanism involving oxygen vacancies. However, the reason is more prosaic than

that; both theoretical studies chose the wrong migration pathway. Figure 8 is a

contour map of computed migration enthalpies in a plane of possible saddle-points

for silicon diffusing along the 〈110〉 pathway at two different pressures (see92 for

details). The two minimum energy points shown are 3.58 eV and 3.52 eV and are

the most likely place through which the migrating atom would pass. The pathway

chosen by Wright and Price90 and Karki and Khanduja91 are not shown, but are

slightly higher on the Z-axis than the 3.52 eV (and 6.59 eV) point. Note that you

do not have to be very far from the minimum energy point for the apparent (and
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erroneous) migration energy to increase substantially. A better approach is to use

a method such as the Nudged-Elastic-Band; this is described next.

Figure 8: Contour maps of migration enthalpies for silicon diffusion in
MgSiO3 perovskite the direct jump along 〈110〉. Upper panel at 3.3
GPa and lower panel at 151.7 GPa. The calculated minima are marked
with black dots and labelled with their corresponding value. In calcu-
lations, a small deviation from the minimum energy migration pathway
(black dots) can result in a substantial increase of the migration enthalpy
shown

6.2.1. Climbing Image Nudged Elastic Band Method

Finding a saddle point means finding a maximum along a minimum energy path

(MEP) that takes the system from one potential energy minimum to another. At

any point on a MEP, the atoms are at a minimum of trajectories perpendicular to

the path and the force acting on the atoms is only pointing along the path. MEPs
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in crystals are migration pathways. Maxima on the MEP are saddle points on the

potential energy surface. A first order saddle point is a maximum in one direction

and a minimum in all other directions. Therefore, saddle point finding algorithms

only need to decide which degree of freedom should be maximized.

There are two possible situations: in the first, the initial and the final states are

known and finding a MEP is rather straight forward (to decide whether it is the

lowest energy path or not is still difficult) by the application of a nudged elastic

band (NEB)93. In the second, only the initial state is known and the task basically

becomes to navigate in high dimensional space which may be done by using the dimer

method94. In this work, however, we will only deal with the former case, because

the diffusion mechanisms are simply vacancies hopping between nearest neighbour

sites (which does not preclude fairly complex diffusion mechanisms as shown below).

The nudged elastic band (NEB) method is an efficient method in finding MEPs

if the initial and final state of a transition are known (see93 and references therein).

The MEP is found by constructing a set of images of the system (typically between

4-20). The addition of a spring interaction between adjacent images ensures conti-

nuity of the path. These springs mimic an elastic band. Band optimisation involves

minimisation of the forces acting on the images bringing the band to the MEP. It is

then essential to decompose the true forces and the spring forces into their compo-

nents perpendicular and along the path. Therewith, true forces will not affect the

distribution of the images along the band and spring forces will not interfere with

the convergence of the elastic band to the MEP (optimising the atomic positions).

A force projection, the so called nudging, will then ensure that only the perpendic-

ular component of the true force and the parallel component of the spring force is

included.

Consider an elastic band with N+1 images denoted by [R0,R1,R2, ...,RN] where

the end points R0 and RN are fixed and given by the optimised structures (energy

minima) corresponding to the initial and final state. The situation is depicted in

figure 9. The N − 1 intermediate images are adjusted by the algorithm. Generally,

a linear interpolation between the initial and final state yields a sufficiently good

starting guess for the intermediate images. The NEB force on image i is the sum

of the spring force along the local tangent and the true force perpendicular to the

local tangent:

FNEB
i = F

S‖
i + F⊥i . (6.20)
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Figure 9: The nudged elastic band method The NEB-force FNEB
i is the sum of

the spring force F
S‖
i , parallel to the local tangent τ̂i, and the force F⊥i from

the potential pointing perpendicular to the tangent. For completeness, the
unprojected force Fi is also shown (figure taken from95)

The true force is then given by

F⊥i = −∇E(Ri)
⊥ = −∇E(Ri) +∇E(Ri) · τ̂iτ̂i (6.21)

where E is the energy of the system (a function of all atomic coordinates) and τ̂i is

the normalised local tangent at image i. The spring force writes

F
S‖
i = k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂i (6.22)

where k is the spring constant. As long as all force constants between the images

are equal, the spacing between the images is equal as well. Originally, there were

often kinks between the images due to the choice of how τi has been approximated.

However, a better choice of τi
96 improves the smoothness of the band and therewith

its stability and efficiency (convergence). Finally, a force-based optimisation algo-

rithm is then used to move the images according to equation (6.20). A discussion

about the efficiency of several algorithms for NEB calculations is given by95.

In the method of the climbing image NEB (CI-NEB), the image with the highest

energy is pushed towards the saddle point, eventually finding the saddle point ex-

actly. While the forces acting on all other than the highest energy image are given
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by equation (6.20), the force acting on the highest energy is determined by

Fimax = −∇E(Rimax) + 2∇E(Rimax)|‖ (6.23)

= −∇E(Rimax) + 2∇E(Rimax) · τimaxτimax . (6.24)

Clearly, this image is not affected by the spring forces, but is moved by the full force

due to the potential with the component along the elastic band inverted.

In this work, the VASP implementation of CI-NEB available through the VASP

transition state theory tools (VTST) from http://theory.cm.utexas.edu/vtsttools/

has been used.

6.3. Kinetic Monte-Carlo: Simulating Diffusion

While Vineyard’s rate theory allows one to calculate the diffusion rate from single-

hop mechanisms (vacancy and interstitial), it is more difficult to obtain it for more

complex mechanisms such as cycles. Moreover, in the presence of impurities, vacan-

cies have several options to jump to with each having a different rate. In the former

case, the problem lies in finding the exact rate for an atom to diffuse if it has to

perform several hops before it is on its new lattice site. In the latter, the problem is

that it is not known how the overall system evolves diffusion-wise, if atoms can have

varying jump rates. A way to solve these problems is to use kinetic Monte-Carlo

(KMC) simulations which I describe by following Voter’s review97.

The advantage of this method is that it removes the time scale problem between

lattice/atomic vibrations and the jump rates that one encounters in molecular dy-

namics simulations. Jump rates are several orders of magnitude slower than atomic

vibrations and jumps are thus extremely rare. KMC simulations allow to separate

these two movements by only considering the slow jump rates between various states.

The various single jump rates are still calculated within Vineyard-theory. Once

all of them are known, the question is how to advance the system in time. First, we

decide which jump it is going to make and then how long the (e.g.) vacancy remained

on its current site. Assume the vacancy is on lattice site i and the pathways away

from this site have rate constants kij. From the latter an array s of partial sums

s(j) =

j∑
q

kij (6.25)

is created. This procedure is equivalent to assigning each jump rate a certain length
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Figure 10: Schematic illustration of the procedure for picking the reaction
pathway to advance the system to the next state in the stan-
dard KMC algorithm (a) Stack containing boxes, each with a length
proportional to the rate constant for its pathway. A random number r on
(0,1), multiplied by ktot, points to one box with the correct probability.
(b) In a computer code, this is achieved by comparing r · ktot to elements
in an array of partial sums (figure taken from97)

in an stack, as depicted in figure 10 (a).

Then a random number r ∈ (0, 1) is drawn and one goes through the array s(j)

stopping at the first j for which the factor s(j) > rktot (ktot =
∑

j kij, the total

escape rate from state i). This is the selected pathway and, as the length of each

s(j) varies according to the jump rate, each jump gets selected statistically as often

as its rate demands. This procedure is depicted in figure 10. Next, an exponentially

distributed random time

tdraw = − ln(r)

ktot
, (6.26)

is drawn with a new random r ∈ (0, 1) and the system clock is advanced by tdraw.

The system has now progressed into a new state and the algorithm starts again.

As always with Monte-Carlo, it is the long time average of the system that pro-

vides the correct answer to the system properties. Especially for diffusion it is thus

important to take the average over many random walks and over an extended time

period.
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7. Vacancy Formation and Concentration

The last unknown required to calculate absolute diffusion rates is the number of

vacancies, Nv. Estimating Nv is non-trivial. Vacancy concentrations can vary sig-

nificantly depending on the experimental conditions (i.e., pressure, temperature,

oxygen fugacity, impurity concentration, sample history, etc.). Vacancies in miner-

als or ionic crystals form out of two reasons: 1) temperature (minimising Gibbs free

energy, intrinsic) 2) impurities (maintaining charge neutrality, extrinsic). Estimat-

ing vacancy concentrations for minerals in the Earth’s mantle, however, is subject

to considerable uncertainty. This has to be kept in mind when applying results to

the Earth.

7.1. Extrinsic Defect Formation

Extrinsic vacancies form in order to compensate charges from impurity atoms. The

extrinsic vacancy concentration is thus determined by the concentration of impuri-

ties in the crystal. For instance, Fe3+ on a normal 2+ cation site could be charge

balanced by cation vacancies. Similarly, oxygen vacancies may be set by the con-

centration of 1+ ions. For well-characterized experimental samples, these can be

estimated reasonably accurately, and allows one to compare my calculated diffusion

rates directly with experimental measurements.

7.2. Intrinsic Defect Formation

Intrinsic vacancies are an inherent property of a crystal and an unavoidable prod-

uct of thermodynamics. It is well known that in thermodynamical equilibrium, the

Gibbs free energy G = H−TS has a minimum. Vacancy formation requires energy,

i.e., it increases the enthalpy H, but at the same time it also increases the entropy S

of the crystal. Therefore, at a finite temperature, vacancies will be generated until

the increase in the enthalpy cannot be compensated by the increase in entropy any

more. However, for most Earth materials, the formation energies of intrinsic vacan-

cies is large and their concentration is very small, even at very high temperatures

(as shown in figure 11).

The excess atoms (that left the vacancy) can either move to the surface of the

crystal or onto an interstitial site. In any case, it is important to maintain charge

neutrality. Thus, charged point defects have to occur in pairs or groups compensat-

ing the charges of each other: for each interstitial there is a corresponding vacancy
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MgSiO3-Post-Perovskite

Divacancies Periclase

Figure 11: Intrinsic vacancy concentrations in lower mantle minerals along
a geotherm98. The Schottky-formation energies were taken from91 for
perovskite and post-perovskite, and from this study for periclase

(Frenkel defect pair), and for each cation vacancy there is at least one anion vacancy

(Schottky defect).

Thermodynamics enables one to calculate the equilibrium vacancy concentration.

To form a vacancy in an otherwise perfect crystal, one needs to move an atom from

its initial position to the surface of the crystal (Schottky defect) or to an interstitial

site (Frenkel defect) in order to maintain the number of atoms and charge neutrality.

At the same time, the vacancy and the removed atom should not interact with each

other any more. The energy to move this atom to the surface/interstitial site is the

Gibbs free energy of formation

∆Gf = ∆Hf −∆SfT (7.1)

where ∆Hf and ∆Sf are the enthalpy and entropy of formation. It is then well

known, that the equilibrium concentration of vacancies Nv is given by

Nv = e−
∆Gf
kT (7.2)

= e
∆Sf
k e−

∆Hf
kT (7.3)

The question thus is how to calculate ∆G. Generally, one would like to know the

energetics of a single point defect in an otherwise perfect, infinite crystal. The
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energetics of more complex defects such as Schottky-defects can then be determined

by simple algebraic manipulations of the point defect quantities. As discussed above,

the quantity of interest is the Gibbs free energy of formation and its temperature

and pressure dependence. The Gibbs free energy of formation per defect can be

obtained as follows: for a Schottky defect GS
f of a material AaBb...Zz it is the sum

over all species of the differences in the Gibbs free energies of the perfect crystal

Gperfect and the crystal with a single vacancy of species i, Gi
vacancy plus the binding

energy of one unit formula EAaBb...Zz ,

GS
f =

∑
i niG

i
defect −Gperfect + EAaBb...Zz∑

i ni
. (7.4)

Here, i runs over the number of species and ni is the stoichiometric factor of species

i, i.e. ni = a, b, ...z. For self-interstitial defects, the Frenkel pair formation energy

GF
f writes

GF
f =

Ginterstitial +Gvacancy −Gperfect

2
. (7.5)

Now, intrinsic defect concentrations using equation (7.3) can be calculated from first

principles. However, first a couple of caveats and technical details when dealing with

defective systems need to be discussed.

7.3. Calculations of Defective Systems

Crystalline defects exert a strong distance dependent perturbation on the crystal.

Firstly, defects in crystals are often charged; this results in a Coulomb interaction

that decays slowly as 1/r (r being the distance). Neutral defects can also have a

slowly decaying electrostatic interaction, since they often possess strong dipole and

quadrupole moments. Secondly, the crystal lattice is distorted due to relaxation of

the ions around the defect (repelled or attracted depending on their charge relative to

the defect). It is assumed that this lattice distortion decays as 1/r3. When modelling

defects, especially highly charged vacancies, care has to be taken to ensure that these

long-range interactions are taken into account, and that they do not artificially bias

the results.

The classic approach is the Mott-Littleton Method99. In this method, the de-

fective crystal is divided into two separately treated spherical regions. The inner

region surrounds the defect and is treated accurately by calculating the relaxations
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and distortions on the atoms from interatomic forces. The outer region is treated less

accurately (as atoms only interact with the distortion and the charge of the defect

but not with each other), and is used to shield the charge and distortion caused by

the defect (polarization). This approach has only been used with (semi-)empirical

interatomic potentials. Codes such as GULP (https://www.ivec.org/gulp/;100,101)

make this a relatively routine procedure, subject to the accuracy of the interatomic-

potentials102–107.

Using DFT however, the most straightforward implementations make use of super-

cells and periodic boundary conditions (PBC). PBC mean that the system is re-

peated infinitely in space. This is especially useful for crystalline lattices since it is

then sufficient to calculate the properties of a single unit cell. Periodic boundary

conditions yield the same result as if the unit cell has been repeated infinitely in all

directions, forming a perfect, infinitely sized crystal. This approach, however, has

its drawbacks when it comes to defect calculations, since the defect is also repeated

infinitely along all directions. This leads to a very high concentration of defects, giv-

ing rise to spurious elastic interactions between neighbouring cells (mirror images of

the simulation). This interaction should scale as 1/L3, where L is the cell size. The

effect of the elastic interaction can be reduced by using sufficiently large supercells (a

large simulation unit built up from several unit cells), such that deformations at the

cell-boundaries are negligible. However, the relaxation is almost never completely

removed by the edge of the supercell, and the calculations contain a small artificial

contribution from this. Nevertheless, this contribution is small and the super-cell

method using DFT forces and energies has been used successfully on defect calcu-

lations in Earth materials such as olivine108,109, perovskite110,111, post-perovskite91

and periclase112.

An intermediate approach between using pure DFT with super-cells and Mott-

Littleton methods for defect calculations is the so-called embedded cluster method.

This again divides up space into regions: a central region, which treats the defect

at the quantum mechanical level, a surrounding region that is treated classically

via interatomic potentials, and a third outer region which is just a set a of fixed

point-charges. This method is implemented in codes such as GUESS113–115, and has

been used to study defects in olivine116–119.

As mentioned above, PBC in combination with defective systems has its own

difficulties. The introduction of charged point defects or defect clusters results in an

artificial electrostatic self-interaction between the supercell and all its images. This

electrostatic self-interaction can have rather large effects on the calculated defect
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7. Vacancy Formation and Concentration

energies. It is therefore worthwhile to briefly discuss how one can reduce the error

made on the defect energetics when using PBC.

Charged Supercell Correction Leslie and Gillan120 proposed a simple correction

to the self-interaction of charged point defects. A charged defect within a cell with

PBC is equivalent to a periodic array of charged defects. However, a periodically

repeating array of charged supercells does not have a well-defined energy. This

difficulty can be overcome by introducing a uniformly distributed background charge

(so-called jellium) compensating the charge of the supercell. The correction term is

hence given by the energy of the charged defect array embedded in the compensating

jellium. Assuming that the space between the defects is large enough, i.e., the

supercell is large enough; a macroscopic approximation can be made: the defect

array and the jellium are immersed in a structureless dielectric, whose dielectric

constant ε is equal to that of the perfect crystal. The energy of such an array, and

hence the correction term is given by

Earray = −1

2

αQ2

εL
(7.6)

where α is the appropriate Madelung constant, Q the charge of the defect and L

is the lattice parameter of the periodic array. Clearly, large charges result in larger

corrections. This correction requires the correct permittivity ε; this can now also be

calculated reasonably straightforwardly using the same ab initio methods as in the

defect calculation (e.g.,87,88). The charge-interaction correction can then be applied

completely self-consistently.

Neutral Supercell Correction: Dipole Correction Neutral or charged defect clus-

ters can also introduce large dipole-moments into the supercell, giving rise to similar

(although less strong) interactions as in the case of charged point defects discussed

in the previous paragraph. Makov and Payne121, and more thoroughly Kantorovich

and Tupitsyn122,123, showed that the correcting factor for dipole-dipole interaction

is given by

Edipole =
2πP2

3Vc
(7.7)

where P is the total dipole moment of the supercell and Vc is the supercell volume.

A general point121 on how to correct for self-interactions in supercells is, that if
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7.3. Calculations of Defective Systems

one is interested in the system properties at infinite supercell-size, the corresponding

limit can be achieved by extrapolation (calculate energies at various cell sizes). This

is reflected in the fact that the expressions for the energy corrections vanish at

infinite cell size.

With these corrections in hand, defect energies can be readily calculated using

the supercell approach. It is important to note that when calculating migration

enthalpies, the energy of the two similarly charged systems are subtracted from

each other. Since the charge-interaction corrections presented above are the same

for each system, they cancel. However, in fact the two systems have very different

ionic arrangements (one having two vacancies and a migrating ion at its saddle-point,

and the other with a single vacancy) and, therefore, they have different higher order

electrostatic moments. A small error in the migration energy is expected from this.
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8. Relating Diffusion to other Physical Properties

8. Relating Diffusion to other Physical Properties

8.1. Viscosity

It has been established from experiments that, generally, the creep rate ε̇ of a ma-

terial can be written as124

ε̇ = A
DSb

kT

(
b

G

)p (σ
S

)n
(8.1)

where D is the diffusion coefficient, S is the shear-modulus, b is the Burgers vector,

k is Boltzmann’s constant, T is temperature, G is the grain-size, σ is the shear-stress

and n, p and A are dimensionless constants. The viscosity is then given by

η =
σ

ε̇
(8.2)

The most common regimes are dislocation creep (power-law creep ), p = 0 and

n = 3− 5, and diffusion creep, p = 2 and n = 1 which shall be discussed next.

8.1.1. Diffusion Creep

The absence of seismic anisotropy in the lower mantle, small grain size125, and low

stresses, all argue for diffusion creep being the dominant creep mechanism in the

lower mantle126. Moreover, viscosity models from glacial rebound indicate linear

rheology for most of the mantle, again consistent with diffusion creep.

If a material deforms via diffusion creep, vacancies are formed and moved in such

a way that the crystal can yield to the imposed force (shown in figure 12). Consider

a crystal onto which a normal stress is applied as shown in figure 12. This results in

there being a higher chemical potential at the highly stressed surfaces than at the

non-stressed surfaces and a consequent diffusive flux of matter down the chemical

potential gradient. This is the mechanism described by the Nabarro-Herring127

equation for pure shear:

η =
G2kT

αDeffΩ
(8.3)

where G is the characteristic grain-size, α is a geometrical factor (40/3 or 16/3 with

or without grain boundary sliding respectively), Ω is the molecular volume and the
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Figure S****-1 A segment of polycrystal deforming by lattice diffusion in the pure shear 
geometry. Surfaces marked with + have higher stress and hence higher chemical 
potential. Surfaces marked ‘-’ have lower stress and chemical potential. Mass flux 
occurs along the chemical potential gradients as indicated by the curved arrows.

Figure 12: A segment of polycrystal deforming by lattice diffusion in the
pure shear geometry Surfaces marked with + have higher stress and
hence higher chemical potential. Surfaces marked ‘-’ have lower stress
and chemical potential. Mass flux occurs along the chemical potential
gradients as indicated by the curved arrows

effective diffusion coefficient is given by128

Deff =

(∑
i
νi
D̃i∑
i νi

)−1

. (8.4)

Here, νi is the stoichiometric factor and D̃i = Di + πδDgb
i /G is the effective

diffusion coefficient of species i. δ is the effective grain-boundary width, Dgb
i is the

grain-boundary diffusion coefficient and its contribution to D̃i can be neglected for

grain-sizes > 10 µm in perovskite35 and > 500 µm in periclase38. Grain sizes in

the lower mantle have been estimated by Solomatov et al.125 to be between 0.1 - 1

mm, so we can neglect grain-boundary diffusion for the major chemical species (Mg,

Si and O). However, in other systems grain boundary diffusion may be significant,

which is then called Coble creep124.

Herring127 also derived an equation for the effective viscosity of a material deform-

ing by lattice diffusion in simple shear, which differs from the pure shear equation by

a numerical factor of 5/2. In both cases for isotropic, or nearly isotropic, materials

the chemical potential gradients, which are perpendicular to the surfaces near the

surface result in a diffusive flux which bends through the crystal and the effective

viscosity is, therefore a convolution of the diffusivities in different directions and of

the grain shape.
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8. Relating Diffusion to other Physical Properties

8.1.2. Dislocation Creep

Dislocation creep is a power-law function of shear-stress and leads to strong lattice

preferred orientation at large strains. In contrast with diffusion creep, this defor-

mation mechanism is grain-size independent. In the high-temperature case relevant

in the lower mantle, creep is accommodated by climb-assisted dislocation migration

where the rate-limiting step is the transport of matter as unit cells are added to, or

removed from, the climbing dislocation half-plane. The dislocation-climb process is

shown in figure 13. This is in turn rate-limited by the fastest diffusion direction of

the slowest diffusing species. As evident from figure 13, dislocations act as sources

and sinks of vacancies.

1. 2. 3. 4.

Figure 13: Dislocation Climb 1.: Initial configuration with a vacancy approach-
ing the dislocation, marked with ⊥. 2. and 3.: The vacancy further ap-
proaches the dislocation. 4.: The dislocation has climbed by one atomic
row

It can be seen from equation (8.1) that the parameters controlling the dislocation

creep rate are stress, dislocation density (similar to vacancy concentration in diffu-

sion creep) and diffusion rates. Thus, for a certain applied stress it can be simply

assumed that dislocation creep viscosity is proportional to diffusion creep viscosity.

8.1.3. Aggregate Viscosity

Flow laws for a mixture of two viscous phases have been developed by, e.g., Handy129

and Takeda130. They investigated two possibilities of how the two phases arrange

themselves: either the weaker phase is contained in isolated pockets within the

stronger phase (LBF: load-bearing framework), or the weaker phase forms an inter-

connected layer (IWL: interconnected weak layers). There is experimental evidence

for the two-phase system MgO-MgSiO3 perovskite to develop the interconnected lay-

ers (of the weaker MgO) under large shear strain deformation and to form isolated

pockets in the case of static annealing (see131 and references there in). The IWL

and LBF structure are two end-member situations: IWF gives the lower and LBF
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8.2. Ionic Conductivity

the upper bound for the viscosity of a two-phase mixture. In the LBF structure,

viscosity is greatly determined by the viscosity of the harder material. This is in

contrast with a system under large shear stress where thin, interconnected films of

the weaker phase form and greatly decrease the viscosity of the mixture.

8.2. Ionic Conductivity

An electric current can be carried in ionic crystals by moving the charged vacancies

in the crystal along/against the applied electric field (depending on the vacancy

charge). This process is called ionic conduction and is related to the mobility of

the vacancy / species that uses these vacancies, i.e. its diffusivity. More precisely,

the ionic conductivity σi of species i is related to its diffusion coefficient Di via the

Nernst-Einstein relation132:

σi =
q2n

kT
Di (8.5)

where q is the charge and n the density of the conducting species. The total ionic

conductivity is then the sum over all these partial conductivities. However, often

only one species dominates the ionic conductivity (as diffusion rates of various species

in the same crystal often differ by several orders of magnitudes).
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Part IV.

Diffusion in the Lower Mantle

The following results have been published in Physics and Chemistry of Minerals92,

RiMG volume 71133, Nature134 and Earth and Planetary Science Letters135.

9. MgO: Periclase

Ferro-periclase (Fe,Mg)O is thought to be the second most abundant mineral in the

lower mantle accounting for about 20% of the volume (e.g.,136). The investigation

of the diffusional properties of its pure endmember periclase MgO is hence of major

importance for Earth Sciences. It crystallizes in the rock-salt structure even under

lower mantle conditions88,137. Periclase is also an important industrial material with

a wide range of applications and often serves as a prototype material for other ionic

oxides138.

MgO is a simple cubic oxide for which high-pressure and high-temperature exper-

imental diffusion measurements exist. Since it crystallises in the rock-salt structure,

the location of the saddle point is given trivially by symmetry and is located half-

way between the initial and final position. This is, however, only strictly true at

high pressures. I find at low pressures, in agreement with Vočadlo et al. (1995)139,

that the magnesium saddle-point bifurcates perpendicular to the jump trajectory.

But also these saddle-points can be readily found by offsetting from the half-way

position (a second-order saddle-point) and relaxing the migrating ion into the bi-

furcated first order saddle points (the lowering in energy is though negligible). In

contrast with Vočadlo et al. (1995)139, I have not found any bifurcation along the

oxygen jump trajectory. Thus, the CI-NEB method is not required for MgO. The

ease of finding the saddle point has meant that absolute diffusion rates in MgO

have been calculated within Vineyard-theory a number of times (e.g.,75,139,140). The

pre-exponential factors from the different studies agree to within about one order of

magnitude; some of this scatter can be attributed to different potentials and some

to different methods.
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9. MgO: Periclase

Table 3: Migration Enthalpies in MgO at 1 bar from experiments and theory (for
single vacancy diffusion). Method abbreviations are explained in appendix
VI.

Theory ∆HO [eV] ∆HMg [eV] Method (Code)

This Study 2.05 1.93 DFT (VASP) GGA
1.93 1.82 DFT (VASP) LDA

Ito and Toriumi141 2.23 2.09 MD
Gilbert et al.142 2.31 2.2 DFT (Plato) LDA
Karki and Khanduja112 2.42 2.26 DFT (PWscf) LDA
Kotomin and Popov138,143 2.5 2.43 Review (INDO) HF
Ita and Cohen144 1.97 1.7 MD
Vočadlo et al.139 2.003 1.985 LD (PARAPOCS)
De Vita et al.145 2.48 2.28 DFT (CETEP) LDA
Harding et al.146 - 2.1 ML (HADES, SHEOL)
Sangster and Stoneham75 - 2.26 ML (PLUTO)
Sangster and Rowell147 2.11 2.07 ML
Mackrodt and Stewart148 2.38 2.16 ML
Experiments

Yoo et al.149 3.24 ±0.13 -
Shirasaki and Hama150 2.42 -
Shirasaki and Yamamura151 2.61 -
Oishi and Kingery152 0.65 -
Mackwell et al.153 - 2.17 ±0.07 Mg-Fe interdiffusion
Holzapfel et al.39 - 2.64 ±0.17 Mg-Fe interdiffusion (8-23 GPa)
Yamazaki and Irifune11 - 2.34 ±0.33 Mg-Fe interdiffusion (7-35 GPa)
Yang and Flynn154 2.66 2.52 Ca-diffusion (2.33 eV this study)
Sempolinsky and Kingery155 - 2.28 ±0.21
Duclot and Departes156 - 2.2
Wuensch et al.157 - 2.76 ±0.08
Lindner and Parfitt158 - 3.44 ±0.13

Even more studies concentrated on the migration enthalpies and all obtained mi-

gration enthalpies of about 2 eV for both magnesium and oxygen, which is in agree-

ment with experiments. Some experimental and theoretical values of the migration

enthalpies are given in table 3 (which is not exhaustive) and attempt frequencies

are given in table 4.

Table 5 summarises calculated migration enthalpies in periclase at high pressures.

Ita and Cohen144,159 as well as Ito and Toriumi141 performed molecular dynamics

simulations using interatomic potentials to calculate the absolute diffusion rates in

MgO under lower mantle conditions. While both studies are in agreement with

the available experimental data (up to 35 GPa), they disagree with each other

at elevated pressures (above 60 GPa). Ita and Cohen144,159 observe a continuous

increase of the migration enthalpy with increasing pressure, while in contrast Ito

and Toriumi141 find that the migration enthalpy decreases after reaching a maximum
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Table 4: Attempt Frequencies in periclase for magnesium and oxygen in MgO for
the single jumps at 0 GPa.

Author Species ν [THz] νcorrected [THz]

This study Mg 12.12 10.92
O 13.82 11.4

Ita and Cohen144,159 Mg 5.2 -
O 5.2 -

Vocadlo et al.139 Mg 18.99 15.95
O 9.83 8.55

Harding et al.140 Mg 31.29 23.15
Sangster and Stoneham75 Mg 32.9 23
Experiments

Sempolinsky and Kingery155 Mg 210 ±80 18±775

around 50 GPa. The difference between their results could simply be linked to their

different interatomic potentials. My results agree with those of Ita and Cohen144,159.

Nevertheless, it should be noted that all three studies have an activation volume

that is in agreement with the available experimental data11,38,39 at pressures up to

35 GPa.

Table 5: Migration enthalpies of MgO at pressures P of the lower mantle. ∆HMgO

is the migration enthalpy for a divacancy (bound MgO vacancy pair; the
higher of the two barriers for magnesium and oxygen hops)

Author P [GPa ∆HMg[eV] ∆HO [eV] ∆HMgO [eV]

This Study 5.3 2.06 2.20 2.81
30.3 2.61 2.82 2.83
136.6 3.88 4.27 2.67

Karki and Khanduja112 20 3 2.9 -
50 3.3 3.15 -
150 4.3 3.95 -

Ito and Toriumi141 20 2.59 2.66 -
50 2.98 3.02 -
140 2.12 3.31 -

Ita and Cohen144,159 20 2.34 2.55 -
80 3.22 3.64 -
140 3.99 4.31 -

My results for MgO are shown in figures 14 and 15 and all relevant parameters are

collected in table 31. In order to compare my theoretical results with experiments,

an estimate of the vacancy concentration in the experiments must be made. The
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9. MgO: Periclase

Mg-Fe, Holzapfel et al., 2003

Mg-Fe, Yamazaki and Irifune, 2003
Mg, van Orman et  al., 2003
O, van Orman et al., 2003 20 ppm

100 ppm

7 %

7 %

1873 K

1773 K

2273 K

2273 K

Figure 14: Comparison of absolute diffusion rates with experiments My cal-
culated diffusion rates are shown as solid lines (upper limits LDA, lower
limits GGA; both at same cell-volume, pressure calculated from GGA),
with experiments as symbols. Percentages on the right hand-side indi-
cate the vacancy concentrations estimated from experimental conditions.
Diffusion in periclase at different pressures and temperatures11,38,39

Schottky-formation energy, ∆HS, and Frenkel-formation energy, ∆HF , have been

calculated several times over the last 30 years and are given in table 6 (the list

is not exhaustive). For the charged defect correction, I adopted the value of the

permittivity calculated by Oganov et al. (2003)88. Formation energies continuously

increase with pressure111.

My calculations and previous results find formation energies of Schottky and

Frenkel-pair defects to be between 6.45-7.7 eV and 10.35-15.2 eV respectively. The

equilibrium concentration of intrinsic magnesium vacancies is, therefore, extremely

small (see also figure 11). However, the presence of heterovalent impurities will re-

sult in the formation of extrinsic vacancies in order to maintain charge neutrality. In

fact, only a small concentration of impurities (much less than a few ppm at 2000 K)

is sufficient for the number of extrinsic magnesium-vacancies to greatly exceed the

number of intrinsic vacancies, and generally, the number of extrinsic magnesium-

vacancies is assumed to dominate the number of defects in MgO by several orders

of magnitude. It is possible, therefore, to constrain the experimental magnesium-

vacancy concentration from their measured impurity concentrations. As shown in
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YI2003: Mg-Fe, 14 GPa, extrinsic  10%
YI2003: Mg-Fe, 18 GPa, extrinsic  10%

H2003: Mg-Fe, 23 GPa, extrinsic 6 %
LP1957: Mg, 0 GPa, extrinsic 0.1 %

YF1994: Ca, 0 GPa, extrinsic 300 pmm
YF1996: Ca, 0 GPa, extrinsic 50 pmm

OK1960: O, 0 GPa, extrinsic 2 ppm

vO2003: O, 15, 16 & 25 GPa, extr. 20 ppm

vO2003: Mg, 15, 16 & 25 GPa, extr. 100 ppm

Y2002: O, 0 GPa
YF1996: O, 0 GPa,

YF1994: O,  0 GPa,

SH1973: O, 0 GPa, extrinsic 0.5 ppm,

O: intrinsic mono-vacancies 
(pure crystal)

O: intrinsic divacancies

O: intrinsic mono-vacancies with extrinsic Mg-vacancies

Figure 15: Comparison of my calculated diffusion rates in periclase with
experiments Lines are the results of my calculations using vacancy con-
centrations appropriate for the experiments. Empty symbols are magne-
sium (calcium) diffusion, filled symbols are for oxygen. In all experiments,
magnesium diffusion can be readily explained assuming extrinsic vacancy
hopping. YI2003: Yamazaki and Irifune (2003)11; H2003: Holzapfel et
al. (2003)39; LP1957: Linder and Parfitt (1957)158; YF1996, YF1994:
Yang and Flynn (1994, 1996)154,160; vO2003: van Orman et al. (2003)38;
OK1960: Oishi and Kingery (1960)152; SH1973: Shirasaki and Hama
(1973)150; Y2002: Yoo et al. (2002)149. The lowest oxygen diffusion
data is not explained by theory: free oxygen vacancies are expected to
be suppressed by extrinsic magnesium vacancies (for YF1994 &YF1996,
they are constrained via Ca-diffusion data) resulting in the dotted line.
Intrinsically formed divacancies are at least a magnitude too low (dash-
dotted line). Intrinsically formed oxygen (mono-)vacancies could explain
the Yang and Flynn data (dashed line) if no impurities (an extrinsic mag-
nesium vacancy below 10−8) are around for suppression (which is not the
case)
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9. MgO: Periclase

Table 6: Theoretical Schottky ES, Frenkel EF and divacancy ED (bound MgO va-
cancy pair) formation energies in MgO at 0 GPa

Author ES [eV] EF [eV] ED [eV] Method

This Study 6.45 14.21 (O) 3.88 DFT GGA
Gilbert et al.142 5.97 10.35 (Mg) - DFT LDA

- 12.17 (O) -
Karki and Khanduja112 6.83 - - DFT LDA
Alfe and Gillen161 6.76 ±0.2 - - QMC

7.5 ±0.53 - - DMC
6.99 - - DFT LDA

Ita and Cohen144,159 6.48 - 4.92 MD
De Vita et al.145 6.88 - - DFT LDA
Jacobs and Vernon162 7.7 12.4 (Mg) -

- 11.6 (O) -
Mackrodt89 7.66 - - ML
Sangster and Rowell147 7.72 - - MD
Mackrodt and Stewart148 7.5 11.9 (Mg) 4.95 ML

- 15.2 (O) -

figure 15, magnesium diffusion in MgO can readily be explained by my results using

reasonable vacancy concentrations.

