
Optical Tweezers for Scanning Probe Microscopy 

Dr P H Jones 

Department of Physics and Astronomy 

UCL 

 

http://www.ucl.ac.uk/~ucapphj/ 

 

CoMPLEx ITPL course 

MSc Nanotechnology 

31 October 2016 

http://www.ucl.ac.uk/~ucapphj/
http://www.ucl.ac.uk/~ucapphj/


Contents 

0. Introduction 

1. Optical Tweezers 

1.1  Physics of optical trapping 

1.2  Construction 

1.3  Calibration 

1.4  Applications in Life Sciences 

1.5  Applications to Nanotechnology 

2. Photonic Force Microscopy 

2.1  Physics of PFM 

2.2  Applications to Life Sciences and imaging 

3. Conclusions 

 



0. Introduction 
  

• Optical tweezers are a three-dimensional trap for 
micron and sub-micron sized objects 

• At its simplest an optical tweezers can be made 
from an inexpensive laser and a microscope 

• More advanced systems can include complicated 
beam shaping and steering and particle tracking and 
detection 

• This lecture aims to explain how optical tweezers 
work, and how they may be used for sensitive 
measurements of very small forces in life sciences 
and / or nanotechnology experiments 



1. Optical Tweezers 
1.1  Physics of optical trapping 
 1.1.1  Optical forces 

• The physics of the trapping mechanism is based on optical gradient and scattering 
forces arising from the interaction of strongly focussed laser light with matter 

• Simple models that explain optical trapping behaviour can be applied in the Mie 
scattering (d >> l) and the Rayleigh scattering (d << l) regimes depending on the 
size of the particle relative to the wavelength of laser light 

• A real optical tweezers typically works in the intermediate (d  l) regime, requiring a 
rigorous application of complicated approaches such as Generalised Lorentz-Mie 
Scattering or T-Matrix theory (beyond the scope of this lecture) 

• However, insight into the trapping mechanism can be gained from studying the 
limiting cases 



1. Optical Tweezers 
1.1  Physics of optical trapping  
 1.1.2  ‘Ray Optics’ model (1) 

• Applied in the Mie regime d >> l, so that we can consider 
‘rays’ of light being refracted at the interface between 
dielectric media 

• For simplicity consider a spherical particle of refractive 
index n, suspended in water of refractive index nw. 

• Refraction of the ‘ray’ as it crosses the sphere implies a 
transfer of momentum from the sphere to the ‘ray’, and 
hence an equal and opposite transfer of momentum 
from the ‘ray’ to the sphere 

• The gradient in intensity (number of ‘rays’) across the 
sphere produces a net transverse force towards the 
beam axis – an optical gradient force 

 



1. Optical Tweezers 
1.1  Physics of optical trapping  
 1.1.2  ‘Ray Optics’ model (2) 

• To achieve trapping in the axial (z-) direction requires 
focussing of the beam where a similar argument for 
refraction providing an optical gradient force towards the 
focus can be made 

• Axial trapping must also overcome the ‘pushing’ effect of 
the small reflection at the sphere-water interface due to 
the mismatch in refractive indices – the optical scattering 
force 

• Stable 3D trapping requires that the gradient force 
exceeds the scattering force, which may be achieved with 
strong (high numerical aperture) focussing 



1. Optical Tweezers 
1.1  Physics of optical trapping  
 1.1.3  ‘Electric dipole’ model 

• Applied in the Rayleigh regime d << l, so that we can consider an 
electric dipole that is polarised by the application of an electric field 

• A separation of charge (electric dipole) is induced in the dielectric by 
the applied field: 

 

• The interaction energy of the dipole is 

 

 

• Remembering that the intensity distribution is gaussian in the 
transverse plane we see that for small displacements from the axis 
we have  

 

• i.e. a force proportional to the gradient in intensity 

• Strong confinement is therefore achieved by strong focussing 

x-y plane 

x-z plane 



1. Optical Tweezers 
1.1  Physics of optical trapping 
 1.1.4  Optical tweezers characteristics (1) 

• Both models for limiting cases give similar behaviour for the forces in optical 
tweezers 

• A particle is trapped close to the focus of the laser beam (in fact the equilibrium 
position is just beyond the focus due to the scattering force) 

• For small displacements from equilibrium the restoring force on the particle is 
proportional to the displacement and directed towards the equilibrium position, i.e. 
it behaves as a mass-spring oscillator with spring constant k. 

