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Abstract. The so-called noise-component has been introduced by Banfield and
Raftery (1993) to improve the robustness of cluster analysis based on the normal
mixture model. The idea is to add a uniform distribution over the convex hull of
the data as an additional mixture component. While this yields good results in
many practical applications, there are some problems with the original proposal:
1) As shown by Hennig (2004), the method is not breakdown-robust. 2) The orig-
inal approach doesn’t define a proper ML estimator, and doesn’t have satisfactory
asymptotic properties.

We discuss two alternatives. The first one consists of replacing the uniform distri-
bution by a fixed constant, modelling an improper uniform distribution that doesn’t
depend on the data. This can be proven to be more robust, though the choice of
the involved tuning constant is tricky. The second alternative is to approximate the
ML-estimator of a mixture of normals with a uniform distribution more precisely
than it is done by the “convex hull” approach. The approaches are compared by
simulations and for a real data example.

1 Introduction

Maximum Likelihood (ML)-estimation of a mixture of normal distributions
is a widely used technique for cluster analysis (see, e.g., Fraley and Raftery
(1998)). Banfield and Raftery (1993) introduced the term “model-based clus-
ter analysis” for such methods.

In the present paper we are concerned with an idea for improving the
robustness of these estimators against outliers and points not belonging to
any cluster. For the sake of simplicity, we only deal with one-dimensional
data here, but the theoretical results carry over easily to multivariate models.
See Section 6 for a discussion of computational issues in the multivariate case.

Observations x1, . . . , xn are modelled as i.i.d. according to the density
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fη(x) =
s∑

j=1

πjϕaj ,σ2

j
(x), (1)

where η = (s, a1, . . . , as, σ1, . . . , σs, π1, . . . , πs) is the parameter vector, the
number of components s ∈ IN may be known or unknown, (aj , σj) pairwise
distinct, aj ∈ IR, σj > 0, πj > 0, j = 1, . . . , s,

∑s

j=1
πj = 1 and ϕa,σ2 is the

density of the normal distribution with mean a and variance σ2. Estimators
of the parameters are denoted by hats.

There is a problem with the ML-estimation of η. If âj = xi for some
i, a mixture component j and σ̂j → 0, the likelihood converges to infinity
and the ML-estimator is not properly defined. This has to be prevented by a
restriction. σj ≥ c0 > 0 ∀j for a given c0 or

σi

σj

≥ c0 > 0, i, j = 1, . . . , s, (2)

ensure a well-defined ML-estimator (up to label switching of the components).
In the present paper we use (2), see Hathaway (1985) for theoretical back-
ground.

Having estimated the parameter vector η by ML for given s, the points can
be classified by assigning them to the mixture component for which the esti-
mated a posteriori probability pij that xi has been generated by the mixture
component j is maximized:

cl(xi) = argmax
j

pij ,

pij =
π̂jϕâj ,σ̂j

(xi)∑s

k=1
π̂kϕâk,σ̂k

(xi)
. (3)

In cluster analysis, the mixture components are interpreted as clusters, though
this is somewhat controversial, because mixtures of more than one not well
separated normal distributions may be unimodal and could look quite homo-
geneous.

It is possible to estimate the number of mixture components s by the
Bayesian Information Criterion BIC (Schwarz (1978)), which is done for ex-
ample by the add-on package “mclust” (Fraley and Raftery (1998)) for the
statistical software systems R and SPLUS. In the present paper we don’t treat
the estimation of s. Note that robustness for fixed s is important as well if s
is estimated, because the higher s, the more problematic the computation of
the ML-estimator, and therefore it is important to have good robust solutions
for small s.

Figure 1 illustrates the behaviour of the ML-estimator for normal mixtures
in the presence of outliers. The addition of one extreme point to a data set
generated from a normal mixture with three mixture components has the
effect that the ML estimator joins two of the original components and fits
the outlier alone by the third component. Note that the solution depends on
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Fig. 1. Left side: artificial data generated from a mixture of three normals with
normal mixture ML-fit. Right side: same data with one outlier added at 22 and
ML-fit with c0 = 0.01.

the choice of c0 in (2), because the mixture component to fix the outlier is
estimated to have minimum possible variance.