The experiments on oxygen diffusion are more difficult to explain than for mag-

nesium. First of all oxygen diffusion is significantly slower than magnesium, and

secondly, the different studies produce different slopes. The slowness is mostly due

to the low concentration of oxygen vacancies in the experimental sample. The dif-

ferent slopes suggest that different mechanisms of migration and of intrinsic vacancy

formation are at work. Some experiments have been thought to be in the intrinsic

regime, where the measured activation energy also contains an activation energy

of vacancy formation as well as migration (high slopes), and some are in the ex-

trinsic regime, and so the measured activation energy is the migration energy only

(low slopes). However, my results suggest that it cannot be intrinsic diffusion that

is responsible for the higher slopes, but another, yet unknown, extrinsic diffusion

mechanism.

The experiments of Oishi and Kingery (1960)152 as well as of Shirasaki and Hama

(1973)150 are easiest to explain. They were performed on relatively impure samples,

and the measured diffusion was assumed to be in the extrinsic regime. Plotted

on the figure 15 are my absolute diffusion rates, assuming an extrinsic vacancy

concentration of about 2 ppm and 0.5 ppm respectively. These fit the experimental
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data well.

The experiments of Yang and Flynn (1994, 1996)154,160 are not as easy to interpret.

The dashed line is my prediction for oxygen diffusion assuming the oxygen vacan-

cies are being formed intrinsically. The concentration of oxygen and magnesium

vacancies is given by (Schottky-equilibrium)

CVOCVMg
= e−

∆HS
kT (9.1)

where, for no extrinsic vacancies, CVO = NVO/N and CVMg
= NVMg

/N are the oxy-

gen and magnesium vacancy concentrations respectively. Assuming the oxygen and

magnesium vacancies are charge balancing each other, then the diffusion coefficient

is given as

D = NV
Z

6
a2νe−

∆HM
kT = N

Z

6
a2νe−

∆HS/2+∆HM
kT (9.2)

where the defect formation enthalpy, ∆HS, the migration enthalpy, ∆HM , and the

effective jump frequency, ν, are all calculated from first principles. Although this fits

the experimental data well, the good fit is, in fact, fortuitous. Yang and Flynn also

measured Ca diffusion in the same MgO samples. These are also shown on figure 15,

and are very well described by an extrinsic vacancy diffusion mechanism (i.e. the

slope is just the migration enthalpy), with an extrinsic cation vacancy concentration

of about 50 to 300 ppm. The problem is that in samples with significant extrinsic

concentrations of one of the Schottky pairs, equation 9.2 above shows that the

concentration of the other vacancy is proportionally reduced. For CVMg
of a few

10s of ppm, CVO is reduced to a tiny amount, and there are simply not enough

oxygen vacancies to produce the diffusion coefficients shown in figure 15. The oxygen

diffusion coefficients for a sample containing 50 ppm magnesium vacancies is shown

in figure 15 (dotted line); it is many orders of magnitude too slow.

This problem with rationalising the cation and anion diffusion results simulta-

neously was realised by Yang and Flynn, and they suggested that their diffusion

experiments were actually measuring the diffusion of bound MgO vacancy pairs (so-

called divacancies). The concentration of MgO divacancies is given, for the intrinsic

case, by

CVMgO
= e−

∆HS+∆HB
kT (9.3)

where ∆HB is the energy of binding the two vacancies together (which is negative
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9. MgO: Periclase

since they are opposite charge and, therefore, attractive). To calculate the mobility

of the bound pair, I have calculated the migration enthalpies and frequency factors

for the bound vacancies individually, and assumed that the slowest species limits

the diffusion of the bound pair (see tables 2, 3 and 4). The binding energy is about

-2.6 eV and the effective migration energy for the slowest vacancy is 2.8 eV. My

theoretical absolute diffusion rates of the divacancies is shown in figure 4 (dashed-

dot lines); they too are much slower than measured in experiments. To date, I am

unable to constrain the oxygen diffusion mechanism for the experiments of Yang

and Flynn154,160.

The recent measurement of oxygen diffusion by Yoo et al. (2002)149, revealed yet

another activation energy, and much higher rates than the previous experiments.

They suggest tentatively that their measured diffusion rates are actually for inter-

stitial oxygen, although they acknowledge that these are unlikely to be in significant

concentrations in MgO. Again, I have tested this by calculating the migration en-

thalpy for the oxygen interstitial and its formation energy. Interestingly, the migra-

tion energy for the interstitial is low: 0.7 eV. However, the formation enthalpy is, as

expected, very large ( 7 eV; half the Frenkel defect formation energy). Therefore,

it is concluded that there is not a significant concentration of oxygen interstitials

in MgO. What the diffusion mechanism for the experiments of Yoo et al.149 is, also

remains unclear.

Further complicating the assessment of the oxygen vacancy concentration and

oxygen diffusion mechanism is the experimental finding that oxygen diffusion along

dislocations (pipe-diffusion) has a similar activation energy163,164 as mono-vacancy

diffusion. This has likely been observed by Yang and Flynn (1994, 1996)154,160 (and

maybe also by Yoo et al. 2002149) in their low temperature data of oxygen diffusion.

At the same time, this might suggest that even the data of Oishi and Kingery

(1960)152 as well as of Shirasaki and Hama (1973)150 represents pipe-diffusion instead

of extrinsic oxygen diffusion as was assumed here.

Although it is not possible to explain all the experimental results for oxygen

diffusion in MgO, I am able to model successfully experiments where the migration

mechanism is simple and unambiguous. For instance I very accurately model the

direct vacancy hopping mechanism for cations when the vacancies are extrinsically

controlled. Similarly, I can accurately model oxygen diffusion when it is in the

extrinsic regime. In other words, there is good reason to expect that the migration

barriers and frequency factors calculated via DFT are accurate to within a few tenths

of an eV.
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9.1. Geophysical Implications: Viscosity of MgO

It turns out that the periclase remains much softer than perovskite when both deform

in diffusion creep (see also next section). This is because the relative diffusivities

along a geotherm are almost constant. Thus, if periclase is softer at shallow lower

mantle conditions, it will remain softer throughout the lower mantle. The possible

implications for the lower mantle of this finding will be discussed in section 12.1

where I address the effect of iron diffusion in periclase. I will thus only very briefly

discuss the various deformation regimes of periclase.

It has been found in experiments that in diffusion creep magnesium boundary

diffusion will limit creep at grain sizes below 0.5 mm and oxygen boundary diffusion

at grain sizes above 3 mm38,165. Oxygen volume diffusion would only contribute if

grain sizes were much bigger than 1 cm rendering it very unlikely to be important in

the lower mantle. Thus they predict a transition from diffusion creep to dislocation

creep in the deep lower mantle if shear stress exceeds 1-10 MPa for grain sizes

between 0.1-1 mm.

As evident from figure 15, oxygen diffuses much slower than magnesium. Oxygen

is, therefore, the rate-limiting species in dislocation creep. The experimental acti-

vation energy for dislocation creep is 3.4±0.05 eV166,167, with a stress exponent of

n=4. While dislocation can act as sources and sinks of vacancies, I do not know

how they affect the formation energy. Hence, it is not entirely clear how to reconcile

this experimental activation energy with my calculated migration enthalpies. For

simple vacancy-diffusion, this would mean that the Schottky formation energy is

drastically reduced between dislocations to about 1.2 eV. This is also the case for

divacancies, for which there would only be 0.6 eV left to form the vacancy-pairs.

At the same time, one could argue that the divacancy migration enthalpy is close

enough to the activation energy of the experimental dislocation creep, such that

extrinsic divacancies near dislocations could be controlling the deformation. If that

would be the case, periclase would weaken substantially with depth and increasing

temperature, as this mechanism has a negative activation volume. However, ulti-

mately, my results do not allow me to decide on what is the rate-limiting diffusion

species/mechanism because I cannot explain all the oxygen diffusion data.

81



10. MgSiO3 Perovskite

10. MgSiO3 Perovskite

MgSiO3 Perovskite is the dominant phase in the Earth’s lower mantle comprising

up to 80 % of its volume and it is thus of fundamental importance for understanding

the thermochemical evolution of the Earth (e.g.136). Computational studies of de-

fect formation energies using the Mott-Littleton method suggest that the dominant

defect in perovskite is the MgO partial Schottky defect90,168. Frenkel defects (in-

terstitials) are energetically unfavourable. The same result has been found by first

principles calculations91,111 and various defect formation energies calculated in this

study are collected in table 17 in the appendix. The high intrinsic formation energies

(7.4 eV—MgO partial Schottky; 20.8 eV—full Schottky at 0 GPa; rapidly increasing

with increasing pressure) imply that vacancy concentrations in experiments and in

the Earth’s mantle are controlled extrinsically, i.e., by impurity content (see also

figure 11).

10.1. Perovskite Structure

Magnesium silicate perovskite is distorted from the cubic type-structure by tilting

of the SiO6 octahedra as sketched in figure 16. The distortion results in a rotation

of the a- and b-axes by 45o from the cubic structure with a consequent increase of

the axial lengths of approximately
√

2. The orthorhombic c-axis is doubled from

the cubic axis, resulting in four formula units in the unit cell for the orthorhombic

structure. Silicon and magnesium nearest neighbours, and hence shortest hopping

distances, lie along the axial vectors in the pseudo-cubic setting and along [110] and

[001] in the orthorhombic setting (figure 16).

Figure 17 shows the structure of MgSiO3 perovskite. In this study the jumps to

nearest neighbours (i.e. along [110]) as well as jumps to next-nearest neighbours

in the x-y plane (i.e., along [100] and [010]) were considered. Furthermore, silicon

lies on (0.5,0,0.5) such that [110] and [-110] jumps are equivalent. For magnesium,

in contrast, they are not equivalent as the positions of the ions near the paths are

different due to the tilt of the SiO6 octahedra (see also figure 17), giving two pos-

sible diagonal migration pathways. For oxygen I have considered all of the possible

exchanges along the octahedron edges as well as the two inequivalent next-nearest

neighbour jumps along [001] (see figures 47 and 48 appendix VI for sketches of the

investigated migration paths).
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10.1. Perovskite Structure

Figure 16: Sketch of the magnesium silicate structure (a) view down c-axis;
(b) projection onto (110) of the orthorhombic cell. For clarity oxygen
atoms have been omitted and the SiO6 octahedra are indicated in grey.
The pseudocubic unit cell is shown using dotted lines and the orthorhom-
bic cell is shown in dot-dashed lines; pseudocubic (orthorhombic) axes
are labelled with (without) a tick) One silicon atom (small, green) and
one magnesium atom (large, white) are shown along with their nearest-
neighbour jumps (arrows)

Figure 17: MgSiO3 Perovskite Structure
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10.2. Oxygen and Magnesium Diffusion

I find that diffusion of both oxygen and magnesium in perovskite occur via simple

vacancy hopping. Parameters and sketches of the investigated migration paths can

be found in appendix VI. In table 7 values of migration enthalpies are compared

with those of previous theoretical studies and experiments.

Table 7: Migration enthalpies of all species in MgSiO3 perovskite from experiments
and theory. Values are averages over the migration enthalpies of all dif-
ferent jumps (8 for oxygen, 3 for magnesium). For silicon the value is the
maximum energy of the barrier of the six jump cycle

Author P [GPa] ∆HMg [eV] ∆HSi [eV] ∆HO [eV] Method

This study 24 3.81 3.64 LDA 1.06 DFT GGA
140 6.43 5.98 LDA 2.23

Karki and Khanduja91 30 4.87 9.1 1.41 DFT LDA
120 7.71 10.48 2.57

Wright and Price90 0 4.57 9.2 0.96 ML
60 6.13 - -
125 7.43 10.32 -

Price et al.168 0 4.6 - 0.8 ML
Holzapfel et al.40 24 4.29±0.64 - - Mg-Fe interdiffusion
Dobson et al.41 25 - 3.6±0.76 -
Yamazaki et al.35 25 - 3.48±0.38 -
Dobson36 25 - - 1.35±0.2 Na-doped
Xu and McCammon37 25 - - 1.47 Al-bearing

Figure 18 shows the predicted diffusion rates plotted against those found ex-

perimentally. The upper and lower bounds are those found from LDA and GGA

respectively. In order to make this comparison, vacancy concentrations in the ex-

periments need to be estimated. For the oxygen diffusion experiments of Dobson36

this is relatively straightforward since he doped his sample with 0.6% Na in or-

der to extrinsically control oxygen vacancies. Since each oxygen vacancy is charge

balancing two Na+ ions, this results in 0.1% vacancies (per unit cell). At high tem-

peratures, a change in the conduction mechanism has been observed (probably from

oxygen ionic to intrinsic electronic) and this contribution was subtracted from the

experimental data in order to obtain the pure oxygen ionic conduction. Thereby

the predicted diffusion rates for oxygen are only slightly lower than those found by

Dobson36 but with a migration enthalpy almost exactly the same. Earlier studies of

the conductivity of perovskite37,169,170 contained iron and hence the electrical con-

ductivity is dominated by small-polaron electronic conduction. Nevertheless, at the

highest temperature the study of Xu et al.170 showed a contribution from oxygen

ionic conduction. Xu and McCammon37 analysed this oxygen ionic component and

found an activation energy in good agreement with my migration enthalpy.
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Mg Perovskite
Si Perovskite

O Perovskite

Mg Periclase
O Periclase

0.1 %

100 ppm

20 ppm

0.2 %
0.1 %

Figure 18: Comparison of absolute diffusion rates with experiments My cal-
culated diffusion rates are shown as solid lines (upper limits LDA, lower
limits GGA; both at same cell-volume, pressure calculated from GGA),
with experiments as symbols. Percentages on the right hand-side indi-
cate the vacancy concentrations estimated from experimental conditions.
Diffusion in perovskite and diffusion in pure periclase (same as pure per-
iclase in figure 14) at 25 GPa at varying temperature35,36,40,41. Where
shown, the error bars represent the experimental error, otherwise, the
experimental uncertainties are smaller than the symbol

For the Mg-Fe exchange experiments of Holzapfel et al.40 the concentration of

magnesium vacancies is controlled by the amount of ferric iron. For an Al-free sys-

tem, the geochemical experiments of Lauterbach et al.171 and the expected oxygen

fugacity in the multi-anvil experiments can be used. Using the expression of Lauter-

bach et al.171, the extrinsic concentration of magnesium vacancies is estimated to

be about 0.2%. Using this concentration, the predictions for magnesium diffusion

are in good agreement with the experiments.
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10.3. Silicon Diffusion

Silicon diffusion in MgSiO3 perovskite, however, is complicated by the fact that I

find that silicon diffusion does not occur via a simple vacancy method, where silicon

jumps from one site directly into an adjacent vacancy, as with magnesium and

oxygen. The lowest migration enthalpy for the direct jump is 5.2 eV, substantially

higher than the values of 3.6 eV obtained experimentally. Rather, I find that

it occurs via a so-called six-jump cycle. This is common in some binary alloys

(e.g.,172–176). The six jump cycle is shown in figure 19 and the according energy

barrier in figure 20. In a normal vacancy hopping mechanism, the migrating ion

hops directly to an adjacent vacancy. But in the six-jump cycle, a magnesium ion

jumps into the silicon vacancy, making an antisite defect and a magnesium vacancy.

The adjacent silicon ion then jumps into the magnesium vacancy, leaving a new

silicon vacancy. The situation then repeats itself, with a magnesium jumping into

the new silicon vacancy, followed by the first antisite magnesium jumping into the

vacated magnesium site. The silicon ion then jumps into the silicon vacancy from

the magnesium site, and the cycle finishes with the magnesium on the silicon site

jumping into the adjacent magnesium vacancy. The silicon vacancy has jumped to

an adjacent site via six different intermediate hops, each with its own activation

enthalpy. It should be clear that the six-jump cycle is only the shortest and thus

simplest version of a whole class of more complex migration cycles. However, these

longer cycles have not been analysed as it is simply not possible to accommodate a

single cycle in supercells of the sizes used. In perovskite, due to the tilting of the

oxygen octahedra (being in an orthorhombic unit cell), there are twelve inequivalent

six-jump cycles for silicon migration along 〈110〉, two along 〈111〉, two along 〈100〉,
two along 〈010〉 and eight (plus four ’slow’ ones) along 〈001〉. Limited resources

only allowed to analyse some of these (shown in figures 49 and 50). Despite being

geometrically inequivalent, all (of the analysed) six-jump cycles have, within mutual

error, the same activation energy. It was thus assumed, when calculating the final

rate, that all six-jump cycles are equivalent to the fastest cycle.

To analyse this complex diffusion process, firstly, it has to be considered what the

effective activation energy of the six jumps is, and secondly, how many times the

cycle is broken by a vacancy hopping to a site that is not part of the cycle.

An analytical solution to the rate of the six-jump cycle can be obtained using the

approach of Arita et al.177. This method provides an effective jump-frequency, Γ, for

the complete cycle. Also, by calculating the jump-frequency at different tempera-
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10.3. Silicon Diffusion

Figure 19: A six jump cycle in perovskite Sketch of a six-jump cycle for silicon
diffusion along 〈110〉 in MgSiO3 perovskite. Darker atoms are farther
away from the observer. The initial position of the silicon vacancy is
marked with a square

tures, it is possible to obtain an apparent activation (or migration) enthalpy for the

cycle. It does, however, require the twelve individual jump-frequencies (obtained

from Vineyard theory) and their migration energies. These are shown in figure 20

for the fastest silicon cycle. The effective activation energy lies somewhere between

the migration energy of the single largest jump, and the energy difference between

the original site and the highest energy saddle point. As shown by Arita et al.177,

the former is appropriate at high temperatures, while the latter is appropriate at

low temperatures. The details depend on the particular system. I have used this ap-

proach for the cycle shown in figure 20 and find that at all reasonable temperatures,

the apparent migration energy, is equal to 3.6 eV. This is the same as the maximum

saddle point energy. The apparent migration enthalpy does decrease towards the

largest single jump (3.3 eV for the silicon jumping into the magnesium vacancy),

but only at very high temperatures. This is as expected since the maximum saddle-

point energy (3.6 eV) is very similar to the single largest jump. This migration

enthalpy agrees very well with the experimentally derived values of 3.61 eV and 3.5

eV obtained by Dobson et al.41 and Yamazaki et al.35 respectively. The entire cycle

for one silicon vacancy to migrate can be described as a single Arrhenius process

Dv = νl2e−
∆H
kT = 3.5 · 1012e−

3.6
kT . (10.1)

Figure 18 shows the available experimentally obtained diffusion coefficients of sil-

87



10. MgSiO3 Perovskite
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Figure 20: The energy barrier of the six-jump cycle for silicon diffusion
in perovskite The numbers are the attempt frequencies towards neigh-
bouring states as indicated by the arrows

icon compared to my results. In order to make such a comparison, a silicon vacancy

concentration of 0.2% had to be used. This seems unexpectedly high for silicon

vacancies, but it seems unavoidable that the experiments do indeed have very high

concentrations of silicon vacancies. Using a nearest neighbour jump distance of 2.4

Å, a representative jump frequency of 10 THz, and the experimentally determined

migration enthalpy of 3.6 eV, each of the experimental diffusion coefficients of Dob-

son et al.41 for the silicon vacancy concentration can be inverted. These range from

0.35% to 0.075%. A similar range is found from the data of Yamazaki et al.35. The

range is also in rough agreement with the defect calculations of Hirsch and Shank-

land178. So a vacancy concentration of about 0.2% is perfectly consistent with the

fast measured diffusion rates.

Although the experimental diffusion rates can be explained by the six-jump cycle,

there is an additional complication to be considered. At each step of the cycle there

is a possibility that one of the vacancies takes a hop to a site not in the cycle. This,

therefore, breaks the cycles until another vacancy comes along. For instance, the

first step in the cycle produces a magnesium vacancy. The activation barrier for it

to take the next step in the cycle is about 3.3 eV. However, the energy barrier for

it to hop to one of the other neighbouring magnesium sites instead of the silicon

site, is only between 3.6 and 4.1 eV (large and small supercell respectively); there is,

therefore, a non-negligible probability that it will take this jump. These processes

of breaking the cycle must be taken into account when calculating silicon diffusion
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coefficients.

This can be done using Kinetic Monte Carlo. Given a set of rate constants (diffu-

sion constants in this case), KMC is a way of propagating a dynamic system through

a possibly complex set of paths (or phase space). If one images a vacancy at a cer-

tain position, it may have a number of possible paths. Normally it will take the

one that is most probable (generally the lowest migration barrier), but sometimes it

will take another. Once it has moved on, it is faced with another set of possibilities

and associated probabilities. KMC provides a way of moving the system through

the phase space and determining the overall rate constant (or diffusion constant). I

could use this technique as an alternative to the analytic technique for obtaining the

effective diffusion coefficient for the full cycle, ignoring possible breaks in the cycle;

I do indeed get the same result using both methods. But KMC has to be used when

a diffusing species has a choice of paths.

Let me briefly look at the KMC-simulation in more detail. Being interested in how

many times the six-jump cycle is broken one not only needs the jump-frequencies

for the possible first jumps off the cycle but also the ones of the next jumps in

order to ensure that it does not jump back into the cycle. This rapidly becomes

an impossibly large number of calculations and the calculation was restricted to

the first two jumps off the cycle, after which it was assumed that the vacancy is

gone. This scheme is shown in figure 21. The rate of each jump in the KMC is

given by ν · e−E/(kT ) where E is the height of the energy barrier for the considered

jump and ν is its attempt frequency. States 0-6 are the states of the uninterrupted

six-jump cycle (using the forward and backward rates given tables 15 and 23, and

the breaking jumps from table t:kmcbreaks). States 7-9 are the states in which the

cycling vacancy has been filled with a neighbouring magnesium, breaking the cycle.

From these breaking states, it has been assumed that the vacancy has to perform

another jump onto state 10 (the same as a free vacancy can do on the magnesium

sublattice) to completely abort the cycle or it jumps back and completes the cycle.

The KMC simulation was restarted every time the cycle was completed (reached

state 6) or was broken (reached state 10). Then, by comparing the number of

completed with the total number of run simulations the percentage of cycles that

break was obtained.

My results show that the cycle is broken somewhere between about 1% and 20%

of the time, depending on the assumed attempt frequency of the breaking jumps

(and the used supercell-size). The cycle is mostly broken already at the second

step (at the largest single-jump barrier). The reason the cycle breaks can be easily
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Figure 21: Schematic diagram of the KMC simulations of the six-jump
cycles (see text for details)

understood: the silicon cycle starts with a silicon vacancy (charge -4), which is then

occupied by a magnesium ion forming a magnesium on a silicon site (charge -2) and

a magnesium vacancy (charge -2). The antisite and the magnesium vacancy have

the same charge sign, and hence repel each other electrostatically. The energy of

the reaction

MgxMg + V ′′′′Si = V ′′Mg +Mg′′Si (10.2)

is only -0.3 eV when they are adjacent to each other, however, it decreases to about

-2.2 eV (depending on the functional and the permittivity chosen for the charged

defect correction) when the magnesium antisite and the magnesium are allowed to

be infinitely separated. In other words, regardless of whether or not the cycle breaks,

there should only ever be a vanishingly small concentration of silicon vacancies to

begin with. This is completely at odds with the large number of vacancies required

by fast diffusion coefficients observed experimentally.

One way to overcome the electrostatic repulsion of antisite and magnesium va-

cancy is to neutralise one of them; the most obvious candidates to do this are

protons. This possibility was investigated by calculating several possible configu-

rations of hydrogen incorpration and vacancy formation reactions, however, none

was conclusive. The data is collected in table 18. For instance, the energy of the

following reaction was calculated:

MgxMg + 2H ′′Si = V ′′Mg + (Mg + 2H)xSi (10.3)

where, as with the previous reaction, the two species on the right-hand side are

infinitely apart. I find that this reaction is strongly endothermic, with an energy

of 2.44 eV. In other words, protons increase the concentration of silicon vacancies,

something that has been suggested for other silicates such as forsterite108,109. Obvi-
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ously the presence of protons may change the jump frequencies, but jumps into sites

inhabited with protons become substantially more complicated calculations and I

have not attempted these yet.

Also, the formation of vacancy-clusters with oxygen vacancies could stabilise sili-

con vacancies. It was found indeed that in the presence of two oxygen vacancies, the

migration enthalpy can be lowered to about 3.4 eV at 25 GPa while stabilising the

silicon vacancy - because of forming a neutral defect cluster. The formation energy

is of the order 4.75 eV and thus too high to explain any experimental findings and

additionally, temperature and entropy will force this defect cluster to break up and

it cannot be expected to be present in perovskite.

At present, it is not possible to explain the high silicon diffusion rates seen ex-

perimentally in two independent studies as a six-jump cycle with about 0.2% silicon

vacancies stabilised by protons. The activation enthalpy of the direct jump is too

high. So far, appreciable amounts of water have not been experimentally verified in

perovskite, with some studies showing negligible water solubility179,180. Regardless

of whether it is water, or some other extrinsic mechanism, the experiments are only

consistent with high concentrations of silicon vacancies.

10.3.1. Other investigated silicon diffusion mechanisms

Previous studies90,91 on silicon migration barriers in perovskite found a decrease in

the migration enthalpy in the presence of an oxygen vacancy. However, for my direct

pathway92, the migration energy in the presence of a oxygen vacancy is increased

to about 6.2 eV. This finding is not surprising as an oxygen-vacancy has the same

charge-sign as the migrating silicon ion.

In many other silicates, silicon diffusion occurs via an interstitial mechanism and

migration enthalpy and pre-exponential factor are linearly correlated181 (compensa-

tion law). As observed by Béjina and Jaoul182, silicon diffusion in perovskite also

satisfies this compensation law and they therefore suggested that silicon in perovskite

diffuses via an interstitial mechanism. Indeed, a stable split interstitial configura-

tion was found in which two silicon interstitials are located on opposite faces of the

oxygen octahedron (slightly elevated above the centre of the triangle faces), around

a vacancy at the centre of the octahedron (shown in figure 22). Split interstitials

are very common in many materials and for various species (e.g. in forsterite107,119,

quartz183, various metals184 and semi-conductors185). However, my results indicate

that also this split-interstitial mechanism cannot explain the experimental findings
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Figure 22: Silicon split-interstitial configuration in MgSiO3 perovskite

as the formation energy of this state is about 10 eV at 24 GPa.

Finally, antisite migration was considered. The idea is that the cation sublattice

can be partially inverted, i.e., that magnesium ions occupy silicon vacancies and

silicon ions occupy magnesium vacancies. The intrinsic generation of such an antisite

pair, i.e., magnesium and silicon swap sites at the same time is energetically unlikely

(12 eV at 24 GPa). The formation energy of such a bound antisite-pair is, however,

only 3.1 eV (at 24 GPa) above the perfect crystal.

Silicon jumping onto magnesium vacancies and magnesium jumping onto silicon

vacancies are the energetically most favourable cation jumps (among the ones in-

vestigated). There are three mechanisms which make use of these antisites and

are energetically feasible: I) the direct jump to second nearest neighbour vacancies

in the presence of a magnesium vacancy, II) the antistructure bridge and III) the

six-jump cycle.

I In order to migrate silicon efficiently through the crystal by the direct mecha-

nism, magnesium vacancies need to be neighbouring silicon vacancies. Unsur-

prisingly, this is not the case as they carry the same charge and thus repel each

other.

II The antistructure bridge mechanism (also known in binary alloys, e.g.176) starts

with a silicon-vacancy plus a silicon-antisite atom. The antisite ion jumps into

the vacancy effectively changing the type of the vacancy and a nearby silicon

ion jumps from its silicon site onto the new magnesium vacancy creating again

an antisite plus a silicon vacancy. The analogous process works for magnesium
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antisites. While I can expect to have quite some inversion for silicon vacancies

(occupied with magnesium ions, formation energy -2.5 eV), there will be only

very few silicon atoms occupying magnesium vacancies (formation energy 8

eV). While this mechanism might well contribute to magnesium diffusion, the

resulting silicon diffusion rate would be much too slow compared with experi-

ments. One could also envisage a situation in which a magnesium and a silicon

swap their sites forming two neighbouring antisites allowing a new mechanism.

Such a pair would be electrostatically bound and could be moving via silicon

and magnesium vacancy sites in a corporate manner. However, such pairs are

rare as the formation energy is about 3.1 eV and the migration barrier is about

4.5 eV.

III The six jump cycle discussed above is the only mechanism I have found which

can explain the experiments.

10.4. Implications for the Lower Mantle

10.4.1. Ionic Conduction of Perovskite

Knowledge of the conductivity of the mantle minerals will allow to further constrain

the physical and chemical conditions by measuring changes in the global magnetic

field and calculating the Earth’s response function (e.g. Dobson and Brodholt186).

Xu and McCammon37 concluded from their experiments on perovskite that the

dominant electric conduction mechanism at high temperatures and high pressures

is ionic. They found that ionic conduction dominates over small polaron conduc-

tion (electron transfer between Fe2+ and Fe3+) at temperatures higher than 1500

K. This has also been found in previous studies169,187. However, Dobson36 observed

another change in conduction mechanism at temperatures around 1900 K. He sug-

gests that at low temperatures, extrinsic oxygen ionic conduction dominates, while

intrinsic electronic conduction sets in above 1900 K. Additionally, Brodholt110 found

theoretically that extrinsic oxygen defects are destroyed by pressure (at least in alu-

minous systems). It is therefore very likely, that there is a region in the shallow

lower mantle, where the temperature is between 1500-1900 K and oxygen vacancies

have not yet been removed by pressure, where oxygen ionic conduction in perovskite

is the dominant conduction mechanism.

I tested this assumption by calculating the oxygen ionic conductivity in perovskite

and comparing it with Earth’s conductivity models derived from geomagnetic trans-
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fer function calculations. A comparison with conductivity models derived from cal-

culations of Earth’s response function from magnetic field satellite data188 and from

European geomagnetic observatories189 is shown in figure 23. It shows that an

oxygen ionic conduction dominated layer in the shallow lower mantle is indeed in

agreement with these results. At the same time, my results demonstrate that mantle

conductivity in the lower mantle is not controlled by ionic conduction. Temperatures

of at least 5000 K are required to match my oxygen ionic conduction with Olsen’s189

data at the base of the lower mantle. Electromagnetic core–mantle coupling through

ionic conduction in perovskite can therefore not explain length of day (∆LOD) vari-

ations on decadal time scales. The ionic conduction of post-perovskite shall here be

foreclosed because this observation is to some extent obsolete as recent experiments

showed that conductivity in perovskite and post-perovskite is dominated by small

polaron conduction190. However, the ionic conduction in post-perovskite is at least

one order of magnitude slower than in perovskite.

10.4.2. Chemical Equilibrium in the Lower Mantle

The characteristic diffusion length LD is given by66 LD =
√

4Dt where t is a charac-

teristic time scale. The characteristic diffusion lengths for all species in the dominant

mantle minerals are given in table 8.

Table 8: Characteristic diffusion lengths for all species in the dominant mantle min-
erals for the time scale of the age of the Earth (4.5·109 yr). Values are
minima and maxima along a geotherm and used vacancy concentrations
are Nv=0.001

Mineral Species LEarthD [m]

Periclase Mg 20 - 110
O 10 - 70

Perovskite Mg 1
Si 4
O 250 - 650

Post-Perovskite Mg 20 - 50
(along 〈100〉) Si 90 - 270

O 60 - 130

Again, foreclosing results from post-perovskite, one can conclude that the mantle

is significantly heterogeneous in oxygen fugacity and cation composition. The slow

diffusivities of the cations in all these minerals imply that chemical heterogeneities

of the size of a few meters can persist in the lower mantle for several convection
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Figure 23: Conductivity of MgSiO3 perovskite (solid blue) and post-
perovskite (solid green) due to oxygen ionic conduction compared
with model conductivities derived from magnetic field satellite data188

and from European geomagnetic observatories189. The used vacancy con-
centrations are shown on the right hand side of the figure. The red and
orange rectangles indicate the spread of the computed conductivities from
different models between 24 and 30 GPa and between 120 and 135 GPa.
The oxygen vacancy concentration in perovskite has been estimated from
the experiments of Lauterbach et al.171 to be Nv = 1.5 %

cycles. Moreover, these slow diffusion rates suggest that there is essentially no

chemical interaction between the core and the mantle. The conclusions drawn by

Dobson et al.41 for the chemical equilibrium concerning perovskite remain valid:

Slab material will not reach redox equilibrium with the surrounding mantle during

subduction through the lower mantle as a maximum of 100 m can be homogenized

for oxygen and assimilated into the lower mantle within one cycle (108 yr). As

oxygen diffusion in post-perovskite is even slower than in perovskite, the width of

the reaction layer in D′′is actually decreased by the presence of post-perovskite.

Chemical exchange with the core would thus need to occur via grain-boundary

diffusion191 and chemical heterogeneities in the mantle could only be removed via

mechanical mixing (stretching and thinning) or grain boundary diffusion.
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10.4.3. Viscosity of Perovskite

I now consider the effect of my calculated diffusion coefficients on mantle rheology.

The absence of seismic anisotropy in the lower mantle, small grain size125, and low

stresses, all argue for diffusion creep being the dominant creep mechanism through

the majority of the lower mantle126. Moreover, viscosity models from glacial rebound

indicate linear rheology for most of the mantle, again consistent with diffusion creep.