• The spring constant is proportional to the trap intensity 

• The spring constant in the axial (z-) direction is different from (and weaker than) the 
transverse (x- and y-) directions (in fact for nanoparticles the spring constants in x- 
and y- are also different from each other due to polarization induced symmetry 
breaking) 



1. Optical Tweezers 
1.1  Physics of optical trapping 
 1.1.4  Optical tweezers characteristics (2) 

• Typical parameters for an optical tweezers are 

– Particle size, d ~ 0.1 – 10 mm 

– Maximum trapping force, Fmax ~ 10 – 100 pN 

– Potential well depth, U ~ 10 – 100  10-21 J i.e. O(kBT) at biological temperature 

– Spring constant, k ~ 1 – 10 pN mm-1 

• However, all these parameters depend on laser wavelength, objective 
numerical aperture, particle size and refractive index, suspending liquid 
refractive index, lens aberrations...so k = k (d, l, NA, n, nw….) etc  

 



1. Optical Tweezers 
1.1  Physics of optical trapping 
 1.1.5  Optical trapping and manipulation 

• Once a particle is trapped it may be dynamically 
manipulated by steering the trap position: in the movie 
this is achieved using scanning mirrors 

• The particle will remain trapped provided that the 
viscous drag force of the suspending liquid does not 
exceed the maximum trapping force, i.e.  
 

 

• Multiple particles can be trapped by ‘jumping’ the trap 
position quickly between a number of locations 

• Alternative methods include holographic optical 
tweezers for multiple traps, individual particle steering 
and optical rotations 



1. Optical Tweezers 
1.2  Construction 
  

Movie1-BuildingOT.mp4


1. Optical Tweezers 
1.3  Calibration 
 1.3.1  Experimental method (1) 

• An optical tweezers becomes a useful tool for quantitative 
measurements when the spring constant can be calibrated 

• Due to the difficulties of a theoretical description of optical 
trapping in a realistic size regime this must typically be done 
experimentally 

• A segmented or quadrant photodiode is placed in a plane 
conjugate with the back aperture of the microscope 
condenser lens 

• The laser light transmitted through the microscope carries an 
interference pattern between unscattered and forward 
scattered light from the trapped particle 

 



1. Optical Tweezers 
1.3  Calibration 
 1.3.1  Experimental method (2) 

• The spatial distribution of the interference pattern depends 
on the position of the particle relative to the waist of the 
focussed laser beam 

• Combining the signals from the four quadrants of the QPD 
gives signals that measure the particle’s displacement from 
equilibrium in along of the Cartesian axes e.g. the signal Sx = 
(Q1 + Q3) – (Q2 + Q4) is proportional to the displacement in 
the x-direction 

• Fluctuations in position due to the particle’s Brownian motion 
can be tracked by the QPD and appear as a randomly 
fluctuating signal voltage, or ‘noise’ 

• A number of techniques exist for analysing the ‘noise’ that 
enable us to deduce the characteristics of the optical 
tweezers trapping potential 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation 

• Equation of motion of a damped harmonic oscillator subject to a randomly 
fluctuating force: 

 

 

• The term x(t) describes random (uncorrelated) fluctuations in force with zero mean, 
i.e. 

 

• Where the angled brackets indicate a time-averaged quantity 

• 3D particle tracking and analysis of the Brownian position fluctuations reveals the 
trap parameters 

• Start by assuming the oscillator is heavily overdamped, i.e. that the inertial term is 

negligible compared to viscous and trap forces 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: autocorrelation function analysis (1) 

• Equation of motion in the overdamped regime: 

 

 

• Calculate the autocorrelation of position fluctuations: 

 

 

• And differentiate with respect to the lag time, t: 

 

 

• Substitute for the derivative of x, and note that the time average of the second term 
is zero 
 

 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: autocorrelation function analysis (2) 

• Giving a differential equation for the autocorrelation function: 

 

 

• The solution to which is straightforward: 

 

 

• A exponential decay with lag time, t, with the decay constant given by 

 

 

• Provided the viscous drag coefficient, g, is known the spring constant, k, can be 

calculated from a fit 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: autocorrelation function analysis (3) 

• Calculate the autocorrelation of the randomly 
fluctuating position signal 

• Fit to an exponential decay 

• Two fitting parameters:  time constant of decay, w-1, 
gives the trap spring constant; zero-time intercept 
(amplitude) gives the detector sensitivity in V / nm. 

• Together they enable measurement of displacement 
with sub-micron precision, and force with sub-
piconewton precision 
 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: power spectrum analysis (1) 

• An alternative method of extracting the trap spring constant is to consider the power 
spectrum of position fluctuations.  Starting again with the Langevin equation in the 
overdamped regime: 

 

 

• Now consider the power spectrum of the random force fluctuations: 

 

 

• Where ~ indicates a Fourier transform.  The power spectrum is independent of 
frequency – it is an ideal white noise source. 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: power spectrum analysis (2) 

• If we define the Fourier transform of the position fluctuations with: 

 

 

• Then we can write for the particle velocity: 

 

 

• And we can take the Fourier transform of both sides of the Langevin equation: 

 

 

• Or (re-writing in terms of angular frequency, w = 2pf): 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: power spectrum analysis (3) 

• Where we have defined the corner frequency:  

 

 

• The power spectrum Sx(w) of the position fluctuations is the squared modulus of the 
frequency spectrum (Fourier transform), and hence: 

 

 

• Which is a Lorentzian of characteristic (half-) width wc, from which the spring 
constant can be determined. 