Various approaches to deal with outliers are suggested in the literature
about mixture models (note that all of the methods introduced below work
for the data in Figure 1 in the sense that the outlier on the right side doesn’t
affect the classification of the points on the left side, provided that not too
unreasonable tuning constants are chosen where needed). Banfield and Raftery
(1993) suggested to add a uniform distribution over the convex hull (i.e., the
range for one-dimensional data) to the normal mixture:

fη(x) =

s∑

j=1

πjϕaj ,σ2

j
(x) + π0

1(x ∈ [xmin, xmax])

xmax − xmin

, (4)

∑s

j=0
πj = 1, π0 ≥ 0, xmax and xmin denote the maximum and minimum

of the data. The uniform component is called the “noise component”. The
parameters πj , aj and σj can again be estimated by ML (“BR-noise” in the
following”).

As an alternative, McLachlan and Peel (2000) suggest to replace the nor-
mal densities in (1) by the location/scale family defined by tν-distributions (ν
could be fixed or estimated). Other families of distributions yielding more ro-
bust ML-estimators than the normal could be chosen as well, such as Huber’s
least favourable distributions as suggested for mixtures by Campbell (1984).

A further idea is to optimize the log-likelihood of (1) for a trimmed set
of points, as has already been proposed for the k-means clustering criterion
(Cuesta-Albertos, Gordaliza and Matran (1997)).

Conceptually, the noise component approach is very appealing. t-mixtures
formally assign all outliers to mixture components modelling clusters. This is
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not appropriate in most situations from a subject-matter perspective, because
the idea of an outlier is that it is essentially different from the main bulk of
the data, which in the mixture setup means that it doesn’t belong to any
cluster. McLachlan and Peel (2000) are aware of this and suggest to classify
points in the tail areas of the t-distributions as not belonging to the clusters,
but mathematically the outliers are still treated as generated by the mixture
components modelling the clusters.
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Fig. 2. Left side: votes for the republican candidate in the 50 states of the USA
1968. Right side: fit by mixture of two (thick line) and three (thin line) normals.
The symbols indicate the classification by two normals.
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Fig. 3. Left side: votes data fitted by a mixture of two t3-distributions. Right side:
fit by mixture of two normals and BR-noise. The symbols indicate the classifications.
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On the other hand, the trimming approach makes a crisp distinction be-
tween trimmed outliers and “normal” non-outliers, while in reality it is often
unclear whether points on the borderline of clusters should be classified as
outliers or members of the clusters. The smoother mixture approach via esti-
mated a posteriori probabilities by analogy to (3) applied to (4) seems to be
more appropriate in such situations, while still implying a conceptual distic-
tion between normal clusters and the outlier generating uniform distribution.

As an illustration, consider the dataset shown on the left side of Figure 2
giving the votes in percent for the republican candidate in the 1968 election
in the USA (taken from the add-on package “cluster” for R). The main bulk
of the data can be roughly separated into two normally looking clusters and
there are several states on the left that look atypical. However, it is not so
clear where the main bulk ends and states begin to be “outlying”, neither is
it clear whether the state with the best result for the republican candidate
should be considered an outlier. On the right side you see ML-fits by normal
mixtures. For s = 2 (thick line), one mixture component is taken to fit just
three outliers on the left, obscuring the fact that two normals would yield a
much more convincing fit for the vast majority of the higher election results.
The mixture of three normals (thin line) does a much better job, although it
joins several points on the left as a third “cluster” that don’t have very much
in common and don’t look very “normal”.

The t3-mixture ML runs into problems on this dataset. For s = 2, it yields
a spurious mixture component fitting just four packed points (Figure 3, left
side). According to the BIC, this solution is better than the one with s = 3,
which is similar two the normal mixture with s = 3. On the right side of
Figure 3 the fit with the noise component approach can be seen, which is
similar to three normals in terms of point classification, but provides a useful
distinction between normal “clusters” and uniform “outliers”.