I can, therefore, estimate the viscosity of the lower-mantle using the Nabarro-Herring

expression for diffusion creep (in the case of simple shear, this expression is multiplied

by a factor of 2/5)127. Grain sizes in the lower mantle have been estimated by

Solomatov et al.125 to be 0.1 - 1 mm, so one can neglect grain-boundary diffusion for

the major chemical species (Mg, Si and O)35,38. Estimates of lower mantle viscosity

from post-glacial rebound, geoid anomalies and convection-related observables of

between 1021 − 1024 Pa s7,192,193 are consistent with my results. My calculated

mantle viscosity also bounds the estimates from Mitrovica and Forte7 (Figure 26),

consistent with diffusion creep being the dominant mechanism in the lower mantle. It

is important to note that the quality of agreement can be improved as the viscosity

is strongly dependent on the geotherm, vacancy concentration and grain size. A

taste of the effect of the geotherm on the viscosity profile can be obtained, when

one compares the two figures of the perovskite-viscosity profile in figures 24 and 33

Figure 24: Calculated viscosity profile of the mantle with a composition
of 100 % MgSiO3 perovskite (solid blue) deforming in diffusion
creep (geotherm from194) Calculated viscosity profile of MgSiO3 per-
ovskite deforming in diffusion creep. Grain size G and vacancy concen-
tration Nv were varied such that G2/Nv = 0.01 − 0.1m2 for lower and
upper bounds respectively. Vacancy concentrations are assumed to be
fixed throughout the entire lower mantle. Superimposed are the results
from inversion modelling7.
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The phase transition from MgSiO3-perovskite to a CaIrO3-structured phase, so-

called post-perovskite, around 120 GPa has been discovered only recently31–33 and

is believed to be responsible for the D′′discontinuity observed in seismic waves. Its

structure is shown in figure 25. The post-perovskite phase is then stable up to

pressures of 1120 GPa where it dissociates into MgO and SiO2
195. Post-perovskite

is therefore believed to be a large phase in super Earths (7 Earth masses) or in

Saturn-like planets and diffusion coefficients have been calculated up to 500 GPa.

Figure 25: MgSiO3 Post-Perovskite Structure Two views of post-perovskite re-
vealing its layered structure

Again, the calculated high formation energy for Schottky defects (46.2 eV at 120

GPa91) indicate that vacancy concentrations will be controlled by impurities even

at the elevated temperatures at the core-mantle boundary (see also figure 11). As it

is not better known, I have assumed that the extrinsic vacancy concentrations are

the same in perovskite and post-perovskite when calculating the viscosity.

The agreement of the calculated diffusion rates in perovskite with the experiments

for all three ionic species, throughout the pressure and temperature range in which

they were measured (see figure 18) is excellent. This provides confidence for the

results on post-perovskite for which no data exist and so the current results are the

only predictions so far on the diffusion properties of this important mantle phase.
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11.1. Single Vacancy Jumps

I first investigated single vacancy jumps to nearest neighbour sites along each di-

rection. I find similar migration enthalpies as Karki and Khanduja91 for the direct

jumps they investigated using DFT within LDA. Parameters and sketches of the

investigated migration paths can be found in the appendix VI. I find, indeed, that

oxygen diffusion in post-perovskite occurs by single jumps along the octahedral

edges (and across the magnesium layers to non-connected octahedra). The rates

are similar along all directions resulting in fast, isotropic diffusion. The vacancy

diffusivities along a geotherm98 are shown in figure 26, and are compared to diffu-

sion rates in perovskite and MgO. Note that these are the vacancy diffusion rates

and, therefore, are independent of vacancy concentration. The true diffusion rates

will depend on the actual vacancy concentrations. As can be seen in figure 26,

oxygen vacancy diffusion in perovskite is clearly the fastest diffusing species of all.

Oxygen vacancy diffusion in post-perovskite is somewhat slower; oxygen diffusion

in periclase is slower again.

As perhaps expected from such a structurally anisotropic material, cation diffu-

sion in post-perovskite is extremely anisotropic, with diffusivities varying by several

orders of magnitude between the fastest direction 〈100〉 and slowest direction 〈010〉.
My results show that the direct jump along 〈010〉 would lead to diffusion coefficient

almost 20 orders of magnitudes below the one of the fast 〈100〉 direction (not shown

in figure 26). Thus, diffusion in post-perovskite occurs via simple direct vacancy

hopping only along 〈100〉 and 〈001〉, however, the diffusion rates of both silicon and

magnesium are much slower in the 〈001〉 direction, and more in line with that found

in perovskite. Thus, it is in fact not the slow diffusion across the layers that causes

the anisotropy (which is similar to the diffusion rates in perovskite), but the ex-

traordinarily fast diffusion within the layers parallel to 〈100〉. This is the direction

of edge-sharing SiO6-octahedra. Diffusion of silicon, oxygen and magnesium in the

〈100〉 direction in post-perovskite is similar to that of MgO, and several orders of

magnitude faster than the isotropic cation diffusion in perovskite.

11.2. Reducing the Anisotropy: Six-Jump Cycles

As discussed above, direct vacancy jumps along 〈010〉, the direction perpendicular to

the layers in post-perovskite, are energetically not feasible. Instead, I find that both

magnesium and silicon diffuse via a six-jump mechanism, similar to that of silicon

in perovskite. The six-jump-cycles result in much faster cation diffusion across the
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Perovskite Si isotropic

Perovskite Mg isotropic

Perovskite O isotropic

Periclase Mg isotropic

Periclase O isotropic

Mg <010>

Si <010>
Mg <001>

Si <001>

O isotropic
Si <100>

Mg <100>

Figure 26: Vacancy diffusion coefficients Vacancy-diffusion coefficients of peri-
clase, perovskite and post-perovskite along a geotherm98. Upper bounds,
LDA calculations;lower bounds, GGA calculations

octahedron-layers, and accelerates the diffusion rates along 〈010〉 to similar levels

as cation diffusion in perovskite (see figure 26). Although the six-jump-cycle allows

faster diffusion in the 〈010〉 direction than the direct jump, cation diffusion is still

extremely anisotropic in post-perovskite.

However, I find the same problem with maintaining silicon vacancies in post-

perovskite as with perovskite. In fact, the barrier of the vacancy jump that breaks

the silicon six-jump-cycle in post-perovskite is so low, that all cycles should break up

(see also discussion on KMC in section 10). Thus, in post-perovskite and perovskite,

silicon vacancies dissociate into a magnesium vacancy plus a magnesium on the

silicon site, unless they are stabilised by some neutralising defects. The magnesium

six-jump-cycle, in contrast, does not break up: start with a magnesium vacancy

(charge -2) which is occupied by a silicon ion forming an antisite (charge +2) and a

silicon vacancy (charge -4). Clearly, these defects will attract each other preventing

the cycle from breaking up.

At this point, it is interesting to note that the partial inversion of the cationic

sublattice (magnesium ions on the silicon sites) in post-perovskite could result in

a strong enhancement of the magnesium diffusion across the octahedron layers:
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11. MgSiO3 Post-Perovskite

The antisite bridge mechanism starts with a silicon (magnesium)-vacancy plus a

silicon (magnesium)-antisite atom. The antisite ion jumps into the vacancy effec-

tively changing the type of vacancy. To close this process, a silicon (magnesium)

ion jumps from its silicon (magnesium) site onto the new magnesium (silicon) va-

cancy creating again an antisite plus the silicon (magnesium) vacancy. Thereby

the silicon (magnesium)-vacancy is moved around. While one can expect to have

quite some inversion for silicon vacancies (occupied with magnesium ions), there will

probably be only very few silicon atoms occupying magnesium vacancies. Using this

antisite-bridge mechanism would render the magnesium diffusion in post-perovskite

essentially isotropic. Nevertheless, this enhancement would be proportional to the

total number of magnesium antisites and thus to the total number of (initial) silicon

vacancies which is entirely unknown in post-perovskite.

Since there are no experimental data on diffusion in post-perovskite, the current

calculated diffusion rates and the predicted anisotropy await experimental verifica-

tion. It is possible, for instance, that I have not thought of and investigated all

the possible diffusion pathways and mechanisms in post-perovskite. However, it

should be noted that these other pathways and mechanisms will only be relevant

if they result in faster diffusion rates than the current ones. One such mechanism,

the antisite-bridge, has been described above. Slower pathways are irrelevant. The

very fast diffusion seen in the [100] direction cannot, therefore, become slower. It

is possible, however, that the rates along other directions could be increased; this

would have the effect of reducing the anisotropic cation diffusion, but at the same

time, it would strongly increase the bulk isotropic diffusion rate, resulting in a very

fast creep rate (see below).

11.3. Implications for D” - The Viscosity of Post-Perovskite

11.3.1. Dislocation Creep - A Weak Post-Perovskite

It seems likely that the D′′ region is deforming in the dislocation creep regime.

The high stresses accumulated at the edges of convecting cells and the observed

seismic anisotropy in D′′ both argue for deformation by dislocation migration at

the base of the mantle. In the high-temperature case relevant to D′′, of climb-

assisted dislocation migration, the rate-limiting step is the transport of matter as

unit cells are added to, or removed from, the climbing dislocation half-plane. This is

in turn rate-limited by the fastest diffusion direction of the slowest diffusing species.

My results predict that for climb-assisted dislocation creep post-perovskite will be
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four orders of magnitude weaker than perovskite. This is supported by recent low-

pressure analogue experiments which showed post-perovskite was up to 50 times

weaker than perovskite in the CaIrO3 system196. I suggest, therefore, that post-

perovskite in D′′ will be significantly weaker than perovskite.

There are a number of implications of this weakening for the D′′ region. Recent

experiments34 have suggested that the transition from perovskite to post-perovskite

in natural compositions is not sharp and might, in fact, extend over the whole of

the lowermost 200 km of the lower mantle. Such a wide transition is inconsistent

with post-perovskite being responsible for the seismic discontinuities observed at

the top of D′′. If, however, post-perovskite is significantly weaker than perovskite

the system will show critical behaviour as the phase fraction of post-perovskite in-

creases sufficiently for it to form an interconnected network. At the critical phase

fraction, the rheology of the aggregate will switch from being perovskite dominated

to being dominated by post-perovskite. This implies that, while the phase fraction

might increase monotonically, once the critical phase fraction is reached there will

be a rapid weakening of the two-phase mixture and strain will partition preferen-

tially into the post-perovskite-dominated region. Critical behaviour of this type was

observed in rheological studies of CaIrO3 during transformation from perovskite to

post-perovskite196, with the bulk of the weakening occurring at approximately 30

% transformation. In D′′, this rapid weakening and strain partitioning will cause

the texture of the mixture to change from isotropic to anisotropic over a short dis-

tance due to the shear-induced lattice preferred orientation (LPO). Experiments on

analogue phases show that strong LPO can be generated in post-perovskite after

relatively small strains. Figure 27 shows the effect of rapid generation of LPO in a

gradually transforming mixture on the observed seismic velocity for a low angle of

incidence ray paths. Assuming that the critical phase fraction for post-perovskite-

dominated rheology is 40 % an increase in shear velocity of around 4 % is calculated

(after28), which is sufficient to explain the observed D′′ discontinuity. The rapid

development of LPO at the critical phase fraction might therefore be the cause of

the D′′ seismic discontinuity, even if the transformation from perovskite to post-

perovskite occurs over a wide depth range.

The broad region of phase coexistence suggested by34 is also inconsistent with a

lower D′′ reflector seen in some regions as being the back-transformation of post-

perovskite into perovskite27–29. I suggest, however, that the region immediately

above the core mantle boundary might be a region where diffusion creep dominates

due to: (1) the steep thermal gradients in the thermal boundary layer and (2) the
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Figure 27: Seismic velocity as a function of depth for a gradual transforma-
tion to post-perovskite, with an abrupt change in deformation
Panel (a); volume fraction of post-perovskite with depth (solid) and de-
gree of alignment (dashed). Panel (b); pictorial representation of the
phase fraction (red: perovskite, blue: post-perovskite, arrow represents
imposed deformation) and grain orientations. Panel (c); orientation of
B-planes and the seismic reflector (arrow) due to flow parallel to the core-
mantle boundary. Panel (d); geotherm98; For each point on the geotherm
an aggregate elastic tensor is constructed comprising perovskite and post-
perovskite in the modal proportions given by (a) from ab initio calculated
elasticities and gradients197–202)(see below for details of calculation). Pan-
els (e) and (f); P- and S-wave velocities that would be encountered by
teleseismic (epicentral distance = 60◦) PcP and ScS wave reflections with
45◦ angle incidence to the texture-boundary; this is similar to the signal
which has been measured for the lowermost mantle (e.g30)
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free slip condition imposed by the liquid outer core resulting in a reduction of the

shear stress immediately next to the CMB. A transition from dislocation creep to

diffusion creep at the very base of D′′ would result in a change in the crystallographic

texture across this deformation transition, possibly explaining the basal D′′ reflector.

In addition to providing an explanation for the observed D′′ seismic reflectors,

a weak post-perovskite has other implications for D′′. First of all it has been

shown that a weak D′′ strongly increases the heat flux from the core and affects

the geotherm203. If the viscosity is very low, small scale internal convection may

develop within D′′, further affecting heat flow from the core. The viscosity would

also change laterally as the proportion of perovskite to post-perovskite varies due to

lateral temperature gradients. This is supported by recent geoid modelling, which

requires colder regions of the deepest lower mantle to be weaker than hotter re-

gions204.

Seismic Velocity as a Function of Depth for Perovskite - Post-Perovskite Ag-

gregates Determining the effect a localisation of strain in post-perovskite might

have on seismic observations of the lowermost mantle requires an estimate of the

seismic velocities relevant to the techniques used to image them. The best estimates

available for the elastic properties of deep mantle phases come from molecular dy-

namics calculations (e.g.200). These supply single crystal properties for both forms

of MgSiO3 at specified points in pressure-temperature space. One can also employ

calculated pressure- and temperature-derivatives to extend the space over which the

interpolation is possible.

For the MgSiO3 perovskite elasticity the calculated tensors from Oganov et al.197

were used and extended by using the pressure derivatives calculated by Wentz-

covitch et al.201. For MgSiO3 post-perovskite the calculations of Stackhouse and

Brodholt198,200 were used. These are extended using the pressure derivatives from

Wentzcovitch et al.202. Between these points the values are interpolated following

the technique of Wookey et al.28. In this work, however, the interpolation is ex-

tended to also include all elastic constants of perovskite and post-perovskite giving

a single crystal elasticity as a function of temperature and pressure for both phases.

Isotropic versions of these tensors are computed using the projection method of

Browaeys and Chevrot205.

These are combined in a simple linear fashion with modal proportions according

to my mineralogical model (see figure 27 panel b). Perovskite is assumed to always

be isotropic. Post-perovskite LPO in the model anisotropy is approximated by using
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single crystal properties (with (010) oriented vertically206) diluted with the isotropic

velocities. So the final aggregate tensor is given by:

CAGG = fV RH(CPPV−DILUTE, vPPV , CPV−ISO, (1− vPPV )) (11.1)

where

CPPV−DILUTE = fV RH(CPPV , valigned, CPPV−ISO, (1− valigned)) (11.2)

and

CPV = CPV−ISO. (11.3)

CPV and CPPV are the interpolated elastic tensors for perovskite and post-perovskite

respectively. The −ISO and −DILUTE subscripts denote the isotropic and diluted

versions. vPPV is the volume fraction of post-perovskite of which valigned is assumed

to be aligned. Finally, fV RH refers to the Voigt-Reuss-Hill average, the method

employed for combining tensors (see, e.g., Mainprice (2007)207, for more details).

Thus, we have an aggregate tensor for the linear mixture of phases as a function of

temperature, pressure, and degree of alignment.This is evaluated at 10 km intervals

for the bottom 500 km of the mantle using the geotherm proposed by Stacey and

Davis98 to get elasticity as a function of height above the CMB. Since the model

is anisotropic over part of its depth range the seismic velocities are a function of

wave propagation direction (both in azimuth and inclination). Thus, the velocity

profile which might be inferred from a seismic experiment imaging such a model is

dependent on the geometry of the sources and receivers relative to the geometry

of the aligned post-perovskite. The profiles shown in figure 27 show the velocity

profile (calculated using the Kristoffel equation, see, e.g.199) to which imaging using

teleseismic P- and S-wave reflections at an epicentral distance of 60◦, and an azimuth

of 45◦ to the alignment direction of [100] would be sensitive. This shows a small

decrease in VP and a larger increase in VS as the strain boundary is crossed (and

the inverse at the base of the region). This is similar to the signal which has been

measured for parts of the lowermost mantle (e.g.30). The magnitude and sign of

the velocity perturbation associated with the strain boundary is strongly dependent

on the azimuth, and more weakly on the epicentral distance. This might be an

explanation for the observed variability in the D′′ seismic reflectivity signal (e.g.208).
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11.3.2. Anisotropic Diffusion-Creep Viscosity

The strong diffusion anisotropy in post-perovskite presents problems for predicting

its viscosity in lattice-diffusion creep. Let me thus first describe how to deform

a single grain in a polycrystal. Because of the large diffusion-anisotropy in post-

perovskite, matter will diffuse along the fastest direction for nearly all orientations

of the chemical potential gradient (only chemical potential gradients which are very

close to perpendicular to the fast diffusion direction will generate significant chemical

fluxes away from the fast diffusion direction).

This situation is represented graphically, for simple shear in a polycrystalline

material, in figure 28. A shear stress induces increased chemical potential at sur-

faces marked with ’+’ and reduced chemical potential at surfaces marked ’-’. First,

consider the special case where the fast direction is oriented parallel to the shear

direction (part (a) of the figure). Here chemical flux along the fast direction will

allow full relaxation of the stresses at the grain boundaries even though the chemical

potential gradients close to the surfaces are not parallel to the shear direction. Since

this is the fastest diffusing direction, the effective viscosity will be lowest when grains

are in this direction and the stresses will be relaxed at the grain boundaries with-

out need to rotate grains in this orientation. Grains in this special orientation will

therefore tend to remain in this orientation, but might experience passive rotations

imposed on them by neighbouring grains.

Consider now the general case where the fast direction is at some high angle to

the shear stress. In this case the strain cannot be accommodated by shear without

rotation and the grain will rotate. The mismatches at the grain-boundaries between

the rotating grain and the surrounding matrix will result in chemical potential gra-

dients which will mainly be relaxed by diffusion along the fast direction. However,

in this case the stresses cannot be entirely relaxed by diffusion in the fast direction

and further stress relaxation would require either grain-boundary diffusion, or lat-

tice diffusion in directions other than the fast direction. In this case, therefore the

effective viscosity will require some convolution of diffusivities the fast direction and

at least one other direction. This causes the effective viscosity for the general case

to be higher than for the special case described above. A similar process is seen for

systems deforming in dislocation creep where there are less than five independent

slip systems (e.g. olivine210).

The question now is whether textures can be generated in which the special case

applies and, if they can be generated and whether they would be preserved in dif-
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Figure 28: A segment of a polycrystalline material deforming by lattice dif-
fusion in simple shear with grain boundary sliding. (a) The shear
stress can be resolved into the principal stresses marked as bold arrows.
The crystal at the centre of the sketch has its a and c crystallographic
axes oriented as marked (a is the fast diffusion direction). The stresses
on the grain boundaries result in increased surface energies at M and P
and decreased surface energies at N and O. (b.i) The chemical potential
gradient at surfaces M and N (dotted arrows), and the a-c section of the
representation quadric of the diffusion tensor209, of the central grain are,
for clarity, drawn for the diffusivity along a being ten times the diffusivity
along c (In reality Da is ≈ 105 times faster than Dc for post-perovskite;
the a-c section of the quadric is drawn to scale for post-perovskite in
figure (b.ii)). The fluxes at M and N (jM and jN) are normal to the
tangents of the ellipsoid at −∇µM and −∇µN respectively. In post-
perovskite the flux is essentially parallel to the fast diffusion direction for
most orientations of the chemical potential gradient
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fusion creep. I would argue that, since grains in the special orientation are weaker

than grains in the general orientation, shear deformation can be accommodated

by grains in the special orientation with less grain rotation than required for the

general orientation. This would result in grains tending to rotate into the special

orientation. While the exact details of the mechanisms are not clear, there is grow-

ing evidence of lattice-preferred orientation being generated by diffusion creep in a

range of geological materials211–213. Even if a favourable texture could not be gen-

erated by diffusion creep it is a fortunate coincidence that the texture generated by

dislocation creep in post-perovskite aligns the fast diffusion direction (the crystallo-

graphic a-axis) parallel to the shear direction, resulting in generation of the special

orientation for weak diffusion creep even by dislocation creep. The preservation of

lattice preferred orientation in diffusion creep has recently been demonstrated in

experimental and natural samples (e.g.214) and in numerical simulations215. The

exact degree of weakening associated with real lattice preferred orientation textures

of anisotropic Nabarro-Herring creep in simple shear is beyond the present study

but the diffusivity in the fast (a)-direction will provide the limiting case where all

grains are in the special orientation.

The above discussion is limited to simple shear. In pure shear any special ori-

entation is dependent on the shape of a grain as well as the stress-field. Since

the deformation necessarily results in grains changing shape special orientations are

destroyed by the deformation and the effective viscosity will always be some convo-

lution of the diffusivities in all crystallographic directions.

11.3.3. Effective Viscosity of Aggregates of Post-Perovskite

Let me now describe how to calculate the diffusion-creep viscosity of an aggregate

of post-perovskite grains in a simple model. The idea is that the viscosity of the

aggregate is controlled by the average viscosity of its constituting grains, while the

viscosities of the grains along certain directions will depend on the alignment of

the crystal-axis (diffusion-directions) of the constituting grains with the considered

direction of deformation and texture.

To this end, in three dimensions, one can write the diffusion coefficient of a single,

spherical grain in an arbitrary direction (characterised by azimuth φ ∈ [0, π] and

longitude θ ∈ [−π, π]) as
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Deff =

(
(cos(θ)sin(φ))2

Da

+
(sin(θ)sin(φ))2

Db

+
cos(φ)2

Dc

)−1

(11.4)

where Da, Db and Dc are the diffusion rates along the corresponding crystallographic

axis, where φ = 0 corresponds to [001] and φ = 90; θ = 0 corresponds to [100], as

shown in figure 29.

a

b

c

Figure 29: Calculating diffusion along an arbitrary direction Calculating the
diffusion in an aggregate requires to calculate diffusion in an arbitrary
direction of a single grain. The crystallographic axes of the grain are
given as a, b and c. The arbitrary direction is shown by the blue arrow,
of unity length. Also shown are its lengths along each crystallographic
direction

The diffusivity perpendicular to this direction is given by

D⊥eff =

(
P 2
x

Da

+
P 2
y

Db

+
P 2
z

Dc

)−1

(11.5)

with P= Rz(θ)Ry(φ)P′, where P′ =[cos(δ) sin(δ) 0] (δ ∈ (0, 2π] rotates the vector

in the perpendicular plane, as shown in figure 30) and Rz(θ) and Ry(φ) are the three

dimensional rotation matrices around z by θ and around y by φ respectively.

The distribution of grain orientations can be modelled using the so-called von

Mises-Fisher distribution216, also known as the normal distribution on a sphere.

This distribution describes the angular distribution of orientations about a mean
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P

x

y

z

Figure 30: Schematics to calculate diffusion perpendicular to a texture The
plane perpendicular to the blue arrow (texture direction) is spanned open
by rotating the unit-vector P around the angle δ. While diffusion along
the blue arrow is given as described in figure 29

orientation vector. The probability function of the von Mises-Fisher-distribution is

given by

f(φ) =
κeκcos(φ)

4sinh(κ)
(11.6)

where κ is the concentration-factor (Fisher constant, dispersion factor) which de-

scribes the tightness of an orientation cluster. The effect of a change in κ on the

probability distribution is shown in the right hand side panel in figure 32. The

concentration factor is related to the angular standard deviation σ (by analogy with

the normal distribution) as217

σ =
81◦√
κ
. (11.7)

For κ approaching 0, the von Mises-Fisher-distribution becomes the uniform distri-

bution.

I have used the von Mises-Fisher-distribution to model post-perovskite aggregates

of completely random grain orientation and in presence of a texture where grains are

aligned along the fast diffusion direction with different angular standard deviations.
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For these calculations I have used equations 11.4 and 11.5 and aligned the fast

diffusion direction with the deforming/diffusing direction, chosen to be [001] (i.e.

Dc was swapped with Da in equation equation 11.4 and 11.5). The number of poles

as a function φ were distributed according to the von Mises-Fisher-distribution for

a certain angular standard deviation. These poles are then randomly rotated such

that θ is uniformly distributed. These textures are shown in figure 31 for various

angular standard deviations. A small angular standard deviation means that the

a-axis of most grains is close to the diffusing/deforming [001]-axis (φ = 0); the larger

the standard deviation, the more randomly oriented are all grains with respect to

the diffusing/deforming direction.

Figure 31: Polefigures Lambert projections of the a-axis of post-perovskite textures
with different angular standard deviations. Colour code is number of
poles per bin, saturating at 500 poles per bin. The resulting average
diffusivity and viscosity of these distributions are shown in figure 32

I have calculated the effective diffusivity along [001] for a total number ofNG = 106

grains of which I then took the average to obtain the mean effective diffusivity along

[001] of the post-perovskite aggregate (left hand side panel in Fig 32). I also calculate

the effective viscosity of these post-perovskite aggregates if deformed along [001] by

taking the Voigt

ηV oigteff =
1

NG

NG∑
i=1

ηi (11.8)
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and Reuss

ηReusseff =
1

NG

1∑NG

i=1
1
ηi

(11.9)

averages of the constituting grains of viscosity ηi (centre panel in Fig 32). These

calculations show that textureless post-perovskite aggregates are much stiffer than

perovskite and their viscosity is close to the one obtained in the cases of the inter-

mediate diffusion (Reuss average) or the slow direction (Voigt average). However,

if texture develops, the aggregate weakens by about an order of magnitude while it

stiffens in the directions perpendicular to the texture.
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Figure 32: Diffusivity and viscosity of perovskite and post-perovskite ag-
gregate at 135 GPa. Left: Change of the effective diffusion rates as
a function of angular standard deviations (a smaller standard deviation
means stronger a-texture). The lower lines, marked with ⊥, are the dif-
fusivities perpendicular to the texture. Centre: Change of viscosity as a
function of angular standard deviations (a-texture, number of vacancies:
10−3, grain size: 1 mm). Post-perovskite aggregate viscosity has been
averaged using the Voigt and Reuss averages of the constituting grains.
The upper lines, marked with ⊥, are the viscosities perpendicular to
the texture. Right: von Mises-Fisher-distributions for different angular
standard deviations (values 10◦, 15◦, 45◦, 90◦ and 180◦)
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11. MgSiO3 Post-Perovskite

11.3.4. Deformation via Diffusion Creep - Strain Weakening in

Post-Perovskite

Let me now discuss the implications of the above calculations for the case of dif-

fusion creep where post-perovskite may exhibit a more complex behaviour than for

dislocation creep. Crystals straining via simple shear will deform faster when shear

is parallel to the fast diffusing direction (see also below) and slowest when shear

is parallel to the slowest direction. These three end-member viscosities are plotted

in figure 33 for a similar range of grain sizes and vacancy concentration as in the

perovskite field.

<010>

<001>

<100>

Perovskite

Post-Perovskite

Mitrovica and Forte, 2004

Figure 33: Calculated viscosity profile, η, of perovskite MgSiO3 deforming
by diffusion creep, and end-member viscosities along the crys-
tallographic axes of post-perovskite MgSiO3 Grain size, G, and
vacancy concentration, Nv, were varied such that G2/Nv = 0.01m2 for
the lower bounds and 0.1 m2 for the upper bounds. Vacancy concentra-
tions for both minerals are assumed to be fixed throughout the entire
lower mantle. Superimposed are the results from inversion modelling7.
Except for highly aligned cases, post-perovskite deforming in diffusion
creep is stiffer than perovskite as the bulk viscosity falls between the
values of the 〈010〉 and 〈001〉 directions
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11.3. Implications for D” - The Viscosity of Post-Perovskite

From the previous section it should be clear that these end-member viscosities are

never reached in the sense of having a perfectly aligned aggregate, especially not the

one of 〈100〉. However, the average diffusivity of an aggregate of randomly oriented

grains of post-perovskite is close to the intermediate diffusivity along 〈001〉 (taking

the Reuss average) or even 〈010〉 (taking the Voigt average). Thus, invoking only

pure lattice diffusion, post-perovskite is between one to three orders of magnitude

more viscous than perovskite. This is solely due to the very slow magnesium dif-

fusion along 〈010〉 and 〈001〉. However, in the presence of texture aligning the fast

diffusion direction, post-perovskite can soften by more than an order of magnitude.

Assuming that post-perovskite is tracked in the viscosity inversion profile, this find-

ing would strongly suggest that post-perovskite does not deform via diffusion creep

as it is too viscous to match the profile. In fact, this stiffness might be the reason

why post-perovskite is deforming via dislocation creep since the dislocation creep

viscosity would be lower than the diffusion viscosity even for very small stresses. I.e.,

post-perovskite has a very low transition stress because the activation enthalpy for

diffusion creep is the one of the very slow magnesium diffusion along 〈010〉, while

dislocation creep is activated via the low diffusion enthalpy of the fast diffusion

direction 〈100〉.
While experiments showed that grain-boundary diffusion is negligible in per-

ovskite, its effect on post-perovskite might be significant. Often, grain-boundary

diffusion is about five orders of magnitude faster than lattice diffusion and the grain

boundary width is assumed to be about 1 nm e.g.35. This makes the grain bound-

ary term in equation 8.4 about four orders of magnitude smaller than the lattice

diffusion term. If this is transferable to post-perovskite, and the lattice diffusion is

given by the fast diffusion direction, grain-boundary diffusion might play a signifi-

cant role in the rheology of D′′. Lattice diffusion along the fast direction would still

be dominant, however, diffusion along the slow directions would occur via grain-

boundary diffusion. Grain-boundary diffusion would hence control the viscosity and

very likely make post-perovskite weaker than perovskite. Thus, if post-perovskite is

also weaker in diffusion creep, it might well be soft enough to avoid the dislocation

creep regime completely in D′′. Nevertheless, strain weakening would still occur as

the fast direction is still faster than the grain boundary diffusion term.

Diffusion creep does, however, not necessarily contradict the observed seismic

anisotropy and the assumed underlying cause of LPO. In the hypothetical case of

mixed grain-boundary and lattice diffusion creep (Nabarro-Herring-Coble creep, or

also pure lattice diffusion creep), I believe that the anisotropic diffusion probably
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11. MgSiO3 Post-Perovskite

can still result in the development of a lattice preferred orientation (LPO), either

by recrystallisation and grain-boundary reaction213 or by rotation of grains which

are in a high-viscosity orientation to the shear stress (see below). The development

of LPO then results in the weak direction aligning with the shear direction and

a consequent strain-weakening rheology; in the case of post-perovskite deforming

by diffusion creep the strain-weakening is about one order of magnitude. Strain

weakening results in shear localisation, implying that the majority of the deforming

medium is not affected by the driving stress field, previously developed textures will

survive in the non-deforming regions. This means that regions with potentially very

different seismic anisotropies could be brought into close proximity. I hypothesise

that, given the limited seismic ray coverage of D′′, rapid changes in seismic anisotropy

associated with shear localisation might be able to generate the rapid changes in

seismic wave-speed which are currently interpreted as compositional variations or

deformed subducting slab material29,30.

It is possible that post-perovskite in D′′ is deforming entirely within the diffusion

creep regime. However, my results show that an isotropic mixture of post-perovskite

would be very stiff, something that is inconsistent with geoid modelling and exper-

iments on analogues. It would also be difficult to explain the observed seismic

anisotropy with diffusion creep. Diffusion creep may still occur if the grains are

rotated such that their fast diffusion directions are parallel to shear. This type

of history dependent rheology commonly leads to the development of shear zones,

which could also bring regions of different anisotropy into proximity. Regardless, of

whether post-perovskite deforms via diffusion creep, or as is more likely, via dislo-

cation creep, the observed sharp D′′ reflectors may be interfaces between regions of

different anisotropy, and not the phase transition as is commonly assumed.
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12. The Iron Spin Transition in Lower Mantle

Minerals

Transition metals can undergo a magnetic transition from high-spin to low-spin

configurations purely due to an increase of pressure. This change in the electronic

structure affects many physical and chemical properties of the ions and its hosting

mineral. In fact, the changes can be so strong that the high-spin and low-spin

transition metals should be treated as different chemical species. Within the Earth,

the only significantly abundant transition metal is iron.

A magnetic transition in a material can either be induced by band widening or

by changes in the crystal field218. In many transition metal oxide systems, the

transition metal suffers a magnetic collapse from high-spin to low-spin because of

band broadening with pressure219, while the crystal field remains largely unchanged.

The spin transition is accompanied by an effective reduction of the ionic radius and

thereby increases the mineral’s density which, in turn, affects its seismic properties.

12.1. Iron Diffusion in MgO: The Effect of the Spin-Transition

Ferro-periclase, (Mg,Fe)O, containing about 15% iron, is the second-most abundant

mineral in the Earth’s lower mantle (e.g.220). A knowledge of its physical proper-

ties is thus necessary for a better understanding of the thermochemical evolution

of the Earth. It crystallizes in the rock-salt structure even under lower mantle

conditions88,137 and is often regarded as an archetypical oxide.

Complexity was added when a pressure-induced high-to-low-spin transition of

iron in ferro-periclase16 was observed in experiments (around 60 GPa). The subse-

quent theoretical investigations revealed that the transition is not sharp, but occurs

throughout the lower mantle and is not completed at the core-mantle boundary19,20.

This continuous transition results in a smooth variation of the elastic properties of

the material making the change of the spin state difficult to detect with seismic

waves. Thus, its geophysical significance remains unclear. The effect of the spin-

transition on rheology is currently unknown.