• The zero-frequency intercept can be used to make a calibration of the position 
detection system in V / nm. 



1. Optical Tweezers 
1.3  Calibration 
 1.3.2  The Langevin equation: power spectrum analysis (4) 

• Fourier transform randomly fluctuating QPD signal 
and plot modulus squared against frequency 

• Fit to a Lorentzian 

• Two fitting parameters:  corner frequency, wc, 
gives the trap spring constant; zero-frequency 
intercept (amplitude) gives the detector sensitivity 
in V / nm. 

• Together they enable measurement of 
displacement with sub-micron precision, and force 
with sub-piconewton precision 



1. Optical Tweezers 
1.4  Applications to Life Sciences 
 1.4.1  Motor protein step size 

• A ‘classic’ optical tweezers experiment 
which uses a ‘dual beam’ trap 

• Two polystyrene beads are held in optical 
tweezers with an actin filament stretched 
between them 

• The filament is lowered towards a third 
sphere which has a low density coating of 
the motor protein Myosin V 

• The Myosin ‘steps’ along the actin filament 
in a progressive manner driven by 
hydrolysis of ATP producing small 
displacements of the optically trapped 
microbead 

• The regular step size of 36 nm is evident in 
the particle tracking signal 

Data from:  A. Mehta et al, Nature 400 590 (1999) 



1. Optical Tweezers 
1.4  Applications to Life Sciences 
 1.4.2  Motor protein forces 

• The spring constant of the optical trap is 
also calibrated 

• Typically the protein was found to perform 
3 – 5 steps before ‘stalling’ when the bead 
returns to the equilibrium position in the 
trap 

• The force required to ‘stall’ the motor was 
therefore measured to be 3.0 ± 0.3 pN 

Data from:  A. Mehta et al, Nature 400 590 (1999) 



1. Optical Tweezers 
1.4  Applications to Life Sciences 
 1.4.3  Single molecule bond strength 

• An optically trapped microbead is allowed 
to bond to an integrin on the surface of a 
migrating cell 

• Talin binds the cytoplasmic tails of the 
integrins to the actin cytoskeleton 

• The migrating cell pulls the bead out of the 
calibrated trap until the trap restoring 
force exceeds the strength of the talin ‘slip 
bond’ 

• The microbead ‘handle’ returns to the trap 
centre, and from the maximum 
displacement the force required to break 
the bond is deduced to be 2 pN 

 

Data from:  G. Jiang et al, Nature 424 334 (2003) 



1. Optical Tweezers 
1.5  Applications to Nanotechnology 
 1.5.1  Nano-assembly 

• Optical tweezers can be used to trap and 
manipulate nano-materials for the assembly of 
complex nanostructures 

• In this example metal oxide (CuO) nanorods are 
manipulated with optical tweezers and used to 
bridge a gap between two gold electrodes 
deposited on a glass slide 

Data from:  T. Yu et al, Nanotechnology 15 1732 (2004) 



2. Photonic Force Microscopy 
2.1  Physics of PFM 
 2.1.1  Optical Tweezers as a scanning probe microscope 

• Optical tweezers as a tool for scanning probe microscopy was first suggested by L. P. 
Ghislaine & W. W. Webb, Opt. Lett. 18 1678 (1993) 

• The mechanical cantilever and tip of the atomic force microscope (AFM) is replaced 
with an optically trapped micro- or nanoparticle to make a photonic force 
microscope (PFM) 

• PFM has some advantages over AFM for particular applications, especially for 
imaging of soft structures 



2. Photonic Force Microscopy 
2.1  Physics of PFM 
 2.1.2  PFM vs AFM 

• PFM can achieve high force resolution as the OT is a very ‘soft’ spring, but keeps a 
high resonant frequency well above mechanical vibrations 

Photonic Force Microscope (PFM) Atomic Force Microscope (AFM) 

Spring constant (stiffness), 
k / Nm-1 10-4 – 10-5 0.1 - 1 

Force resolution, 

dF / N 10-13 10-10 

Resonant frequency, 

f0 / Hz ~1000 ~2000 



2. Photonic Force Microscopy 
2.1  Physics of PFM 
 2.1.3  Brownian motion in a potential well (1) 

• The Brownian position fluctuations of the 
optically trapped probe particle can be tracked 
with nanometre resolution by a calibrated 
position detection system 

