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Multiobjective optimization problem with uncertainties in the input data is considered.

Due to the uncertainty, the use of deterministic approaches for finding the solution to the

problem is problematic. Statistical techniques based on probability distributions are not

efficient if the input data are not sufficient to estimate the parameters of the model accu-

rately enough. An additional problem arises if the probability distribution for the available

data is unknown. Meanwhile, the partial information available to the decision maker can be

useful if fuzzy information is exploited. In this paper, we introduce the definition of opti-

mality using fuzzy variables to handle the uncertainty in the model. Thereafter, we extend

the concept of robust frontier to the model based on fuzzy information. We make it possi-

ble to find a less sensitive frontier in multiobjective optimization with partial information.

The approach is illustrated by solving a test case, well-known in the literature.

Nomenclature

D Design space
F Objective function vector
α α-cut of fuzzy number
σ Variation in design variable/parameter
RF Robustness measure

Sub- and Super-script

˜ Uncertain value
pm Possibilistic mean value
n Number of objective functions
m Number of design variables/parameters

I. Introduction and Background

In the real-life multidisciplinary design there is an uncertainty in the input data. In this environment,
the decision maker (DM) usually prefers to have a solution not much sensitive to small variation in model’s
parameters and variables. In this context there are two major tasks to be done. First, the uncertainty in
model parameters should be handled and the model should be converted into the conventional optimization
problem. Second, the solution, which is less sensitive to the input variations, should be found.

For the first task, many researches assume that the uncertain parameters are random, and adequate data
are available to estimate the probability distribution of their variation. In such scenarios, probability theory
and stochastic programming1 is used to obtain the solution. In stochastic techniques, the constraints are first
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converted into the probabilistic constraints and then some techniques such as Monte-Carlo simulation are
used to evaluate the probability of satisfaction (or failure) of each constraint.2 When the uncertainty does
not fully behave randomness, uncertain variables defined by Liu in Ref.3 can be applicable. In the uncertain
programming, some measure values (e.g. optimistic or pessimistic) for each constraint and objective function
are formulated to substitute for the uncertain model.3 However, in many occasions, the uncertainties may
come from imprecision and ambiguity of the parameters. In this instance, the problem can be handled
using the fuzzy theory. For this purpose, the membership functions for each constraint and objective are
constructed. Mujumdar et al4 use grey numbers rather than real ones to address the uncertainty in the
model. They maximize the level of goal fulfillment by using the α-cut of fuzzy parameters and generate a set
of optimal interval-valued solution instead of a single set. Dubois and Prade5 introduce four inequality indices
between fuzzy numbers and propose the treatments of linear programming problems with fuzzy coefficients.
Each index is selected to satisfy the required assurance of DM. Inuiguchi6 uses the concept of modality in
linear multiobjective optimization based on possibility and necessity measures. He transforms the model,
using the DM level of uncertainty, into the conventional linear programming problem. The goodness of
a fuzzy number instead of a random variable is that it does not require huge source of data and can be
applicable with less and partial information from the DM. It can be carried out with ambiguous coefficients
as well as vague preferences.

The purpose of the second task is to find the less sensitive or so called robust solution which is of
high importance from practical standpoint. Parkinson et al7 , use the analysis of tolerances to show how
tolerances in design variables and parameters are transmitted into the constraints and objective functions.
Su and Renaud8 introduce sensitivity-based and experimental-based robust optimization in single objective
optimization to find the less sensitive optimum solution. The essence of their method is to study the vicinity
of current design and hence find the solution which is less sensitive to fluctuations of parameters and design
variables. In the multiobjective optimization, on the other hand, Deb and Gupta, extend an approach to
optimize the mean effective objective functions.9 They introduce two types of robust solution and consider
four probable cases which can happen in the real-life design. However, as argued in Ref.,9 depending on
the number of sample points, this method can be fifty times computationally expensive as much as regular
optimization methods. In the multiobjective optimization, also, Messac and Yahaya10 develop a flexible
physical-programming based robust optimization method to find a system with a minimal variation in the
input variability and uncertainties. They consider robust design with both prescribed and variable tolerances,
in which the variable tolerance level is determined optimally in the design phase. Like in Ref.,7 they use the
Taylor series in vicinity of each design to study the variation and find a less sensitive solution.

In the current paper we use the fuzzy numbers to show the existing uncertainty of the model. For the first
task we define the notion of Possibilistic Mean optimality, and by using it, we defuzzify the model into the
deterministic one. Thereafter, to resolve the second task, we develop the measure of robustness introduced
in Ref.11 to multiobjective optimization. Then, using the variance of fuzzy numbers, we extend the analysis
of tolerances for the fuzzy functions to find a more robust solution.