It has been argued, mainly due to the absence of any seismic anisotropy126, that

the lower mantle deforms in diffusion creep, which I consider here. In diffusion creep,

the difference between the chemical potentials on the grain surfaces (due to different

stresses) leads to the formation and migration of vacancies in the opposite direction

of the gradient of the chemical potential (from low to high stresses/potentials). The
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deformation, therefore, is controlled by the slowest diffusing species. However, even

if deformation occurs via dislocation creep, the deformation controlling step is likely

to be dislocation-climb which, again, is rate limited by diffusion.

It has been established from experiments (e.g.154,155,157,160) that magnesium dif-

fusion in periclase occurs via simple vacancy diffusion. Oxygen diffusion, on the

other hand, is several orders of magnitude slower than magnesium and its diffu-

sion mechanism is not well understood. Anion (oxygen) vacancies are suppressed

by extrinsic cation (magnesium) vacancies due to the mass-action law. Thus, it is

believed that oxygen diffusion would occur via intrinsic divacancies (bound cation-

anion-vacancy pairs). Moreover, oxygen pipe-diffusion appears to have the same

activation energy as vacancy diffusion163,164 adding further complexity to assess the

diffusion mechanism of oxygen experimentally. Despite current uncertainty in the

diffusion mechanism of oxygen, deformation experiments revealed that the viscosity

of periclase deforming in the diffusion creep regime is rate limited by magnesium

lattice diffusion and not oxygen diffusion221,222. Assuming that this is also the case

at elevated pressure, the iron spin transition may have a large effect on the viscosity

of ferro-periclase if the diffusion of iron or magnesium on the magnesium sub-lattice

changes across the transition. Four points need to be considered:

1. A smaller ionic radius would suggest that the low-spin iron diffuses faster (in

a simple elastic strain model)

2. Ions with partially filled 3d-orbitals are affected by the crystal field and ex-

periments suggest that low-spin iron might diffuse much slower than high-spin

iron223

3. Theoretical models exist for dilute diffusion (less than 1% iron concentra-

tion, see below) where correlation effects are controlled by only five different

vacancy-jumps inside the crystal (five-frequency model). At the higher iron

concentrations expected in the lower mantle (≈15%), correlation effects should

be much smaller when nearby iron ions randomise their walks mutually by pro-

viding more ”special”, iron-related jumps to the diffusing vacancy.

4. As well as affecting diffusion rates of iron, the spin-state of iron may also affect

the diffusion rates of nearby magnesium ions.

All the above questions need to be clarified in order to understand the effect of

the iron spin transition on diffusion and thereby rheology. Diffusion is a poorly un-

derstood process in the Earth’s lower mantle because its physical conditions are not
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(yet) accessible to experimental techniques. Although some diffusion experiments

in ferro-periclase have been performed at shallow lower-mantle conditions (below

35 GPa)11,38,39,153, this is below the spin-transition pressure. I avoid this technical

obstacle by using density functional theory (see below for details) that allows me

to calculate the diffusion coefficient at lower-mantle conditions from first principles.

At the same time I limit this study to the diffusivity of ferrous iron (called only iron

hereafter), avoiding the complexity of bound ferric-iron-magnesium-vacancy pairs

(or more complex clusters).

Absolute diffusion rates in pure periclase have been calculated previously either

by performing molecular dynamics simulations141,144,159 or by applying harmonic

transition state theory75,139, but none made use of first-principle methods. Nev-

ertheless, all theoretical studies are in good agreement with available experiments.

Diffusion of iron in periclase was only considered in one early computational study

that used a simple shell model224 to calculate the migration enthalpy of iron in per-

iclase (NB high-spin), finding it to be lower than of magnesium. Using DFT, I have

the caveat that the number of possible jumps that can be investigated is limited due

high computational costs, limiting the number of iron concentrations that can be

investigated. This caveat can, however, be overcome by using kinetic Monte-Carlo

simulations, as described later.

12.1.1. Details of Density Functional Theory Calculations

I have, again, performed density functional theory (DFT) calculations in the general

gradient approximation (PAW-GGA63 with PW9157 for the exchange correlation

functional) with a rotationally invariant Hubbard U (GGA+U) as implemented in

the code VASP61,62. The iron-potential treats the semi-core p states as valence (14

valence electrons; 3pd7s1), the magnesium-potential has 2 valence electrons (s2p0)

the oxygen-potential 6 valence electrons (s2p4). I have used a 3× 3× 3 Monkhorst-

Pack k-point mesh60 in the 2× 2× 2 supercell (only Γ-point for 3× 3× 3 supercells)

and a cut-off energy of 1000 eV for the plane-wave basis sets. Compared with denser

k-point sampling (4 × 4 × 4) and higher cut-off energy (1200 eV), my energies are

converged to within 0.1%. I relaxed my systems to forces below 10−6 eV/Å(for the

phonon-calculations).

It is well known that in order to obtain the correct electronic state of iron-bearing

systems, one needs to consider the effect of electron-localisation in the d-orbitals

of transition metals. One way to do this is to introduce a penalty-energy for the
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pairing of electrons (in low-spin), the so-called Hubbard-U, stabilising high-spin

states. Although self-consistent methods for choosing U exist (225), I have decided

to investigate the effect of U on the migration enthalpies and attempt frequencies by

varying U systematically. I find that the effect of varying U on migration enthalpies

of high-spin iron is no more than a few tenths of an eV (see also figure 37) but can

be quite large for low-spin iron (order of eV, see below). The change in migration

enthalpy with U also affects the attempt frequency which changes by no more than

a (experimentally) negligible factor of two (see tables 29, 28 and 30). The value of

U does of course change the spin-transition pressure substantially.

I have investigated a system containing 64 atomic sites (2× 2× 2 cubic supercell;

63 atoms plus one vacancy on a magnesium site) of which one is an iron atom on

a magnesium site. The iron concentration in my system thus is XFe = 0.03125.

I have also calculated migration enthalpies in a 3 × 3 × 3 supercell (108 atoms,

XFe = 0.0093) in order to estimate system-size effects. The migration enthalpy in

the larger cell differs by about 10 % from the one in the smaller cell, being smaller

at lower pressures and bigger at higher pressures.

12.1.2. Dilute Diffusion: Five-Frequency Model

In the dilute limit, there is a single iron atom embedded in pure periclase. The

diffusivity of this single iron atom is described by the well known five-frequency

model for FCC crystals, see e.g.226–228, which involves not only the jump rates of

the iron atom but also of neighbouring magnesium ions, as explained in figure 34.

Jump rates calculated within harmonic transition state theory74 are given by

W = ν̃e−
∆H
kT (12.1)

with the migration enthalpy ∆H, Boltzmann’s constant k, temperature T and the

attempt frequency ν̃. The dominant contribution to the jump rate is the migration

enthalpy ∆H, which is the height of the energy-barrier (a saddle-point) an ion has

to overcome to jump into the nearby vacancy. The attempt frequency ν̃ is usually

of the order of 10 THz and comprises entropy effects (migration entropy) and how

often the ion tries to jump over energy barrier.

In the five-frequency model, the following five jump rates (jump frequencies) are

required (see figure 34): W0 is the jump rate in the pure crystal. W1 is the jump rate

where the vacancy remains on an impurity-neighbouring site (non-dissociating). W2

is the exchange-rate of the vacancy with the impurity. W3 is the rate away from
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W0

W0

W2

W1
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W0 W0

W3

W3
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W3

W4
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a
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Figure 34: Jump rates Wi of a vacancy (empty circle) neighbouring an impurity
(solute atom; large, filled, blue cycle) in an FCC crystal of cell-length
a. W0 is the jump rate in the pure crystal. W1 is the jump rate where
the vacancy remains on an impurity-neighbouring site (non-dissociating).
W2 is the exchange-rate of the vacancy with the impurity. W3 is the
rate away from the impurity (dissociating), W4 is towards the impurity
(associating).

the impurity (dissociating), W4 is towards the impurity (associating). In the dilute

limit, the diffusivity of the impurity is then given as:

DFe = a2 · f ·W2
W4

W3

(12.2)

where a is the cell length, and f is the correlation factor given by:

f =
W1 + 7

2
FW3

W2 +W1 + 7
2
FW3

(12.3)

and F is the escape probability

F = 1− 1

7

10x4 + 180.5x3 + 927x2 + 1341x

2x4 + 40.2x3 + 254x2 + 597x+ 436
(12.4)

with x = W4

W0
.

I have calculated all five frequencies within the harmonic transition state theory

and their parameters are given in tables 28, 29 and 30. Parameters for magnesium

diffusion in pure periclase, W0, are given in table 31.
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12.1.3. The Effect of the Hubbard U

The Hubbard U affects the spin-transition pressure of iron as it stabilises high-spin

states by adding a penalty energy to low-spin states. Thus spin-transition pressures

increase strongly with an increasing value of U. For diffusion one has to consider

four different spin transitions: 1) spin transition of iron far from a vacancy, 2) spin

transitions of iron near a vacancy, 3) spin transitions during iron jumps, and 4) spin

transitions of iron during magnesium jumps.

Experiments
& Theory

vacancy on NN-site

vacancy on NNN-site

SP non-dissociating (W1)

SP Mg dissociating (W3 & W4)

CMB

Figure 35: Transition pressures as a function of the Hubbard U. For perfect ferro-
periclase (with one iron atom on a magnesium site; solid line, blue cir-
cles), defective ferro-periclase (one iron with a vacancy on the nearest
neighbour(NN)-site (solid line, violet triangles), and on the next-nearest
neighbour(NNN)-site (solid line, orange square)). Transition pressures
of the various saddle-points are connected with dashed lines: magne-
sium jumps between NN-sites of iron (violet squares, dashed lines, W1)
and magnesium migration away/towards the iron (orange squares, dashed
lines, W3 and W4). Blue shaded area shows the range of the experimental
and previous theoretical transition pressures17–21,24,229–231. Black dotted
line marks the core-mantle boundary (CMB)

Spin-Transitions in Iron far from Vacancies The perfect crystal (periclase con-

taining no vacancies and one iron atom on a magnesium site (XFe = 0.03125); table

26) has the lowest transition-pressure (solid blue line in Figure 2). A value of U of

about 3 gives best agreement with the experimental spin-transition pressure (e.g.16).
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Spin Transitions in Iron with nearby Vacancies Introducing a vacancy on a

nearest-neighbour (NN) site to the iron, increases the spin-transition pressure by

about 10 GPa (solid violet line; table 27). The vacancy has effectively reduced the

local pressure on the iron, thereby allowing the high-spin state to persist to higher

pressures than in the vacancy free system. A vacancy on a next-nearest-neighbour

(NNN) site to the iron atom increases the transition pressure less (by about 5 GPa

- orange solid line; table 27). The effect of the spin transition on diffusion should,

therefore, occur at higher pressures than its effect on elasticity (the perfect crystal).

Spin Transitions Occurring during Iron Jumps As the spin-state of iron is not

a fixed quantity, its spin can change during a jump. I find that regardless of its

initial spin, iron becomes high-spin at the saddle-point (the transition pressure at

the saddle-point is around 245 GPa for U = 0 and above 400 GPa for U = 7).

A low-spin iron will, therefore, change to high-spin during the jump, and return

to low-spin as the jump completes. Only at extreme pressures, such as could be

found in Super-Earths, does low-spin iron at the saddle-point become energetically

more favourable than the high-spin, allowing iron to remain low-spin throughout

the jump. The fact that high- and low-spin iron go through the same high-spin

saddle-point, means that the difference in their migration enthalpy depends only on

the energy of their initial state. This leads to the interesting result that low-spin

iron in the high-spin regime will have a lower migration enthalpy - and therefore

diffuse faster - than the coexisting high-spin iron (see figure 36), and vice versa:

high-spin iron in the low-spin regime will diffuse faster than the coexisting low-spin

iron. As the pressure approaches the spin-transition pressure of iron in its initial

position (i.e. before beginning the jump), the diffusion rates of the two spin states

become the same. If one ignores the fact that the spin state at the saddle-point

changes, I would erroneously predict that low-spin iron would diffuse very slowly

(see figure 37).

Spin transitions during magnesium jumps Another interesting result is that the

spin-state of iron can change during nearby magnesium jumps. This, again, can

be understood in terms of the local atomic pressure. The pressure depends on the

particular jump and on how far away the iron is from the jumping magnesium, see

figure 35. As the magnesium jumps between NN-sites (W1) to the iron, the local

pressure is highest when the magnesium is on the saddle-point. The spin-transition

pressure of this configuration is, in fact, at a similar pressure as for the vacancy-free
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high spin

low spin

initial state

saddle-point

final state

Fe

Fe V

V

Fe

high spin

low spin

Figure 36: Migration barriers for high- and low-spin iron hops at low pressures (high-
spin regime). Iron hops into a nearby vacancy by overcoming an energy
barrier of height ∆H. During migration, low-spin iron will swap to high-
spin which drastically reduces the height of the energy barrier as its initial
state is already at an elevated energy.

system such that above this pressure high-spin iron is forced into low-spin during

magnesium jumps between NN-sites. For the dissociating and associating jumps (W3

and W4) between the NN- and NNN-sites, the transition pressure is approximately

half-way between those of the NN- and the NNN-site. This can be interpreted as

a continuous increase of the local atomic pressure when a magnesium jumps into a

vacancy on the NN-site from a NNN-site.

In analogy with the iron jumps, magnesium diffusion is accelerated by the presence

of minority-spin iron. In other words, at high pressure when iron is mostly in the

low-spin state, magnesium jumps in the vicinity of an iron which is in the high-spin

state will have a lower migration enthalpy. This is because they start off with a

higher energy of the initial state than magnesium near a low-spin iron. Similarly,

magnesium jumps nearby low-spin iron in the high-spin regime (below the transition-

pressure of the concerning jumps and states) will also encounter a lower migration

enthalpy (see figure 37).

It is interesting to note that magnesium jumps during which the spin-state of the

neighbouring iron remains constant are similar to those in pure periclase (see figure

37). However, high-spin jumps are slightly slower (higher migration enthalpy) than

magnesium jumps in pure periclase, while low-spin jumps are slightly faster (lower

migration enthalpies). Thus, magnesium is slowed down in the high-spin regime and

accelerated in the low-spin regime. This change in diffusivity from the jump-rates
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Mg pure

U = 7

U = 0

U = 4.5

LS via LS 

LS via HS

HS via  HS

HS via LS

U = 7

U = 4.5

U = 0

PPV <100>

Mg pure

U = 0

U=7

U = 7

U = 0

U = 4.5

U = 0

U = 7

LS via LS

LS via HS

HS via HS
U=4.5

U = 4.5

Iron Magnesium

H1

H3

CMB CMB
a) b)

Figure 37: Comparison of migration enthalpies and the effect of a varying Hubbard
U. As a reference in both panels I also show the migration enthalpy of
magnesium in pure periclase. The vertical dashed line marks the core-
mantle boundary (CMB). During migration, the spin-state of the iron can
change (from high to low (HS via LS) or from low to high (LS via HS)) or
remain the same (HS via HS and LS via LS). a) migration enthalpies of
high- and low-spin iron (HS and LS respectively). Both iron species will
preferably be in the high-spin state during migration. The dashed line is
the migration enthalpy of magnesium in MgSiO3-post-perovskite along
the fast diffusion direction (〈100〉). Also shown are the experimental
values from11 (red diamonds; filled: magnesium, empty: iron) and39

(green circles; filled: magnesium, empty: iron). b) Magnesium migration
enthalpies in the vicinity of a high- or low-spin iron (migration enthalpies
of W4 is not shown for clarity, but would be very similar to W3)

in the vicinity of an iron is, however, no more than a factor of two.

All the above adds considerable complexity to the diffusion process. For instance,

not only can the spin-state on a nearby iron change temporarily while a magnesium

hops, it can also change the spin state ’permanently’ if the magnesium jump results

in it being nearer or farther away from the iron. All these possibilities have to be

included in the bulk diffusion computation.

12.1.4. Diffusion at Elevated Iron Concentrations: Kinetic Monte Carlo

While the diffusion rate from single-hop mechanisms (vacancy and interstitial) may

be calculated using Vineyard-theory, it is more difficult to obtain in the presence of

impurities when vacancies have several jump options, each having a different rate.

The problem is to determine how the overall system evolves diffusion-wise when

different atoms have different jump rates while competing for the same vacancy. A

way to solve these problems is to use kinetic Monte-Carlo simulations (see, e.g.,97’s
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review).

The advantage of this method is that it removes the time-scale problem between

lattice/atomic vibrations and the jump rates that one encounters in molecular dy-

namics simulations. Jump rates are several orders of magnitude slower than atomic

vibrations and are thus extremely rare. Kinetic Monte-Carlo simulations allow the

separation of these two movements by only considering the slow jump rates between

various states.

I used a 3× 3× 3 supercell containing 108 magnesium lattice sites with periodic

boundary conditions. One site is occupied with a vacancy which is the jumping

particle in the simulation. The remaining 107 lattice sites are either occupied by a

magnesium or an iron on randomly chosen sites (depending on the iron concentra-

tion). The diffusivity of the vacancy, magnesium and iron is then calculated using

the Einstein-Smoluchowski relation

D =
〈R2〉
6τ

(12.5)

where 〈R2〉 denotes the mean-square displacement and τ the time passed. The

pointy brackets denote the average over a large number of particles. In my case, I

performed 104 simulations each running for 104 jumps. This setting yields precise

(small standard deviations) diffusivities for magnesium and iron diffusion (increasing

precision with increasing iron-concentration), but results in fairly large standard

deviations on the vacancy diffusivity (see below).

I use again the jump rates from the five-frequency model. These five jump-

frequencies can be used to create a simple model of diffusion in ferro-periclase at

any iron concentration. In doing so, I assume that jump rates are unaffected by the

number of iron atoms in the vicinity. For simplicity, I also assume that the jump

rate is equal to W1 if there is at least one iron on a nearest neighbour site to the

vacancy before and after the jump. The probabilities of how many iron atoms are

surrounding a vacancy after each jump are shown in figure 38: After around 35 %

iron a vacany will have at least one iron atom as a nearest neighbour and all mag-

nesium jump-rates become W1. Finally, in my KMC simluations all iron is either

high- or low-spin, there is no thermally induced mixed-spin regime.

There are a couple of known solutions of the diffusion-problem in my model that

can be used to benchmark my KMC simulation. At low iron concentrations (dilute),

magnesium will diffuse at the pure periclase diffusivity (DMgO) and iron diffusivity

is described by the five-frequency model (Ddilute
Fe ). At high iron concentrations, I
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N = 1

N = 2
N = 3 N = 4 N = 5 N = 6
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N = 9
N = 10-12

N1 N2

Figure 38: The chance of a vacancy to be next to at least one iron after a diffusing
jump as a function of the iron concentration (bold line, N1; at least two
iron N2). Also shown are the chances of the vacancy to be surrounded
by a certain number (N) of iron atoms.

will end up with dilute magnesium diffusion (Ddilute
Mg ) and iron diffuses with the iron

jump-rate W2 (DFeO). For the vacancy diffusion, one expects

DV (XFe) =
1

f
(XFeDFe(XFe) + (1−XFe)DMg(XFe)) (12.6)

where f = 0.7815 is the correlation factor of the FCC-lattice and DFe and DMg are

the diffusivities of iron and magnesium respectively (see below). In all cases, my

KMC simulations reproduce the analytical solutions for magnesium, vacancy and

iron diffusion. Moreover, as is shown below, my results are in good agreement with

the available experimental data that contain up to 20% iron.

The Effect of the Iron Concentration I have investigated the effect of iron concen-

tration by performing KMC-simulations at three different pressure and temperature

conditions along the geotherm, corresponding to different spin states of iron. The

results are shown in figure 39. Generally, one sees that the more iron there is, the

more it will affect the vacancy diffusion by creating an iron-network that either al-

lows fast vacancy-hopping (high-spin) or reduces the number of possible (fast) jumps

(low-spin; see figure 39).

The effect of iron on magnesium diffusion is strongest at low iron concentrations,

where many magnesium atoms are affected by the presence of each additional iron
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V Mg Fe
HS
LS
HS
LS
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U = 0
U = 4.5
U = 7

0 GPa, 1705 K 35 GPa, 2040 K 100 GPa, 1705 K
a) b) c)

Figure 39: Iron-concentration dependence of the diffusivities (Nv = 1) in ferro-
periclase as calculated from KMC (vacancy: V, magnesium: Mg, iron: Fe,
high- and low-spin: HS, LS). Thin lines mark the empirical fit (see sup-
plementary data). a) High-spin iron diffusivity increases with increasing
iron concentration (at 0 GPa on the geotherm). b) diffusion of high-spin
iron ≈ 6 GPa above the spin-transition (at 35 GPa) increases initially
because of the change in rates of magnesium jumps (see text for details;
all iron atoms are assumed to be high-spin). For low-spin iron at the
same conditions, overall diffusivity is lower and the picture is similar to
the one in a). c) Low-spin iron diffusivity decreases with increasing iron
concentration for U = 0. Magnesium diffusion is increasingly hindered
by the slow iron when iron concentration is increased (at 100 GPa on the
geotherm). For U = 4.5, the picture is again similar to the one in a).

atom. Any effect of iron on the magnesium diffusion will therefore be dominated

by the probability of how often the vacancy neighbours at least one iron atom

after each jump (N1 in figure 38). This effect is seen in the initial dip in the

magnesium diffusivity in the 0 GPa case and the strong increase in the 35 GPa

high-spin case shown in figure 39. This change is because the average magnesium

jump rates will quickly approach W1 with increasing iron concentrations up to the

threshold, 35% iron, after which all magnesium hops will be W1. I have developed

a model which approximates the KMC values using the five-frequency diffusivities

(see section 12.1.4 below) and use this to interpolate between the KMC points.

Let us now have a closer look at the specific KMC simulations. In the high-

spin case (figure 39 a)), where iron has a higher diffusion rate, an increase of the
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iron concentration results in an increase of its diffusivity. Having a slightly higher

jump-rate than magnesium, its chance of jumping back to its initial position (after

having swapped sites with a vacancy) is increased compared with a magnesium,

i.e. correlation effects prevent it from being faster at low iron concentrations. At

elevated iron concentrations, the vacancy can migrate via the fast iron-network

resulting in a fast iron and vacancy diffusion. At the same time, the magnesium

diffusivity decreases initially, because the jump rates in the vicinity of a high-spin

iron are slightly lower than in pure periclase.

At pressures just above the spin-transition, magnesium jump rates around the

minority species are increased (as discussed above). At elevated iron concentrations,

this increase accelerates magnesium diffusion (see figure 39, b)). Such an increased

diffusion rate of magnesium could weaken the material by a factor of two to three.

However, in reality, less than 50% of all iron atoms can be high-spin after the

spin-transition which will inevitably reduce this acceleration. More precisely, at the

upper end of the lower-mantle iron concentration estimates (20% iron), even if only a

quarter of the iron remains in high-spin, they could still largely affect the magnesium

diffusion in the entire crystal as every second jump could be accelerated (see figure

38). At the lower end (10%), however, if one quarter would still be high-spin, there

would be almost no effect on the overall magnesium diffusion, as only about every

tenth jump could be accelerated

In the low-spin case (once its jump rate is smaller than that of magnesium) (see

figure 39, c)), magnesium will jump into the nearby vacancy most of the time because

it is faster. At the same time, if a low-spin iron jumped into the vacancy, the chances

of jumping back are reduced as the vacancy is most likely carried away from the iron

via magnesium jumps (reducing correlation). Thus, in the dilute limit, the reduced

correlation makes iron slightly faster than when it were diffusing in FeO (at a jump

rate W2). At iron concentrations as expected in the lower mantle (≈ 15 %) the

slow low-spin iron diffusion has a negligible effect on the vacancy and magnesium

diffusion.

However, I note that increasing the iron-concentration up to 20 % (the maximum

expected in the lower mantle) will change the diffusivities by no more than a factor

of two compared with the dilute limit - for any spin-state of iron.

The dependence of the vacancy concentration on the iron content153 has not been

included in these models resulting in a potential further increase in diffusivity not ac-

counted for here. However, the suppression of iron-related vacancies with increasing

pressure232 means that this is unlikely to be significant in the lower mantle..
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Empirical Fit to the Iron Concentration Dependence of Diffusion in Ferro-

Periclase I here discuss briefly my empirical model with which I fit the iron-

concentration dependence of diffusion in my KMC simulations. This will provide

a simple mathematical model allowing one to calculate the diffusivity at any iron

concentration based on the jump rates used in the five-frequency model.

First, as discussed above, there are a couple of known solutions of the diffusion-

problem in my model that can be used to benchmark my KMC simulation and which

are end-member diffusivities my model will have to satisfy. At low iron concentra-

tions (XFe ≈ 0; dilute), magnesium will diffuse at the pure periclase diffusivity

(DMgO) and iron diffusivity is described by the five-frequency model (Ddilute
Fe ). At

high iron concentrations (XFe ≈ 1), one will end up with dilute magnesium diffu-

sion (Ddilute
Mg ) and iron diffuses with the iron jump-rate W2 (DFeO). For the vacancy

diffusion, one expects

DV (XFe) =
1

f
(XFeDFe(XFe) + (1−XFe)DMg(XFe)) (12.7)

where f = 0.7815 is the correlation factor of the FCC-lattice, where XFe is the

iron concentration and DFe and DMg are the diffusivities of iron and magnesium

respectively (see below).

Second, I introduce an intermediate regime which accounts for the fact that mag-

nesium jumps rapidly saturate at W1 with increasing iron concentration. As one iron

near a vacancy is enough to affect the magnesium jump rates and once the vacancy

is neighbouring an iron after each jump, all magnesium jumps will be W1. This will

affect the magnesium and iron diffusion. The iron concentration dependence at low

iron concentrations thus follows N1 with a threshold around 35% iron (see figure

38). This contribution is seen in the initial dip in the magnesium diffusivity in the

0 GPa case and the strong increase in the 35 GPa high-spin case shown in figure 39.

With increasing iron concentration, the iron jump rate W2 becomes more important

for the entire system. Iron diffusion, will always have one iron on a nearest neigh-

bour site to the vacancy (!) and one requires at least two iron atoms around the

vacancy to diffuse the vacancy on the forming iron-network. Its iron-concentration

dependence will thus follow N2 and the iron-concentration XFe itself.

Third, with the above diffusivities and the chances of a vacancy to be neighbouring

one or two iron after each jump, N1 and N2 of figure 38, I can now construct my

model. The iron-concentration dependence of magnesium diffusion in my system
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can now be approximated by using the following equation:

DMg(XFe) ≈ (1−N1(XFe))DMgO + (N1(XFe)−XFe ·N2(XFe))D
W1
MgO

+XFe ·N2(XFe)D
dilute
Mg (12.8)

where XFe is the iron concentration and DW1
MgO is the magnesium diffusivity with

magnesium jump rates in pure periclase given by W1.

In analogy, the iron-concentration dependence of iron diffusion can be described

by:

DFe(XFe) ≈ (1−N1(XFe))D
dilute
Fe + (N1(XFe)−XFe ·N2(X))DdiluteW1

Fe

+XFe ·N2(XFe)DFeO (12.9)

where XFe is the iron concentration and DdiluteW1
Fe is the dilute diffusivity of iron

with all magnesium jump rates being W1 which accounts for the fact that initially

magnesium jumps rapidly approach W1 with increasing iron concentration.

Thus, using six different diffusivities that can be extracted from the five-frequency

model I can model the iron concentration dependence of diffusion (as it results from

my KMC simulations) using equations (12.7), (12.8) and (12.9). As shown in figure

39, my empirical model (thin lines) nicely reproduces the KMC simulations at any

iron concentration.

Comparison with Experiments I compare my calculated diffusion rates with ex-

periments11,39,153 in figure 40. All experiments measured iron-magnesium inter-

diffusion, which is given by (Nernst-Planck):

D̃ =
DMgDFe

(1−XFe)DMg +XFeDFe

(12.10)

Here, DFe is given by my KMC model (at the appropriate experimental iron concen-

tration) and DMg is the magnesium diffusivity in pure periclase. Clearly, all these

experiments have been performed at ’low’ pressure (below 35 GPa) in the high-spin

regime. The slow diffusivity in the highest pressure experiment (see figure 40 b))

might be due to the reduction in the vacancy concentration with pressure232. While

my migration enthalpies and activation volumes are in excellent agreement with the

experiments, I require slightly high extrinsic vacancy concentrations to match the

data. The experimentally observed dependence of diffusion on iron-concentration
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at 0GPa from153 agrees well with my simulation after correcting for the vacancy-

concentration dependence (Nv ∝ X0.73). The good agreement with experiments,

as well as the one in my previous results for pure periclase (section 9), provides

confidence for my results of the absolute diffusion rate in the low-spin iron case, for

which no experimental diffusion data exist.
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Figure 40: Comparison of my calculated diffusion rates with Fe-Mg-interdiffusion
experiments at various pressures and temperatures (see text for details).
a) Temperature dependence of inter-diffusion rates. Vacancies are as-
sumed to be extrinsic with concentrations Nv between 4% and 7% and
were chosen to match the experimental data with iron concentrations of
XFe = 0.211,39 and XFe = 0.05153. The vacancy concentration in39’s
experiments (at 23 GPa) appears to be reduced compared with the ex-
periments of11(at 28 GPa). b) Pressure dependence of the interdiffusion
rates. The reduction of the diffusion-rate for U = 0 is due to the spin-
transition. The dashed lines mark the diffusion rate if iron remained in
high-spin (HS)
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12.1.5. Diffusion in the Lower Mantle and the Spin-Transition

Figure 41 shows the calculated diffusion rates in the dilute limit (five-frequency

model; lower bounds of curves) as well as according to my KMC model (with iron

concentration of 20%; upper bound of curves) in the Earth’s lower mantle along a

geotherm98, including magnesium in pure periclase. Clearly, the iron-concentration

has a negligible effect on the diffusion rate of iron. Throughout the lower mantle,

high-spin iron is faster than magnesium, independent of the value of U.
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Figure 41: Diffusivities (Nv = 1) along a geotherm98 of high- and low-spin (HS, LS)
iron in the dilute limit (lower bound) and according to my empirical fit
model (at 20 % iron concentration, upper bound) for various U (solid)
and magnesium in pure periclase (dashed). Also shown are the transition
pressures (with a vacancy neighbouring an iron atom) for the relevant
values of U. The high diffusivities of low-spin iron before the transition
will only have a diminishing contribution to the total iron diffusion, as
the number of low-spin iron is very small.

Low-spin iron diffusion, in contrast, depends strongly on the chosen value of the

Hubbard U. This is because its migration enthalpy has an increased activation vol-

ume from the increase of the energy difference between the high- and low-spin ground

state, which is strongly dependent on U (figures 35 and 37. In the lower mantle, one

will only see an effect of the spin transition for low values of U (i.e., 0), because only

in these cases the migration enthalpy becomes bigger than the one of magnesium.

However, for a value of U that matches approximately the experimental transition

pressure (U = 4.5), even low-spin iron would be faster than magnesium up to the
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core-mantle boundary. In Super-Earth’s, however, the increase of the migration

enthalpy will eventually slow down iron diffusion and make it the slowest species

independent of the value of Hubbard U.

12.1.6. Implications for the Rheology of the Lower Mantle

The rheological significance of ferro-periclase will depend on whether it forms an

interconnected network or of it remains in isolated grains, leaving the MgSiO3-

perovskite (only perovskite hereafter) grains load-bearing. The two resulting end-

member (after130) diffusion-creep viscosities of the ferro-periclase-perovskite aggre-

gate are shown in figure 42. The absolute value of the viscosity is strongly subject

to the total number of magnesium vacancies which is unknown. An order of mag-

nitude more magnesium vacancies in ferro-periclase will result in a viscosity an

order of magnitude lower. My chosen magnesium vacancy concentration is consis-

tent with experimental diffusion rates resulting in ferro-periclase being three orders

of magnitudes weaker than perovskite in the shallow lower mantle131,233 (vacancy

concentration in perovskite has been chosen to match the inverted viscosity pro-

files (e.g.4,7). The magnesium vacancy concentration in ferro-periclase is then kept

constant throughout the lower mantle. It is interesting to note that the relative

viscosity of ferro-periclase and perovskite is almost constant throughout the lower

mantle (as they have a similar activation volume). At this point it is also important

to note, that, while the presence of ferric iron (Fe3+) would increase the number of

extrinsic vacancies, it will also reduce the availability of magnesium-vacancies to the

other species as it binds the magnesium vacancies (as is the case for aluminium234).

My results apply to deformation of ferro-periclase at high temperatures where

deformation will be controlled by diffusion, be it deforming in diffusion-creep or

dislocation-climb. As discussed above, there are three reasons why the spin-transition

leads to a weakening by an increased magnesium diffusion. First, the transition

pressure of iron is lower during magnesium jumps which initiates the weakening:

magnesium near a high-spin iron will force it into low-spin during migration. Sec-

ondly, after the spin transition, viscosity is controlled by magnesium hops that do

not affect the spin-state during the jumps which are slightly faster around low-spin

than around high-spin iron. This will be the final viscosity once the spin transition is

completed. Thirdly, at pressures just above the spin transition of the ground state,

there will be still some high-spin iron around in the lower mantle. Around these

high-spin iron atoms, the magnesium diffusion is increased as discussed previously

132



12.1. Iron Diffusion in MgO: The Effect of the Spin-Transition

(see figure 37 right, HS via LS; and figure 39, b)). This might enhance a weakening of

ferro-periclase in a small region after the spin-transition (depending on the width of

the spin-transition; on the other side of the ground-state spin-transition, this would

only happen if the spin-transition would be very broad because the spin-transition of

the saddle-point lies well below that of the ground-state). However, this weakening

is no more than a factor of two and decreases with decreasing iron concentration.

Tentatively, one could then interpret the derived reduction in the radial profile of the

Q-factor1 around 50 GPa as a result of the weakening of ferro-periclase due to the

spin-transition (assuming the weaker phase is responsible for seismic attenuation).