Another conceptual remark concerns the interpretation of the results. It
makes a crucial difference whether a mixture is fitted for the sake of density
estimation or for the sake of clustering. If the main interest is in cluster analy-
sis, it is of major importance to interpret the classification and the distinction
between “cluster” and “outlier” can be very useful. In such a situation the
uniform distribution for the noise component is not chosen because we really
believe that the outliers are uniformly distributed, but to mimic the situation
that there is no prior information where outliers could be and what could be
their distributional shape. The uniform distribution can then be interpreted
as “informationless” in a subjective Bayesian fashion.

However, if the main interest is density estimation, it is much more im-
portant to come up with an estimator with a reasonable shape of the density.
The discontinuities of the uniform may then be judged as unsatisfactory and a
mixture of three or even four normals may be preferred. In the present paper
we focus on the cluster analytical interpretation.

In Section 2, some theoretical shortcomings of the original noise component
approach are highlighted and two alternatives are proposed, namely replacing
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the uniform distribution over the range of the data by am improper uniform
distribution and estimating the range of the uniform component by ML.

In Section 3, theoretical properties of the different noise component ap-
proaches are discussed. In Section 4, the computation of the estimators using
the EM-algorithm is treated and some simulation results are given in Section
5. The paper is concluded in Section 6. Note that the theory and simulations
in this paper are an overview of more detailed results in Pietro Coretto’s forth-
coming PhD thesis. Proofs and detailed simulation results will be published
elsewhere.

2 Two variations on the noise component

2.1 The improper noise component

Hennig (2004) has derived a robustness theory for mixture estimators based on
the finite sample addition breakdown point by Donoho and Huber (1983). This
breakdown point is defined, in general, as the smallest proportion of points
that has to be added to a dataset in order to make the estimation arbitrarily
bad, which is usually defined by at least one estimated parameter converging
to infinity under a sequence of a fixed number of added points. In the mixture
setup, Hennig (2004) defined breakdown as aj → ∞, σ2

j → ∞, or πj → 0
for at least one of j = 1, . . . , s. Under (4), the uniform component is not
regarded as interesting on its own, but as a helpful device, and its parameters
are not included in the breakdown point definition. However, Hennig (2004)
showed that for fixed s the breakdown point not only for the normal mixture-
ML, but also for the t-mixture-ML and BR-noise is the smallest possible; all
these methods can be driven to breakdown by adding a single data point.
Note, however, that a point has to be a very extreme outlier for the noise
component and t-mixtures to cause trouble, while it’s much easier to drive
conventional normal mxtures to breakdown.

The main robustness problem with the noise component is that the range
of the uniform distribution is determined by the most extreme points, and
therefore it depends strongly on where the outliers are.

A better breakdown behaviour (under some conditions on the dataset, i.e.,
the components have to be well separated in some sense) has been shown by
Hennig (2004) for a variant in which the noise component is replaced by an
improper uniform density k over the whole real line:

fη(x) =

s∑

j=1

πjϕaj ,σ2

j
(x) + π0k. (5)

k has to be chosen in advance, and the other parameters can then be fitted
by “pseudo ML” (“pseudo” because (5) does not define a proper density and
therefore not a proper likelihood). There are several possibilities to determine
k:



The noise component in model-based cluster analysis 7

• a priori by subject matter considerations, deciding about the maximum
density value for which points cannot be considered anymore to lie in a
“cluster”,

• exploratory, by trying several values and choosing the one yielding the
most convincing solution,

• estimating k from the data. This is a difficult task, because k is not de-
fined by a proper probability model. Interpreting the improper noise as a
technical device to fit a good normal mixture for most points, we propose
the following technique:
1. Fit (5) for several values of k.
2. For every k, perform classification according to (3) and remove all

points classified as noise.
3. Fit a simple normal mixture on the remaining (non-noise) points.
4. Choose the k that minimizes the Kolmogorow distance between the

empirical distribution of the non-noise points and the fit in step 3. Note
that this only works if all candidate values for k are small enough that
a certain minimum portion of the data points (50%, say) is classifed as
non-noise.

From a statistical point of view, estimating k is certainly most attractive,
but theoretically it is difficult to analyze. Particularly, it requires a new
robustness theory because the results of Hennig (2004) assume that k
is chosen independently of the data. The result for the voting data is
shown on the left side of Figure 4. k is lower than for BR-noise, so that
the “borderline points” contribute more to the estimation of the normal
mixture. The classification is the same. More improvement could be seen if
there was a further much more extreme outlier in the dataset, for example
a negative number caused by a typo. This would affect the range of the
data strongly, but the improper noise approach would still yield the same
classification. Some alternative techniques to estimate k are discussed in
Coretto and Hennig (2007).