II. Fuzzy multiobjective optimization

The notion of fuzzy in the multiobjective optimization problems implies that the model is due to uncer-
tainty. The DM does not know the parameters exactly and imprecision and ambiguity exist in the model
used. A typical fuzzy multiobjective optimization problem can be formulated as follows:

Min F̃ = {F̃1(x), F̃2(x), . . . , F̃n(x)},

subject to g̃i(x) ≤ b̃i i = 1 . . .m,

x ∈ D, (1)

where tilde means the functions contain fuzzy parameters.
To solve the problem defined in Eq. 1, we introduce the following definition.12 This definition can be

used to substitute the parameters of the problem for their fuzzy mean value. The fuzzy mean value then
can be used as the nominal value of the parameters.
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Definition 1 (Possibilistic Mean value of fuzzy number) IfA is a fuzzy number, its possibilistic mean
value is the arithmetic mean of its lower and upper possibilistic mean value, i.e.

Mean(A) =
M(A) +M(A)

2
,

where

M(A) = 2

∫
1

0

αAdα ,M(A) = 2

∫
1

0

αAdα

and A and A are the lower and upper bounds of α-cut (Look at Appendix A) of fuzzy number A,
respectively.

The problem in Eq. 1 is then reduced to

Min Fpm = {F pm
1

(x), F pm
2

(x), . . . , F pm
n (x)}

subject to gpmi (x) ≤ bpmi i = 1 . . .m

x ∈ D (2)

where the pm notation of problem implies that the fuzzy possibilistic mean value of parameters have been
used.

In the problem defined in Eq. 2, we look for a set of solutions called Possibilistic Mean Pareto according
to the following definition:

Definition 2 (Possibilistic Mean (PM) Pareto Optimality) Vector x∗ is called Global Possibilistic

Mean Pareto solution to the multiobjective optimization of the form of Eq. 2 iff 6 ∃x∗∗ such that,
F pm
i (x)∗∗ ≤ F pm

i (x∗) for any i = 1, . . . , n and exists j (1 ≤ j ≤ n): F pm
j (x)∗∗ < F pm

j (x∗). The x∗ is
Locally Possibilistic Mean Pareto solution iff the above condition holds in ε-vicinity of x∗. x∗ is the
solution which is not dominated by any other feasible solution.

III. Searching for robust solution

We are looking for a robust solution, which means that it is less sensitive to the variation in parameters
and design variables of the problem 2. For this purpose, we shift the solution into the feasible space. This
will guarantee that the design will remain feasible even with small perturbation of the parameters. To realize
this, we need the transmitted variation in variables/parameters into the constraints. Using the Taylor series
as in Ref.,7 the variation of a function transmitted into it is calculated by

σ2

z =

n∑

i=1

(
∂z

∂xi

)2

σ2

xi
. (3)

where σxi
is the variation in variables/parameters.

Therefore, for the constraint defined as

gi(x) ≤ bi,

the total variation is

σ2

i = σ2

gi + σ2

bi , (4)

where σbi is the variation in the right-hand side of the constraint and σgi is calculated using Eq. 3. For
the sake of using fuzzy numbers, the variation of the parameters and the right-hand side of the constraints,
should be replaced by the variance of fuzzy parameters based on the following definition:12
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Definition 3 (Variance of fuzzy number) If A is a fuzzy number, the variance of it is defined as

V ar(A) =
1

2

∫
1

0

α(A−A)2dα.

Having applied the transmitted variation for each constraint, we would have the multiobjective optimiza-
tion problem with the form

Min Fpm = {F pm
1

(x), F pm
2

(x), . . . , F pm
n (x)},

subject to gpmi (x) ≤ bpmi − σi i = 1 . . .m,

x ∈ D, (5)

where σi is to be found using Eq. 4. In the above formulation (Eq. 5), we subtract the total variation
in constraint i from the right-hand side. This shifts the solution point into the feasible space and keeps
the feasibility of a design in presence of the variables/parameters perturbation. Moreover, to maximize the
robustness, we define the measure of robustness as follows:

RF =
1

nm

n∑

i=1

m∑

j=1

σFi

σxj
, (6)

where m and n are the number of design variables/parameters and objective functions, respectively. Al-
though the estimation of the dominator is straightforward (variance of the fuzzy number), calculation of the
nominator requires efforts using Eq. 3.

Eq. 6 implies that the variation in design variables/parameters and the variation in objectives of the
problem has an inverse relation. Therefore, it is clear that minimizing this value results in achieving a more
robust solution. This is because of the fact that minimization of RF results in a design with less value of
σF which leads to high value of σx. This is exactly one may expect from a robust solution. Therefore, we
add RF as a new objective function for Eq. 5. Hence, final formulation for searching the robust solution in
multiobjective optimization might be given by:

Min Fpm = {F pm
1

(x), F pm
2

(x), . . . , F pm
n (x)},

Min RF ,

subject to gpmi (x) ≤ bpmi − σi i = 1 . . .m,

x ∈ D. (7)

Using the above formulation, the robust solution can be generated. It should be noted that, regardless
of the number of objective functions in the original design problem, the new formulation will only have one
extra objective function; the robust measure. The defined robust measure may be considered as a soft
constraint from a different perspective, which needs to be minimized as much as possible.