Load-Bearing Perovskite

Interconnected Ferro-Periclase

U = 4.5

U = 0
Periclase

Spin-Transition
 U = 4.5

Spin-Transition
 U = 0

Figure 42: Comparison of diffusion creep viscosities along a geotherm (98) with the
results from inversion modelling (light blue area; e.g.2,4,7,8,235,236)). Pa-
rameters for ferro-periclase are either a grain size of G = 1 mm and
a vacancy concentration of Nv = 10−3 or a grain size of G = 0.1 mm
and a vacancy concentration of Nv = 10−5 (see text for details). The
viscosity profile of perovskite is the same as in section 10. Vacancy con-
centrations for both minerals were assumed to be fixed throughout the
entire lower mantle. Dashed (U = 0) and solid (U = 4.5) lines are the
lower bounds where ferro-periclase forms an interconnected network, for
the upper bound perovskite is the load-bearing phase of the two phase
system130 (20% ferro-periclase, containing 20% or 0% (dotted line) iron,
80% perovskite). The small kinks, just after 20 GPa (U = 0) and around
75 GPa (U=4.5) are a viscosity reduction due to the spin-transitions as
indicated with arrows (initial kink: transition at th the W1 saddle-point,
final kink transition of the ground-state with vacancy on nearest neigh-
bour site to iron).
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Overall, I find that the effect of the spin transition of iron on the lower-mantle

rheology is negligible for both end-member viscosities (connected or isolated). The

slight increase of the magnesium diffusion near low-spin iron could lead to a weak-

ening of ferro-periclase. As evident from figure 42, it is unlikely for ferro-periclase

to form an interconnected network throughout the lower mantle, as the resulting

viscosity would be too low compared with the inversion-model. The spin-transition,

however, could have an effect on the viscosity of ferro-periclase in Super-Earths,

where pressures readily exceed that expected at the core-mantle boundary. There,

low-spin iron will eventually become the rate-limiting species leading to a stiffening

of ferro-periclase.

At this point, one can only speculate on the role of soft ferro-periclase in the

Earth’s mantle. Recent experiments and theoretical results showed that ferro-

periclase forms isolated grains in a perovskite matrix in a pyrolitic bulk composition

under static or low-strain rate conditions125,131,233. However, the lower-mantle ferro-

periclase-perovskite aggregate is close to the percolation threshold and could become

interconnected when strained. This would lead to a history-dependent rheology and

the generation of shear-zones. Strongly strained regions could readily decouple from

non-strained regions and the localisation of strain would result in narrow, anisotropic

bands that are hard to detect seismically, perhaps explaining the seismic homogene-

ity of the lower mantle despite the presence of slabs and plumes. In regions with

high strain such as around slabs and plumes, interconnected ferro-periclase could

control the local viscosity and lead to a weakening of plumes and slabs. In a down-

welling slab, this might lead to the formation of texture by phase-separation, which

might explain the observation of anisotropy near subducted slabs in the shallow

lower mantle237, despite deforming in diffusion creep126. In plumes, on the other

hand, weakening by the interconnected ferro-periclase network could localise flow to

narrow plume conduits which might explain why they are hard to detect seismically

in the mid-lower mantle (e.g.238).

Comparing the relative viscosities of MgSiO3-post-perovskite and ferro-periclase

is not straight forward, as I do not know enough about the physical and chemical

conditions in D′′. My calculations reveal that the migration enthalpy of low-spin

ferrous iron in ferro-periclase is always larger than the one of the rate limiting species,

magnesium, in post-perovskite along the fast diffusion direction 〈100〉 (see figure

37), even in Super-Earths. At the same time, their activation volumes are similar.

Given the same vacancy concentration low-spin iron and magnesium diffusion in

ferro-periclase is slightly faster than magnesium diffusion along the fast direction
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in post-perovskite at temperature higher than 2100 K (for U = 4.5 at 125 GPa).

However, for U = 0, magnesium diffusion in post-perovskite is considerably faster

than low-spin iron diffusion in ferro-periclase up to temperatures of 6000 K at 125

GPa. This opens up the interesting possibility that ferro-periclase might not be the

weakest phase in D′′ or deep in Super-Earths (see figure 43).

LS Fe in Ferro-Periclase

Mg in Ferro-Periclase

Mg in PPV <100>

LS Fe in Ferro-Periclase

Mg in Ferro-Periclase

Mg in PPV <100>

U = 0
125 GPa

U = 4.5
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Figure 43: Comparison of diffusivities of magnesium (solid red) and low-spin iron
(solid blue) in ferro-periclase with magnesium diffusion along the fast
direction (〈100〉) in MgSiO3 post-perovskite (dashed) at 125 GPa. a) U =
0: Low-spin iron is rate limiting in ferro-periclase and is much slower than
magnesium diffusion in post-perovskite along 〈100〉 up to temperatures
of 6000 K. b) U = 4.5: All diffusivities are similar at all temperatures
and magnesium diffusion in post-perovskite along 〈100〉 becomes fastest
above temperatures of 2100 K

The iron diffusivity in ferro-periclase is iron-concentration dependent (figure 39).

While it is well known that, because of the spin-transition, the iron partitioning

between ferro-periclase, perovskite and post-perovskite varies within Earth’s lower

mantle (e.g.239–241), the current results are (unfortunately) not accurate enough to

establish a firm relation between viscosity and iron concentration (as could be used

in an inverse-problem).
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12.2. Spin Transition in Iron-Bearing Perovskite

Also in perovskite, iron undergoes a spin-transition form a high- to a low-spin state,

however at somewhat higher pressures than in ferro-periclase.

First, Badro et al.21 found a two-stage collapse (70 GPa and 120 GPa) suggesting

that the transition might be site specific. Subsequent experiments22 showed that the

presence of aluminium stabilises the highspin state of iron and the transition is grad-

ual and not completed by the base of the lower mantle. A synchrotron Mössbauer

study23 found that Fe3+ on the B-site (octahedral) would gradually demagnetise

until pressures reach 70 GPa. More recently, two studies suggested that ferrous

iron in perovskite undergoes a spin transition around 30 GPa into a intermediate

spin state24,25 which persist throughout the whole lower mantle. This is however

not supported by computational studies. The latest experimental study prepared

samples with Fe3+ on both sites (coupled substitution) and found that the A-site

(dodecahedral) is always high-spin for all pressures of the lower mantle, while the

B-site changes to low-spin around 60 GPa242.

An early theoretical study by Cohen et al.219 predicted the transition pressure

of ferrous iron to be around 1000 GPa on the A-site. This was also found by

subsequent studies243,244: Fe2+ is always high-spin, while Fe3+ on the B-site is low-

spin. In contrast with wüstite, it appears that the iron concentration in perovskite

lowers the spin-transition pressure245,246. Umemoto et al.246 showed that ferrous

iron can undergo the spin transition inside the lower mantle, but only for special

configurations (depending on the used exchange correlation functional: LDA or

GGA, somewhere between 60 and 160 GPa).

Thus, theory and experimental results do not yet deliver a complete picture of the

spin-transition in perovskite and its relevance in the Earth’s lower mantle. On one

hand, this is due to the fact that ferric and ferrous iron behave differently depending

on which site they are on. Additionally, there is evidence that perovskite is ferric

iron rich. On the other hand, the spin-state depends on the mechanism of iron

incorporation into perovskite, be it coupled with aluminium or with ferric iron on

A and B-site or simply ferrous iron on the A-site.

I will here present results of a preliminary study, where I calculated the diffusivity

of ferrous iron. The effect of ferric iron will have to be considered in a future project.

The calculated parameters are given in the appendix, table 32. The found migration

enthalpies of high- and low-spin iron are very similar to the one of magnesium in

pure perovskite (see table 11) and the effect on neighbouring magnesium jumps is
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also minor. The attempt frequency, in contrast, is about an order of magnitude

larger for iron than for magnesium. Ferrous iron is thus expected to diffuse faster

than magnesium, simply due to an increased attempt frequency. However, as the

results on iron diffusion in periclase demonstrated, a faster jump rate of iron will

not significantly affect the diffusivity of magnesium nor the viscosity. Thus, if mag-

nesium is rate-limiting in perovskite (as found in experiments40), the spin-transition

would have no effect on the viscosity of perovskite. However,if silicon diffusion is rate

limiting the deformation of perovskite, the current study would need to be extended

to the six-jump cycles responsible for silicon diffusion. This is, unfortunately, not

yet done and will await examination in a future study.
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Part V.

Concluding Remarks

13. Synopsis

It has been shown that absolute diffusion rates calculated from first-principles, as-

suming a vacancy-diffusion mechanism and an extrinsic vacancy concentration, can

reproduce all experimental data at shallow lower mantle conditions. This in turn

gives us confidence in the calculated rates at lower-mantle conditions that are cur-

rently inaccessible to experiments.

An immediate result is, as already discussed in section 10.4.2, that diffusion rates

in any mineral throughout the lower mantle are too small to remove any chemical

heterogeneities even over time-scales of the age of the Earth. Chemical exchange

with the core would thus need to occur via grain-boundary diffusion191 and chemical

heterogeneities in the mantle could only be removed via turbulent mixing (stretching

and thinning) or grain boundary diffusion.

More importantly, however, are the implications for the rheology. The viscos-

ity profile of the lower mantle inferred from inversion modelling of post-glacial re-

bound and geodynamic observables, can be reproduced by assuming diffusion-creep

of perovskite. Ferro-periclase remains about three orders of magnitude weaker than

perovskite, when relative viscosities are fixed at shallow mantle conditions where ex-

periments are available. The spin-transition of iron in ferro-periclase or iron-bearing

perovskite has no effect on the viscosity of the host mineral. Thus, ferro-periclase

cannot form an interconnected framework in the lower mantle as the resulting vis-

cosity would be much lower than expected from inversion modelling.

The most important result is that the diffusivity of post-perovskite has been cal-

culated (and constrained) for the first time. The results suggest that post-perovskite

is either stiffer than perovskite, if both are deforming in diffusion creep, or in the

more likely case of deforming via dislocation creep, that post-perovskite is about

four orders of magnitude weaker than perovskite. This finding allows us to reconcile

seismic observations of with mineral physical experiments. The sharp reflector seen

seismically (D′′) represents a rheological transition (not a phase-transition) where

the weak post-perovskite becomes interconnected and strain is mainly partitioned

into this weak phase resulting in a strong texture.
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14. A Word of Caution

Despite the achieved agreement between experimental and calculated diffusion rates,

and, especially, the agreement of the calculated and the inverted viscosity profiles

one needs to be aware that there are several unknowns and trade-offs between un-

knowns. Moreover, the accuracy of certain calculated quantities is more important

than others. When comparing with experiments, any error made on the vacancy-

diffusivity will have to compensated by the assumed vacancy concentration. When

extrapolating to the lower mantle, the chosen geotherm will have a stark effect on

the absolute diffusion rate.

My calculations showed that it is very likely that the lower mantle is deforming in

diffusion creep and that perovskite is the load bearing phase with ferro-periclase re-

siding in isolated grains. Nevertheless, there are too many unconstrained parameters

in the profile shown in figure 44.
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Figure 44: Radial Mantle Viscosity Models modified after1. (1)2 (2)3 (3)4 (4)5

(5)6 (6)7 (7)8. Imposed is the calculated diffusion-creep viscosity profile
of perovskite

If we want to better understand and constrain the viscosity of the minerals of

the Earth’s interior, we will need to know all the parameters that control them.

Considering diffusion creep (equation 8.3), the parameters namely are diffusivity,

temperature and grain-size. Diffusivity itself depends on the vacancy concentration
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and the vacancy-diffusivity which themselves depend on temperature and pressure.

The most important parameter is the absolute diffusion rate which limits the rate

at which the minerals can deform. As shown in this thesis, it is possible to calculate

diffusivities within a fairly high accuracy, similar to experiments. However, the

various parameters that control diffusion differ in their overall importance. Let me,

thus, quickly rewrite the expression for the absolute diffusivity:

D = D0e
−∆H
kT (14.1)

with the prefactor

D0 =
Z

6
d2Nvν̃ (14.2)

The diffusivity D is dominated by the exponential temperature dependence and

the migration enthalpy ∆H which can be readily calculated at the desired pressure.

They are again collected in figure 45 and compared with the available experimental

data and earlier computational studies. Several things are important to note. Firstly,

theoretical studies are generally very close to the experimental values and agree with

each other as long as the same pathways and migration mechanisms are considered.

Of course, there is an exception to the rule - namely the molecular dynamics study of

periclase141 that found a decrease in the migration enthalpy at high pressures (the

difference comes probably from their choice of interatomic potentials). Secondly,

pressure-dependencies of the migration enthalpies, the so-called activation volume,

are very similar for all atomic species, all phases and among all theoretical studies.

Importantly, the activation volumes decrease with pressure suggesting the ’low’-

pressure experimental values are not valid at high pressures. Also, the agreement

of the theoretical studies provides some confidence for the high pressure values of

the migration enthalpies. Lastly, it can be readily seen how the use of the six-jump

cycle drastically lowers the migration enthalpy for silicon diffusion in perovskite,

reconciling experiments with theory, and along 〈010〉 in post-perovskite compared

with the direct jumps.
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The absolute diffusion rate and thereby the viscosity is hence strongly dependent

on the assumed geotherm. The prefactor is a linear contribution, and the coordina-

tion number Z and the jump-distance d are known for each mineral. The attempt

frequency and migration entropy, collected in ν̃, can be calculated within the har-

monic transition state theory. However, the computational effort is hardly rewarded

as it is (as shown in this thesis) usually of the order of 1013 THz, for any mineral. It

varies by no more than a factor of five over the pressure range of the lower mantle.

Moreover, any error of ν̃ will need to be compensated by the vacancy concentration

to match any experimental data. Interestingly, as shown in figure 46, prefactors D0

are almost constant throughout the lower mantle as the increase with pressure in

the attempt frequency is partly balanced by the reduction of the jump-distances.

Also, the prefactors of the diffusivities of the various species are very similar within

the same phase, except for the anisotropic post-perovskite (where jump-distances

vary significantly between the different directions).

Perovskite Mg

Si

O

Periclase
O

Mg

Mg <100>

Mg <010>

Mg <001>

Si <010>

Si <001>

Si <100>

O

Figure 46: Prefactors of vacancy-diffusion in periclase, perovskite and
post-perovskite Prefactors are almost constant throughout the lower
mantle are similar for all species within a phase, except for post-
perovskite

Thus, the only real unknown of the absolute diffusion rate, in fact, is the vacancy

concentration, which might vary over several orders of magnitude. Concerning the

viscosity, it is important to note that there is a trade-off between the vacancy con-

centration and the grain-size. My results can thus be used to constrain either pa-
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14. A Word of Caution

rameter: The minimum absolute diffusivity is obtained with the intrinsic vacancy

concentrations which can be calculated from first-principles. The resulting intrinsic

vacancy concentrations (using the calculated Schottky formation energies of91 for

perovskite and post-perovskite, and from this study for periclase; shown in figure

11) would be far too small (even for very hot geotherms) and result in a much too

stiff lower mantle, unless the grainsize would be of the order of nm. On the other

hand, the maximum diffusivity is reached for a vacancy concentration of 1, which

would allow a grainsize of the order of 10 cm.

From the values for intrinsic vacancy concentrations shown in figure 11 and their

resulting grainsize it is evident that vacancies in the lower mantle have to be ex-

trinsic. However, the extrinsic vacancy concentration and formation is not well

constrained and understood in the lower mantle. They form in a crystal in order

to charge-balance any excess charges from impurities. On one hand, the impurity

concentrations are unknown (poorly constrained; order of 1000 ppm234,247,248 in peri-

clase). On the other hand, impurity incorporation in perovskite and post-perovskite

is often coupled (e.g. Fe3+ on a magnesium and a Al3+ neighbouring silicon-site249),

leading to neutral defects. Also, as shown in this study, silicon vacancies are en-

ergetically less favourable than a magnesium on a silicon site plus a magnesium

vacancy, removing silicon vacancies from the system. It is hence not clear how sil-

icon vacancies are formed, but they might need to be stabilised with hydrogen, as

in forsterite109.

As shown in my study of ferrous iron diffusion in periclase the diffusivity of the

majority ions (magnesium) are almost unaffected by the diffusion of the impurity

ions (iron) even at elevated concentrations. The viscosity is therefore not affected

by neutral impurities at low concentrations. However, this is not necessarily true

for charged impurities, such as aluminium and ferric-iron, which will bind vacancies

in their vicinity reducing their availability for other cations diffusing via a vacancy

mechanism (e.g.234). The loss of available vacancies will have a strong effect on the

absolute diffusion rate and therewith on the viscosity. This is especially true for

perovskite, for which only the diffusivity of ferrous iron was calculated. It is very

likely that large proportions of iron in perovskite are in fact ferric and should hence

change their spin-state from high to low with increasing pressure at lower pressures

than ferrous iron. Also, I did not have the time to investigate the effect of the spin-

transition on the silicon six-jump cycles which might have an effect on the viscosity

of perovskite.

Thus, to better constrain our diffusion creep profile (figure 44), vacancy concen-
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trations (impurity concentrations and formation mechanisms) and grain-sizes need

to be better understood and constrained. It is, nevertheless, very encouraging that

with the current, reasonable estimates (used in this study), the viscosity profile from

inversion modelling can be reproduced. Also, if D′′ is deforming in dislocation creep,

we need means to estimate the dislocation densities and the occurring stresses in

order to estimate the absolute viscosity of post-perovskite, especially if we want to

compare it with the one of perovskite and periclase, which might still be deforming

in diffusion creep.

Finally, I would like to point out that it is not well understood how to translate the

massive diffusion-anisotropy in post-perovskite into diffusion-creep viscosity. The

ideas of how a post-perovskite aggregate deforms in diffusion-creep as outlined in

section 11.3 are only a starting point and more sophisticated simulations should

be carried out (e.g.215), especially if deformation is a collaborative process of many

grains. This would also reveal if anisotropic diffusion can produce a texture even

when deforming in diffusion-creep, leading to strain-weakening of post-perovskite.

15. Outlook

Having demonstrated that diffusivities can be calculated from first-principles for

the considered mineral phases, future research should focus on other phases that are

currently out of reach for diffusion experiments. I shall here only give a short list of

possibilities.

As the lower mantle has largely been covered in this study, the most important

future project should focus on iron-self diffusion in the Earth’s core. The viscosity of

the Earth’s core is only very poorly constrained (e.g.250) and no activation energies

for diffusion are available. This might even give a hint on the crystal structure of

iron, if diffusivities vary strongly between the different iron phases HCP, FCC251

and BCC252.

Other phases in which diffusion is difficult to measure experimentally are, e.g.,

iron-oxides, SiO2 stishovite and CaSiO3 perovskite under the lower mantle condi-

tions. But also diffusion in the transition zone minerals needs to be better under-

stood in order to better understand and quantify the viscosity contrast between the

upper and the lower mantle as well as its effect on deep earthquakes.

Lastly it needs to be mentioned that oxygen diffusion in periclase, often called the

simplest oxide, is not yet completely understood (see figure 15) and requires further

investigations.
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Alphabetical List of Abbreviations

Alphabetical List of Abbreviations

Abbreviation Denotation
CI-NEB Climbing Image Nudged Elastic Band
DFPT Density Functional Perturbation Theory
DFT Density Functional Theory
DMC Diffusion Monte Carlo
GGA Generalised Gradient Approximation
HF Hartree-Fock
IWL Interconnected Weak Layers
KMC Kinetic Monte Carlo
LBF Load-Bearing Framework
LD Lattice Dynamics
LDA Local Density Approximation
LPO Lattice Preferred Orientation
MD Molecular Dynamics
MEP Minimum Energy Path
MFPT Mean Free Passage Theory
ML Mott-Littleton
NEB Nudged Elastic Band
PBC Periodic Boundary Conditions
QMC Quantum Monte Carlo
TDDFT Time-Dependent Density Functional Theory
TFT Thomas-Fermi Theory
TST Transition State Theory
VASP Vienna ab initio Simulation Package
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Parameters for the Diffusion Rate in Lower Mantle
Minerals

Periclase

Table 10: Calculated values of the quantities required for the absolute diffusion rate
in MgO periclase. Values in brackets are calculated in a 3×3×3 supercell.
Values marked with ∗ are calculated within LDA, not marked values were
obtained within GGA

Pressure [GPa] ∆HMg [eV] ν̃Mg [THz] ∆HO [eV] ν̃O [THz] l [Å]

4.96 (5.25) 2.21 (2.06, 1.95∗) 12.12 2.36 (2.20, 2.08∗) 13.82a 2.9645
10.95 2.37 - - - 2.9345
18.68 2.55 - - - 2.8991
27.67 2.74 - - - 2.8638
30.15 (30.32) 2.79 (2.61, 2.50∗) 22.69 3.02 (2.82, 2.71∗) 19.18 2.8537
136.06 (136.64) 3.95 (3.88, 3.79∗) 28.40 4.34 (4.27, 4.17∗) 30.77 2.6294
293.70 4.5 28.56 4.86 36.26 2.4749

a27.64 considering the bifurcation

Perovskite

Magnesium and Oxygen

The investigated migration pathways for oxygen and magnesium diffusion in per-
ovskite are explained in Figures 47 and 4892. In perovskite the jump-distances
become vectors such that diffusion along different principal crystal axes differ from
each other. The jump vectors and their pressure dependence are given in table 14.
The migration enthalpies and jump frequencies are given in tables 12, 13 and 11.

Table 11: Calculated values (in a 2× 2× 1 supercell) of the quantities required for
the absolute diffusion rate of magnesium in MgSiO3 perovskite. Values in
brackets are calculated in a 2× 2× 2 supercell. Values marked with ∗ are
calculated within LDA, not marked values were obtained within GGA

Pressure ∆Ha
Mg ν̃aMg ∆Hb

Mg ν̃bMg ∆Hz
Mg ν̃zMg

0.34 3.12 (3.02) 1.84 2.84 3.87 2.96 3.54
23.86 4.07 (3.95, 3.69∗) - 3.72 (3.64, 3.40∗) 5.39 3.8 (3.84, 3.59∗) -
52.66 4.95 - 4.52 - - -
87.5 5.82 - 5.31 - - -
108.84 6.28 - 5.74 - - -
139.82 6.88 (6.48, 6.24∗) 8.48 6.29 (6.32, 6.09∗) 20.82 6.33 (6.49, 6.22∗) 22.86

167



Parameters for the Diffusion Rate in Lower Mantle Minerals

Figure 47: Sketch of magnesium migration pathways in orthorhombic
MgSiO3 perovskite left: view in z-direction, right: projection onto
(110). Straight line pathways are indicated as solid arrows. Darker atoms
are farther away from the observer. On the curved pathways, the migrat-
ing magnesium is positioned at the saddle-point location (only in the left
figure). Vacancy locations are indicated with circles.

Figure 48: Sketch of oxygen migration pathways in orthorhombic MgSiO3

perovskite left: view in z-direction, right: projection onto (110).
Straight line pathways are indicated as solid arrows. Darker atoms are
farther away from the observer. The vacancy location is indicated with
a circle.
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Perovskite

Table 12: Calculated migration enthalpies for different pathways of oxygen in
MgSiO3 perovskite using a 2 × 2 × 1 supercell. Values in brackets are
calculated in a 2 × 2 × 2 supercell. Values marked with ∗ are calculated
within LDA, not marked values were obtained within GGA

Pressure a=e b=f c d g h

0.34 0.42 (0.48) 0.64 0.71 - - (0.54) - (0.96)
23.86 0.88 (0.95, 0.90∗) 1.06 (1.03, 0.99∗) 1.04 (0.96) 1.05 0.98 1.76 (1.49)
139.82 2.12 (2.18) 2.26 1.89 2.21 2.18 3.16 (2.69)

Table 13: Calculated attempt frequencies for different pathways of oxygen in MgSiO3

Perovskite using a 2× 2× 1 supercell (within GGA)

Pressure a=e b=f c

0.34 1.53 - -
23.86 2.22 4.16 8.68
139.82 8.21 - 19.86

Table 14: Jump distances of magnesium, silicon and oxygen in MgSiO3 perovskite
and corresponding number of equivalent jumps. The pressure dependence
of the jump-distances is obtained by fitting the scaling factor S=[1, 0.9716,
0.9475, 0.9252, 0.914, 0.9] to the corresponding pressure P=[0.337, 23.861,
52.657, 87.5, 108.842, 139.82]. The jump distance at P then equals l · S.

Jump lx [Å] ly [Å] lz [Å] Z

Mga 2.264 2.487 0 2
Mgb 2.556 2.487 0 2
Mgz 0.146 0.560 3.485 2
Si〈100〉 4.820 0 0 2
Si〈010〉 0 4.974 0 2
Si〈001〉 0 0 3.485 2
Si〈110〉 2.410 2.487 0 4
Si〈111〉 2.410 2.487 3.485 8
Oa 0.509 2.487 0 2
Ob 2.410 0.480 0.755 2
Oc 1.455 1.660 1.365 1
Od 0.446 1.307 2.120 1
Og 1.964 0.827 1.365 1
Oh 0.955 1.180 2.120 1
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Silicon: Six-Jump Cycles
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Figure 49: Sketches of the considered six jump cycles for silicon and mag-
nesium diffusion along 〈110〉 in perovskite For cycle A of silicon and
the magnesium cycle, the initial state plus the first three intermediate, ac-
tivated states are shown. For the remaining silicon cycles (that have been
investigated), only the most activated state is shown (which uniquely de-
termines the cycle). All sketches also show the nominal charges carried
by the atomic sites. Squares represent vacancies, green stands for silicon,
grey for magnesium (dark is lower than light grey).
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Perovskite

Figure 50: Sketches of the investigated six jump cycles for silicon diffu-
sion along 〈111〉 and 〈001〉 in perovskite (projection onto (110)).
Darker atoms are farther away from the observer. The location of the
silicon vacancy is indicated with a circle.

Defect Formation and Protons

(See next two pages)
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Parameters for the Diffusion Rate in Lower Mantle Minerals

Kinetic Monte Carlo: Cycle Breaking Jumps

Table 19: Energies (above initial state of the six-jump cycle) of the states and barri-
ers of the six-jump cycle breaking jumps in perovskite (PV, at 23.86 GPa,
in the 2 × 2 × 1 supercell; in the 2 × 2 × 2 supercell in brackets) and
post-perovskite (PPV, at 131.61 GPa, in the 3× 1× 1 supercell)

SiPV SiPPV MgPPV

Barrier 7 4.15 (3.56) 2.91 8.74
State 7 -1.06 (-1.27) -0.88 6.89
Barrier 8 4.65 6.82 9.79
State 8 2.67 3.59 5.70
Barrier 9 6.55 8.30 11.83
State 9 2.12 4.08 10.42
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Post-Perovskite

Post-Perovskite

The considered pathways for post-perovskite are shown in figure 51. The quantities
required to calculate the absolute diffusion rate in post-perovskite are given in tables
20, 21,22 and 23. The jump vectors and their pressure dependence are given in table
24.

Figure 51: Sketch of the considered migration-pathways (direct jumps
only) in MgSiO3 post-perovskite Darker atoms are farther away from
the observer. The ionic vacancies are marked with a circle. Solid, dashed
and dotted arrows indicate migration pathways of magnesium, silicon and
oxygen respectively.

Table 20: Calculated values (in a 3×1×1 supercell) of the quantities required for the
absolute diffusion rate of magnesium in MgSiO3 post-perovskite. Values
in brackets are calculated in a 3× 1× 2 supercell. Values marked with ∗

are calculated within LDA, unmarked values were obtained within GGA

Pressure ∆Hx
Mg ν̃xMg ∆Hy

Mg ν̃yMg ∆Hz
Mg ν̃zMg

121.50 3.29 - 13.76 - 7.95 -
131.61 3.43 (3.43, 3.28∗) 11.22 14.16 - 8.19 (7.68, 7.37∗) 8.31
142.28 3.58 - 14.56 - 8.43 -
505.42 6.93 (7.10) 33.34 23.13 - 13.82 22.61
1016.05 9.26 (9.60) - - - - -
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Table 21: Calculated values (in a 3× 1× 1 supercell) of the quantities required for
the absolute diffusion rate of silicon in MgSiO3 post-perovskite. Values in
brackets are calculated in a 3× 1× 2 supercell. Values marked with ∗ are
calculated within LDA, unmarked values were obtained within GGA

Pressure ∆Hx
Si ν̃xSi ∆Hy

Si ν̃ySi ∆Hz
Si ν̃zSi

121.50 3.04 - 13.57 - - -
131.61 3.01 (3.26, 3.27∗) 65.84, 66.27a 13.81 (13.52) 51.44 (6.61, 6.51∗) -
142.28 2.99 - 14.05 - - -
505.42 2.52 78.56 18.82 - - -

aincreased cut-off energy of 1500 eV

Figure 52: Sketches of the investigated six jump cycles for silicon and mag-
nesium diffusion along 〈010〉 and 〈001〉 in post-perovskite (view
in z direction) Darker atoms are farther away from the observer. The
initial positions of the vacancies are indicated with a circles.
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Post-Perovskite

Table 24: Jump distances of magnesium, silicon and oxygen in MgSiO3 post-
perovskite and corresponding number of equivalent jumps. The corre-
sponding path-names are shown in figure 51 and 52. The pressure de-
pendence of the jump-distances is obtained by fitting the scaling factor
S=[1.005, 1, 0.995, 0.9] to the corresponding pressure P=[121.501, 131.606,
142.281 ,505.42]. The jump distance at P then equals l · S.

Jump lx [Å] ly [Å] lz [Å] Z

Mgx 2.462 0 0 2
Mgay 0 3.978 3.054 4
Mgby 1.231 4.027 0 4
Mgz 1.231 0 3.054 4
Six 2.462 0 0 2
Siy 1.231 4.027 0 4
Siz 0 0 3.054 2
Oa 1.231 1.691 1.167 2
Ob 1.231 0.515 1.887 2
Oc 2.462 0 0 2
Od 0 2.207 0.721 1
Oe 1.231 1.820 0.721 2

181



Parameters for the Diffusion Rate in Lower Mantle Minerals

T
ab

le
25:

C
alcu

lated
(G

G
A

)
form

ation
en

ergies
(in

eV
)

of
variou

s
d
efects

in
p

ost-p
erov

sk
ite

(in
a

3
×

1
×

2
su

p
ercell,

w
ith

2
×

5
×

2
k
-p

oin
ts

grid
)

at
131.61

G
P

a.
T

h
e

correction
term

1
2
0

for
ch

arged
sy

stem
s

is
given

b
y

1
.3

9
q
2

ε
w

h
ere

q
is

th
e

ch
arge

(-2,
-4,+

2
for

th
e

m
agn

esiu
m

,
silicon

an
d

ox
y
gen

vacan
cies

resp
ectively

)
an

d
ε

th
e

d
ielectric

con
stan

t
of

th
e

sy
stem

(in
th

e
tab

le
w

e
h
ave

u
sed

ε=
8).