2.2 Maximum likelihood with uniform

A further problem of BR-noise is that the model (4) is data dependent, and
its ML estimator is not ML for any data independent model, particularly not
for the following one:

fη(x) =

s∑

j=1

πjϕaj ,σ2

j
(x) + π0ub1,b2(x), (6)

where ub1,b2 is the density of a uniform distribution on the interval [b1, b2].
This may come as a surprise, because the range of the data is ML for a
single uniform distribution, but if it is mixed with some normals, the range
of the data is not ML anymore for b1 and b2, because fη is nonzero outside
[b1, b2]. For example, BR-noise doesn’t deliver the ML solution for the voting
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data, which is shown on the right side of Figure 4. In order to prevent the
likelihood from converging to infinity for b2 − b1 → 0, the restriction (2) has
to be extended to σ0 = b2−b1

√

12
, the standard deviation of the uniform.
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Fig. 4. Left side: votes data fitted by (5) with s = 2 and estimated k. Right side:
fit by ML for (6), s = 2. The symbols indicate the classifications.

Taking the ML-estimator for (6) is an obvious alternative (“ML-uniform”).
For the voting data the ML solution to fit the uniform component only on
the left side seems reasonable. The largest election result is now assigned to
one of the normal clusters, to the center of which it is much closer than the
outliers on the left to the other normal cluster.

3 Some theory

Here is a very rough overview on some theoretical results which will be pub-
lished elsewhere in detail:

Identifiability. All parameters in model (6) are identifiable. This is not sur-
prising because the uniform can be located by the discontinuities in the
density (defined as the derivative of the cdf), and mixtures of normals are
identifiable. The result involves a new definition of identifiability for mix-
tures of different families of distributions, see Coretto and Hennig (2006).

Asymptotics. Note that the results below concern parameters, but asymptotic
results concerning classification can be derived in a straightforward way
from the asymptotic behaviour of the parameter estimators.
BR-noise. n → ∞ ⇒ 1/(xmax − xmin) → 0 whenever s > 0. This means

that asymptotically the uniform density is estimated to be zero (no
points are classified as noise), even if the true underlying model is (6)
including a uniform.
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ML-uniform. This is consistent for model (6) under (2) including the stan-
dard deviation of the uniform. However, at least the estimation of b1

and b2 is not asymptotically normal because the uniform distribu-
tion doesn’t fulfill the conditions for asymptotic normality of ML-
estimators.

Improper noise. Unfortunately, even if the density value of the uniform
distribution in (6) is known to be k, the improper noise approach
doesn’t deliver a consistent estimate for the normal parameters in (6).
Its asymptotics concerning the canonical parameters estimated by (5),
i.e., the value of its “population version”, is currently investigated.

Robustness. Unfortunately, ML-uniform is not robust according to the break-
down definition given by Hennig (2004). It can be driven to breakdown by
two extreme points in the same way BR-noise can be driven to breakdown
by one extreme point, because if two outliers are added on both sides of
the original dataset, BR-noise becomes ML for (6).
The improper noise approach with estimated k is robust against the ad-
dition of extreme outliers under a sensible initial range of k. Its precise
robustness properties still have to be investigated.

4 The EM-algorithm

Nowadays, the ML-estimator for mixtures is often computed by the EM-
algorithm, which is shown in various settings to increase the likelihood in
every iteration, see Redner and Walker (1984). The principle is as follows:

Start with some initial parameter values which may be obtained by an ini-
tial partition of the data. Then iterate the E-step and the M-step until
convergence.

E-step: compute the posterior probabilities (3), their analogues for the model
under study, respectively, given the current parameter values.

M-step: compute component-wise ML-estimators for the parameters from
weighted data, where the weights are given by the E-step.

For given k, the improper noise estimator can be computed precisely in the
same way. The proof in Redner and Walker (1984) carries over even though
the estimator is only pseudo-ML, because given the data, the improper noise
component can be replaced by a proper uniform distribution over some set
containing all data points with a density value of k.