• A histogram of the position fluctuations can be 
built up.  For a harmonic potential, by 

equipartition of energy: 

• The optical potential well can be reconstructed 
by assuming Boltzmann statistics: 

 

• A quadratic fit shows the harmonic 
approximation is reasonable 

Data from:  E.-L. Florin et al, Appl. Phys. A 66 75 (1998) 



2. Photonic Force Microscopy 
2.1  Physics of PFM 
 2.1.3  Brownian motion in a potential well (2) 

• Particle motion can be tracked in three 
dimensions as shown opposite.  Note that the 
fluctuations in the axial (z) direction are slower 
than the transverse directions 

• The three-dimensional potential well can be 
represented by the 3D energy isosurface 
plotted at E = 5kBT above the potential 
minimum 

• Slower fluctuation in the axial direction are a 
consequence of the lower potential curvature 
(smaller spring constant) in this direction 

Data from:  A. Pralle et al, Single Mol. 1 12 (2000) 



2. Photonic Force Microscopy 
2.2  Applications of PFM 
 2.2.1  PFM as a scanning probe 

• Scanning the trapped probe over a structured 
surface reveals information about surface 
morphology with a resolution determined by 
the size of the probe, which may be a fraction 
of the optical wavelength. 

• Figure shows optical DIC images of neural 
dendrites compared with a PFM image 
acquired using a 200 nm diameter latex bead 
as the probe. 

• The PFM was operated in ‘constant height’ 
mode using a fluorescent nanosphere, the 
changing intensity of fluorescence emission 
providing a sensitive measure of axial 
displacement as the probe is scanned over the 
surface 

Data from:  A. Pralle et al, Single Mol. 1 12 (2000) 



2. Photonic Force Microscopy 
2.2  Applications of PFM 
 2.2.2  PFM with a nanoprobe 

• Nanoscale material such as carbon nanotubes can 
be used as the optically trapped probe in PFM 

• 3D particle tracking of a trapped CNT bundle shows 
a large asymmetry in the trap aspect ratio 

• The nanometre-scale diameter of the CNT bundle 
enables tight transverse confinement and high 
spatial resolution, whereas the extended structure 
makes the longitudinal spring constant small, and 
therefore a very sensitive probe of forces in the 
axial direction with resolution < 10 fN 

Data from:  O Marago et al, Nano Lett. 8 3211 (2008) 



2. Photonic Force Microscopy 
2.2  Applications of PFM 
 2.2.3  Photonic Torque Microscopy 

• Unlike a trapped sphere a rod-like particle such as a CNT 
bundle can perform angular fluctuations also 

• Cross-correlations of the particle tracking reveal angular 
motion, allowing us to define an optical torque constant, 
and measure a torque of ~ 1pN •mm 

Data from:  O Marago et al, Nano Lett. 8 3211 (2008) 



3. Conclusions 
3.1  Suggested further reading 
  

• ‘Optical trapping’, K C Neuman & S M. Block  Rev. Sci. Instrum.  75(9) 2787-2809 (2004) 
• ‘Lights, action: optical tweezers’, J E Molloy & M J Padgett.  Contemp. Phys. 43(4) 241-258 

(2002) 
• ‘Signals and noise in micromechanical measurements’,  F Gittes & C F Schmidt. Methods in 

Cell Biology 55 129-156 (1998) 
• ‘Recent advances in optical tweezers’, J R Moffat, Y R Chemla, S B Smith & C Bustmente 

Annu. Rev. Biochem. 77 205-208 (2008) 
• ‘Light at work: The use of optical forces for particle manipulation, sorting, and analysis’, A 

Jonáš & P Zemánek.  Electrophoresis 29 4813-4851 (2008) 
• ‘Photonic force microscopy: from femtonewton force sensing to ultra-sensitive spectroscopy’, 

O M Maragò, P G Gucciardi & P H Jones in Scanning Probe Microscopy in Nanoscience and 
Nanotechnology 1 (Springer) B Bushan (Ed.) (2010) 

• O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe & A. C. Ferrari.  'Optical trapping and 
manipulation of nanostructures', Nature Nanotechnology 8 807-819 (2013) 

• P. H. Jones.  'Optical tweezers', in Encyclopedia of Optical Engineering, R. G. Driggers & A. W. 
Hoffman (Eds), Taylor & Francis, New York (2013) 

• UCL Optical Tweezers website:  www.ucl.ac.uk/~ucapphj 
• The ‘Holoassembler’:  www.holoassembler.com.  State-of-the art micro and 

nanomanipulation with fingertip control! 



3 Conclusions 
3.1  Suggested further reading 

• Textbook: “Optical Tweezers: Principles & 
Applications”, P. H Jones, O. M. Marago & G. 
Volpe (Cambridge University Press) 