P
F

U
=

p
er

form
u
la

u
n
it,

P
V

=
p

er
vacan

cy
(alw

ay
s

u
sin

g
corrected

valu
es)

#
a
tom

s
(M

g
,S

i,O
,q

)
en

ergy
[eV

]
C

orrected
[eV

]
F

orm
ation

[eV
]

R
eaction

M
gS

iO
3

(24,24
,7

2
,0

)
-75

4
.7

0,
-872.23

∗
-

-31.45
P

F
U

M
g

+
S
i

+
3
O
→
M
g
S
iO

3

V
M
g

(2
3,24,72

,-2)
-7

25.95
,

-842.11
∗

-724.90,
-841.07

∗
-

-
V
S
i

(24
,2

3
,7

2,-4
)

-69
0
.9

4,
-806.71

∗
-686.76,

-802.53
∗

-
-

V
O

(2
4
,2

4,71,+
2)

-7
7
0.94,

-887.03
∗

-769.90,
-885.98

∗
-

-
M
g
S
i

(25
,2

3
,7

1,-2
)

-720.43
-719.39

-
-

S
ch

o
ttk

y
-

-
-

-20.68,
-23.25

M
g
S
iO

3
→
V
M
g

+
V
S
i
+
V
O

+
M
g
S
iO

3

182



Iron Spin-Transition

Iron Spin-Transition

Ferro-Periclase

Table 26: Cell-parameter (L [Å]), energies (E [eV]) and pressures (P [GPa]) of the
perfect 2 × 2 × 2 cubic unit cell of periclase containing one iron atom
(XFe = 0.03125) in the low-spin and high-spin state. The values are given
for different values of the Hubbard U.

low-spin U = 0 U = 1 U = 4.5 U = 7

L E P E P E P E P

4.2 -389.22 3.53 -388.66 3.58 -386.97 3.79 -386.00 3.95
4.1 -386.57 17.81 - - - - - -
4.0 -379.94 37.21 -379.35 37.28 -377.53 37.56 -376.48 37.77
3.9 -368.35 63.38 -367.74 63.46 -365.86 63.77 -364.75 64.01
3.8 -350.59 98.54 -349.96 98.63 -348.00 98.96 -346.84 99.22
3.5 -243.25 292.89 -242.57 292.96 -240.42 293.24 -239.10 293.46

high-spin

4.2 -389.59 4.84 -389.20 4.87 -388.24 4.95 -387.73 4.99
4.1 -386.57 19.41 - - - - - -
4.0 - - -379.10 39.19 -378.09 39.28 -377.57 39.3
3.9 -367.42 65.74 -367.00 65.78 - - - -
3.8 -349.08 101.37 -348.65 101.44 -347.60 101.51 -347.08 101.49
3.5 - - - - -237.94 297.85 -237.50 297.49
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Table 27: Cell-parameter (L [Å]) and energies (E [eV]) of a 2× 2× 2 cubic unit cell
of periclase containing one iron atom (XFe = 0.03125) and a vacancy on a
nearest-neighbour (NN) or next-nearest-neighbour (NNN) site to the iron
atom. The values are given for different values of the Hubbard U.

low-spin U = 0 U = 1 U = 4.5 U = 7

L E NN E NNN E NN E NNN E NN E NNN E NN E NNN

4.2 -370.14 -370.20 -369.58 - -367.89 -367.94 -366.93 -366.96
4.0 -358.19 -358.23 -357.6 - -355.79 -355.82 -354.73 -354.76
3.9 -345.30 - - - -342.80 - -341.70 -
3.8 -326.28 -326.27 -325.65 - -323.69 -323.68 -322.53 -322.52
3.5 -215.95 -215.74 -215.27 - -213.09 -212.92 -211.76 -211.61

high-spin

4.2 -370.62 -370.52 -370.23 - -369.25 -369.18 -368.74 -368.67
4.1 -366.27 -366.15 - - - - - -
4.0 -357.90 -358.23 -357.5 - -356.47 -356.35 -355.94 -355.83
3.9 -344.52 -344.34 -344.12 - - - -342.52 -
3.8 -324.93 - -324.53 - -323.45 -323.27 -322.91 -322.75
3.5 - - - - -210.79 -210.46 -210.32 -210.03

Table 28: Cell-parameter (L [Å]), migration enthalpies (∆ H [eV]) and attempt fre-
quencies (ν̃ [THz]), for the five-frequency model, U = 0 (a 2× 2× 2 cubic
unit cell with XFe = 0.03125). Values in brackets are in a 3× 3× 3 cubic
unit cell with XFe = 0.00926. Low-spin iron is jumping via the high-spin
saddle-point, magnesium jumps are fixed spin.

high-spin W2 W1 W3 W4

L ∆H2 ν̃2 ∆H1 ν̃1 ∆H3 ν̃3 ∆H4 ν̃4

4.2 1.34 (1.19) 2.51 2.07 6.2 2.21 - 2.11 -
4.0 2.09 4.96 2.93 - - - - -
3.9 2.45 - 3.32 - 3.32 - 3.15 -
3.8 2.79 (2.74) 6.43 3.70 - - - - -

low-spin

4.2 0.86 (0.64) 4.14 1.90 4.44 2.13 - 2.19 -
4.0 2.38 (2.17) 8.62 2.73 - 2.87 21.95 2.91 22.26
3.8 4.14 (4.04) 13.36 3.54 21.73 3.58 - 3.56 -
3.5 - - 4.47 - 4.25 24.24 4.04 22.36
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Table 29: Cell-parameter (L [Å]), migration enthalpies (∆ H [eV]) and attempt fre-
quencies (ν̃ [THz]), for the five-frequency model, U = 4.5 (a 2×2×2 cubic
unit cell with XFe = 0.03125). Values in brackets are in a 3× 3× 3 cubic
unit cell with XFe = 0.00926. Low-spin iron is jumping via the high-spin
saddle-point, magnesium jumps are fixed spin.

high-spin W2 W1 W3 W4

L ∆H2 ν̃2 ∆H1 ν̃1 ∆H3 ν̃3 ∆H4 ν̃4

4.2 1.62 (1.48) - 2.12 - 2.23 - 2.14 -
4.0 2.31 (2.16) - 2.91 - 2.94 - 3.82 -
3.8 2.96 (3.29) - 3.66 - 3.65 - 3.47 -
3.5 3.71 (4.22) - 4.44 - 4.32 - 3.99 -

low-spin

4.2 0.26 (0.04) - 1.97 - 2.15 - 2.19 -
4.0 1.63 (1.41) - 2.77 - 2.89 - 2.92 -
3.8 3.20 (3.49) - 3.54 - 3.60 - 3.59 -
3.5 6.01 - 4.44 - 4.27 - 4.10 -

Table 30: Cell-parameter (L [Å]), migration enthalpies (∆ H [eV]) and attempt fre-
quencies (ν [THz]), for the five-frequency model, U = 7 (a 2× 2× 2 cubic
unit cell with XFe = 0.03125). Values in brackets are in a 3× 3× 3 cubic
unit cell with XFe = 0.00926. Low-spin iron is jumping via the high-spin
saddle-point, magnesium jumps are fixed spin.

high-spin W2 W1 W3 W4

L ∆H2 ν2 ∆H1 ν1 ∆H3 ν3 ∆H4 ν4

4.2 1.74 (1.60) 4.29 2.14 - 2.20 - 2.14 -
4.0 2.42 (2.26) - 2.92 - 2.94 - 2.83 -
3.9 2.75 (2.60) - - - - - - -
3.8 3.37 (2.87) - 3.66 - 3.66 - 3.49 -
3.5 3.71 (4.18) 8.68 4.44 - 4.34 - 4.04 -

low-spin

4.2 -0.07 (-0.28) - 2.01 - 2.16 - 2.19 -
4.0 1.22 (1.00) - 2.79 - 2.90 - 2.92 -
3.8 2.98 (3.30) - 3.55 - 3.61 - 3.60 -
3.5 5.14 (5.57) - 4.42 - 4.28 - 4.13 -
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Table 31: Calculated values of the migration enthalpy (H), attempt frequency ν̃ and
jump distance l in MgO periclase (W0). Values in brackets are calculated
in a 3× 3× 3 supercell.

Pressure [GPa] ∆HMg [eV] ν̃Mg [THz] ∆HO [eV] ν̃O [THz] l [Å]

4.96 (5.25) 2.21 (2.06) 12.12 2.36 (2.20) 13.82 2.9645
10.95 2.37 - - - 2.9345
18.68 2.55 - - - 2.8991
27.67 2.74 - - - 2.8638
30.15 (30.32) 2.79 (2.61) 22.69 3.02 (2.82) 19.18 2.8537
136.06 (136.64) 3.95 (3.88) 28.40 4.34 (4.27) 30.77 2.6294
293.70 4.5 28.56 4.86 36.26 2.4749

Ferrous Iron in Perovskite

(See next two pages)
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Table 32: Cell-scale-parameter (L), migration enthalpies (∆ H) and attempt fre-
quencies (ν̃) of an iron (migrating on the magnesium sublattice) or a
magnesium or an oxygen jumping into a vacancy near a low or high spin
iron (migration on nearest neighbour sites) in perovskite (a 2 × 2 × 1
unit cell with XFe = 0.0625). Entries marked with an asteriks (*) are
intermediate spin at the saddle-point.

low spin U = 0 U = 2 U =7

Species L [Å] ∆ H ν̃ ∆ H ν̃ ∆ H ν̃

Fe a 0.97 3.68 - - - - -
0.90 6.54 - - - - -

Fe b 0.97 3.54 53.7 - - - -
0.90 6.25 221.6 - - - -

Fe z 0.97 3.45 - - - - -
0.90 6.83 - - - - -

Mg a 0.97 4.23 - - - - -
0.90 6.81 - - - - -

O a 0.97 1.66 - - - - -
0.90 - - - - - -

high spin
Fe a 0.97 3.65* - - - - -

0.90 5.70* - - - - -
Fe b 0.97 3.57* - 3.85 - 4.00 -

0.90 5.47* - 6.16 54.2 6.27 -
Fe z 0.97 - - - - - -

0.90 5.50* - - - - -
Mg a 0.97 4.15 - - - - -

0.90 6.69 - - - - -
O a 0.97 - - - - - -

0.90 - - - - - -
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Table 33: Calculated energies (in eV) of intermediate states and saddle-points
(jump) for the six-jump cycles of silicon along 〈110〉 in the presence of
a low spin iron (for various U) in a 2 × 2 × 1 supercell of MgSiO3 per-
ovskite at 24 GPa (Cell-scale parameter 0.97). The iron jumps from state
2 to 3 and from 5 to 6.

low spin U = 0 U = 2 U =7

∆ H ls ∆ H hs ∆ H ls ∆ H hs ∆ H ls ∆ H hs

start -511.92 -512.61 -510.83 -511.93 -508.68 -510.74
jump 1 1.53 1.59 - - - -
state 1 -0.19 -0.08 - - - -
jump 2 3.03 3.34 - - - -
state 2 1.83 2.48 1.83 2.25 1.86 2.22
jump 3 5.43 4.13 - 4.20 5.56 4.43
state 3 2.23 3.62 2.32 3.65 2.56 3.71
jump 4 3.69 - - - - -
state 4 0.29 1.04 - - - -
jump 5 - - - - - -
state 5 -1.05 -0.36 - - - -
jump 6 - - - - -
state 6 0.44 0.21 - - - -

high spin
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Abstract The effect of pressure on ionic diffusion in

orthorhombic MgSiO3 perovskite has been investigated

using density functional theory. An intensive investigation

of possible silicon pathways revealed new positions of the

saddle-points and an enthalpy of migration at 26.2 GPa of

4.7 eV that is in fair agreement with the experimental

values of about 3.5 eV at 25 GPa. This is much lower than

found in previous studies (*9 eV) and removes the need to

explain silicon diffusion by a complicated process involv-

ing coupled oxygen vacancies, as has been previously

proposed. Our migration enthalpies for oxygen and mag-

nesium are in excellent agreement with experiments. We

find that oxygen diffusion occurs via a chain of several

inequivalent jumps along the octahedron edges, and that

magnesium occurs via two inequivalent [110] jumps and

one [001] jump. We also present activation volumes for all

three species at 25 and 135 GPa.

Keywords Migration enthalpies � MgSiO3 perovskite �
High pressure � Rheology of lower mantle

Introduction

An accurate knowledge of the transport properties of

Earth’s mantle is necessary for modelling its thermo-

chemical evolution and understanding its present state

(Dobson and Brodholt 2000). The rheology, reaction rates

and (ionic) electrical conductivity of mantle minerals are

all ultimately controlled by the chemical diffusivities of

their constituent chemical species. Magnesium silicate,

MgSiO3, perovskite is the volumetrically dominant mineral

in the mantle, comprising some 70–80% of the lower

mantle and the change in viscosity at 670 km depth is

thought to exert a fundamental control on mantle convec-

tion (Hager 1984). Despite its importance, however,

chemical diffusivity in silicate perovskite is poorly under-

stood. There are very few experimental studies of diffusion

in perovskite and only at the pressures of the uppermost

few kilometers of the lower mantle. Furthermore, previous

numerical simulation studies (Karki and Khanduja 2007;

Wright and Price 1993) could not reproduce the experi-

mental values for silicon migration enthalpy and disagree

in the migration direction of magnesium. Here we present

an ab initio simulation study of the migration enthalpies

of magnesium, silicon and oxygen in MgSiO3 perovskite

at various pressures throughout the Earth’s mantle. The

migration enthalpies determined here agree well with

experimentally determined values for all three species.

Methodology

Calculations were performed using the ab initio total-

energy calculation package VASP (Vienna ab initio Sim-

ulation Package) (Kresse and Hafner 1993; Kresse and

Furthmüller 1996) which uses density functional theory

(Hohenberg and Kohn 1964; Kohn and Sham 1965). The

Generalised Gradient Approximation (Perdew and Wang

1992) and the projector augmented-wave method (Blöchl

1994; Kresse and Joubert 1999) were used. Pressure was

imposed by a constant volume approach as suggested by

Karki and Khanduja (2006). All calculations have been

performed in a static, fully relaxed crystal. A

2 9 2 9 2-supercell of orthorhombic MgSiO3 perovskite

M. W. Ammann (&) � J. P. Brodholt � D. P. Dobson
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in the Pbnm space group was used containing 160 atoms.

Migrations enthalpies calculated with the 2 9 2 9 2 cell

agree to within 0.05 eV with those calculated using a

smaller 2 9 2 9 1 cell; the 2 9 2 9 2 cell is, therefore,

sufficiently large. All calculations have been performed

using a single k-point (C-point) sampling. The comparison

with a 4 9 4 9 4-k-point sampling revealed a difference in

the migration enthalpy of less than 0.2%. A plane wave

basis-set expansion with a cut-off energy of 1000 eV was

used for the representation of the valence electrons.

Compared with a cut-off energy of 1200 eV, migration

enthalpies changed by less than 0.1%.

Migration enthalpies

Atomic migration is considered as a hopping process: an

ion moves from one site into a nearby vacancy. In this

work we are only considering the ionic defects and remove

either an Mg2?, Si4? or O2- in each calculation. The net

charges of the magnesium, silicon and oxygen vacancies

are, therefore, -2, -4 and ?2, respectively, which are

considered the dominant defect in silicates (Karki and

Khanduja 2007; Wright and Price 1993). Generally, the

computation of the energies of charged systems using

periodic boundary conditions requires a correction for the

self-interaction with the system’s images (Brodholt 1997).

However, as only energy differences were considered in

this study, no such correction needed to be applied as the

corrections cancel each other. During migration of a single

ion, it needs to overcome the potential energy barrier which

it crosses at a saddle-point where it has the highest energy.

In the activated state, the diffusing ion sits at the top of the

saddle-point, in an interstitial site, with two near-neighbour

vacancies, one on the site which the ion has vacated and

one on the site which the ion is migrating to. The migration

enthalpy of an ion is then defined as the energy difference

between the equilibrium defective system and the defective

system with an ion at the saddle-point:

Emigration ¼ Esaddlepoint � Eequilibrium

Although the saddle-point lies approximately halfway

between the occupied and vacant site, as stated by Wright

and Price (1993), finding the exact location is not always

straightforward. We have, therefore, spent considerable

effort in locating the saddle-point, as described below. This

is particularly important for silicon migration.

Perovskite structure

Magnesium silicate perovskite is distorted from the cubic

type-structure by tilting of the SiO6 octahedra as sketched

in Fig. 1. The distortion results in a rotation of the a- and

b-axes by 45� from the cubic structure with a consequent

increase of the axial lengths of approximately H2. The

orthorhombic c-axis is doubled from the cubic axis,

resulting in four formula units in the unit cell for the

orthorhombic structure. Silicon and magnesium nearest

neighbours, and hence shortest hopping distances, lie along

the axial vectors in the pseudo-cubic setting and along

[110] and [001] in the orthorhombic setting (Fig. 1). In the

present study we consider the jumps to nearest neighbours

(i.e. along [110]) as well as jumps to next-nearest neigh-

bours in the x-y plane (i.e. along [100] and [010]).

Furthermore, silicon lies on (1/2, 0, 1/2) such that [110] and

[-110] jumps are equivalent. For magnesium, in contrast,

a’

b’
c’

b’

(a) (b)

ab

ca’

b’

a
b

ab

c

Fig. 1 Sketch of the

magnesium silicate structure.

a View down c-axis;

b projection onto (110) of the

orthorhombic cell. For clarity

oxygen atoms have been

omitted and the SiO6 octahedra

are indicated in grey. The

pseudocubic unit cell is shown

using dotted lines and the

orthorhombic cell is shown in

dot-dashed lines; pseudocubic

(orthorhombic) axes are labelled

with (without) a tick. One

silicon atom (small green) and

one magnesium atom (large

white) are shown along with

their nearest neighbour jumps

(arrows)
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they are not equivalent as the positions of the ions near the

paths are different due to the tilt of the SiO6 octahedra (see

also Fig. 4), giving two possible diagonal migration path-

ways. For oxygen we have considered all of the possible

exchanges along the octahedron edges as well as the two

inequivalent next-nearest neighbour jumps along [001] (see

below).

Silicon migration

The silicon migration pathways are complex and a geo-

metrical analysis yields only a vague indication of the

saddle-point’s position: in order to avoid the obstructing

oxygens, the migrating silicon ion passes approximately

half-way between all the oxygen and magnesium ions. The

situation is shown in Fig. 2. Assuming that the saddle-point

lies halfway between the vacant and the jumping ion’s site,

one needs to search in a plane of possible saddle-points

half-way between the two sites. For the [110]-pathway,

the initial and final sites are respectively (1/2, 1/4, 1/2) and

(1/4, 1/2, 1/2) in relative coordinates within the 2 9 2 9

2-supercell. The condition x = y defines the saddle-point

plane, and we searched within that plane for the minimum

energy. For the [001]-pathway, the initial and final sites are

respectively (1/2, 1/4, 1/4,) and (1/2, 1/4, 1/2), where the

condition z = 3/8 defines the saddle-point plane within

which we search. For the second nearest neighbour jumps,

i.e. along [100] and [010], we again assume that the saddle-

point plane is exactly half-way between the two sites.

However, we find that these jumps are always energetically

very unfavourable compared with the nearest neighbour

jumps (see Table 1) and so we have not searched the entire

saddle-point plane.

By sampling the plane at many different points, the

minimum energy location in the plane of possible saddle-

points was found to be z = 0.44 and x = y = 0.37 with

respect to the supercell for the [110]-pathway and x = 0.6,

y = 0.33 and z = 0.375 for the [001]-pathway. Figure 3

shows contour maps of saddle-point energies (migration

enthalpies) created by cubic interpolation between the

sampling points in the plane of possible saddle-points on the

[110]-pathway at 3.3 and 151.7 GPa. The minimum for

the pathway along the [001]-direction is not particularly

strong and therefore no map is shown. A comparison of the

two contour maps at 3.3 and 151.7 GPa shown in Fig. 3

reveals a small change in the topology of the energy surface

in the plane of possible saddle-points with pressure: with

increasing pressure, the high energy plateaus surrounding

the oxygen (upper right corner) and the magnesium (lower

left corner) are pushed closer together resulting in two

possible pathways for the migrating silicon. One passes

underneath the oxygen, the other one avoids it by going

around it on its left side. Both pathways are marked with

their corresponding migration enthalpy in Fig. 3. The loca-

tion of the minimum migration enthalpy for both pathways

does not change between the 3.3 GPa and 151.7 GPa sim-

ulations and we thus assumed that the location of the saddle-

point remains at the same relative position at all pressures.

The maps also clearly demonstrate how choosing the saddle-

point position in different regions can result in much too

high migration enthalpies explaining findings of previous

studies. Furthermore, the calculated migration enthalpies

Fig. 2 Sketch of silicon migration pathways in orthorhombic

MgSiO3 perovskite [left view in z-direction, right projection onto

(110)]. Straight-line pathways are indicated as solid arrows and are

much higher energy than the curved pathways (see Table 1). In the

right hand side figure, the straight-line pathways have a component

out of the paper. Darker atoms are farther away from the observer. On

the curved pathways, the migrating silicon is positioned at the saddle-

point location. Vacancy sites are indicated with circles and the plane

of possible saddle-points is shown by dashed lines
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Fig. 3 Contour maps of the

computed migration enthalpies

(in eV) in the sampled plane of

possible saddle-points for

silicon migration along the

[110]-pathway in orthorhombic

MgSiO3 perovskite at 3.3 GPa

(upper) and at 151.7 GPa

(lower). The locations of the

minimum of migration enthalpy

for two possible silicon

pathways are marked with a

black dot and labelled with their

corresponding value

Table 1 Migration enthalpies (in eV) of silicon in orthorhombic MgSiO3 perovskite for different migration pathways at different pressures (in

GPa)

Pathway 3.3 GPa 26.2 GPa 61.0 GPa 101.1 GPa 126.6 GPa 151.7 GPa

This Study [110] 3.52 4.7 5.6 6.17 6.41 6.59

[100] 6.98 – – – – –

[010] 7.95 – – – – –

[001] 5.72 – – – 8.25 –

Karki and Khanduja (2007) [110] 8.33a 9.1b *9.7 *10.2 10.48c *10.8

[001] 19.56a – – – – –

Wright and Price (1993) [110] 9.2a – – – 10.32d –

Dobson et al. (2008) Exp. – 3.6 ± 0.76e – – – –

Yamazaki et al. (2000) Exp. – 3.48 ± 0.38e – – – –

The ‘‘*’’ symbol indicates that the numbers were read out of figures
a At 0 GPa
b At 30 GPa
c At 120 GPa
d At 125 GPa
e At 25 GPa
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can depend on the initial crystal structure since the energy

surface of the activated state contains many local minima.

Thus, if the system is allowed to relax from an initial con-

figuration of an interstitial silicon placed in the perfect

structure (with vacancies placed on the starting and final

silicon-sites of the migration pathway) it finds a minimum

energy which is *5 eV higher than if the initial configu-

ration uses a structure which has been relaxed around a

vacancy on the target site. This suggests that only a local

minimum is found when one starts the structural optimisa-

tion from the perfect structure, and highlights the difficulty

in finding global minima. The agreement between our results

and experiments, shown below, suggests that we must be

close to the global minimum. Finally we tested whether the

saddle-point is in a local minimum of the migration path by

moving the ion a small distance off the plane towards a

vacancy and confirming the energy decreased.

The silicon migration enthalpies for different directions

at a range of pressures are shown in Table 1. Each jump

between nearest neighbours in any direction in the x–y-

plane is equivalent and only two jumps are required to

cross a unit cell. The [100] and [010] migration pathways

which constitute direct jumps across one unit cell to the

second nearest neighbours (solid lines in Fig. 1) are ener-

getically unfavourable. The high migration enthalpy in the

[001]-direction (Table 1) is in agreement with anisotropic

silicon-diffusion seen in experimental data (Dobson et al.

2008). A comparison between the silicon migration

enthalpy at 26.2 GPa of 4.7 eV and its experimental values

of 3.6 ± 0.76 eV (Dobson et al. 2008) and 3.48 ± 0.38 eV

(Yamazaki et al. 2000) at 25 GPa shows the best agreement

found so far in any theoretical study.

The migration enthalpies increase with pressure as

expected from the decreased inter-atomic distances in the

compressed structures. The activation volume decreases

from 3.5 cm3/mol at 25 GPa to 0.7 cm3/mol at 135 GPa.

Magnesium migration

There are three distinct pathways to nearest neighbour sites

for magnesium as shown in Fig. 4. Pathways to second

nearest neighbours around the octahedra (between oxygen

and magnesium) along [100] and [010] are energetically

unfavourable (as shown in Table 2). The two [110]-path-

ways (a and b) pass between two octahedra and are

strongly affected by nearby oxygens, and so one cannot

assume a straight-line path. For path b a migration enthalpy

of 2.52 eV is found for a magnesium ion passing halfway

between the initial and final ion site and halfway between

the nearest oxygen neighbours (as shown in Fig. 4),

whereas a straight-line between the two magnesium yields

a much higher migration enthalpy of 13.5 eV. Shifting the

ion off the straight-line path is less important for pathway a

with the migration enthalpy changing from 3.3 to 3.1 eV

by shifting off the straight-line path. Similarly, the straight-

line path in the [001]-direction passes halfway between

pairs of oxygens and yields a saddle-point halfway between

the initial and final sites. The positions of the saddle-points

have been re-calculated for each pressure as the local ionic

structure changes slightly with increasing pressure. As in

the case of silicon migration, it is unlikely that the saddle-

point has been found exactly and as such all migration

enthalpies are, within errors, approximately equal to each

other and to the experimental value. Moreover, the results

show that diffusion of magnesium is isotropic.

The computed magnesium migration enthalpies for

different directions and pressures are shown in Table 2.

The average magnesium migration enthalpy at 26.2 GPa of

3.69 ± 0.37 eV is somewhat smaller than the experimental

value for Fe–Mg-interdiffusion of 4.29 ± 0.64 eV at

24 GPa (Holzapfel et al. 2005). However, as the locations

of the chosen saddle-points do not correspond exactly with

the real saddle-points, it is possible that they lie close to the

Fig. 4 Sketch of magnesium

migration pathways in

orthorhombic MgSiO3

perovskite [left view in

z-direction, right projection onto

(110)]. Straight-line pathways

are indicated as solid arrows.

Darker atoms are farther away

from the observer. On the

curved pathways, the migrating

magnesium is positioned at the

saddle-point location (only in

the left figure). Vacancy

locations are indicated with

circles
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correct path resulting in lower migration enthalpies.

Additionally, one can expect a lower enthalpy for pure

magnesium migration, as observed here, since iron is larger

than magnesium resulting in a stronger lattice distortion at

the saddle-point and increased migration enthalpies. Thus,

the present values are consistent with experiment. The

activation volumes calculated from the average values at

25 GPa is 3.37 cm3/mol and at 135 GPa 2.05 cm3/mol.

Oxygen migration

Oxygen migration can take place along many distinct

pathways as shown in Fig. 5. Although there are only two

inequivalent oxygen positions within the unit cell, there are

eight different (non-equivalent) jumps that an oxygen can

perform along octahedra edges.

The migration enthalpies were calculated by setting an

oxygen exactly halfway between the initial and end sites.

Again, the saddle-point may not lie exactly halfway

between two oxygen sites, but as all migration enthalpies

are equal to the experimental value within error, the mid-

way position must be close to the true saddle-point. These

are shown in Table 3. Note that the eight different jumps

along the edges of the octahedra have similar migration

enthalpies; this is to be expected since the octahedral dis-

tortions are small. The average oxygen migration enthalpy

Table 2 Migration enthalpies (in eV) of magnesium in orthorhombic MgSiO3 perovskite for different migration pathways at different pressures

(in GPa)

Pathway 3.3 GPa 26.2 GPa 61.0 GPa 101.1 GPa 126.6 GPa 151.7 GPa

This Study [110] a 3.1 3.96 5.21 5.7 6.2 6.71

[110] b 2.52 3.27 4.35 5.12 5.55 6.15

[001] 2.87 3.84 4.82 5.74 6.21 6.73

Average 2.83 ± 0.29 3.69 ± 0.37 4.79 ± 0.43 5.52 ± 0.34 5.98 ± 0.38 6.53 ± 0.33

[100] 7.74 – – – – –

[010] 9.07 – – – – –

Karki and Khanduja (2007) [110] 3.47a 4.78b *6.1 *7 7.71c *8.7

[001] 13.54a – – – – –

Wright and Price (1993) [110] 4.57a – 6.13d – 7.43e –

Holzapfel et al. (2005) Exp. – 4.29 ± 0.64f – – – –

The ‘‘*’’ symbol indicates that the numbers were read out of figures
a At 0 GPa
b At 30 GPa
c At 120 GPa
d At 60 GPa
e At 125 GPa
f Fe-Mg inter-diffusion at 24 GPa

Fig. 5 Sketch of oxygen

migration pathways in

orthorhombic MgSiO3

perovskite [left view in

z-direction, right projection onto

(110)]. Straight-line pathways

are indicated as solid arrows.

Darker atoms are farther away

from the observer. The vacancy

location is indicated with a

circle
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at 26.2 GPa of 1.47 eV is in excellent agreement with the

experimental value of 1.35 eV (Dobson 2003) or 1.47 eV

(Xu and McCammon 2002) at 25 GPa. The activation

volume calculated from the average values at 25 GPa is

1.95 cm3/mol, and decreases to 1.49 cm3/mol at 135 GPa.

The high migration enthalpies for the pathways up and

down clearly demonstrate that migration takes place along

the octahedra edges. The similar migration enthalpies

along octahedra edges means that oxygen diffusion in

perovskite is essentially isotropic.

Discussion

First-principles simulations of orthorhombic MgSiO3

perovskite have been performed in order to compute the

migration enthalpies of magnesium, silicon and oxygen

under different pressures up to lower mantle conditions. All

migration enthalpies increase monotonically with increas-

ing pressure. Our results agree well with experimental

results. A new silicon migration pathway has been pro-

posed yielding a migration enthalpy much closer to the

experimental value than in previous studies (Karki and

Khanduja 2007; Wright and Price 1993). We suggest,

therefore, that silicon diffuses via a simple hopping

mechanism and does not require a complicated process

involving adjacent oxygen vacancies, as suggested by the

previous studies.

The rate of deformation in high-temperature dislocation-

migration regimes is limited by the slowest diffusing

species. Our calculated migration enthalpies for silicon

diffusion are about 20% higher than magnesium at all

pressures, and substantially higher than oxygen. This

suggests that silicon will be the rate-limiting species

throughout the Earth’s mantle, as is the case with most

silicates (Dobson et al. 2008). Recent experiments

(Holzapfel et al. 2005; Dobson et al. 2008) suggest that

silicon and magnesium have very similar diffusivities such

that silicon is not necessarily the rate-limiting species.

However, the experiments of (Holzapfel et al. 2005) are

Fe–Mg inter-diffusion and so the migration enthalpy they

measure may well be higher than that for magnesium self-

diffusion. Furthermore, the formation energy of silicon

vacancies is generally significantly higher than for mag-

nesium or oxygen vacancies (e.g. Brodholt 1997).

Holzapfel et al. (2005) extrapolate their Fe-Mg inter-

diffusion values to deep lower mantle conditions using a

constant activation volume of 2.1 cm3/mol from Wright

and Price (1993). This activation volume is equal (within

error) to those found in this study and we do not find a

Table 3 Migration enthalpies (in eV) of oxygen in orthorhombic MgSiO3 perovskite for different migration pathways at different pressures (in

GPa)

Pathway 3.3 GPa 26.2 GPa 61.0 GPa 101.1 GPa 126.6 GPa 151.7 GPa

This Study [001] Up 2.9 2.99 – – – 3.29

[001] Down 10.71 – – – – –

a 0.72 1.5 2.11 2.75 2.89 2.87

b 0.8 1.78 2.24 2.88 2.91 3.05

c 1.29 1.16 1.94 2.38 1.58 2.08

d 0.92 0.97 1.24 2.26 2.65 2.96

e 0.55 1.5 1.79 2.38 2.73 3.31

f 0.86 1.63 2.56 2.78 2.76 3.51

g 0.66 1.42 1.74 2.2 2.61 3.22

h 0.97 1.8 2.17 2.52 2.9 3.07

Average 0.85 ± 0.23 1.47 ± 0.29 1.97 ± 0.4 2.53 ± 0.26 2.63 ± 0.44 3.01 ± 0.43

Karki and Khanduja (2007) [100] 0.57a 1.41b *2 *2.5 2.57c *2.5

[110] 2.78a – – – – –

Wright and Price (1993) [100] 0.96a – – – – –

Dobson (2003) Exp. – 1.35 ± 0.2d – – – –

Xu and McCammon (2002) Exp. – 1.47d – – – –

The definition of the pathways and their labels are given in Fig. 5. The average values are given with their standard deviations. The ‘‘*’’ symbol

indicates that the numbers were read out of figures
a At 0 GPa
b At 30 GPa
c At 120 GPa
d At 25 GPa
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strong pressure dependence of activation volume for

magnesium migration. The conclusions of Holzapfel et al.

(2005) are therefore not affected by the present study. In

contrast, the extrapolation by Xu and McCammon (2002)

will underestimate oxygen mobility at the base of the lower

mantle since they use an activation volume of about

2.1 cm3/mol, which is somewhat larger than the value

found here at high pressure. This makes it even more likely

that oxygen ionic conduction in MgSiO3 occurs towards

the base of the lower mantle.
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INTRODUCTION

Ionic or atomic diffusion controls chemical exchange between and within different 
crystalline, melt and fluid phases. It can control the kinetics of phase transitions, the rate at which 
minerals grow, the degree of compositional zoning in minerals, and other important geochemical 
processes. Diffusion also plays a central role in the rheological properties of minerals and melts. 
In diffusion creep stress is accommodated through ions migrating from regions of high stress to 
regions of low stress. This is achieved either through bulk diffusion or grain boundary diffusion. 
In dislocation creep the rate-limiting step is often dislocation climb—the process where a 
dislocation has to migrate out of the dislocation plane to avoid an obstacle—and this requires 
ionic diffusion.

There are two main reasons for studying diffusion theoretically. The first is to determine 
the atomistic mechanism of diffusion. This can provide understanding of the underlying mecha-
nisms, and allow one to extrapolate results to other systems. When different sets of experimental 
results disagree, theory can often help to decide which is correct or explain the differences. 
But the most valuable reason for using theory is to predict diffusion properties for systems or 
conditions where no data exist. As will be shown, theoretical calculations can be used to predict 
absolute diffusion rates very accurately—perhaps as accurately as is obtainable in high-pressure 
and high-temperature experiments. However, let it be understood that we are not advocating 
abandoning experimentation for theory. 

In this paper we will use our recent ab initio calculations on the absolute diffusion rates of 
periclase and perovskite as an example of what can be done and how to do it. 

BASIC METHODS

Ab initio vs. empirical potentials

The basis for the techniques described here are atomistic; the system is described as set of 
interacting atoms or ions, and it is these interactions that govern its behavior. The interactions 
can either be described from first principles (i.e., quantum mechanically) or empirically. The 
first principles method treats the system as a set of interacting nuclei and electrons, and uses 
(approximate) solutions to Schrödinger’s equations to obtain energies and forces. Currently, 
almost all work involving first principles methods, such as the one that will be discussed in 
this chapter, make use of density functional theory (DFT, Hohenberg and Kohn 1964; Kohn 
and Sham 1965). The empirical approach uses a predefined inter-atomic (or inter-molecular) 
potential, which is fit to some experimental property or to a first-principles result. There are 
also the so-called semi-empirical methods, which are based on quantum mechanics but contain 
many approximations and include experimentally derived parameters. The different methods 
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have their pluses and minuses. The empirical approach allows us to look at far larger systems 
than the first principles (or ab initio) methods. The downside is that the empirically-derived 
potentials may not work accurately in systems and atomic environments for which they were 
not originally designed. This is a particular worry for diffusion studies since atoms migrate 
from their normal configuration through a very different coordination environment than 
their equilibrium position. Moreover, some empirical potentials have bond-angle dependent 
parameters and it is not clear what to do with those as atoms migrate. For instance, potential 
models for Si-O interaction often have a three-body bond angle term in order to maintain the 
correct coordination with oxygen. For tetrahedrally coordinated silicon, this would be 109.47°. 
But as the silicon ion moves out of the tetrahedron, it changes coordination, and the bond-angle 
term may impose inappropriate forces. The ab initio techniques do not suffer from this in the 
same way, although they do have other approximations which add uncertainty to the results. 

Predicting diffusion coefficients in fluids and melts

Although this paper will concentrate on modeling diffusion in crystalline phases, it is worth 
mentioning how diffusion is modeled in fluids and melts. Using atomistic level simulations 
to predict the diffusion properties of fluids and melts is, in principle, simpler than in solids. 
Molecular dynamics simulations, for instance, allows one to follow the path of all the atoms as 
they move as function of time. By keeping track of the mean-squared-displacement of each of 
atom in the simulation, one obtains a direct measurement of the diffusion coefficient for each 
atomic species. The only complication for viscous silicate melts is that the simulation must be 
run for sufficient time to allow adequate sampling of space by the atoms (e.g., Wan et al. 2005; 
Mookherjee et al. 2008; Nevins et al. 2009). Less viscous fluids, such as aqueous solution, need 
far less time. This molecular dynamic approach has also been attempted for solids, but diffusion 
coefficients in solids are many orders of magnitude slower than even viscous melts and jumps 
are very rare. This means that the simulation times are generally prohibitively long, and can 
only be used with empirical potentials and for simple jumps. Nevertheless, this technique has 
been used for MgO (see below) and for diffusion of relatively small impurity ions such as H 
and He (e.g., Reich et al. 2007).

Predicting diffusion coefficients in crystalline phases

As mentioned in the previous section, the situation for mineral phases is not so simple; 
diffusion time scales are orders of magnitude slower than in melts and fluids such that atomic 
jumps in a direct MD simulation are very rare events. With slower diffusing systems or when 
using ab initio methods, the normal approach for calculating diffusion coefficients is to break 
the diffusion process into parts and calculate the different parts individually. The process is 
given pictorially in Figure 1.