For ML-uniform it has to be taken into account that the ML-estimator
for a single uniform distribution is always the range of the data. This means
for the EM-algorithm that whatever initial interval I is chosen for [b1, b2], the
uniform mixture component is estimated as the uniform over the range of the
data contained in I in the M-step. Particularly, if I = [xmin, xmax], the EM-
estimator yields Banfield and Raftery’s noise component as ML-estimator,
which is indeed a local optimum of the likelihood in this sense. Therefore,
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unfortunately, the EM-algorithm is not informative about the parameters of
the uniform.

A reasonable approximation of ML-uniform can only be obtained by start-
ing the EM-algorithm several times, either initializing the uniform by all pairs
of data points, or, if this is computationally not feasible, by choosing an ini-
tial grid of data points from which all pairs of points are used. This could
be for example xmin, xmax, and all empirical 0.1q-quantiles for q = 1, . . . , 9,
or the range of the data could be partitioned into a number of equally long
intervals and the data points closest to the interval borders could be chosen.
The solution maximizing the likelihood can then be taken.

5 Simulations

Simulations have been carried out to compare the two new proposals ML-
uniform and improper noise with BR-noise and ML for tν -mixtures. The latter
has been carried out with estimated degrees of freedom ν and classification
of points as “outliers/noise” in the tail areas of the estimated t-components,
according to Chapter 7 of McLachlan and Peel (2000). The ML-uniform has
been computed based on a grid of points as explained in Section 4.

Data sets have been generated with n = 50, n = 200 and n = 500, and
several statistics have been recorded. The precise simulation results will be
published elsewhere. In the present paper we focus on the average misclassi-
fication percentages for the datasets with n = 200. Data have been simulated
from four different parameter choices of the model (6), which are illustrated
in Figure 5. For every model, 70 repetitions have been run.

Table 1. Average misclassification percentages for n = 200

Model/method BR-noise t-mixture improper noise ML-uniform

Two outliers 2.7 7.3 3.9 3.3
Wide noise 8.0 9.6 8.4 9.3
Noise on one side 10.6 8.3 3.6 5.3
Noise in between 8.8 8.7 5.5 7.3

The misclassification results are given in Table 1. BR-noise yielded the
best performance for the “wide noise” model. This is not surprising, because
in this model it’s very likely that the most extreme points on both sides are
generated by the uniform. With two extreme outliers on one side, it was also
optimal. However, it performed much worse in the two models that generated
10% noise at particular places (“noise on one side” and “noise in between”).
The improper noise approach generally performed very well, almost always
better than uniform-ML (which was the best method for two of the models
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Fig. 5. Simulated models. Note that for the model “2 outliers” the number of points
drawn from the uniform component has been fixed to 2.

for n = 500). The t-mixtures-ML didn’t perform very well, but this is at least
partly due to the fact that all simulated models were of the “normal mixture
plus uniform”-type. We will also carry out simulations from t-mixtures in the
future.

6 Conclusion

To deal with noise and outliers in cluster analysis, two new methods have been
proposed, which are variants of Banfield and Raftery’s (1993) noise compo-
nent, namely the use of an improper density to model the noise and an ML-
estimator for a mixture model including a uniform component. Both methods
have some theoretical advantages over BR-noise. Simulations showed a good
performance particularly for the improper noise component with estimated
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density value. We find the principle to model outliers and noise by an ad-
ditional (proper or improper) uniform component appealing, particularly for
cluster analysis applications. It allows a smooth classification of points as
“noise” or as belonging to a cluster.

Of course it is desirable to apply the ideas to multivariate data as well.
This is possible in a straightforward way for the improper noise approach
where k is fixed in advance by subject matter considerations. Our proposal
to estimate k may work as well for moderate dimensionality, but this is still
under investigation.

The ML-uniform approach is problematic in the multivariate setup because
of the large number of potentially reasonable support sets for the uniform
distribution. In principle it could be applied by assuming the support of the
uniform component as rectangular and parallel to the coordinate axes defined
by the variables in the data. The ML solution could then be approximated by
the best of several hyperrectangles defined by pairs of data points. It remains
to see whether this leads to useful clusterings.
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