IV. Test case: Two-bar truss structure

In this section we consider an engineering test problem to investigate the introduced model for finding the
robust design. A symmetric two-bar truss structure is a popular structural design which needs to be studied
for the best, however robust, configuration. The test case is taken from Ref.10 and is shown in Figure 1. The
structure is supposed to support a load F . The truss consists of two steel tubes pinned together at one end
and supported on the ground at the other. The design variables are the diameter of members (x1) and the
height (x2) of structure. We consider two objectives of the design: (i) minimize total mass of truss members
and (ii) minimize the vertical deflection due to the application of the load F = (150, 20, 30) kN as triangular
fuzzy number. As can be seen, these two objectives are in conflict. So multiobjective optimization is needed
for finding a trade-off set of solutions. The parameters of the problem are the two fuzzy numbers: member
thickness t = (2.5, 0.5, 1.5) mm and structure width w = (750, 100, 50), and the two crisp (real) numbers:
mass density ρ = 7.8 × 10−3 gr/mm3 and Elastic modulus E = 210000 Nmm2. The normal stress has to
be less than the buckling stress as constraint and 1 ≤ x1 ≤ 100 and 10 ≤ x2 ≤ 1000 must hold. Therefore,
the formulation takes the following form:
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Figure 1. Two-bar truss. Structure (left), Section of member (right)

Minimize Mass = 2πρtx1

√
w2 + x2

2
,

Minimize Deflection =
F (w2x2

2
)3/2

(2πtEx1x2)2
,

s.t. s ≤
1

8
π2E

t2 + x2

1

w2 + x2

2

,

1 ≤ x1 ≤ 10,

100 ≤ x2 ≤ 1000,

where

s =
P

2πtx1x2

√
w2 + x2

2
.

For this test case, we only consider the uncertainty in the parameters. The triangular fuzzy parameters
are substituted by their possibilistic mean value of F = 151.6 kN, t = 2.66 mm and w = 741.6 mm (See
Appendix A). The robust measure is then constructed with the variance of 1020.6, 0.4 and 30.61 for F , t
and w, respectively (See Appendix A). The constraints are modified and the problem of Eq. 7 is formulated.
Using the DSD method13 , the PM and robust Pareto frontiers are generated and are shown in Figure 2.

As can be seen, the robust frontier (white circles) is moved inside the feasible space with respect to the
PM Pareto frontier. This is because of the shrinking of the feasible space under the new formulation for
the sake of searching the robust frontier. This generates the solutions which are more reliable about the
variation in design parameters. Using the DSD method,13 the robust frontier is generated and is shown by
white circles. All these solutions are less sensitive to the parameters variations. However, looking at Figure
2, given the enough resources and DM’s situation, it is important for the design to be chosen with more
value of mass and less value of deflection. This is because of the fact that the robust solution in this region
(shown in Figure 2) deviates from the PM Pareto frontier less than the other design candidates. That is,
not only are these solutions near optimal but also they are robust. It is worth noting that, even before
optimization, it is intuitive to design these trusses with large mass in order to have the less deflection.
This is equivalent to choose the solution from the indicated region (Figure 2) as it is found exactly by the
optimization formulation.
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Figure 2. PM and Robust frontier for two-bar truss test case

V. Conclusion

In this paper we proposed an integrated approach in multiobjective design and optimization to deal
with the uncertainty using the fuzzy set theory. The advantage of using the fuzzy number instead of
random variable is that it gives the DM the flexibility to model with partial information where doubt about
the exactness of a parameter values exists. Hence, the modeling can be done in more flexible way which
is of use in practical application. The mean value of the fuzzy number has been used as the nominal
value to handle the uncertainty in the model. Having implemented the analysis of tolerance, the variation
in the constraint functions are calculated. To do this, the variance of fuzzy number as the variation in
parameters has been exploited. To account for the minimal variations, a measure for the robustness has
been proposed to incorporate the robustness concept into the problem. This function has been considered
as a new objective function to the new formulation. The efficiency of the approach has been illustrated with
a practical engineering example. As a future work it is important for the DM to be able to have control
on the level of robustness for the design. This brings a good opportunity to study different kinds of robust
frontiers and choose an appropriate design accordingly.

Appendix A. Fuzzy numbers

The α-cut of a fuzzy number is defined as follows:

α-cut of fuzzy set If Ã is a fuzzy set, the crisp set of the elements belong to Ã at least to the degree of α
is called α-cut of Ã:

Ãα = {x ∈ X | µÃ(x) ≥ α},

where µÃ(x) is the membership function of fuzzy number A.
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As an example, suppose A is triangular fuzzy number shown by membership function A = (a, b, c),
where b and c are the left-width and right-width of the fuzzy number centered at a. Therefore, α-cut of A
is computed by

Aα = [a− (1− α)b , a+ (1− α)c], ∀α ∈ [0, 1].

Furthermore, if A is a triangular fuzzy number shown by A = (a, b, c), it is easy to prove that the
possibilistic mean value of the fuzzy number is given by

M(A) =a+
c− b

6
,

and also its variance is computed as

V ar(A) =
(b+ c)2

24
.
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