Basically the process is one of calculating the number of times a vacancy jumps between 
two sites per unit time. This is known as the jump frequency, Γ. For an individual defect the 
jump frequency is given by (e.g., Poirier 1985)
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where ∆G, ∆S and ∆H are the migration free energy, the entropy and enthalpy respectively. ν 
is a characteristic attempt frequency of the atom trying to jump over the barrier. T and k have 
their usual meanings of temperature and the Boltzmann constant respectively. The diffusion 
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where NV is the vacancy concentration in the crystal at the particular temperature and pressure, l 
is the jump distance, and Z is a geometric factor incorporating the number of possible jumps. 
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The enthalpy of migration, ∆H, is obtained from the difference between the energy of the 
system at the saddle point and its ground state energy before attempting a jump:

∆H E Esaddle groundstate= − ( )3

where the simulation is performed at constant volume. The issue of how to compare thermo-
dynamic quantities measured in experiments (at constant pressure) with the ones obtained 
from theoretical calculations (at constant volume) is discussed at length by, e.g., Catlow et al. 
(1981) or Harding (1989).

For systems with high symmetry (i.e., MgO), finding the saddle point is reasonably 
straightforward since it often lies on a line of symmetry. For lower symmetry materials, such 
as perovskite, it is not obvious where the saddle point is. It is possible to use trial and error, or 
a grid searching method to find the saddle point, but this is quite inefficient. A better approach 
is to use a method such as the Nudged-Elastic-Band; this is described later. 

The attempt frequency and the migration entropy are obtained together using harmonic 
transition-state theory. This is also called Vineyard Theory (Vineyard 1957). In this theory, 
many-body effects are incorporated by calculating the full 3N vibrational frequencies at the 
equilibrium point and the 3N−1 non-negative vibrational frequencies at the saddle point. It can 
be shown that ν and ∆S are simultaneously obtained from
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where N is the number of atoms in the simulation cell, fj are the vibrational frequencies at the 
equilibrium site, and fj′ are the frequencies at the saddle point. The phonon spectrum at the 
saddle point contains one negative frequency; this is due to the unstable atom sitting exactly on 
the saddle point. The product of frequencies at the saddle point only contains, therefore, N−1 
positive frequencies. The phonon spectra can be calculated using a standard lattice dynamics 
approach, either using ab initio forces or empirical potentials.

Figure 1. Left hand side: a magnesium ion migrates in MgSiO3 perovskite from its initial to its final 
position by overcoming a saddle-point. Right hand side: The energy barrier encountered by the migrating 
ion as calculated with CI-NEB. The saddle point is at the maximum of the energy barrier and the energy 
difference from the initial state defines the migration enthalpy ΔH.
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Vineyard-theory is not an exact theory. It assumes that the energy surfaces at the saddle-
point and at the equilibrium position are perfectly harmonic. This does not have to be strictly 
true and one has then to correct for the anharmonicity (Sangster and Stoneham 1984). 
However, in our DFT calculations we find that anharmonicity is negligible (<1% deviation). 
Another idealization is that Vineyard-theory assumes that each jump is successful—i.e., each 
ion jumping towards a vacancy will reach the vacancy once it has crossed the saddle-point. 
Again, for real systems this is not the case as the jumping atom can cross the saddle-point only 
to immediately return back to its initial state. This can happen because the jump is a complex, 
dynamical many-body process (dynamical correlation). Luckily, unsuccessful jumps are rare 
and are unlikely to exceed 10% as has been shown by Flynn and Jacucci (1982). This is because 
the time after which the system loses its memory of previous jumps (onset of randomization) is 
generally much shorter than any vibrational period of any particle in the system.

In order to ensure that there is only one negative frequency at the saddle point, it is essential 
to find the saddle-point exactly—i.e., the crystal must be fully relaxed and all atomic forces are 
relaxed to within a very small tolerance (typically <10−6 eV/Å). This is another reason to use a 
method such as the nudged-elastic band, rather than trial and error or random searching.

The last unknown required to calculate absolute diffusion rates is the number of vacancies, 
NV. Estimating NV is non-trivial. Vacancy concentrations can vary significantly depending on the 
experimental conditions (i.e., pressure, temperature, oxygen fugacity, impurity concentration, 
sample history, etc.). It is possible to estimate the intrinsic vacancy concentration directly and 
self-consistently by calculating the vacancy energies. For instance, the number of Schottky 
vacancies n (where an atom is taken from the bulk of the crystal and added to the surface) is 
given as
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where N is the number of atoms in the crystal and ∆GV is the Gibbs free energy of vacancy 
formation. The energy can, if necessary, be calculated directly from first principles. However, for 
most Earth materials, the intrinsic concentration is very small, even at very high temperatures. 
The vacancy concentration of the crystal is more likely to be set by the number of impurities 
(i.e., the extrinsic concentration). For instance, Fe3+ on a normal 2+ cation site could be charge 
balanced by cation vacancies. Similarly, oxygen vacancies may be set by the concentration 
of 1+ ions. For well-characterized experimental samples, these can be estimated reasonably 
accurately, and allow us to compare our calculated diffusion rates directly with experimental 
measurements. Estimating vacancy concentrations for minerals in the Earth’s mantle, however, 
is subject to considerable uncertainty. This has to be kept in mind when applying results to the 
Earth.

Defect calculations: Mott-Littleton, super-cells and embedded clusters

Crystalline defects exert a strong distance dependent perturbation on the crystal. Firstly, 
defects in crystals are often charged; this results in a Coulomb interaction that decays slowly as 
1/r (r being the distance). Neutral defects can also have a slowly decaying electrostatic interaction, 
since they often possess strong dipole and quadrupole moments. Secondly, the crystal lattice is 
distorted due to relaxation of the ions around the defect (repelled or attracted depending on 
their charge relative to the defect). It is assumed that this lattice distortion decays as 1/r3. When 
modeling defects, especially highly charged vacancies, care has to be taken to ensure that these 
long-range interactions are taken into account, and that they do not artificially bias the results.

The classic approach is the Mott-Littleton Method (Mott and Littleton 1938). In this 
method, the defective crystal is divided into two separately treated spherical regions. The 
inner region surrounds the defect and is treated accurately by calculating the relaxations and 
distortions on the atoms from interatomic forces. The outer region is treated less accurately 
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(as atoms only interact with the distortion and the charge of the defect but not with each 
other), and is used to shield the charge and distortion caused by the defect (polarization). 
This approach has only been used with (semi-)empirical interatomic potentials. Codes such 
as GULP (https://www.ivec.org/gulp/; Gale 1997; Gale and Rohl 2003) make this a relatively 
routine procedure, subject to the accuracy of the interatomic-potentials (Cherry et al. 1995a,b; 
Blanchard et al. 2005; Lowitzer et al. 2008; Ball et al. 2008; Béjina et al. 2009).

If we wish to use ab initio methods, in particular DFT, the most straightforward 
implementations make use of super-cells and periodic boundary conditions (PBC). PBC mean 
that the system is repeated infinitely in space. This is especially useful for crystalline lattices 
since it is then sufficient to calculate the properties of a single unit cell. Periodic boundary 
conditions yield the same result as if the unit cell has been repeated infinitely in all directions, 
forming a perfect, infinitely sized crystal. This approach, however, has its drawbacks when it 
comes to defect calculations, since the defect is also repeated infinitely along all directions. This 
leads to a very high concentration of defects, giving rise to spurious elastic interactions between 
neighboring cells (mirror images of the simulation). This interaction should scale as 1/L3, where 
L is the cell size. The effect of the elastic interaction can be reduced by using sufficiently large 
supercells (a large simulation unit built up from several unit cells), such that deformations at the 
cell-boundaries are negligible. However, the relaxation is almost never completely removed by 
the edge of the supercell, and the calculations contain a small artificial contribution from this. 
Nevertheless, this contribution is small and the super-cell method using DFT forces and energies 
has been used successfully on defect calculations in Earth materials such as olivine (Brodholt 
1997; Brodholt and Refson 2000), perovskite (Brodholt 2000; Karki and Khanduja 2006a), 
post-perovskite (Karki and Khanduja 2007) and periclase (Karki and Khanduja 2006b).

An intermediate approach between using pure DFT with super-cells and Mott-Littleton 
methods for defect calculations is the so-called embedded cluster method. This again divides 
up space into regions: a central region, which treats the defect at the quantum mechanical 
level, a surrounding region that is treated classically via interatomic potentials, and a third 
outer region which is just a set a of fixed point-charges. This method is implemented in codes 
such as GUESS (Sushko et al. 1999, 2000a,b) and has been used to study defects in olivine 
(Braithwaite et al. 2002, 2003; Walker et al. 2006, 2009).

In our diffusion calculations which we discuss in this chapter, we used the supercell 
approach. First of all we wish to avoid the use of empirical pair-potentials and use ab initio 
energies and forces. We can use the tried and tested pseudopotentials (and closely related 
PAW parameters (Blöchl 1994; Kresse and Joubert 1999) in codes like VASP (Kresse and 
Hafner 1993; Kresse and Furthmüller 1996a,b). Secondly, super-cells of up to a few hundred 
atoms can now be routinely calculated. And thirdly, routines are readily available for the lattice 
dynamics calculations (Parlinski 2008; Baroni et al. 2001; Alfè 2009) required for the jump 
frequencies, and nudged-elastic-bands (Henkelman et al. 2000) for finding saddle points of the 
migrating atoms—something that is very important in complicated migrating pathways.

As mentioned above, PBC in combination with defective systems has its own difficulties. 
The introduction of charged point defects or defect clusters results in an artificial electrostatic 
self-interaction between the supercell and all its images. This electrostatic self-interaction can 
have rather large effects on the calculated defect energies. It is therefore worthwhile to briefly 
discuss how one can reduce the error made on the defect energetics when using PBC.

Firstly, Leslie and Gillan (1985) proposed a simple correction to the self-interaction of 
charged point defects. A charged defect within a cell with PBC is equivalent to a periodic 
array of charged defects. However, a periodically repeating array of charged supercells does 
not have a well-defined energy. This difficulty can be overcome by introducing a uniformly 
distributed background charge (so-called jellium) compensating the charge of the supercell. 
The correction term is hence given by the energy of the charged defect array embedded in the 
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compensating jellium. Assuming that the space between the defects is large enough, i.e., the 
supercell is large enough; a macroscopic approximation can be made: the defect array and the 
jellium are immersed in a structureless dielectric, whose dielectric constant ε is equal to that 
of the perfect crystal. The energy of such an array, and hence the correction term is given by 
Earray = −αQ2/(2εL) where α is the appropriate Madelung constant, Q the charge of the defect 
and L is the lattice parameter of the periodic array. Clearly, large charges result in larger 
corrections. This correction requires the correct permittivity ε; this can now also be calculated 
reasonably straightforwardly using the same ab initio methods as in the defect calculation 
(e.g., Karki et al. 2000; Oganov et al. 2003). The charge-interaction correction can then be 
applied completely self-consistently. 

Secondly, neutral or charged defect clusters can also introduce large dipole-moments into 
the supercell, giving rise to similar (although less strong) interactions as in the case of charged 
point defects discussed in the previous paragraph. Makov and Payne (1995), and more thor-
oughly Kantorovich (1999) and Kantorovich and Tupitsyn (1999), showed that the correcting 
factor for dipole-dipole interaction is given by Edipole = 2πP2/(3Vc) where P is the total dipole 
moment of the supercell and Vc is the supercell volume.

With these corrections in hand, defect energies can be readily calculated using the supercell 
approach. It is important to note that when calculating migration enthalpies, the energy of the 
two similarly charged systems are subtracted from each other. Since the charge-interaction 
corrections presented above are the same for each system, they cancel. However, in fact the two 
systems have very different ionic arrangements (one having two vacancies and a migrating ion 
at its saddle-point, and the other with a single vacancy) and, therefore, they have different higher 
order electrostatic moments. A small error in the migration energy is expected from this.

The climbing image nudged elastic band method

As discussed previously, a key aspect to obtaining diffusion rates is finding the saddle point. 
This is necessary for the migration enthalpy and for ensuring that there is only one negative 
vibrational frequency for the Vineyard theory. The importance of this is exemplified by recent 
calculations and experiments on MgSiO3 perovskite. 

Empirical potential calculations on silicon diffusion in MgSiO3 perovskite had estimated 
the migration enthalpy as being about 9 eV (Wright and Price 1993); this was much higher 
than for oxygen and magnesium, and agreed with the idea that silicon was the slowest diffusing 
species—and therefore rate limiting the rheology—in mantle perovskites. However, a later 
experimental study found a significantly lower migration energy of only 3.5 eV (Yamazaki et 
al. 2000). An identical value was also obtained by Dobson et al. (2008) but using a different 
procedure. The calculations were repeated by Karki and Khanduja (2007), but in this case using 
DFT to calculate the necessary energies. Their calculated migration enthalpies for oxygen and 
magnesium agreed with experimental values, but they also found a very high value for silicon 
of 8.33 eV (at room pressure). They suggested, therefore, that silicon diffusion must occur 
via some sort of cooperative mechanism involving oxygen vacancies. However, the reason is 
more prosaic than that; both theoretical studies chose the wrong migration pathway. Figure 
2 is a contour map of computed migration enthalpies in a plane of possible saddle-points for 
silicon diffusing along the [110] pathway at two different pressures (see Ammann et al. 2009 for 
details). The two minimum energy points shown are 3.58 eV and 3.52 eV and are the most likely 
place through which the migrating atom would pass. The pathway chosen by Wright and Price 
(1993) and Karki and Khanduja (2007) are not shown, but are slightly higher on the Z-axis than 
the 3.52 eV (and 6.59 eV) point. Note that you do not have to be very far from the minimum 
energy point for the apparent (and erroneous) migration energy to increase substantially.

The climbing image nudged elastic band (CI-NEB) method (Henkelman et al. 2000) has 
transformed the search for saddle points. The method is shown graphically in Figure 3. Each 
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Figure 2. Contour maps of migration enthalpies for silicon diffusion in MgSiO3 perovskite for the direct 
jump along <110> at 3.3 GPa (upper) and 151.7 GPa (lower). The calculated minima are marked with 
black dots and labeled with their corresponding value. In calculations, a small deviation from the minimum 
energy migration pathway (black dots) can result in a substantial increase of the migration enthalpy shown 
[With kind permission from Springer Science+Business Media: Physics and Chemistry of Minerals, “DFT 
study of migration enthalpies in MgSiO3 perovskite.” Vol. 36, 2009, p 151-158, Ammann et al., Figure 3.]
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of the points corresponds to a set of atoms for which the forces and energies are calculated. 
The two end points are the initial and final equilibrium positions. The points in-between are 
possible configurations of atoms which the system might take as an atom hops from one side 
of the barrier to the other. Initially atomic positions may be just linearly interpolated between 
their positions in the initial and final systems. The idea is to evolve the different systems such 
that they all lie on the MEP (minimum energy pathway) by minimizing the NEB-force FNEB. 
The image (set of atomic coordinates) with the highest energy is pushed upwards along the 
NEB until it reaches exactly the saddle point. The CI-NEB method provides a recipe for doing 
this. Moreover, there is a toolkit for use with the DFT code VASP available from http://theory.
cm.utexas.edu/vtsttools/. Since we are only interested in the saddle point and not the whole 
minimum energy pathway, we use only four images. Nevertheless, for a low-symmetry pathway 
like silicon in perovskite, this requires on the order of 200 individual electronic minimizations 
of the super-cell to find the saddle point.

LDA vs. GGA

The quality of the results using DFT depends on the ability of the exchange-correlation 
functional to model the many-body electronic interactions. The most common exchange 
correlation functionals are the local density (LDA) and the general gradient approximation 
(GGA) (Perdew and Zunger 1981; Perdew and Y. Wang 1992; Perdew and Burke 1996). On 
the other hand, defect energetics are tightly linked with the cell-volume (as is evident from the 
strong pressure dependence(see below)). It is, thus, important that experimental and theoretical 
cell-volumes are equal (or at least similar). We have calculated the imposed pressure on the 
supercell within GGA. In order to estimate the uncertainty inherent to DFT we have compared 
GGA with LDA calculations performed at the same cell-volume. In general we find that LDA 
produces slightly smaller values for the migration enthalpy, by about 5 to 10%. Similarly, we 
find that ν0 is also about 5% lower when calculated with LDA than with GGA. 

RESULTS ON MANTLE PHASES

Results on MgO

Magnesiowüstite (Fe, Mg)O is thought to be the second most abundant mineral in the 
lower mantle accounting for about 20% of the volume (e.g., Jackson 1998). The investigation 
of the diffusional properties of its pure endmember periclase MgO is hence of major importance 
for Earth Sciences. It crystallizes in the rock-salt structure even under lower mantle conditions 
(Lin 2002; Oganov et al. 2003). Periclase is also an important industrial material with a wide 
range of applications and often serves as a prototype material for other ionic oxides (Kotomin 
et al. 1996).

MgO is a simple cubic oxide for which high-pressure and high-temperature experimental 
diffusion measurements exist. Since it crystallizes in the rock-salt structure, the location of 
the saddle point is given trivially by symmetry and is located half-way between the initial and 
final position. This is, however, only strictly true at high pressures. We find at low pressures, in 
agreement with Vočadlo et al. (1995), that the magnesium saddle-point bifurcates perpendicular 
to the jump trajectory. But also these saddle-points can be readily found by offsetting from 
the half-way position (a second-order saddle-point) and relaxing the migrating ion into the 
bifurcated first order saddle points (the lowering in energy is though negligible). In contrast with 
Vočadlo et al. (1995), we have not found any bifurcation along the oxygen jump trajectory. Thus, 
the CI-NEB method is not required for MgO. The ease of finding the saddle point has meant 
that absolute diffusion rates in MgO have been calculated within Vineyard-theory a number of 
times (e.g., Sangster and Stoneham 1984; Harding et al. 1987; Vočadlo et al. 1995). The pre-
exponential factors from the different studies agree to within about 1 order of magnitude; some 
of this scatter can be attributed to different potentials and some to different methods.
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Even more studies concentrated on the migration enthalpies and all obtained migration 
enthalpies of about 2 eV for both magnesium and O, which is in agreement with experiments. 
Some experimental and theoretical values of the migration enthalpies are given in Table 1 
(which is not exhaustive) and attempt frequencies are given in Table 2.

Table 3 summarizes calculated migration enthalpies in periclase at high pressures. Ita 
and Cohen (1997, 1998) as well as Ito and Toriumi (2007) performed molecular dynamics 
simulations using interatomic potentials to calculate the absolute diffusion rates in MgO under 
lower mantle conditions. While both studies are in agreement with the available experimental 
data (up to 35 GPa), they disagree with each other at elevated pressures (above 60 GPa). 
Ita and Cohen (1997, 1998) observe a continuous increase of the migration enthalpy with 
increasing pressure, while in contrast Ito and Toriumi (2007) find that the migration enthalpy 
decreases after reaching a maximum around 50 GPa. The difference between their results 
could simply be linked to their different interatomic potentials. Our results agree with those 
of Ita and Cohen (1997, 1998). Nevertheless, it should be noted that all three studies have an 
activation volume that is in agreement with the available experimental data (Yamazaki and 
Irifune 2003; Holzapfel et al. 2003; Van Orman et al. 2003) at pressures up to 35 GPa.

Table 1. Migration enthalpies in MgO at 1 bar from experiments and theory (for single vacancy 
diffusion). DFT: density functional theory, LDA: local density approximation, GGA: general 
gradient approximation, MD: molecular dynamics, HF: Hartree-Fock, LD: lattice dynamics, ML: 
Mott-Littleton.

Theory ∆HMg [eV] ∆HO [eV] Method

This study 1.93
1.82

2.05
1.93

DFT GGA 
DFT LDA

Ito and Toriumi (2007) 2.09 2.23 MD

Gilbert et al. (2007) 2.20 2.31 DFT LDA

Karki and Khanduja (2007) 2.26 2.42 DFT LDA

Kotomin and Popov (1998) 2.43 2.50 HF

Ita and Cohen (1997, 1998) 1.70 1.97 MD

Vočadlo et al. (1995) 1.99 2.00 LD

De Vita et al. (1992) 2.39 2.48 DFT LDA

Harding et al. (1987) — 2.1 ML

Sangster and Stoneham (1984) — 2.26 ML

Sangster and Rowell (1981) 2.07 2.11 ML

Mackrodt and Stewart (1979) 2.16 2.38 ML

Experiments

Yoo et al. (2002) — 3.24±0.13

Shirasaki and Hama (1973) — 2.43±0.21

Oishi and Kingery (1960) — 2.71±0.26

Mackwell et al. (2005) 2.17±0.07 — Mg-Fe interdiffusion

Holzapfel et al. (2003) 2.64±0.17 — Mg-Fe interdiffusion (8-23 GPa)

Yamazaki and Irifune (2003) 2.34±0.33 — Mg-Fe interdiffusion (7-35 GPA)

Yang and Flynn (1994,1996) 2.52 6.91 Ca-diffusion (2.33 this study)

Sempolinsky and Kingery (1980) 2.28±0.21 —

Duclot and Departes (1980) 2.20 —

Wuensch et al. (1973) 2.76±0.08 —

Lindner and Parfitt (1957) 3.44±0.13 —
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Our results for MgO are shown in Figure 4. In order to compare our theoretical results 
with experiments, an estimate of the vacancy concentration in the experiments must be made. 
The Schottky-formation energy, ∆HS, and Frenkel-formation energy, ∆HF, have been calculated 
several times over the last 30 years and are given in Table 4 (the list is not exhaustive). For the 
charged defect correction, we adopted the value of the permittivity calculated by (Oganov et al. 
2003). Formation energies continuously increase with pressure (Karki and Khanduja 2006b).

Our calculations and previous results find formation energies of Schottky and Frenkel-
pair defects to be between 6.45-7.7 eV and 10.35-15.2 eV respectively. The equilibrium 
concentration of intrinsic magnesium vacancies is, therefore, small. However, the presence of 
heterovalent impurities will result in the formation of extrinsic vacancies in order to maintain 
charge neutrality. In fact, only a small concentration of impurities (much less than a few ppm 
at 2000 K) is sufficient for the number of extrinsic magnesium-vacancies to greatly exceed the 
number of intrinsic vacancies, and generally, the number of extrinsic magnesium-vacancies 
is assumed to dominate the number of defects in MgO by several orders of magnitude. It is 
possible, therefore, to constrain the experimental magnesium-vacancy concentration from their 
measured impurity concentrations. As shown in Figure 4, magnesium diffusion in MgO can 
readily be explained by our results using reasonable vacancy concentrations. 

The experiments on oxygen diffusion are more difficult to explain than for magnesium. 
First of all oxygen diffusion is significantly slower than magnesium, and secondly, the different 

Table 2. Attempt frequencies for magnesium (νMg), oxygen (νO), calcium (νCa) and bound 
divacancies (νMgO) in MgO for the single jumps at 0 GPa. The same labels for the methods as in 
Table 1 are used.

νMg [THz] νO [THz] νCa [THz] νMgO [THz] Method

This study 12.12 13.82 25.1 87.9 DFT GGA

Ita and Cohen (1997, 1998) 5.2 5.2 — — MD

Vočadlo et al. (1995) 15.95 8.55 — — LD

Harding et al. (1987) 23.15 — — — ML

Sangster and Stoneham (1984) 32.9 — — — ML

Table 3. Migration enthalpies of MgO at pressures P of the lower mantle. ∆HMgO is the 
migration enthalpy for a divacancy (the higher of the two barriers for magnesium and 
oxygen hops).

P [GPa] ∆HMg [eV] ∆HO [eV] ∆HMgO [eV]

This study 5.3 2.06 2.2 2.81

30.3 2.61 2.82 2.83

136.6 3.88 4.27 2.67

Karki and Khanduja (2007) 20 3 2.9 —

50 3.3 3.15 —

150 4.3 3.95 —

Ito and Toriumi (2007) 20 2.59 2.66 —

50 2.98 3.02 —

140 2.12 2.31 —

Ita and Cohen (1997,1998) 20 2.34 2.55 —

80 3.22 3.64 —

140 3.99 4.31 —
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Figure 4. Lines are the results of our calculations using vacancy concentrations appropriate for the 
experiments. Empty symbols are magnesium (calcium) diffusion, filled symbols are for oxygen. In all 
experiments, magnesium diffusion can be readily explained assuming extrinsic vacancy hopping. YI2003: 
Yamazaki and Irifune (2003); H2003: Holzapfel et al. (2003); LP1957: Linder and Parfitt (1957); YF1996, 
YF1994: Yang and Flynn (1994, 1996); vO2003: van Orman et al. (2003); OK1960: Oishi and Kingery 
(1960); SH1973: Shirasaki and Hama (1973); Y2002: Yoo et al. (2002). The lowest oxygen diffusion data 
is not explained by theory: free oxygen vacancies are expected to be suppressed by extrinsic magnesium 
vacancies (for YF1994 and YF1996, they are constrained via Ca-diffusion data) resulting in the dotted line. 
Intrinsically formed divacancies are at least a magnitude too low (dash-dotted line). Intrinsically formed 
oxygen (mono-)vacancies could explain the Yang and Flynn data (dashed line) if no impurities (an extrinsic 
magnesium vacancy below 10−8) are around for suppression (which is not the case).

Table 4. Theoretical Schottky ∆HS and Frenkel ∆HF defect formation energies in MgO 
at 0 GPa. The comment (bound) is used for the formation of divacancies and the same 
labels for the methods as in Table 1 are used.

∆HS [eV] ∆HF [eV] Method

This study 6.45
3.88 (bound)

14.21 (O) DFT GGA

Gilbert et al. (2007) 5.97 10.35 (Mg)
12.17 (O)

DFT LDA

Karki and Khanduja (2006) 6.83 — GGA LDA

Alfe and Gillan (2005) 7.5±0.53 — QMC

Ita and Cohen (1997, 1998) 6.48
4.92 (bound)

— MD

De Vita et al. (1992) 6.88 — DFT LDA

Jacobs and Vernon (1990) 7.7
5.0

12.4 (Mg)
11.6 (O)

Mackrodt (1988) 7.66 — ML

Sangster and Rowell (1981) 7.72 — MD

Mackrodt and Stewart (1979) 7.5
4.95 (bound)

11.9 (Mg)
15.2 (O)

ML
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studies produce different slopes. The slowness is mostly due to the low concentration of oxygen 
vacancies in the experimental sample. The different slopes suggest that different mechanisms 
of migration and of intrinsic vacancy formation are at work. Some experiments have been 
thought to be in the intrinsic regime, where the measured activation energy also contains an 
activation energy of vacancy formation as well as migration (high slopes), and some are in 
the extrinsic regime, and so the measured activation energy is the migration energy only (low 
slopes). However, our results suggest that it cannot be intrinsic diffusion that is responsible for 
the higher slopes, but another, yet unknown, extrinsic diffusion mechanism.

The experiments of Oishi and Kingery (1960) as well as of Shirasaki and Hama (1973) 
are easiest to explain. They were performed on relatively impure samples, and the measured 
diffusion was assumed to be in the extrinsic regime. Plotted on the Figure 4 are our absolute 
diffusion rates, assuming an extrinsic vacancy concentration of about 2 ppm and 0.5 ppm 
respectively. These fit the experimental data well.

The experiments of Yang and Flynn (1994, 1996) are not as easy to interpret. The dashed 
line is our prediction for oxygen diffusion if we assume the oxygen vacancies are being formed 
intrinsically. The concentration of oxygen and magnesium vacancies is given by
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where, for no extrinsic vacancies, CVO
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D N
Z

l e N
Z

l eV

H

kT

H H

kT
M s M

= =
− − +

6 6
72 2

2

ν ν* *
( / )

( )
∆ ∆ ∆

where the defect formation enthalpy, ∆HS, the migration enthalpy, ∆HM, and the effective jump 
frequency, ν*, are all calculated from first principles. Although this fits the experimental data 
well, the good fit is, in fact, fortuitous. Yang and Flynn also measured Ca diffusion in the same 
MgO samples. These are also shown on Figure 4, and are very well described by an extrinsic 
vacancy diffusion mechanism (i.e., the slope is just the migration enthalpy), with an extrinsic 
cation vacancy concentration of about 50 to 300 ppm. The problem is that in samples with 
significant extrinsic concentrations of one of the Schottky pairs, Equation (6) above shows that 
the concentration of the other vacancy is proportionally reduced. For CVMg

 of a few 10s of ppm, 
CVO

 is reduced to a tiny amount, and there are simply not enough oxygen vacancies to produce 
the diffusion coefficients shown in Figure 4. The oxygen diffusion coefficients for a sample 
containing 50 ppm magnesium vacancies are shown in Figure 4 (dashed line); it is many orders 
of magnitude too slow.

This problem with rationalizing the cation and anion diffusion results simultaneously was 
realized by Yang and Flynn, and they suggested that their diffusion experiments were actually 
measuring the diffusion of bound MgO vacancy pairs (or divacancies). The concentration of 
MgO divacancies is given, for the intrinsic case, by 

C eV

H H

kT
S B

MgO
=

− +( )

( )
∆ ∆

8

where ∆HB is the energy of binding the two vacancies together (which is negative since they 
are opposite charge and, therefore, attractive). To calculate the mobility of the bound pair, 
we have calculated the migration enthalpies and frequency factors for the bound vacancies 
individually, and assumed that the slowest species limits the diffusion of the bound pair (see 
Tables 2, 3 and 4). The binding energy is about −2.6 eV and the effective migration energy for 
the slowest vacancy is 2.8 eV. Our theoretical absolute diffusion rates of the divacancies are 
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shown in Figure 4 (dashed-dot lines); they too are much slower than measured in experiments. 
To date, we are unable to constrain the oxygen diffusion mechanism for the experiments of 
Yang and Flynn (1994, 1996).

The recent measurement of oxygen diffusion by Yoo et al. (2002), revealed yet another 
activation energy, and much higher rates than the previous experiments. They suggest 
tentatively that their measured diffusion rates are actually for interstitial oxygen, although 
they acknowledge that these are unlikely to be in significant concentrations in MgO. Again, 
we have tested this by calculating the migration enthalpy for the oxygen interstitial and 
its formation energy. Interestingly, the migration energy for the interstitial is low: 0.7 eV. 
However, the formation enthalpy is, as expected, very large (~7 eV; half the Frenkel defect 
formation energy). Therefore, we conclude that there is not a significant concentration of 
oxygen interstitials in MgO. What the diffusion mechanism for the experiments of Yoo et al. 
(2002) is, also remains unclear. 

Further complicating the assessment of the oxygen vacancy concentration and oxygen 
diffusion mechanism is the experimental finding that oxygen diffusion along dislocations 
(pipe-diffusion) has a similar activation energy (Narayan and Washburn 1973, Sakaguchi et 
al. 1992) as mono-vacancy diffusion. This has likely been observed by Yang and Flynn (1994, 
1996) (and maybe also by Yoo et al. 2002) in their low temperature data of oxygen diffusion. 
At the same time, this might suggest that even the data of Oishi and Kingery (1960) as well as 
of Shirasaki and Hama (1973) represents pipe-diffusion instead of extrinsic oxygen diffusion 
as we have assumed here. 

Although it is not possible to explain all the experimental results for oxygen diffusion 
in MgO, we are able to model successfully experiments where the migration mechanism is 
simple and unambiguous. For instance we very accurately model the direct vacancy hopping 
mechanism for cations when the vacancies are extrinsically controlled. Similarly, we can 
accurately model oxygen diffusion when it is in the extrinsic regime. In other words, there is 
good reason to expect that the migration barriers and frequency factors calculated via DFT are 
accurate to within a few tenths of an eV.

Results on MgSiO3 perovskite

MgSiO3 perovskite is the dominant phase in the Earth’s lower mantle comprising up to 80% 
of its volume and it is thus of fundamental importance for understanding the thermochemical 
evolution of the Earth (e.g., Jackson 1998)

Computational studies of defect formation energies using the Mott-Littleton method 
suggest that the dominant defect in perovskite is the MgO partial Schottky defect (Price et 
al. 1989; Wright and Price 1993). Frenkel defects (interstitials) are energetically unfavorable. 
The same result has been found by first principles calculations (Karki and Khanduja 2006a, 
2007). The high intrinsic formation energies (7.4 eV—MgO partial Schottky; 20.8 eV—full 
Schottky); rapidly increasing with increasing pressure) imply that vacancy concentrations in 
experiments and in the Earth’s mantle are controlled extrinsically, i.e., by impurity content.

Magnesium and oxygen diffusion. We find that diffusion of both oxygen and magnesium 
in perovskite occurs via simple vacancy hopping. The migration enthalpies and jump frequen-
cies are given in Tables 5 and 6. Figure 5 shows our predicted diffusion rates plotted against 
those found experimentally. The upper and lower bounds are those found from LDA and GGA 
respectively. In order to make this comparison, we need to estimate the vacancy concentrations 
in the experiments. For the oxygen diffusion experiments of Dobson (2003) this is relatively 
straightforward since he doped his sample with 0.6% Na in order to extrinsically control oxygen 
vacancies. Since each oxygen vacancy is charge balancing two Na+ ions, this results in 0.1% 
vacancies (per unit cell). At high temperatures, a change in the conduction mechanism has been 
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observed (probably from oxygen ionic to intrinsic electronic) and we subtracted this contribu-
tion from the experimental data in order to obtain the pure oxygen ionic conduction. Thereby 
our predicted diffusion rates for oxygen are only slightly lower than those found by Dobson 
(2003) but with a migration enthalpy almost exactly the same. Earlier studies of the conductiv-
ity of perovskite (Katsura et al. 1998; Xu et al. 1998; Xu and McCammon 2002) contained iron 
and hence the electrical conductivity is dominated by small-polaron electronic conduction. Nev-
ertheless, at the highest temperature the study of Xu et al. (1998) showed a contribution from 
oxygen ionic conduction. Xu and McCammon (2002) analyzed this oxygen ionic component 
and found an activation energy in good agreement with our migration enthalpy.

For the Mg-Fe exchange experiments of Holzapfel et al. (2005) the concentration of mag-
nesium vacancies is controlled by the amount of ferric iron. For an Al-free system, we can use 
the geochemical experiments of Lauterbach et al. (2000) and the expected oxygen fugacity in 
the multi-anvil experiments. Using the expression of Lauterbach et al. (2000), we estimate that 
the extrinsic concentration of magnesium vacancies should be about 0.2%. Using this concen-
tration, our predictions for magnesium diffusion are in good agreement with the experiments.

Silicon diffusion. Silicon diffusion in MgSiO3 perovskite, however, is complicated 
by the fact that we find that silicon diffusion does not occur via a simple vacancy method, 
where silicon jumps from one site directly into an adjacent vacancy, as with magnesium and 
oxygen. The lowest migration enthalpy for the direct jump is 5.2 eV, substantially higher than 
the values of ~3.6 eV obtained experimentally. Rather, we find that it occurs via a so-called 

Table 5. Migration enthalpies of all species in MgSiO3 perovskite from experiments and theory. 
Our values are averages over the migration enthalpies of all different jumps (8 for oxygen, 3 for 
magnesium). For silicon our value is the maximum energy of the barrier of the six jump cycle.

P [GPa] ∆HMg [eV] ∆HSi [eV] ∆HO [eV] Method

This study 24 3.81 3.64LDA 1.06 DFT GGA

140 6.43 5.98LDA 2.23

Karki and Khanduja (2007) 30 4.78 9.1 1.41 DFT LDA

120 7.71 10.48 2.57

Wright and Price (1993) 0 4.57 9.2 0.96 ML

60 6.13 — —

125 7.43 10.32 —

Price et al. (1989) 0 4.6 — 0.8 ML

Holzapfel et al. (2005) 24 4.29±0.64 — — Mg-Fe interdiff.

Dobson et al. (2008) 25 — 3.6±0.76 —

Yamazaki et al. (2000) 25 — 3.48±0.38 —

Dobson (2003) 25 — — 1.35±0.2 Na-doped

Xu and McCammon (2002) 25 — — 1.47 Al-bearing

Table 6. Average attempt frequencies for magnesium and 
oxygen diffusion in MgSiO3 perovskite. The attempt fre-
quencies for the six jump cycle are shown in Figure 4.

P [GPa] νMg [THz] νO [THz]

24 4.95 5.94

140 17.39 14.04
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six-jump cycle. This is common in some binary alloys (e.g., Elcock and McCombie 1957; 
Huntington et al. 1961; Debiaggi et al. 1996; Divinski and Herzig 2000; Duan 2006). The six 
jump cycle is shown in Figure 6. In a normal vacancy hopping mechanism, the migrating ion 
hops directly to an adjacent vacancy. But in the six-jump cycle, a magnesium ion jumps into 
the silicon vacancy, making an antisite defect and a magnesium vacancy. The adjacent silicon 
ion then jumps into the magnesium vacancy, leaving a new silicon vacancy. The situation then 
repeats itself, with a magnesium jumping into the new silicon vacancy, followed by the first 
antisite magnesium jumping into the vacated magnesium site. The silicon ion then jumps into 
the silicon vacancy from the magnesium site, and the cycle finishes with the magnesium on the 
silicon site jumping into the adjacent magnesium vacancy. The silicon vacancy has jumped to 
an adjacent site via six different intermediate hops, each with its own activation enthalpy. To 
analyze this complex diffusion process, we first have to consider what the effective activation 
energy of the six jumps is, and secondly, we have to consider how many times the cycle is 
broken by a vacancy hopping to a site that is not part of the cycle. 

An analytical solution to the rate of the six jump cycle can be obtained using the approach 
of Arita et al. (1989). This method provides an effective jump-frequency, Γ, for the complete 
cycle. Also, by calculating the jump-frequency at different temperatures, it is possible to 
obtain an apparent activation (or migration) enthalpy for the cycle. It does, however, require 
the twelve individual jump-frequencies (obtained from Vineyard theory) and their migration 
energies. These are shown in Figure 6 for the fastest silicon cycle. The effective activation 
energy lies somewhere between the migration energy of the single largest jump, and the energy 
difference between the original site and the highest energy saddle point. As shown by Arita 

 

Figure 5. Comparison of experimental diffusion rates in MgSiO3 perovskite with our theoretical calcula-
tions. Oxygen diffusion experiments in perovskite (Dobson 2003) had an estimated vacancy concentration 
of 0.1% (controlled via Na-content). We have subtracted the conductivity contributed by another mechanism 
in the high-temperature regime observed in the experiments. We calculated the vacancy concentration for 
the experiments (Holzapfel et al. 2005) of magnesium-iron interdiffusion in perovskite at 24 GPa at reducing 
conditions from the geochemical experiments of Lauterbach et al. (2000) to be 0.1-0.2%. Silicon vacancy 
concentrations in the experiments (Yamazaki et al. 2000; Dobson et al. 2008) have been estimated to be ap-
proximately 0.2% making reasonable assumptions (see text for details), however, they are not very certain.
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et al. (1989), the former is appropriate at high temperatures, while the latter is appropriate at 
low temperatures. The details depend on the particular system. We have used this approach 
for the cycle shown in Figure 6 and find that at all reasonable temperatures, the apparent 
migration energy is equal to 3.6 eV. This is the same as the maximum saddle point energy. 
The apparent migration enthalpy does decrease towards the largest single jump (3.3 eV for the 
silicon jumping into the magnesium vacancy), but only at very high temperatures. This is as 
expected since the maximum saddle-point energy (3.6 eV) is very similar to the single largest 
jump. This migration enthalpy agrees very well with the experimentally derived values of 3.61 
eV and 3.5 eV obtained by Dobson et al. (2008) and Yamazaki et al. (2000) respectively. The 
entire cycle for one silicon vacancy to migrate can be described as a single Arrhenius process
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Figure 5 shows the available experimentally obtained diffusion coefficients of silicon 
compared to our results. In order to make such a comparison, we have used a silicon vacancy 
concentration of 0.2%. This seems unexpectedly high for silicon vacancies, but it seems 
unavoidable that the experiments do indeed have very high concentrations of silicon vacancies. 
Using a nearest neighbor jump distance of 2.4 Å, a representative jump frequency of 10 THz, 
and the experimentally determined migration enthalpy of 3.6 eV, we can invert each of the 
experimental diffusion coefficients of Dobson et al. (2008) for the silicon vacancy concentration. 
These range from 0.35% to 0.075%. A similar range is found from the data of Yamazaki et 
al. (2000). The range is also in rough agreement with the defect calculations of Hirsch and 
Shankland (1991). So a vacancy concentration of about 0.2% is perfectly consistent with the 
fast measured diffusion rates. 

Although the experimental diffusion rates can be explained by the six-jump cycle, there 
is an additional complication to be considered. At each step of the cycle there is a possibility 
that one of the vacancies takes a hop to a site not in the cycle. This, therefore, breaks the 
cycles until another vacancy comes along. For instance, the first step in the cycle produces 
a magnesium vacancy. The activation barrier for it to take the next step in the cycle is about 
3.3 eV. However, the energy barrier for it to hop to one of the other neighboring magnesium 
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Figure 6. The energy barrier of the six-jump cycle for silicon diffusion in perovskite. The numbers  
are the attempt frequencies towards neighboring states as indicated by the arrows.
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sites instead of the silicon site, is only between 3.6 and 4.1 eV (LDA and GGA respectively); 
there is, therefore, a non-negligible probability that it will take this jump. These processes of 
breaking the cycle must be taken into account when calculating silicon diffusion coefficients. 

We can do this using Kinetic Monte Carlo (reviewed by Voter 2005). Given a set of rate 
constants (diffusion constants in this case), KMC is a way of propagating a dynamic system 
through a possibly complex set of paths (or phase space). If we image a vacancy at a certain 
position, it may have a number of possible paths. Normally it will take the one that is most 
probable (generally the lowest migration barrier), but sometimes it will take another. Once it 
has moved on, it is faced with another set of possibilities and associated probabilities. KMC 
provides a way of moving the system through the phase space and determining the overall rate 
constant (or diffusion constant). We could use this technique as an alternative to the analytic 
technique for obtaining the effective diffusion coefficient for the full cycle, ignoring possible 
breaks in the cycle; we do indeed get the same result using both methods. But KMC has to be 
used when a diffusing species has a choice of paths.

We are interested in how many times the six-jump cycle is broken. In order to use KMC 
to do this, we not only need the jump-frequencies for the possible first jumps off the cycle, we 
also need the next jumps in order to ensure that it doesn’t jump back into the cycle. This rapidly 
becomes an impossibly large number of calculations, so we have restricted the calculation to 
the first two jumps off the cycle, after which we assume the vacancy is gone.

Our results show that the cycle is broken somewhere between about 1% and 20% of the 
time, depending on whether LDA or GGA jump-rates are used. This is mainly because of the 
change in the energy-barrier of the single jumps. LDA results in lower energy-barriers than 
GGA, however, the relative change of the energy barriers (from GGA to LDA) for the cycle-
breaking jumps is smaller than the change in the cycle-barriers. The cycle is mostly broken at 
the second step. The migration energy for the magnesium vacancy to jump into the silicon site 
is about 3.3 eV; this is only slightly less than the migration energy of 3.6 eV for it to move into 
an adjacent magnesium site that is not in the cycle. The next jump is even lower in energy and 
the vacancy migrates away. The reason the cycle breaks can be easily understood: the silicon 
cycle starts with a silicon vacancy (charge −4), which is then occupied by a magnesium ion 
forming a magnesium on a silicon site (charge −2) and a magnesium vacancy (charge −2). The 
antisite and the magnesium vacancy have the same charge sign, and hence repel each other 
electrostatically. The energy of the reaction 

Mg V V Mgx
Mg Si Mg Si+ = +′′′′ ′′ ′′ ( )10

is only −0.3 eV when they are adjacent to each other, however, it decreases to about −2.2 eV 
(depending on the functional and the permittivity chosen for the charged defect correction) 
when the magnesium antisite and the magnesium are allowed to be infinitely separated. In other 
words, regardless of whether or not the cycle breaks, there should only ever be a vanishingly 
small concentration of silicon vacancies to begin with. This is completely at odds with the 
large number of vacancies required by fast diffusion coefficients observed experimentally. 

One way to overcome the electrostatic repulsion of antisite and magnesium vacancy is to 
neutralize one of them; the most obvious candidates to do this are protons. We have, therefore, 
calculated the energy of the following reaction,

Mg H V Mg Hx x
Mg Si Mg Si+ = + +2 2 11′′ ′′ ( ) ( )

where, as with the previous reaction, the two species on the right-hand side are infinitely apart. 
We find that this reaction is strongly endothermic, with an energy of 2.44 eV. In other words, 
protons increase the concentration of silicon vacancies, something that has been suggested 
for other silicates such as forsterite (Brodholt 1997). Obviously the presence of protons may 
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change the jump frequencies, but jumps into sites inhabited with protons become substantially 
more complicated calculations and we have not attempted these yet.

At present we are able to explain the high silicon diffusion rates seen experimentally in two 
independent studies as a six-jump cycle with about 0.2% silicon vacancies stabilized by protons. 
The activation enthalpy of the direct jump is too high. So far, appreciable amounts of water have 
not been experimentally verified in perovskite, with some studies showing negligible water 
solubility (Litasov et al. 2003; Bolfan-Casanova 2005). Regardless of whether it is water, or 
some other extrinsic mechanism, the experiments are only consistent with high concentrations 
of silicon vacancies.

Other investigated silicon diffusion mechanisms

Previous studies (Wright and Price 1993; Karki and Khanduja 2007) on silicon migration 
barriers in perovskite found a decrease in the migration enthalpy in the presence of an oxygen 
vacancy. However, for our direct pathway (Ammann et al. 2009), the migration energy in the 
presence of a oxygen vacancy is increased to about 6.2 eV. This finding is not surprising as an 
oxygen-vacancy has the same charge-sign as the migrating silicon ion.

In many other silicates, silicon diffusion occurs via an interstitial mechanism and migration 
enthalpy and pre-exponential factor are linearly correlated (Béjina and Jaoul 1997) (compensation 
law). As observed by Béjina and Jaoul (2003), silicon diffusion in perovskite also satisfies 
this compensation law and they therefore suggested that silicon in perovskite diffuses via an 
interstitial mechanism. We find that there is a stable split interstitial configuration in which two 
silicon interstitials are located on opposite faces of the oxygen octahedron (slightly elevated 
above the centre of the triangle faces), around a vacancy at the centre of the octahedron. Split 
interstitials are very common in many materials and for various species—e.g., in forsterite 
(Walker et al. 2009; Béjina et al. 2009), quartz (Roma et al. 2001), various metals (Schilling 
1978) and semi-conductors (Lee et al. 1998). However, our results indicate that also this split-
interstitial mechanism cannot explain the experimental findings as the formation energy of this 
state is about 10 eV at 24 GPa.

Finally, we consider antisite migration. The idea is that the cation sublattice can be partially 
inverted, i.e., that magnesium ions occupy silicon vacancies and silicon ions occupy magnesium 
vacancies. The intrinsic generation of such an antisite pair, i.e., magnesium and silicon swap 
sites at the same time is energetically unlikely (12 eV at 24 GPa). The formation energy of such 
a bound antisite-pair is, however, only 3.1 eV (at 24 GPa) above the perfect crystal.

Silicon jumps, onto magnesium vacancies and vice versa, are the energetically most 
favorable cation jumps (among the ones investigated). We have found three mechanisms which 
make use of these antisites and are energetically feasible: I) the direct jump to second nearest 
neighbor vacancies in the presence of a magnesium vacancy, II) the antistructure bridge and III) 
the six-jump cycle. 

(1) In order to migrate silicon efficiently through the crystal by the direct mechanism, 
magnesium vacancies need to be neighboring silicon vacancies. Unsurprisingly, this 
is not the case as they carry the same charge and thus repel each other.

(2) The antistructure bridge mechanism (also known in binary alloys, e.g., Duan 2006) 
starts with a silicon-vacancy plus a silicon-antisite atom. The antisite ion jumps into the 
vacancy effectively changing the type of the vacancy and a nearby silicon ion jumps 
from its silicon site onto the new magnesium vacancy creating again an antisite plus a 
silicon vacancy. The analogous process works for magnesium antisites. While we can 
expect to have quite some inversion for silicon vacancies (occupied with magnesium 
ions, formation energy ~-2.5 eV), there will be only very few silicon atoms occupying 
magnesium vacancies (formation energy ~8 eV). While this mechanism might well 
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contribute to magnesium diffusion, the resulting silicon diffusion rate would be much 
too slow compared with experiments. One could also envisage a situation in which a 
magnesium and a silicon swap their sites forming two neighboring antisites allowing a 
new mechanism. Such a pair would be electrostatically bound and could be moving via 
silicon and magnesium vacancy sites in a corporate manner. However, such pairs are 
rare as the formation energy is about 3.1 eV and the migration barrier is about 4.5 eV.

(3) The six jump cycle discussed above is the only mechanism we have found which can 
explain the experiments.

IMPLICATIONS FOR THE EARTH’S LOWER MANTLE

Viscosity of the lower mantle

We can use our absolute diffusion rates to estimate the viscosity of the lower mantle. At this 
point we assume that the volumetrically greatest phase, i.e., perovskite, controls its viscosity. 

The lower mantle is probably deforming in the diffusion creep regime (Karato and Wenk 
1995). Firstly, strain rates are low, temperatures are high, and grain sizes are thought to be 
small (Solomatov et al. 2002). Secondly, there is almost no evidence of shear-wave splitting in 
the lower mantle, which would be indicative of lattice preferred orientation developed in the 
dislocation creep regime. And thirdly, viscosity models from glacial rebound studies indicate 
a linear viscosity in the lower mantle, consistent with diffusion creep. We can estimate the 
viscosity of the lower mantle deforming via diffusion creep by using the Nabarro-Herring 
expression (Poirier 1985):
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where ni is the stoichiometric factor for each species. The diffusion coefficient for each species 
should also contain a contribution from grain-boundary diffusion. Grain boundary diffusion 
is, however, small in both periclase and perovskite for large enough grains (G > 500 µm in 
periclase (van Orman et al. 2003) and G > 10 µm in perovskite (Yamazaki et al. 2000)). There-
fore, for the expected grain size in the lower mantle (Solomatov et al 2002), grain boundary 
diffusion is negligible.

The viscosity profile of the lower mantle, using our absolute diffusion results, is shown 
in Figure 7. The upper bound corresponds to the product G2NV = 2×10−5 mm−1. In other words 
for a grain size of 1 mm and a vacancy concentration of 2×10−5, or alternatively, a grain size 
of 0.1 mm and a vacancy concentration of 2×10−7. The lower bound corresponds to the G2NV = 
2×10−3 mm−1; that is a two orders of magnitude greater vacancy concentration than the upper 
bound (for the same grain size). The geotherm is taken from Stacey (1992). Superimposed 
on our predicted viscosity profile is that obtained by Mitrovica and Forte (2004) from a joint 
inversion of convection and glacial rebound data. The steep weakening seen at the base of 
the lower mantle is due to rapidly increasing temperatures in the thermal boundary layer. The 
agreement with the viscosity profile of Mitrovica and Forte (2004) is striking, especially when 
realizing that no experimental data have gone into the predicted viscosity. 
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It is clear that further work needs to be done in order to investigate the effects of impurities 
such as iron and alumina on the diffusion and therewith on rheology. However, the presence of 
impurities will result in an increased number of vacancies which should, therefore, lower the 
viscosity.

CONCLUSIONS

When the diffusion mechanism is simple, and when the concentration of vacancies in the 
experimental sample is reasonably clear, we have shown that we are able to predict from first 
principles the absolute diffusion in mantle minerals very accurately. For instance, we predict 
cation diffusion (magnesium and calcium) in all MgO experiments very well. We also predict 
oxygen diffusion in MgO, when the concentrations are extrinsically controlled. In perovskite 
we accurately reproduce the available experimental data on magnesium and oxygen diffusion 
as a simple vacancy hopping mechanism. Silicon diffusion in perovskite is more complicated 
since the direct jump does not seem to be energetically favoured. Rather we explain the data 
via the so-called six-jump-cycle. However, we are unable to explain why the concentration of 
vacancies in the experimental sample is so high. Our best explanation is that they are stabilized 
by water, as in other silicates. 
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Figure 7. Viscosity of perovskite in the lower mantle deforming by diffusion creep. Calculated viscosity 
profile of the lower mantle with a composition of 100% MgSiO3 perovskite (curved). Upper bounds 
correspond to either a grain size of G = 1 mm and a vacancy concentration of Nv = 2×10−5 or G = 0.1 
mm and Nv = 2×10−7. Lower bounds correspond to either G = 1 mm and Nv = 2×10−3 or G = 0.1 mm 
and Nv = 2×10−5. Vacancy concentrations were assumed to be fixed throughout the entire lower mantle. 
Superimposed are the results of Mitrovica and Forte (2004) from inversion modeling.
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LETTERS

First-principles constraints on diffusion in
lower-mantle minerals and a weak D99 layer
M. W. Ammann1, J. P. Brodholt1, J. Wookey2 & D. P. Dobson1

Post-perovskite MgSiO3 is believed to be present in the D99 region
of the Earth’s lowermost mantle1–4. Its existence has been used to
explain a number of seismic observations, such as the D99 reflector
and the high degree of seismic anisotropy within the D99 layer5–8.
Ionic diffusion in post-perovskite controls its viscosity, which in
turn controls the thermal and chemical coupling between the core
and the mantle, the development of plumes and the stability of deep
chemical reservoirs9. Here we report the use of first-principles
methods to calculate absolute diffusion rates in post-perovskite
under the conditions found in the Earth’s lower mantle. We find
that the diffusion of Mg21 and Si41 in post-perovskite is extremely
anisotropic, with almost eight orders of magnitude difference
between the fast and slow directions. If post-perovskite in the D99
layer shows significant lattice-preferred orientation, the fast dif-
fusion direction will render post-perovskite up to four orders of
magnitude weaker than perovskite. The presence of weak post-
perovskite strongly increases the heat flux across the core–mantle
boundary and alters the geotherm9. It also provides an explanation
for laterally varying viscosity in the lowermost mantle, as required
by long-period geoid models10. Moreover, the behaviour of very
weak post-perovskite can reconcile seismic observation of a D99
reflector with recent experiments showing that the width of the
perovskite-to-post-perovskite transition is too wide to cause sharp
reflectors11. We suggest that the observed sharp D99 reflector is
caused by a rapid change in seismic anisotropy. Once sufficient
perovskite has transformed into post-perovskite, post-perovskite
becomes interconnected and strain is partitioned into this weaker
phase. At this point, the weaker post-perovskite will start to deform
rapidly, thereby developing a strong crystallographic texture. We
show that the expected seismic contrast between the deformed
perovskite-plus-post-perovskite assemblage and the overlying iso-
tropic perovskite-plus-post-perovskite assemblage is consistent
with seismic observations.

Figure 1 shows our calculated ionic diffusion rates in periclase and
perovskite MgSiO3 in comparison with available experimental data.
Our results are in excellent agreement with the experiments for both
phases and all three ionic species considered, throughout the pressure
and temperature range in which they were measured. This provides
confidence in our results on post-perovskite for which no data exist.
Figure 2 shows our calculated diffusion coefficients for single vacancies,
and the calculated diffusion creep viscosity, along a mantle geotherm.
Oxygen in perovskite is the fastest-diffusing species throughout the
lower mantle. We also find that oxygen, magnesium and silicon dif-
fusion in perovskite are all essentially isotropic. Magnesium is the rate-
limiting species in perovskite, in agreement with the conclusions of
ref. 12. However, it should be noted that the rate-limiting species will
depend on vacancy concentration, which may vary considerably in the
mantle.

Considering post-perovskite, we find that silicon and magnesium
diffusion is extremely anisotropic, with diffusivities varying by about
eight orders of magnitude between the fastest direction, Æ100æ, and
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Figure 1 | Comparison of absolute diffusion rates with experiments. Our
calculated diffusion rates, D, are shown as solid lines (upper limits show the
local-density approximation (LDA) and lower limits show the generalized
gradient approximation (GGA), both at the same cell volume; pressure was
calculated from the GGA) and experimental data is shown as symbols.
Values shown on the right-hand side indicate the vacancy concentrations
estimated from experimental conditions (see Supplementary Information
for details). a, Diffusion in periclase at different pressures, P, and
temperatures, T (refs 15, 24, 25). b, Diffusion in perovskite and diffusion in
pure periclase (same as pure periclase in a) at 25 GPa and varying
temperature12,16,26,27. Where shown, the error bars represent the
experimental error; the other experimental uncertainties are smaller than
the symbol.
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the slowest direction, Æ010æ. Magnesium and silicon diffusion rates in
the fast direction are considerably faster than in perovskite, and are
similar to those in MgO. Although some anisotropy may be expected
as a result of the layered structure of post-perovskite, this is not the
reason for this extreme anisotropy; magnesium and silicon diffusion
in the Æ010æ direction (across the layers) is similar to that in the Æ001æ
direction (parallel to the layers). The anisotropy is largely due to very
fast diffusion in the Æ100æ direction (see Supplementary Information
for more details). Oxygen diffusion in post-perovskite is, however,
essentially homogeneous. Even for the fast diffusion direction, the
diffusion rates are too small to remove any chemical heterogeneities
even over timescales of the age of the Earth (the characteristic dif-
fusion length scale is less than 500 m for all species in all phases,
assuming vacancy concentrations of 0.1%). Chemical exchange with
the core would thus need to occur through grain boundary diffusion
and chemical heterogeneities in the mantle could only be removed
through mechanical mixing (stretching and thinning), grain boundary
diffusion or fluid migration.

We now consider the effect of our calculated diffusion coefficients
on mantle rheology. The absence of seismic anisotropy in the lower

mantle, small grain size13 and low stresses all argue for diffusion creep
being the dominant creep mechanism through the majority of the
lower mantle14. Moreover, viscosity models derived from glacial
rebound indicate linear rheology for most of the mantle, which is
again consistent with diffusion creep. We can therefore estimate the
viscosity of the lower mantle using the Nabarro–Herring expression
for diffusion creep (in the case of simple shear, this expression is
multiplied by a factor of 2/5). Perovskite grain sizes in the lower
mantle have been estimated13 to be 0.1–1 mm, so we can neglect grain
boundary diffusion creep for the major chemical species (magne-
sium, silicon and oxygen)15,16. Estimates of lower-mantle viscosity
of between 1021 and 1024 Pa s, from post-glacial rebound, geoid
anomalies and convection-related observables, are consistent with
our results. Our calculated mantle viscosity also bounds the estimates
from ref. 17 (Fig. 2b), consistent with diffusion creep being the domi-
nant mechanism in the lower mantle. There is some mismatch in the
D99 layer, as post-perovskite is much stiffer than the modelled viscosity
of ref. 17, suggesting that post-perovskite is deforming by a different
mechanism such as dislocation creep. It is important to note that the
quality of agreement can be improved, as the viscosity is strongly
dependent on the geotherm, vacancy concentration and grain size.

The strong diffusion anisotropy in post-perovskite presents problems
for predicting its viscosity in lattice diffusion creep. Averaging of the
diffusivity tensor in an isotropic aggregate results in an effective viscosity
of post-perovskite that is much larger than that of perovskite. This is
because even small contributions from the slow and intermediate direc-
tions will dominate the diffusivity through the aggregate. An alignment
of the [100] crystal axis in the shear direction may cause the aggregate to
weaken substantially, becoming weaker than perovskite only for very
highly aligned cases. It seems likely, however, that the D99 region is not
deforming in the diffusion creep regime. The high stresses accumulated
at the edges of convecting cells and the observed seismic anisotropy in
the D99 layer both argue for deformation by dislocation migration at the
base of the mantle. In the high-temperature case relevant to the D99 layer,
that of climb-assisted dislocation migration, the rate-limiting step is
diffusion of the slowest species in the fastest direction. Our results pre-
dict that for climb-assisted dislocation creep, post-perovskite will be
four orders of magnitude weaker than perovskite. This is supported
by recent low-pressure analogue experiments which showed that post-
perovskite was up to 50 times weaker than perovskite in the CaIrO3

system18. We suggest, therefore, that post-perovskite in the D99 layer will
be significantly weaker than perovskite.

There are a number of implications of this weakening for the D99

region. Recent experiments11 have suggested that the transition from
perovskite to post-perovskite in natural compositions is not sharp
and might, in fact, extend over the whole of the lowermost 200 km of
the lower mantle. Such a wide transition is inconsistent with post-
perovskite being responsible for the seismic discontinuities observed
at the top of the D99 layer. If, however, post-perovskite is significantly
weaker than perovskite, the system will show critical behaviour as the
phase fraction of post-perovskite increases sufficiently for it to form
an interconnected network; this is depicted in Fig. 3b. At the critical
phase fraction, the rheology of the aggregate will switch from being
dominated by perovskite to being dominated by post-perovskite.
This implies that, although the phase fraction might increase mono-
tonically, once the critical phase fraction is reached there will be a
rapid weakening of the two-phase mixture and strain will partition
preferentially into the post-perovskite-dominated region. Critical
behaviour of this type was observed in rheological studies of
CaIrO3 during transformation from perovskite to post-perovskite18,
with the bulk of the weakening occurring at approximately 30%
transformation. In the D99 layer, this rapid weakening and strain
partitioning will cause the texture of the mixture to change from
isotropic to anisotropic over a short distance owing to the shear-
induced lattice-preferred orientation (LPO). Experiments on analogue
phases show that strong LPO can be generated in post-perovskite after
relatively small strains. Figure 3 shows the effect that rapid generation
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Figure 2 | Vacancy diffusion coefficients and viscosity in the lower mantle
along a geotherm. a, Vacancy diffusion coefficients of periclase, perovskite
and post-perovskite along a geotherm28. Upper bounds, LDA calculations;
lower bounds, GGA calculations. b, Calculated viscosity profile, g, of
perovskite MgSiO3 deforming by diffusion creep, and endmember
viscosities along the crystallographic axes of post-perovskite MgSiO3. Grain
size, G, and vacancy concentration, Nv, were varied such that
G2/Nv 5 0.01 m2 for the lower bounds and 0.1 m2 for the upper bounds.
Vacancy concentrations for both minerals are assumed to be fixed
throughout the entire lower mantle. Superimposed are the results from
inversion modelling17. Except for highly aligned cases, post-perovskite
deforming by diffusion creep is stiffer than perovskite as the bulk viscosity
lies between the values of the Æ010æ and Æ001æ directions.
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of LPO in a gradually transforming mixture has on the observed
seismic velocity for ray paths with low angles of incidence. If we
assume that the critical phase fraction for post-perovskite-dominated
rheology is 40%, we calculate (following ref. 7) an increase in shear
speed of around 4%, which is sufficient to explain the observed D99

discontinuity (Supplementary Information). The rapid development
of LPO at the critical phase fraction might therefore be the cause of the
D99 seismic discontinuity, even if the transformation from perovskite
to post-perovskite occurs over a wide depth range.

The broad region of phase coexistence suggested in ref. 11 is also
inconsistent with a lower D99 reflector seen in some regions as being
the back-transformation of post-perovskite into perovskite5,7. We
suggest, however, that the region immediately above the core–mantle
boundary might be a region in which diffusion creep dominates
owing to the steep thermal gradients in the thermal boundary layer
and the free-slip condition that is imposed by the liquid outer core
and results in a reduction of the shear stress immediately next to the
core–mantle boundary. A transition in rheology at the very base of
the D99 layer would result in a change in the crystallographic texture
across this deformation transition, possibly explaining the basal D99

reflector (Fig. 3).
It is possible that that post-perovskite in the D99 layer is deforming

entirely within the diffusion creep regime. However, our results show
that an isotropic mixture of post-perovskite would be very stiff,

something that is inconsistent with geoid modelling and experiments
on analogues. It would also be difficult to explain the observed seismic
anisotropy in terms of diffusion creep. Diffusion creep may still occur
if the grains are rotated such that their fast diffusion directions are
parallel to the shear direction. This type of history-dependent rheology
commonly leads to the development of shear zones, which could also
bring regions of different anisotropies into proximity. Regardless of
whether post-perovskite deforms by diffusion creep or, as is more
likely, by dislocation creep, the observed sharp D99 reflectors may be
interfaces between regions of different anisotropies, and not the phase
transition as is commonly assumed. It is also not necessary to invoke
chemical heterogeneities or the presence of slabs to explain rapid
changes in seismic properties19,20; rapid changes in post-perovskite
texture can produce the same results.

In addition to providing an explanation for the observed D99 seismic
reflectors, a weak post-perovskite has other implications for the D99

layer. It has been shown that a weak D99 layer strongly increases the
heat flux from the core and affects the geotherm9. If the viscosity is very
low, small-scale internal convection may develop within the D99 layer,
further affecting heat flow from the core. The viscosity would also
change laterally as the proportion of perovskite to post-perovskite
varies owing to lateral temperature gradients. This is supported by
recent geoid modelling, which requires colder regions of the deepest
lower mantle to be weaker than hotter regions10.
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Figure 3 | Seismic speed as a function of depth for a gradual
transformation to post-perovskite, with an abrupt change in deformation.
a, Volume fraction of post-perovskite with depth (solid) and degree of
alignment (dashed). b, Pictorial representation of the phase fraction (tan,
perovskite; green, post-perovskite; arrow represents imposed deformation)
and grain orientations. c, Orientation of (010) planes (planes perpendicular
to Æ010æ) and the seismic reflector (arrow) due to flow parallel to the
core–mantle boundary (CMB). The red dashed lines in b and c mark the

region of LPO development. d, Geotherm28. For each point on the geotherm,
we construct an aggregate elastic tensor comprising perovskite and post-
perovskite in the modal proportions given by a, from ab initio calculated
elasticities and gradients4,6,29–32 (see Supplementary Information for details).
e, f, P- and horizontal S-wave speeds, VP and VSH, that would be encountered
by teleseismic PcP and ScS precursor reflections (epicentral distance, 60u)
incident at 45u on the texture boundary; this is similar to the signal that has
been measured for the lowermost mantle (see, for example, ref. 8).
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It is clear that the effects of a weak post-perovskite phase on the
local seismic structure at the core–mantle boundary, on the transport
of heat out of the core and on global geodynamics will require further
careful examination. In addition, more work is required to under-
stand creep and the effects of competing rheological mechanisms in a
strongly anisotropic material. However, the present results provide a
firm atomistic basis for strong weakening as perovskite transforms
into post-perovskite, something that should also occur in the D99
region of the lowermost mantle.

METHODS SUMMARY
We calculated absolute diffusion rates for Mg21, Si41 and O22 in perovskite,

post-perovskite and MgO using harmonic transition state theory. The minimum-

energy migration pathways and saddle points were found using the climbing-

image nudged elastic band method. Where they exist and where the paths are the

same, our migration enthalpies are similar to those calculated previously21,22. We

calculated phonon frequencies and all necessary energies using density functional

theory. Calculations were performed at a constant volume using both the LDA

and the GGA. Further computational and theoretical details are described else-

where23 as well as in Supplementary Information. We find that diffusion generally
occurs in single jumps. However, silicon in perovskite and silicon and magnesium

in post-perovskite diffuse across the silicon–oxygen octahedron layers by means

of a so-called six-jump cycle on the magnesium–silicon sublattice. We investi-

gated the rate of this mechanism using mean first-passage theory and the kinetic

Monte Carlo method. The two methods yield equal rates if cycle-breaking jumps

are ignored. However, as kinetic Monte Carlo computations revealed that cycles

can eventually break up, the analytical solution obtained from mean first-passage

theory is an upper limit for the final rate (see Supplementary Information for

more details).
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6. Wookey, J., Kendall, J.-M. & Rümpker, G. Lowermost mantle anisotropy beneath the
north Pacific from differential S-ScS splitting. Geophys. J. Int. 161, 829–838 (2005).

7. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. & Price, G. D. Efficacy of the
post-Perovskite phase as an explanation for lowermost-mantle seismic
properties. Nature 438, 1004–1007 (2005).

8. Hutko, A. R., Lay, T., Revenaugh, J. & Garnero, E. J. Anticorrelated seismic velocity
anomalies from post-perovskite in the lowermost mantle. Science 320,
1070–1074 (2008).
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